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1. Introduction

The Earth is an heterogeneous complex media from the mineral composition scale (~ 10~%m)
to the global scale (~ 10°m). The reconstruction of its structure is a quite challenging problem
because sampling methodologies are mainly indirect as potential methods (Giinther et al.,
2006; Riicker et al., 2006), diffusive methods (Cognon, 1971; Druskin & Knizhnerman, 1988;
Goldman & Stover, 1983; Hohmann, 1988; Kuo & Cho, 1980; Oristaglio & Hohmann, 1984) or
propagation methods (Alterman & Karal, 1968; Bolt & Smith, 1976; Dablain, 1986; Kelly et al.,
1976; Levander, 1988; Marfurt, 1984; Virieux, 1986). Seismic waves belong to the last category.
We shall concentrate in this chapter on the forward problem which will be at the heart of any
inverse problem for imaging the Earth. The forward problem is dedicated to the estimation
of seismic wavefields when one knows the medium properties while the inverse problem is
devoted to the estimation of medium properties from recorded seismic wavefields.

The Earth is a translucid structure for seismic waves. As we mainly record seismic signals
at the free surface, we need to consider effects of this free surface which may have a
complex topography. High heterogeneities in the upper crust must be considered as well
and essentially in the weathering layer zone which complicates dramatically the waveform
and makes the focusing of the image more challenging.

Among the main methods for the computation of seismic wavefields, we shall describe
some of them which are able to estime the entire seismic signal considering different
approximations as acoustic or elastic, isotropic or anisotropic, and attenuating effects. Because
we are interested in seismic imaging, one has to consider methods which should be efficient
especially for the many-sources problem as thousands of sources are required for imaging.
These sources could be active sources as explosions or earthquakes. We assume that their
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254 Seismic Waves, Research and Analysis

distribution are known spatially as punctual sources and that the source time function is the
signal we need to reconstruct aside the medium properties.

Asymptotic methods based on the high frequency ansatz (see (Virieux & Lambaré, 2007)
for references or textbooks (Cerveny, 2001; Chapman, 2004)) and spectral methods based
on a spatial and time Fourier transformations (Aki & Richards, 2002; Cagniard, 1962; de
Hoop, 1960; Wheeler & Sternberg, 1968) are efficient methods which are difficult to control:
whispering galeries for flat layers are efficiently considered using spectral methods. These
two methods may be used either for local interpretation of specific phases or as efficient
alternatives when media is expected to be simple. They could be used as well for scattering
inverse problems. In the general heterogeneous case, we have to deal with volumetric
methods where the medium properties are described through a volume while seismic wave
fields satisfy locally partial differential equations. Although one may consider boundaries as
the free surface or the water/solid interface, we may consider that variations of the medium
properties are continuous at the scale of the wavelength which we want to reconstruct:
the best resolution we could expect is half the wavelength (Williamson & Worthington,
1993). Therefore a volumetric grid discretization is preferred where numerical expressions
of boundary conditions should be mostly implicit through properties variations.

A quite popular method because of this apparent simplicity is the finite difference method
where partial derivatives are transformed into finite difference expressions as soon as the
medium has been discretized into nodes: discrete equations should be exactly verified. We
shall consider first this method as it is an excellent introduction to numerical methods and
related specific features. We will consider both time and frequency approaches as they have
quite different behaviours when considering seismic imaging strategies.

Applications will enhance the different properties of this numerical tool and the caveats we
must avoid for the various types of propagation we need.

Another well-known approach is the finite element method where partial differential
equations are asked to be fulfilled in a average way (to be defined) inside elements paving
the entire medium. We shall concentrate into the discontinuous Galerkin method as it allows
to mix acoustic and elastic wave propagation into a same formalism: this particular method
shares many features of finite element formalism when describing an element, but differs by
the way these elements interact each other. We avoid the description of the continuous finite
element method for compactness and differences will be pointed out when necessary. Again,
we shall discuss both time-domain and frequency-domain approaches.

Applications will illustrate the different capabilities of this technique and we shall illustrate
what are advantages and drawbacks compared to finite difference methods while specific
features will be identified compared to continuous finite element methods.

We shall conclude on the strategy for seismic imaging when comparing precision of solutions
and numerical efforts for both volumetric methods.

2. Equations of seismic wave propagation

In a heterogeneous continuum medium, seismic waves verify partial differential equations
locally. Integral equations may provide an alternative for the evolution of seismic fields either
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in the entire domain or at the scale of an elementary element of a given mesh describing the
medium structure.

Fundamental laws of dynamics require the conservation of linear and angular momentum in
a Galilean reference frame. In the continuum, a force applied across a surface, oriented by
the unit normal n at a given position x = (x,y,z) in a Cartesian coordinate system (O, x, y,z),
by one side of the material on the other side defines the traction vector ; = 0j;n; where the
second-rank stress tensor o has been introduced. The conservation of the angular momentum
makes the stress tensor symmetrical 0;; = 0j;. We shall introduce as well a volumetric force
per unit mass at the current position denoted as f = (fx, fy, fz). The conservation of linear
momentum allows one to write the acceleration of the displacement motion u(x) of a given
particle at the current position as

%u; 9o
P0GE = gy HPOfi M

where the density is denoted by p(x).

Aside the translation and the rotation transformations preserving the distances inside the
body we consider, the deformation of the continuum body is described by defining a strain

tensor € expressed as
1 (0u; Qu;
P s I 2
61] 2 <axi + Bx] ( )

The symmetrical definition of the deformation ensures that no rigid-body rotations are
included. The particle motion is decomposed into a translation, a rotation and a deformation:
the two formers transformations preserve distances inside the solid body while the third one
does not preserve distances, inducing stress variations inside the solid body. In the framework
of linear elasticity, there is a general linear relation between the strain and stress tensors by
introducing fourth-rank tensor c;j; defined as follows

0ij = Cijki€kl- 3)

Because of symmetry properties of stress and strain tensors, we have only 36 independent
parameters among the 81 elastic coefficients while the positive strain energy leads to a further
reduction to 21 independent parameters for a general anisotropic medium. For the particular
case of isotropic media, we end up with two coefficients which can be the Lamé coefficients
A and p. The second one is known also as the rigidity coefficient as it characterizes the
mechanical shear mode of deformation. The following expression of elastic coefficients,

Cijki = Adijor + p(0ixdjt + 6itdjk ), (4)

with the Kronecker convention for §;; gives the simplified expression linking the stress tensor
to the deformation tensor for isotropic media as

Oij = Aekkfsij + Zﬂeij- (5)
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One may prefer the inverse of the relation (5) where the deformation tensor is expressed from
the stress tensor by the introduction of the Young modulus E. Still, we have two independent
coefficients. By injecting the relation (5) into the fundamental relation of dynamics (1), we
end up with the so-called elastic wave propagation system, which is an hyperbolic system of
second order, where only the displacement u has to be found. This system can be written as

2 P 2
Uy uy  0°uy
x2 + (A +w) (axay + 8x82> +

uy %y
i < a2 o )]

%uy 1
o2

(A +2p)

Puy 1 0%y u,  %u,
M p (A+2w) oy? (A+V)(8x8y+ayaz)+
a2uy o%u
Tl T 822 ©)
Ru, 1 uy  uy
a2  p ()H—ZV) +(A+p) <E)xaz + oyoz +

n %u, n %u,
H\ ax2 oz )|’
where we have neglected spatial variations of Lamé coefficients. Therefore, we must
reconstruct over time the three components of the displacement or equivalently of the velocity

or the acceleration. Choosing the stress is a matter of mechanical behaviour in a similar way
for seismic instruments which record one of these fields.

For heterogeneous media, spatial differential rules for Lamé coefficients have to be designed.
We shall see how to avoid this definition in the continuum by first considering hyperbolic
system of first-order equations, keeping stress field. More generally, any hyperbolic equation
with n-order derivatives could be transformed in a hyperbolic system with only first
derivatives by adding additional unknown fields. This mathematical transformation comes
naturally for the elastodynamic case by selecting the velocity field v and the stress field ¢ as
fields we want to reconstruct. In a compact form, this first-order system in particle velocity
and stresses is the following

a‘()l‘

Py = Yiij T ofi (7a)
903
al’ /\vkkfszj +,’M(U” +U]1) (7b)

with 7,j = x,y,z. We may consider other dual quantities as (displacement, integrated stress)
or (acceleration, stress rate) as long as the medium is at rest before the dynamic evolution. Let
us underline that time partial derivatives are on the left-hand side and that spatial variations
and derivations are on the right-and side.
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Using simple linear algebra manipulations, alternative equivalent expressions may deserve
investigation: the three components o0;; could be linearly combined for three alternative
components considering the trace o7 = trace(v)/3, the x-coordinate deviatoric stress 0, =
(20xx — oy — 022) /3 and the y-coordinate deviatoric stress 03 = (—0xx + 20y — 022)/3 which
allows to separate partial spatial derivatives in the right hand side and material properties in
the left hand side. The system (7) becomes

v;
pap = Oiij T efi
3 dn _
3A+2u ot
3 don (00U B
Eﬁ = (3 ox vl,l) ®)
3 80’3 i avy
o~ 05 )
1903
ﬁ? =0j; + Vji

which could be useful when we move from differential formulation to integral formulation
over elementary volumes. Partial differential operators only in the right-hand side of the
system (8) are separated from spatial variations of model parameters on the left-hand side
as a dlasonal matrix A = (m, 2 g ﬁ)' Similar strategies could be applied for 2D
geometries.

Finally, for easing discussions on the numerical implementation, let us write both the 1D scalar

second-order acoustic wave equation in the time domain as

Pu(x,t) 9 du(x, t)

P(x) atz = ax ('x) ax 4 (9)
or, in frequency domain,
] ou(x, w)
2 — )
wp(x)u(x,w) + E)xE(x) Py 0, (10)

away from sources where one can see the importance of the mixed operator dxE(x)0y.
We have introduced the Young modulus E related to unidirectional compression/delation
motion. The 1D vectorial first-order acoustic wave equation can be written as

ov(x, ) _ oo (x,t)

(¥ =5 ox
do(x,t) dv(x, t)
PTG v ()
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from which one can deduce immediatly the system of equations in the frequency domain

oo (x, w)
ox
v(x, w)
ox

—iwp(x)v(x,w) =

—iwo(x,w) = E(x) . (12)
Please note that the mixed operator does not appear explicitly. By discretizing this system and
by eliminating the stress discrete values, one can go back to an equation involving only the
velocity: a natural and systematic procedure for discretizing the mixed operator as proposed
by Luo & Schuster (1990).

For an isotropic medium, two types of waves - compressional and shear waves - are
propagating at two different velocities v, and vs. These velocities can be expressed as

vp = M and v; = \/E, (13)
P P

except for the 1D medium where only compression/dilatation motion could take place. The
displacement induced by these two different waves is such that compressive waves u” verify
V x ulp = 0 and shear waves u° verify V - uls = 0. Applying these operators to the numerical
displacement will separate it into these two wavefields.

2.1 Time-domain or frequency-domain approaches

These systems of equations could be solved numerically in the time domain or in the
frequency domain depending on applications. For seismic imaging, the forward problem
has to be solved for each source and at each iteration of the optimisation problem. The
time approach has a computational complexity increasing linearly with the number of
sources while precomputation could be achieved in the frequency domain before modelling
the propagation of each source. Let us write a compact form in order to emphasize the
time/frequency domains approaches. The elastodynamic equations are expressed as the
following system of second-order hyperbolic equations,

°w(x, t)

M(x) ot2

= S(x)w(x, t) +s(x,t), (14)
where M and S are the mass and the stiffness matrices (Marfurt, 1984). The source term is
denoted by s and the seismic wavefield by w. In the acoustic approximation, w generally
represents pressure, while in the elastic case, w generally represents horizontal and vertical
particle displacements. The time is denoted by t and the spatial coordinates by x. Equation
(14) is generally solved with an explicit time-marching algorithm: the value of the wavefield
at a time step (n + 1) at a spatial position x is inferred from the value of the wavefields at
previous time steps (Dablain, 1986; Tal-Ezer et al., 1990). Implicit time-marching algorithms
are avoided as they require solving a linear system (Marfurt, 1984; Mufti, 1985). If both
velocity and stress wavefields are helpful, the system of second-order equations can be recast
as a first-order hyperbolic velocity-stress system by incorporating the necessary auxiliary
variables (Virieux, 1986). The time-marching approach could gain in efficiency if one consider
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local time steps related to the coarsity of the spatial grid (Titarev & Toro, 2002): this leads
to a quite challenging load balancing program between processors when doing parallel
programming as most processors are waiting for the one which is doing the maximum of
number crunching as illustrated for the ADER scheme (Dumbser & Kiser, 2006). Adapting the
distribution of the number of nodes to each processor depending on the expected complexity
of mathematical operations is still an open problem. Other integration schemes as the
Runge-Kutta scheme or the Stormer/Verlet symplectic scheme (Hairer et al., 2002) could be
used as well.

Seismic imaging requires the cross-correlation in time domain or the product in frequency
domain of the incidents field of one source and the backpropagated residues from the receivers
for this source. In order to do so, one has to save at each point of the medium the incident
field from the source which could be a time series or one complex number. The storage when
considering a time-domain approach could be an issue: a possible strategy is storing only
few time snapshots for recomputing the incident field on the fly (Symes, 2007) at intermediate
times. An additional advantage is that the attenuation effect could be introduced as well. in
the time-domain approach, the complexity increases linearly with the number of sources.

In the frequency domain, the wave equation reduces to a system of linear equations, the
right-hand side of which is the source, and the solution of which is the seismic wavefield.
This system can be written compactly as

B(x,w)w(x,w) = s(x,w), (15)

where B is the so-called impedance matrix (Marfurt, 1984). The sparse complex-valued
matrix B has a symmetric pattern, although is not symmetric because of absorbing boundary
conditions (Hustedt et al., 2004; Operto et al., 2007). The fourier transform is defined with the
following convention

flwy= [ pietar

Solving the system of equations (15) can be performed through a decomposition of the matrix
B, such as lower and upper (LU) triangular decomposition, which leads to the so-called
direct-solver techniques. The advantage of the direct-solver approach is that, once the
decomposition is performed, equation (15) is efficiently solved for multiple sources using
forward and backward substitutions (Marfurt, 1984). This approach has been shown to be
efficient for 2D forward problems (Hustedt et al., 2004; Jo et al., 1996; Stekl & Pratt, 1998).
However, the time and memory complexities of the LU factorization, and its limited scalability
on large-scale distributed memory platforms, prevents the use of the direct-solver approach
for large-scale 3D problems (i.e., problems involving more than ten millions of unknowns)
(Operto et al., 2007).

Iterative solvers provide an alternative approach for solving the time-harmonic wave equation
(Erlangga & Herrmann, 2008; Plessix, 2007; Riyanti et al., 2006; 2007). Iterative solvers are
currently implemented with Krylov-subspace methods (Saad, 2003) that are preconditioned
by the solution of the dampened time-harmonic wave equation. The solution of the dampened
wave equation is computed with one cycle of a multigrid. The main advantage of the iterative
approach is the low memory requirement, while the main drawback results from the difficulty
to design an efficient preconditioner, because the impedance matrix is indefinite. To our
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knowledge, the extension to elastic wave equations still needs to be investigated. As for the
time-domain approach, the time complexity of the iterative approach increases linearly with
the number of sources or, equivalently, of right-hand sides, in contrast to the direct-solver
approach.

An intermediate approach between the direct and the iterative methods consists of a hybrid
direct-iterative approach that is based on a domain decomposition method and the Schur
complement system (Saad, 2003; Sourbier et al., 2011): the iterative solver is used to solve the
reduced Schur complement system, the solution of which is the wavefield at interface nodes
between subdomains. The direct solver is used to factorize local impedance matrices that are
assembled on each subdomain. Briefly, the hybrid approach provides a compromise in terms
of memory saving and multi-source-simulation efficiency between the direct and the iterative
approaches.

The last possible approach to compute monochromatic wavefields is to perform the modeling
in the time domain and extract the frequency-domain solution, either by discrete Fourier
transform in the loop over the time steps (Sirgue et al., 2008) or by phase-sensitivity detection
once the steady-state regime has been reached (Nihei & Li, 2007). An arbitrary number of
frequencies can be extracted within the loop over time steps at a minimal extra cost. Time
windowing can easily be applied, which is not the case when the modeling is performed in the
frequency domain. Time windowing allows the extraction of specific arrivals (early arrivals,
reflections, PS converted waves) for the full waveform inversion (FWI), which is often useful
to mitigate the nonlinearity of the inversion by judicious data preconditioning (Brossier et al.,
2009; Sears et al., 2008).

Among all of these possible approaches, the iterative-solver approach has theoretically the
best time complexity (here, complexity denotes how the computational cost of an algorithm
grows with the size of the computational domain) if the number of iterations is independent
of the frequency (Erlangga & Herrmann, 2008). In practice, the number of iterations generally
increases linearly with frequency. In this case, the time complexity of the time-domain
approach and the iterative-solver approach are equivalent (Plessix, 2007).

For one-frequency modeling, the reader is referred to those articles (Plessix, 2007; 2009;
Virieux et al., 2009) for more detailed complexity analysis of seismic modeling based on
different numerical approaches. A discussion on the pros and cons of time-domain versus
frequency-domain seismic modeling relating to what it is required for full waveform inversion
is also provided in Vigh & Starr (2008) and Warner et al. (2008).

2.2 Boundary conditions

In seismic exploration, two boundary conditions are implemented for wave modeling:
absorbing boundary conditions to mimic an infinite medium and free surface conditions on
the top side of the computational domain to represent the air-solid or air-water interfaces
which have the highest impedance contrast. For internal boundaries, we assume that effects
are well described by variations of the physical properties of the medium: the so-called
implicit formulation (Kelly et al., 1976; Kummer & Behle, 1982).
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2.2.1 PML absorbing boundary conditions

For simulations in an infinite medium, an absorbing boundary condition needs to be applied
at the edges of the numerical model. An efficient way to mimic such an infinite medium
can be achieved with Perfectly-Matched Layers (PML), which has been initially developed
by Berenger (1994) for electromagnetics, and adapted for elastodynamics by Chew & Liu
(1996); Festa & Vilotte (2005). PMLs are anisotropic absorbing layers that are added at the
periphery of the numerical model. The classical PML formulation is based on splitting of
the elastodynamic equations. A new kind of PML, known as CPML, does not require split
terms. The CPML originated from Roden & Gedney (2000) for electromagnetics was applied
by Komatitsch & Martin (2007) and Drossaert & Giannopoulos (2007) to the elastodynamic
system. CPML is based on an idea of Kuzuoglu & Mittra (1996), who has obtained a strictly
causal form of PML by adding some parameters in the standard damping function of Berenger
(1994), which enhanced the absorption of waves arriving at the boundaries of the model with
grazing incidence angles.

In the frequency domain, the implementation of PMLs consists of expressing the wave
equation in a new system of complex-valued coordinates % defined by (e.g., Chew & Weedon,
1994):

0 1. o

= 16

0% Cx(x) ox (16)
In the PML layers, the damped 1D acoustic wave equation could be deduced from the
equation (10) as

1. 9 E(x) 9

Cx(x) dx Cx(x) ox
where {yx(x) = 1+ iyx(x)/w and yx(x) is a 1D damping function which defines the PML
damping behavior in the PML layers. In the CPML layers, the damping function {x(x)
becomes

Wp(x) +

u(x,w) = —s(x,w), (17)

dx
Ex(x) =nxx + i (18)

with angular frequency w and coefficients ¥y > 1 and ay > 0. The damping profile d, varies
from 0 at the entrance of the layer, up to a maximum real value dy,,,, at the end (Collino &
Tsogka, 2001) such that

— 5x 2
e ) (19)
and
log(R )
Axmax = _3VP%/ (20)
cpml

with Jx as the depth of the element barycentre inside the CPML, L, the thickness of the
absorbing layer, and R s the theoretical reflection coefficient. Suitable expressions for
ky, dx and ay are discussed in Collino & Monk (1998); Collino & Tsogka (2001); Drossaert
& Giannopoulos (2007); Komatitsch & Martin (2007); Kuzuoglu & Mittra (1996); Roden &
Gedney (2000). We often choose Rerf = 0.1% and the variation of the coefficient ay goes
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from a maximum value (ay,,, = 7Tfy) at the entrance of the CPML, to zero atitsend. If ks, = 1
and a, = 0, the classical PML formulation is obtained.

One can use directly these frequency-dependent expressions when considering the frequency
approach. The formulation in the time domain is slightly more involved. The spatial
derivatives are replaced by

1
dz — K—ax + Cx % 0y, o
X
with
d —
Cx(t) = —K—;H(t)e (dex+l¥x>t, -
X

where H(t) denotes the Heaviside distribution. Roden & Gedney (2000) have demonstrated
that the time convolution in equation (21) can be performed in a recursive way using memory
variables defined by

Px = Jx * Ox. (23)

The function x represents a memory variable in the sense that it is updated at each time
step. Komatitsch & Martin (2007) have shown that the term «, has a negligible effect on the
absorbing abilities, and it can be set to 1. If we take xy = 1, we derive the equation (23) using
the equation (22) as

atll)x = —dydy — (dx + “x)sz- (24)

One equation is generated for each spatial derivative involved in the elastodynamic system,
which can be a memory-demanding task. Once they are computed at each time step, we
can introduce the memory variables into the initial elastodynamic system which requires two
additional variables for the 1D equations (11) with the definition of ¢ (v) and () leading
to the following system

p(x)g—rtj = gi; + l/Jx(U)

%‘t’ — E(x)g—z + x(0) )
Pl = ()25 — (@) 4 an () )
3¢g7yf) _ —dx(x)algi(;) — (dx(x) + ax(x))yp(0)

At the outer edge of the PML zone, one could apply any conditions as simple absorbing
conditions (Clayton & Engquist, 1977) or free surface conditions (Etienne et al., 2010) as fields
go to zero nearby the outer edge.

We must underline that the extension to 2D and 3D geometries is straightforward both in the
frequency domain (Brossier et al., 2010; 2008) and in the time domain (Etienne et al., 2010;
Komatitsch & Martin, 2007).
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2.2.2 Free surface

Planar free surface boundary conditions can be simply implemented using a strong
formulation or a weak formulation.

In the first case which is often met in the finite-difference methods, one requires that the stress
is zero at the free surface. The free surface matches the top side of the FD grid and the stress
is forced to zero on the free surface (Gottschamer & Olsen, 2001). Alternatively, the method
of image can be used to implement the free surface along a virtual plane located half a grid
interval above the topside of the FD grid (Virieux, 1986). The stress is forced to vanish at the
free surface by using a virtual plane located half a grid interval above the free surface where
the stress is forced to have opposite values to that located just below the free surface. In case
of more complex topographies, one strategy is to adapt the topography to the grid structure
at the expense of numerical dispersion effect (Robertsson, 1996) or to deform the underlying
meshing used in the numerical method to the topography (Hestholm, 1999; Hestholm & Ruud,
1998; Tessmer et al., 1992). In the first case, because of stair-case approximation, a local fine
sampling is required (Hayashi et al., 2001).

Owing to the weak formulation used in finite-element methods, the free surface boundary
condition are naturally implemented by zeroing test functions on these boundaries which
follow edges of grid elements (Zienkiewicz & Taylor, 1967). This approach could be used as
well for finite-difference methods through the summation-by-parts (SBP) operators based on
energy minimization combined with Simultaneous Approximation Term (SAT) formulation
based on a boundary value penalty method (Taflove & Hagness, 2000). In this case, boundaries
on which stress should be zero are not requested to follow any grid discretisation.

Finally, one may consider an immersed boundary approach where the free surface boundary
is not related to the discretisation of the medium as promoted by LeVeque (1986). Extensive
applications have been proposed by Lombard & Piraux (2004); Lombard et al. (2008) where
grid discretisation does not influence the application of boundary conditions. This approach
might be seen as an extension of the method of images following extrapolation techniques
above the free surface at any a priori order of precision.

2.3 Source implementation

There are different ways of exciting the numerical grid by the source term. The simplest one
is the direct contribution of the source term in the discrete partial differential equations: for
example, we may just increment by the source term after each time step or we may consider
the right-hand side source term for solving the linear system in the frequency domain.
Depending on the numerical approach, it is necessary to consider specific influences coming
from the discretisation as we shall see for numerical methods we consider.

In order to avoid singularities of solutions nearby the source, on can use the injection
technique as proposed in the pioneering work of Alterman & Karal (1968) where a specific
box around the source is defined. Inside the box, only the scattering field is computed. The
incident field is estimated at the edges of the box and it is substracted when propagations
are estimated inside the box and added when propagations are estimated outside the box.
A more general framework is proposed by Oprsal et al. (2009) related to boundary integral
approaches.
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3. Finite-difference methods: solving the equations through a strong formulation

We shall first consider the discretization based on simple and intuitive approaches as
finite-difference methods for solving these partial differential equations while focusing on
techniques useful for seismic imaging which means a significant number of forward problems
for many sources in the same medium. We shall identify features which might be interesting
for seismic imaging. If these approaches are intuitive for solving differential equations, the
numerical implementation of boundary conditions and source excitation is less obvious and
requires specific strategies as we shall see.

3.1 Spatial-domain finite-difference approximations

Whatever is our strategy for the reconstruction of the wave field u, one has to discretize it.
We may be very satisfied by considering a set of discrete values (u1, uy, ..., u;_1, 1) along one
direction at a given specific time t,, which can be discretized as well. Therefore, a simple way
of solving this first-order differential system is by making finite difference approximations of
spatial derivatives.

Still considering a 1D geometry, the partial operator (9/9dx) could be deduced from a Taylor
expansion using Lagrange polynomial. A quite fashionable symmetrical estimation using a
centered finite difference approximation is expressed as

ou’t

ut o — oy
i i+1 i—1 2
= T = A 2
ox 2Ax +O[ X ]’ (26)

which is a three-nodes stencil as three nodes are involved: two for the derivative estimation
and one for the updating. Let us mention that the discrete derivative is shifted with respect
to discrete values of the field. Because of the very specific antisymmetrical structure of our
first-order hyperbolic system where time evolution of velocity requires only stress derivatives
(and vice versa), we may consider centered approximations both in space and in time. This
will lead to a leap-frog structure or a red /black pattern. Of course, we have truncation errors
expressed by the function O(Ax™) which depends on the power n of the spatial stepping and
by the function O(AtX) on the power k of the time stepping.

We may require a greater precision of the derivative operator by using more points for this
partial derivative approximation and a very popular centered finite difference approximation
of the first derivative is the following expression

no _ . n n_ _ . n
aup 7 (u”% ui_%) e (u”% ui’%) +0|ax'] @)
ox Ax !
where ¢; = 9/8 et c; = —1/24 (Levander, 1988). This fourth-order stencil is compact

enough (few discrete points inside the stencil) for numerical efficiency while having a small
local truncation error. This stencil is a five-nodes stencil. Let us underline that centered
approximations lead to have field quantities not at the same position in the numerical grid as
derivative approximations (figure 1). In other words, stress and velocity components should
be specified on different positions of the spatial grid. If we still consider a full grid where stress
and velocities are known at the same position, this stencil could be recast as a seven-nodes
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Fig. 1. Cell structure for the full staggered grid (top), the partial staggered grid (bottom left)
and the full grid (bottom right, Stress tensor is denoted by ¢, particle velocity by v and the
density by p as well as Lamé coefficient by A et 1. The regular grid step is denoted by /. Time
stepping is missing
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stencil given by
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where Ax’ = Ax/2 and where we have following specific coefficients d; = ¢;, do = 0.
and d3 = cp. The fourth-order scheme would require the following theoretical coefficients
dy = 15/20, dp = —3/20 and d3 = 1/60. For fourth-order stencils, the two sub-grids
are not entirely decoupled and are weakly coupled leading to a dispersion behaviour as
if the discretization is Ax. Let us remind that these sub-grids are completely decoupled
when considering second-order stencils, leading to the staggered structure. Therefore, solving
partial differential equations in the staggered grid structure has a less accurate resolution but
improves significantly the efficiency of the method than solving equations in the full grid even
with dispersion-relation-preserving stencils (Tam & Webb, 1993). The memory saving can be
easily seen when comparing nodes for staggered grid and nodes for full grid (figure 1)

When dealing with 2D and 3D geometries, we may exploit the extra freedom and estimate
derivatives along the direction x from nodes shifted by half the grid step in x but also by
half the grid step in y (and eventually in z). This leads to another compact stencil as shown
in the figure 1 where all components of the velocity are discretized in one location while all
components of the stress field are discretized half the diagonal of the grid as proposed by
Saenger et al. (2000). This grid is still partially staggered and could be named as a partial grid.

These standard and partial staggered structures are sub-grids of the full grid as shown in the
figure 1 which is used in aeroacoustics (Tam & Webb, 1993).
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These different discretizations related to various stencils may lead to preferential directions
of propagation. Numerical anisotropy effect is observed even when considering isotropic
wave propagation. The figure 2 shows error variations in velocities with respect to angles
of propagation for the standard grid and the partial grid: one can see that the anisotropy
behavior is completely different with a rotation shift of 45°. In 2D, the two stencils provide
the same anisotropic error while the partial grid has a slightly improved numerical anisotropic
performance (percentage differences go from 3 % down to 2 % in 3D geometries). Of course,
the spatial sampling is such that the error should be negligible and few percentages is
considered to be acceptable except nearby the source.

Fig. 2. Numerical anisotropic errors when considering finite difference stencils related to
partial staggered grid (left panel) and standard staggered grid (right panel) Saenger et al. (2000).

Other spatial interpolations are possible. Previous discrete expressions are based on Lagrange
interpolations while other interpolations are possible such as Chebychev or Laguerre
polynomial or Fourier interpolations (Kosloff & Baysal, 1982; Kosloff et al., 1990; Mikhailenko
et al., 2003). Interpolation basis could be local (Lagrange) or global(Fourier) ones based
on equally spaced nodes or judiciously distributed nodes for keeping interpolation errors
as small as possible: this will have a dramatic impact on the accuracy of the numerical
estimation of the derivative and, therefore, on the resolution of partial differential equations.
We should stress that local stencils should be preferred for seismic imaging for efficiency in
the computation of the forward modeling.

3.2 Time-domain finite-difference approximations

Similarly, one may consider finite difference approximation for time derivatives which can be
illustrated on the simple scalar wave equation. A widely used strategy is again the centered
differences through the expression

qut oyt gyl

=t O[Atz]. (29)

For understanding how the procedure of computing new values in time is performing, let us
consider the simple 1D second-order scalar wave equation for displacement . This equation
821/[ 2 827/!

w2~ S (30)
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could be discretized through these finite difference approximations

11 1
wi T = 2ul +up 2 {”?ﬂ —2ui + ”?71} 31)

(At)? (Ax)?

The next value at the discrete time n + 1 comes from older values known at time #n and time
n — 1 through the expression

noo—2ult 4+ ul
+1 2| %it1 -1 -1
ul ™t & (cAt) [W] +2uf —ull . (32)
A more compact notation of this equation as
ul ™ =2(1— S)ul + S (ullyy +uf ) —ul (33)
shows the quantity
_ ot
T Ax’

known as the Courant number in the literature. This quantity is quite important for
understanding the numerical dispersion and stability of finite difference schemes. The related
stencil on the spatio-temporal grid as shown in the left panel of the figure 3 clearly illustrates
that the value at time 1 + 1 is explicitly computed from values at time 7 — 1 and time n. In this
explicit formulation, the selection of the time step At should verify that the Courant number
is lower than 1 for any point of the medium.

ot [

i-1 i i+1 X i-1 i i+1 X

Fig. 3. Space/time finite difference stencil for an explicit scheme on the left and for an
implicit scheme in a 1D configuration: black circles are known values from which the white
circle is estimated.

On the contrary, we may consider spatial derivatives at time 7 + 1. This leads us to an implicit

scheme where more than one value at time n + 1 is present in the discretisation. The equation
is now

Wi 2wt T r - 2wt 4

o (a2 o
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which can be described by the Courant number S through the equation

(1428%)uft — S2(uf 4wy = 2uf — 1 (35)
The right panel of the figure 3 illustrates the structure of the stencil and that three unknowns
have to be estimated through the single equation (35). By considering different spatial nodes,
we may find these three unknowns by solving a linear system. The Courant number could
take any value for time integration as long as discrete sampling is correctly performed.

Other implicit stencils might be designed by averaging the spatial derivatives over the three
times n — 1, n and n + 1. We may as well average the time derivative over the three positions
i —1,iand i 4+ 1. This lead to another linear system to be solved. These weighting strategies
could be designed for reducing numerical noise as numerical dispersion and/or anisotropy:
a road for further improvements.

As discretisation in space and time goes to zero, one expects the solution to be more precise
but cumulative rounding errors should prevent to have too small values. In expressions (26)
and (29), truncation error O[Ax?] goes to zero as the square of the discrete increment. We
shall say that this is a second-order precision scheme both in space and in time. One consider
often the stencil with the fourth-order precision in space and second-order precision in time,

denoted as O [Ax4, Atz] , as an optimal one for finite-differences simulations.

3.3 Frequency-domain finite-difference approximations

The second-order acoustic equation (10) provides a generalization of the Helmholtz equation.
In exploration seismology, the source is generally a local point source corresponding to an
explosion or a vertical force.

Attenuation effects of arbitrary complexity can be easily implemented in equations (10) and
(12) using complex-valued wave speeds in the expression of the bulk modulus, thanks to
the correspondence principle transforming time convolution into products in the frequency
domain: in the frequency domain, one has to replace elastic coefficients by corresponding
viscoelastic complex moduli for considering visco-elastic behaviors (Bland, 1960). For
example, according to the Kolsky-Futterman model (Futterman, 1962; Kolsky, 1956), the
complex wave speed ¢ is given by

o 1 sgn(w)] ™
t=c Kl + H—Q|10g(w/wr)|) +ZT} , (36)

where the P wave speed is denoted by ¢ = /E/p, the attenuation factor by Q and a reference
frequency by w;. The function sgn gives the sign of the function.

Since the relationship between the wavefields and the source terms is linear in the first-order
and second-order wave equations, one can explicitely expressed the matrix structure of
equations (10) and (12) through the compact expression,

[M+SJu=Bu=s, (37)
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where M is the mass matrix, S is the complex stiffness/damping matrix. This expression
holds as well in 2D and 3D geometries. The dimension of the square matrix B is the number
of nodes in the computational domain multiplied by the number of wavefield components.
System (37) could be solved using a sparse direct solver. A direct solver performs first a LU
decomposition of B followed by forward and backward substitutions for the solutions (Duff
et al., 1986) as shown by the following equations:

Bu= (LU)u=s (38)
Ly=s;, Uu=y (39)

Exploration seismology requires to perform seismic modeling for a large number of sources,
typically, up to few thousands for 3D acquisition. The use of direct solver is the efficient
computation of the solutions of the system (37) for multiple sources. Combining different
stencils for constructing a compact and accurate stencil can follow strategies developped for
acoustic and elastic wave propagation (Jo et al., 1996; Operto et al., 2007; Stekl & Pratt, 1998).
The numerical anisotropy is dramatically reduced

The mass matrix M is a diagonal matrix although never explicitly constructed when
considering explicit time integration. In the frequency domain formulation, we may spread
out the distribution of mass matrix over neighboring nodes in order to increase the precision
without increasing the computer cost as we have to solve a linear system in all cases. This
strategy is opposite to the finite element approach where often the mass matrix is lumped into
a diagonal matrix for explicit time integration (Marfurt, 1984). For a frequency formulation,
considering the mass matrix as a non-diagonal matrix does not harm the solver. The weights
of distribution are obtained through minimization of the phase velocity dispersion in an
infinite homogeneous medium (Brossier et al., 2010; Jo et al., 1996): the numerical dispersion
is dramatically reduced.

3.4 PML absorbing boundary condition implementation

Implementation of PML conditions in the frequency domain is straightforward using
unsplit variables while, in the time domain, we need to introduce additional variables for
handling the convolution through memory variables or to use split unphysical field variables
(Cruz-Atienza, 2006). These additional variables are only necessary in the boundary layers
following the figure 4

We first consider an infinite homogeneous medium which is embedded into a cubic box of a
16 km size and a grid stepping of i = 100 m. The thickness of the PML layer is 1 km leading
to nsp = ten nodes inside the PML zone. The P-wave velocity is 4000 n1/s while the S-wave
velocity is 2300 m /s and the density 2500 kg /m>. The figure 5 shows various time sections of
the 3D volume for the vertical particle velocity where one can see that the explosive wavefront
is entering the PML zone at the time 2.8 s. The last two snapshots shows the vanishing of the
wavefront with completely negligible residues at the final time (the decrease of the elastic
energy is better than 0.2 % for ten nodes and could reach 0.03 % for twenty nodes).

When we have discontinuous interfaces crossing the PML zone, we may expect difficulties
coming from various angles of propagation waves (Chew & Liu, 1996; Festa & Nielsen, 2003;
Marcinkovich & Olsen, 2003). Therefore, a simple heterogeneous medium is considered
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Two axes

nsp

Fig. 4. Three kinds of PML boundary layers should be considered where only one coordinate
is involved (yellow zone), two coordinates are involved (blue zone) and three coordinates are
involved (red zone). Internally, standard elastodynamic equations are solved

Fig. 5. Snapshots for y=0 of the vertical particle velocity at different times for an explosive
source: on the left for an homogeneous infinite medium and on the right for an
heterogeneous medium. Please note the vanishing of the seismic waves, thanks to the PML

absorption
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with two layers where physical parameters are (v, vs, 0)=(4330 m/s,2500 m/s,2156 kg/ m3)
and (v, vs,0)=(6000 m/s,4330 m/s,2690 kg/ m3). The figure 5 shows that, in spite of the
complexities of waves generated at the horizontal flat interface, the PML layer succeeds to
absorb seismic energy with a residual energy of 0.3 % in this case, still far better than standard
paraxial absorbing boundary conditions (Clayton & Engquist, 1977).

3.5 Source and receiver implementation on coarse grids

Seismic imaging by full waveform inversion is initiated at an initial frequency as small as
possible to mitigate the non linearity of the inverse problem resulting from the use of local
optimization approach such as gradient methods. The starting frequency for modeling in
exploration seismics can be as small as 2 Hz which can lead to grid intervals as large as 200 m.
In this framework, accurate implementation of point source at arbitrary position in a coarse
grid is critical. One method has been proposed by Hicks (2002) where the point source is
approximated by a windowed Sinc function. The Sinc function is defined by
, sin(mx)

sinc(x) = — (40)
where ¥ = (xg — X;), Xg denotes the position of the grid nodes and xs denotes the position
of the source. The Sinc function is tapered with a Kaiser function to limit its spatial support
(Hicks, 2002) . For multidimensional simulations, the interpolation function is built by tensor
product construction of 1D windowed Sinc functions. If the source positions matches the
position of one grid node, the Sinc function reduces to a Dirac function at the source position
and no approximation is used for the source positioning. If the spatial support of the Sinc
function intersects a free surface, part of the Sinc function located above the free surface is
mirrored into the computational domain with a reverse sign following the method of image.
Vertical force can be implemented in a straightforward way by replacing the Sinc function
by its vertical derivative. The same interpolation function can be used for the extraction of
the pressure wavefield at arbitrary receiver positions. The accuracy of the method of Hicks
(2002) is illustrated in Figure 6a which shows a 3.75 Hz monochromatic wavefield computed
in a homogeneous half space. The wave speed is 1500 m/s and the density is 1000 kg/m3.
The grid interval is 100 m. The free surface is half a grid interval above the top of the FD
grid and the method of image is used to implement the free surface boundary condition. The
source is in the middle of the FD cell at 2 km depth. The receiver line is oriented in the Y
direction. Receivers are in the middle of the FD cell in the horizontal plane and at a depth
of 6 m just below the free surface. Comparison between the numerical and the analytical
solutions at the receiver positions are first shown when the source is positioned at the closest
grid point and the numerical solutions are extracted at the closest grid point (Figure 6b). The
amplitude of the numerical solution is strongly overestimated because the numerical solution
is extracted at a depth of 50 m below free surface (where the pressure vanishes) instead of 6 m.
Second, a significant phase shift between numerical and analytical solutions results from the
approximate positioning of the sources and receivers. In contrast, a good agreement between
the numerical and analytical solutions both in terms of amplitude and phase is shown in
Figure 6¢c where the source and receiver positioning is implemented with the windowed Sinc
interpolation.
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Fig. 6. a) Real part of a 3.75Hz monochromatic wavefield in a homogeneous half space. (b)
Comparison between numerical (black) and analytical (gray) solutions at receiver positions
when the closest grid point is used for both the source implementation and the extraction of
the solution at the receiver positions on a coarse FD grid. (c) Same comparison between
numerical (black) and analytical (gray) solutions at receiver positions when the Sinc
interpolation with 4 coefficients is used for both the source implementation and the
extraction of the solution at the receiver positions on a coarse FD grid.

4. Realistic examples for acoustic and elastic propagations using FD formulations

We shall provide two simple examples of seismic modeling using finite-differences methods
both in the frequency and time approaches. The first example concerns seismic exploration
problem where the acoustic approximation is often used while the second one is related
to seismic risk mitigation where free surface effects including elastic propagation are quite
important.

4.1 3D EAGE/SEG salt model

The salt model is a constant density acoustic model covering an area of 13.5 km x 13.5 km X
4.2 km (Aminzadeh et al., 1997)(Figure 7). The salt model is representative of a Gulf Coast salt
structure which contains salt sill, different faults, sand bodies and lenses. The salt model is
discretized with 20 m cubic cells, representing an uniform mesh of 676 x 676 x 210 nodes. The
minimum and maximum velocities in the Salt model are 1500 /s and 4482 m /s respectively.
We performed a simulation for a frequency of 7.33 Hz and for one source located at x =
3600 m, y = 3.600 m and z = 100 m. The original model is resampled with a grid interval
of 50 m corresponding to 4 grid points per minimum wavelength. The dimension of the
resampled grid is 270 x 270 x 84 which represents 8.18 millions of unknowns after addition of
the PML layers. Results of simulations performed with either in the frequency domain or in
the time domain are compared in Figure 7. The time duration of the simulation is 15 s.

We obtain a good agreement between the two solutions (Figure 7d) although we show a small
phase shift between the two solutions at offsets greater than 5000 . This phase shift results
from the propagation in the high-velocity salt body. The direct-solver modeling is performed
on 48 MPI process using 2 threads and 15 Gbytes of memory per MPI process. The memory
and the elapsed time for the LU decomposition were 402 Gbytes and 2863 s, respectively. The
elapsed time for the solution step for one right-hand side (RHS) is 1.4 s when we process 16
RHS at a time during the solution step in MUMPS. The elapsed time for one time-domain
simulation on 16 processors is 211 s. The frequency-domain approach is more than one order
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Fig. 7. (a) Salt velocity model. (b-c) 7.33-Hz monochromatic wavefield (real part) computed
with a finite-different formulation in the frequency domain (b) and in the time domain (c).
(d) Direct comparison between frequency-domain (gray) and time-domain (black) solutions.
The receiver line in the dip direction is: (top) at 100 m depth and at 3600 m depth in the cross
direction. The amplitudes are corrected for 3D geometrical spreading. (bottom) at 2500 m
depth and at 15000 m in the cross direction.

of magnitude faster than the time-domain one when a large number of RHS members (2000)
and a small number of processors (48) are used (Table 1). For a number of processors equal to
the number of RHS members, the two approaches have the same cost. Of note, in the latter
configuration (Np=N,;), the cost of the two methods is almost equal in the case of the salt
model (0.94 h versus 0.816 h).

Over the last decades, simulations of wave propagation in complex media have been
efficiently tackled with finite-difference methods (FDMs) and applied with success to
numerous physical problems (Graves, 1996; Moczo et al., 2007). Nevertheless, FDMs suffer
from some critical issues that are inherent to the underlying Cartesian grid, such as parasite
diffractions in cases where the boundaries have a complex topography. To reduce these
artefacts, the discretisation should be fine enough to reduce the ’stair-case’ effect at the
free surface. For instance, a second-order rotated FDM requires up to 60 grid points per
wavelength to compute an accurate seismic wavefield in elastic media with a complex
topography (Bohlen & Saenger, 2006). Such constraints on the discretisation drastically
restrict the possible field of realistic applications. Some interesting combinations of FDMs
and finite-element methods (FEMs) might overcome these limitations (Galis et al., 2008). The
idea is to use an unstructured FEM scheme to represent both the topography and the shallow
part of the medium, and to adopt for the rest of the model a classical FDM regular grid. For the
same reasons as the issues related to the topography, uniform grids are not suitable for highly
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Model| Method |Pre. (hr) Sol. (hr) Total (hr)||Pre. (hr) Sol. (hr) Total (hr)
Salt Time 0 39 39 0 0.94 0.94
Salt |Frequency| 0.8 0.78 1.58 0.80 0.016  0.816

Table 1. Comparison between time-domain and frequency-domain modeling for 32 (left) and
2000 (right) processors. The number of sources is 2000. Pre. denotes the elapsed time for the
source-independent task during seismic modeling (i.e., the LU factorization in the
frequency-domain approach). Sol. denotes the elapsed time for multi-RHS solutions during
seismic modeling (i.e., the substitutions in the frequency-domain approach).
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Fig. 8. On the left, the French Riviera medium with complex topography and bathymetry: an
hypothetical earthquake of magnitude 4.5 is at a depth of 10 km below the epicenter shown
by a red ball. The simulation medium is 20 km by 20 km by 15 km. On the right, the related
peak ground acceleration (PGA). Please note that the acceleration is always lower than one
tenth of the Earth acceleration g

heterogeneous media, since the grid size is determined by the shortest wavelength. Except in
some circumstances, like mixing grids (Aoi & Fujiwara, 1999) or using non uniform Cartesian
grids (Pitarka, 1999) in the case of a low velocity layer, it is almost impossible to locally
adapt the grid size to the medium properties in the general case. From this point of view,
FEMSs are appealing, since they can use unstructured grids or meshes. Due to ever-increasing
computational power, these kinds of methods have been the focus of a lot of interest and have
been used intensively in seismology (Aagaard et al., 2001; Akcelik et al., 2003; Ichimura et al.,
2007).

4.2 PGA estimation in the French Riviera

Peak ground acceleration (PGA) are estimated using empirical attenuation laws calibrated
through databases of seismic records of various areas: these laws should be adapted to each
area around the world and European moderate earthquakes require a specific calibration
(Berge-Thierry et al., 2003). Aside these attenuation laws, numerical tools as finite-differences
time-domain methods allows the deterministic estimation of the peak ground acceleration
(PGA) in specific areas of interest once the medium is known and the source specified.
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Small areas as the French Riviera where a complex topography and bathymetric makes the
simulation difficult. We would like to illustrate the procedure of time-domain simulation
on this specific example (Cruz-Atienza et al., 2007). The Figure 8 shows a very simple model
surrounding the city of Nice: the box is 20 km by 20 km by 15 km in depth. The P-wave velocity
is 5700 m /s while the S-wave velocity is 3300 m/s and the density 2600 km/m3. The water is
characterized by a P-wave velocity of 1530 m/s while the density is about 1030 knz/m®. The
grid step is 50 m and the time integration step is 0.005 s.

The numerical simulation of an hypothetical earthquake of magnitude 4.5 at a depth of 10 km
in the Mediterranean Sea provides us a deterministic estimation of the PGA as shown in the
Figure 8. This small source is characterized upto a frequency of 3 Hz and we select a source
time function with this expected spectral content.

Successful applications have been proposed in the Los Angeles basin and is improved as we
increase our knowledge about the medium of propagation and about the source location and
its characterization. The PGA is estimated everywhere and one can see that increase of the
PGA is observed at the sea bottom and nearby the coast. One can show that the amplification
of PGA is decreased when considering the water layer at the expense of a longer duration of
the seismic signal.

Of course, various simulations should be performed using different models of the medium
and for various source scenarii. These simulations could help to assess the variability of the
acceleration for possible potential earthquakes and may be used for the mitigation of seismic
risks. The importance of constraining the model structure should be emphasized and we can
accumulate this knowledge through various and different initiatives performed for a more
accurate reconstruction of the velocity structure (Rollet et al., 2002). One tool is the seismic
imaging procedure we have underlined in this chapter.

5. Finite-elements discontinuous Galerkin methods: a weak formulation

Finite element methods, often more intensive in computer resources, introduce naturally
boundary conditions in an explicit manner. Therefore, we expect improved accurate solutions
with this numerical approach at the expense of computer requirements. The system of
equations (14) in time has now a non-diagonal mass matrix while the system of equations
(15) has a impedance matrix particularly ill-conditioned in 3D geometry taking into account
its dimensionality. Therefore, for 2D geometries, the frequency formulation is still a quite
feasible option while time domain approaches are there appealing when considering 3D
geometries. Due to ever-increasing computational power, finite element methods using
unstructured meshes have been the focus of increased interest and have been used extensively
in seismology (Aagaard et al., 2001; Akcelik et al., 2003; Ichimura et al., 2007).

Usually, the approximation order remains low, due to the prohibitive computational cost
related to a non-diagonal mass matrix. However, this high computational cost can be avoided
by mass lumping, a standard technique that replaces the large linear system by a diagonal
matrix (Chin-Joe-Kong et al., 1999; Marfurt, 1984) and leads to an explicit time integration.
Another class of FEMs that relies on the Gauss-Lobatto-Legendre quadrature points has
removed these limitations, and allows for spectral convergence with high approximation
orders. This high-order FEM, called the spectral element method (SEM) (Komatitsch &
Vilotte, 1998; Seriani & Priolo, 1994) has been applied to large-scale geological models up
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to the global scale (Chaljub et al., 2007; Komatitsch et al., 2008). The major limitation of
SEM is the exclusive use of hexahedral meshes, which makes the design of an optimal mesh
cumbersome in contrast to the flexibility offered by tetrahedral meshes. With tetrahedral
meshes (Frey & George, 2008), it is possible to fit almost perfectly complex topographies
or geological discontinuities and the mesh width can be adapted locally to the medium
properties (h-adaptivity). The extension of the SEM to tetrahedral elements represents
ongoing work, while some studies have been done in two dimensions on triangular meshes
(Mercerat et al., 2006; Pasquetti & Rapetti, 2006). On the other hand, another kind of FEM
has been proven to give accurate results on tetrahedral meshes: the Discontinuous Galerkin
finite-element method (DG-FEM) in combination with the arbitrary high-order derivatives
(ADER) time integration (Dumbser & Kaser, 2006). Originally, DG-FEM has been developed
for the neutron transport equation (Reed & Hill, 1973). It has been applied to a wide range
of applications such as electromagnetics (Cockburn et al., 2004), aeroacoustics (Toulopoulos &
Ekaterinaris, 2006) and plasma physics (Jacobs & Hesthaven, 2006), just to cite a few examples.
This method relies on the exchange of numerical fluxes between adjacent elements. Contrary
to classical FEMs, no continuity of the basis functions is imposed between elements and,
therefore, the method supports discontinuities in the seismic wavefield as in the case of a
fluid/solid interface. In such cases, the DG-FEM allows the same equation to be used for
both the elastic and the acoustic media, and it does not require any explicit conditions on
the interface (Késer & Dumbser, 2008), which is, on the contrary, mandatory for continuous
formulations, like the SEM (Chaljub et al., 2003). Moreover, the DG-FEM is completely
local, which means that elements do not share their nodal values, contrary to conventional
continuous FEM. Local operators make the method suitable for parallelisation and allow for
the mixing of different approximation orders (p-adaptivity).

5.1 3D finite-element discontinuous Galerkin method in the time domain

Time domain approaches are quite attractive when considering explicit time integration.
However, in most studies, the DG-FEM is generally used with high approximation orders.
We present a low-order DG-FEM formulation with the convolutional perfectly matched layer
(CPML) absorbing boundary condition (Komatitsch & Martin, 2007; Roden & Gedney, 2000)
that is suitable for large-scale three-dimensional (3D) seismic wave simulations. In this
context, the DG-FEM provides major benefits.

The p-adaptivity is crucial for efficient simulations, in order to mitigate the effects of the very
small elements that are generally encountered in refined tetrahedral meshes. Indeed, the
p-adaptivity allows an optimised time stepping to be achieved, by adapting the approximation
order according to the size of the elements and the properties of the medium. The benefit of
such a numerical scheme is particularly important with strongly heterogeneous media. Due to
the mathematical formulation we consider, the medium properties are assumed to be constant
per element. Therefore, meshes have to be designed in such a way that this assumption
is compatible with the expected accuracy. The discretization must be able to represent
the geological structures fairly well, without over-sampling, while the spatial resolution of
the imaging process puts constraints on the coarsest parameterisation of the medium. If
we consider full waveform inversion (FWI) applications, the expected imaging resolution
reaches half a wavelength, as shown by Sirgue & Pratt (2004). Therefore, following the
Shannon theorem, a minimum number of four points per wavelength is required to obtain
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such accuracy. These reasons have motivated the development of DG-FEM with low orders.
We focus on the quadratic interpolation, which yields a good compromise between accuracy,
discretisation and computational cost.

5.1.1 3D time-domain elastodynamics

It is worth to provide notations for specific manipulation of equations for DG-FEM
approaches. The first-order hyperbolic system (8) under the so-called pseudo-conservative
form can be written following the approach of Ben Jemaa et al. (2007) as

pdT = Y 3p(Med) +f
oc{xy,z}

AT = Y 9p(Ned) + Adre, (41)
oc{x,y,z}

with the definitions of the velocity and stress vectors as & = (vx v, v;) and 7 =

(109 03 Oxy Oxz (Tyz)t. Under this pseudo-conservative form, the RHS of (41) does not include
any term that relates to the physical properties. The diagonal matrix A has been introduced
in the system (8) and its inverse is required for the computation of the stress components
(equation (41)). Matrices My and Ny are constant real matrices (Etienne et al., 2010). The
extension of the pseudo-conservative form for the visco-elastic cases could be considered with
the inclusion of memory variables while the anisotropic case should be further analysed since
the change of variable may depend on the physical parameters. Finally, in the equation (41),
the medium density is denoted by p, while f and 0y are the external forces and the initial
stresses, respectively.

5.1.2 Spatial discretisation

Following standard strategies of finite-element methods (Zienkiewicz et al., 2005), we want
to approximate the solution of the equation (41) by means of polynomial basis functions
defined in volume elements. The spatial discretisation is carried out with non-overlapping
and conforming tetrahedra. We adopt the nodal form of the DG-FEM formulation (Hesthaven
& Warburton, 2008), assuming that the stress and velocity vectors are approximated in the
tetrahedral elements as follows

di

Ui(%,t) = Z7lj(fj/ t) @z](f)
j=1

. di

Gi(%,t) = Y Gi(%;t) 9ij(¥), (42)
=1

where i is the index of the element, ¥ is the spatial coordinates inside the element, and ¢
is the time. d; is the number of nodes or degrees of freedom (DOF) associated with the
interpolating Lagrangian polynomial basis function ¢;; relative to the j-th node located at
position X;. Vectors 7j; and d;; are the velocity and stress vectors, respectively, evaluated at
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2
(b)

Fig. 9. (a) Py element with one unique DOF. (b) P; element with four DOEF. (c) P, element with
10 DOFE.

the j-th node of the element. Although it is not an intrinsic limitation, we have adopted here
the same set of basis functions for the interpolation of the velocity and the stress components.
In the following, the notation Py refers to a spatial discretisation based on polynomial basis
functions of degree k, and a Py element is a tetrahedron in which a P scheme is applied. The
number of DOF in a tetrahedral element is given by d; = (k+ 1) (k + 2)(k + 3) /6. For instance,
in a Py element (Figure 9.a), there is only one DOF (the stress and velocity are constant per
element), while in a P; element (Figure 9.b), there are four DOF located at the four vertices
of the tetrahedron (the stress and velocity are linearly interpolated). It is worth noting that
the Py scheme corresponds to the case of the finite-volume method (Ben Jemaa et al., 2009;
2007; Brossier et al., 2008). For the quadratic approximation order P,, one node is added at the
middle of each edge of the tetrahedron, leading to a total of 10 DOF per element (Figure 9.c).
The first step in the finite-element formulation is to obtain the weak form of the elastodynamic
system. To do so, we multiply the equation (41) by a test function ¢;, and integrate the system
over the volume of the element i. For the test function, we adopt the same kind of function
as used for the approximation of the solution. This case corresponds to the standard Galerkin
method and can be written as

[ owoaav = [ gp ¥ 2(Me#)dv
Vi Vi oc{xyz}

| onna@av = [ o ¥ Ne@)dv  vre[ld, )
Vi Vi 0e{xy,z}

where the volume of the tetrahedral element i is denoted by V;. For the purpose of clarity,
we have omitted the external forces and stresses in the equation (43). Standard manipulations
of finite-elements methods (integration by parts, Green theorem for fluxes along boundary
surfaces) are performed as well as an evaluation of centered flux scheme for its non-dissipative
property (Ben Jemaa et al., 2007; Delcourte et al., 2009; Remaki, 2000). Moreover, we assume
constant physical properties per element. We define the tensorial product ® as the Kronecker
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product of two matrices A and B given by
a11B ... a1,/ B
A®B=| . . . |, (44)
anllB am.nB

where (n x m) denotes the dimensions of the matrix A. We obtain the expression

. L 1 - .
0i(I3 @ K)oty = — ), (Mg ®Eig)di + 3 Y [(Pik ® Fix)0; + (P ® gik)”k]
0e{xy,z} keN;
- L1 . -
(A @Kot =— ), (NMo®Eig)Ti+ 3 > [(Qik ® Fir)Ti + (Qik ® gik)vk] , (45)
oe{x,yz} keN;

where 73 represents the identity matrix. In the system (45), the vectors 7; and ¢; should be
red as the collection of all nodal values of the velocity and stress components in the element
i. The system (45) indicates that the computations of the stress and velocity wavefields in one
element require information from the directly neighbouring elements. This illustrates clearly
the local nature of DG-FEM. The flux-related matrices P and Q are defined as follows

Pix= Y, niggMp
0e{xy,z}
Q=Y. nixgNg,
oe{xy,z}

where the component along the 6 axis of the unit vector 7i;; of the face S that points from
element i to element k is denoted by 1,9, while we also introduce the mass matrix, the stiffness
matrix and the flux matrices with 6 € {x,y,z} respectively,

(Ki)yj = /V @i @i AV €[1, di],

(Eig)rj = /Vi(aG(Pir) @idV jr e[l dy,

(Fir)rj = -/ka @ir pijdS  jr €1, dj] (46)
(Gix)rj = /ka Pir prjdS  re [l d]  jEL di].

It is worth noting that, in the last equation of the system (46), the DOF of elements i and k
appear (d; and dy, respectively) indicating that the approximation orders are totally decoupled
from one element to another. Therefore, the DG-FEM allows for varying approximation
orders in the numerical scheme. This feature is referred to as p-adaptivity. Moreover, given
an approximation order, these matrices are unique for all elements (with a normalisation
according to the volume or surface of the elements) and they can be computed before hand
with appropriate integration quadrature rules. The memory requirement is therefore low,
since only a collection of small matrices is needed according to the possible combinations of

www.intechopen.com



280 Seismic Waves, Research and Analysis

approximation orders. The maximum size of these matrices is (dpmax X dpmax) Where dpay is
the maximum number of DOF per element and the number of matrices to store is given by
the square of the number of approximation orders mixed in the numerical domain. The four
matrices K, &;, Fi; and G;; are computed by numerical integration using Hammer quadrature
(Hammer & Stroud, 1958) and explicit forms of these matrices could be found in Etienne et al.
(2010) for Py, P; and P, orders.

It should be mentioned that, in order to retrieve both the velocity and the stress components,
the system (45) requires the computation of ICl-_l, which can also be performed before hand.
Note that, if we want to consider variations in the physical properties inside the elements, the
pseudo-conservative form makes the computation of flux much easier and computationally
more efficient than in the classical elastodynamic system. These properties come from the fact
that, in the pseudo-conservative form, the physical properties are located in the left-hand side
of the system (41). Therefore, no modification of the stiffness and flux matrices nor additional
terms are needed in the system (45) to take into account the variation of properties. Only the
mass matrix needs to be evaluated for each element and for each physical property according
to the expression

(Ki)yj = /V Xi(%) @ir(X) 9ij(X)dV j,r €1, 4d, (47)

where yx;(X) represents the physical property (p; or one of the A; components) varying inside
the element.

5.1.3 Time discretisation

The time integration of the system (45) relies on the second-order explicit leap-frog scheme
that allows to compute alternatively the velocity and the stress components between a half
time step. The system (45) can be written as

,E;I’H-% ﬁin—% o 1 . o
pi(Z3 ® K;) A7 =— )Y (Mge&ya!+ 3 ) [(Pik®]:ik)‘7i + (Pix ® Gik )0
Oe{xy,z} keN;
=n+l _ =n 1
(Ai®’C)% =— ¥ Ne&)d
Ge{x,y,z}
l 1
+ 5 Z [ Qi@ Fp)7 2+ (Qp @ gik)5:+z}f (48)
keN

where the superscript n indicates the time step. We chose to apply the definition of the time
step as given by Kaser et al. (2008), which links the mesh width and time step as follows

1 2r;
2k; +1 VT:,) 49)

At < mm(

where 7; is the radius of the sphere inscribed in the element indexed by i, Vp; is the P-wave
velocity in the element, and k; is the polynomial degree used in the element. Equation (49) is a
heuristic stability criterion that usually works well. However, there is no mathematical proof
for unstructured meshes that guarantees numerical stability.
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Fig. 10. Speed-up observed when the number of MPI processes is increased from 1 to 256 for
modelling with a mesh of 1.8 million P, elements. The ideal speed-up is plotted with a
dashed line, the observed speed-up with a continuous line. These values were observed on a
computing platform with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with
Infiniband at 20 Gb/s.

5.1.4 Computational aspects

The DG-FEM is a local method, and therefore it is naturally suitable for parallel computing.
In our implementation, the parallelism relies on a domain-partitioning strategy, assigning
one subdomain to one CPU. This corresponds to the single program mutiple data (SPMD)
architecture, which means that there is only one program and each CPU uses the same
executable to work on different parts of the 3D mesh. Communication between the
subdomains is performed with the message passing interface (MPI) parallel environment
(Aoyama & Nakano, 1999), which allows for applications to run on distributed memory
machines. For efficient load balancing among the CPUs, the mesh is divided with the
partitioner METIS (Karypis & Kumar, 1998), to balance the number of elements in the
subdomains, and to minimise the number of adjacent elements between the subdomains.
These two criteria are crucial for the efficiency of the parallelism on large-scale numerical
simulations. Figure 10 shows the observed speed-up (i.e. the ratio between the computation
time with one CPU, and the computation time with N CPUs) when the number of MPI
processes is increased from 1 to 256, for strong scaling calculations on a fixed mesh of
1.8 million P, elements. This figure shows good efficiency of the parallelism, of around
80%. In our formulation, another key point is the time step, which is common for all of
the subdomains. The time step should satisfy the stability condition given in equation (49)
for every element. Consequently, the element with the smallest time step imposes its time
step on all of the subdomains. We should mention here a more elaborate approach with
local time stepping (Dumbser et al., 2007) that allows for elements to have their own time
step independent of the others. Nevertheless, the p-adaptivity offered by DG-FEM allows
mitigation of the computational burden resulting from the common time step as we shall see.

5.1.5 Source excitation

We proceed with the addition of the excitation to incremental increase of each involved field
component. The excitation of a point source is projected onto the nodes of the element that
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Fig. 11. (a) Cross-section of the mesh near the source position, indicated with a yellow star in
the xy plane. This view represents the spatial support of the stress component in a P element
containing the point source. (b) Same as (a) with a P; element. (c) Same as (a) with a P,
element.

contains the source as follows
T e ) 50)
iy 9ij (%) [y, @ij(R)dV

with 57 the nodal values vector associated to the excited component, t = nAt, ¥ the position
of the point source and s(f) the source function. Equation (50) gives the source term that
should be added to the right-hand side of equation (48) for the required components. It should
be noticed that this term is only applied to the element containing the source. Depending
on the approximation order, the spatial support of the source varies. Figure 11.a shows
that the support of a Py element is actually the whole volume of the element (represented
on the cross-section with a homogeneous white area). In this case, no precise localisation
of the source inside the element is possible due to the constant piece-wise interpolation
approximation. On the other hand, in a P; element (Figure 11.b), the spatial support of the
source is linear and allows for a rough localisation of the source. In a P, element (Figure 11.c),
the quadratic spatial support tends to resemble the expected Dirac in space close to the source
position. It should be noted that the limitations concerning source localisation also apply to
the solution extraction at the receivers, according to the approximation order of the elements
containing the receivers.

5.1.6 Free surface condition

Among the various approaches presented previously, we proceed by considering that the free
surface follows the mesh elements. For the element faces located on the free surface, we use an
explicit condition by changing the flux expression locally. This is carried out with the concept
of virtual elements, which are exactly symmetric to the elements located on the free surface.
Inside the virtual elements, we impose a velocity wavefield that is identical to the wavefield of
the corresponding inner elements, and we impose an opposite stress wavefield on this virtual
element. Thanks to the nodal formulation, the velocity is seen as continuous across the free
surface, while the stress is equal to zero on the faces related to the free surface.
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This is a quite natural approach similar to the one used in continuous finite-element methods
where the test function is set to zero on the free surface boundary.

5.1.7 Absorbing boundary condition

We proceed through some simulations of wave propagation in a homogeneous, isotropic and
purely elastic medium for an illustration of CPML conditions. The model size is 8 km x 8
km x 8 km, and the medium properties are: Vp = 4000 m/s, Vs = 2310 m/s and p = 2000
kg/ m3. An explosive source is placed at coordinates (xs= 2000 m, ys = 2000 m, zs = 4000 m)
and a line of receivers is located at coordinates (3000 m < x, < 6000 m, y, = 2000 m, z, =
4000 m) with 500 m between receivers. The conditions of the tests are particularly severe,
since the source and the receivers are located close to the CPMLs (at a distance of 250 m),
thus favouring grazing waves. The source signature is a Ricker wavelet with a dominant
frequency of 3 Hz and a maximum frequency of about 7.5 Hz. Due to the explosive source,
only P-wave is generated and the minimum wavelength is about 533 m. The mesh contains
945,477 tedrahedra with an average edge of 175 m, making a discretisation of about 3 elements
per Ay, Figures 12.c and 12.d show the results obtained with the P, interpolation and CPMLs
of 10-elements width (L¢p;, = 1750 m) at all edges of the model. With the standard scale, no
reflection can be seen from the CPMLs. When the amplitude is magnified by a factor of 100,
some spurious reflections are visible. This observation is in agreement with the theoretical
reflection coefficient (Re.rf = 0.1%) in equation (20).

As shown by Collino & Tsogka (2001), the thickness of the absorbing layer plays an important
role in the absorption efficiency. In Figures 12.a and 12.b, the same test was performed
with CPMLs of 5-elements width (Lepny = 875 m) at all edges of the model. Compared to
Figures 12.c and 12.d, the amplitude of the reflections have the same order of magnitude.
Nevertheless, in the upper and left parts of the model, some areas with a strong amplitude
appear close to the edges. These numerical instabilities arise at the outer edges of the CPMLs,
and they expand over the complete model during the simulations.

Instabilities of PML in long time simulations have been studied in electromagnetics
(Abarbanel et al., 2002; Bécache et al., 2004). For elastodynamics, remedies have been
proposed by Meza-Fajardo & Papageorgiou (2008) for an isotropic medium with standard
PML. These authors proposed the application of an additional damping in the PML, onto
the directions parallel to the layer, leading to a multiaxial PML (M-PML) which does not
follow strictly the matching property of PML in the continuum and which has a less efficient
absorption power. Through various numerical tests, Etienne et al. (2010) has shown that
instabilities could be delayed outside the time window of simulation when considering
extended M-PML from CPML.

5.1.8 Saving computation time and memory

Table 2 gives the computation times for updating the velocity and stress wavefields in
one element for one time step, for different approximation orders, without or with the
update of the CPML memory variables (i.e. elements located outside or inside the CPMLs).
These computation times illustrate the significant increase with respect to the approximation
order, and they allow an evaluation of the additional costs of the CPML memory variables
computation from 40% to 60%. The effects of this additionnal cost have to be analysed in
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(d)

Fig. 12. Snapshots at 1.6 s of the velocity component v, in the plane xy that contains the
source location. CPMLs of 10-elements width are applied at all edges of the model. The
modelling was carried out with P, interpolation. White lines, the limits of the CPMLs; black
cross, the position of the source. (a) Real amplitude. (b) Amplitude magnified by a factor of
100. (c) & (d) Same as (a) & (b) with CPMLs of 5-elements width.

Approximation order Element outside CPML Element inside CPML

Py 2.6 us 3.6 us
P 5.0 us 8.3 us
P, 21.1 us 29.9 us

Table 2. Computation times for updating the velocity and stress wavefields in one element
for one time step. These values correspond to average computation times for a computing
platform with bi-processor quad core Opteron 2.3 GHz CPUs interconnected with Infiniband
20 at Gb/s.

the context of a domain-partitioning strategy. The mesh is divided into subdomains, using
a partitioner. Figure 13.a shows the layout of the subdomains that were obtained with the
partitioner METIS (Karypis & Kumar, 1998) along the xy plane used in the previous validation
tests. The mesh was divided into 32 partitions, although only a few of these are visible on the
cross-section in Figure 13.a. We used an unweighted partitioning, meaning that each partition
contains approximately the same number of elements.

The subdomains, partially located in the CPMLs, contain different numbers of CPML
elements. In large simulations, some subdomains are totally located inside the CPMLs, and
some others outside the CPMLs. In such a case, the extra computation costs of the subdomains
located in the absorbing layers penalise the whole simulation. Indeed, most of the subdomains
spend 40% to 60% of the time just waiting for the subdomains located in the CPMLs to
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Fig. 13. (a) Layout of the subdomains obtained with the partitioner METIS (Karypis &
Kumar, 1998) along the xy plane that contains the source location. Grey lines, the limits of
the CPMLs. The mesh was divided into 32 partitions, although only a few of these are visible
on this cross-section. (b) View of the approximation order per element along the same plane.
Black, the P, elements; white, the P; elements.

complete the computations at each time step. For a better load balancing, we propose to
benefit from the p-adaptivity of DG-FEM, using lower approximation orders in the CPMLs.
Indeed, inside the absorbing layers, we do not need a specific accuracy, and consequently
the approximation order can be decreased. Table 2 indicates that such a mixed numerical
scheme is advantageous, since the computation time required for a Py or P; element located in
the CPML is shorter than the computation time of a standard P, element. Figure 13.b shows
the approximation order per element when P; is used in the CPMLs and P, in the rest of the
medium. We should note here that the interface between these two areas is not strictly aligned
to a cartesian axis, and has some irregularities due to the shape of the tetrahedra. Although it
is possible to constrain the alignment of the element faces parallel to the CPML limits, we did
not observe significant differences in the absorption efficiency whether the faces are aligned
or not.

Figure 14.a shows the seismograms computed when the modelling was carried out with P,
inside the medium and Pj in the CPMLs. Absorbing layers of 10-elements width are applied
at all edges of the model. For comparison, Figure 14.b shows the results obtained with P,
inside the medium and P; in the CPMLs. In this case, the spurious reflections have significant
amplitudes, preventing any use of these seismograms. On the other hand, the seismograms
computed with the mixed scheme P, /P; show weak artefacts, and are reasonably comparable
with the seismograms obtained with complete P, modelling. Therefore, taking into account
that the computation time and the memory consumption of the P,/P; simulation are nearly
half of those required with the full P, modelling, we can conclude that this mixed numerical
scheme is of interest. It should be noticed that it is possible to adopt a weighted partitioning
approach to overcome partly load balancing issues We should also stress that the saving in
CPU time and memory provided with this kind of low-cost absorbing boundary condition is
crucial for large 3D simulations, and this becomes a must in the context of 3D seismic imaging
applications that require a lot of forward problems, such as FWIL.
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Fig. 14. (a) Seismograms of the velocity component v,. The amplitude of each seismogram is
normalised. The modelling is done with P; in the CPMLs and P, inside the medium. Black
continuous line, numerical solution in large model without reflection in the time window;
dashed line, numerical solution with 10-elements width CPMLs; grey line, residuals
magnified by a factor of 10. (b) Same as (a) except the modelling is done with Py in the
CPMLs and P, inside the medium.

5.1.9 Accuracy of DG-FEM with tetrahedral meshes

There are a variety of studies in the literature concerning the dispersive and dissipative
properties of DG-FEM with reference to wave-propagation problems. Let us quote few
examples: Ainsworth et al. (2006) provided a theoretical study for the 1D case; Basabe et al.
(2008) analysed the effects of basis functions on 2D periodic and regular quadrilateral meshes;
and Kaéser et al. (2008) discussed the convergence of the DG-FEM combined with ADER time
integration and 3D tetrahedral meshes. More related to our particular concern here, Delcourte
et al. (2009) provided a convergence analysis of the DG-FEM with a centred flux scheme and
tetrahedral meshes for elastodynamics. They demonstrated the sensitivity of the DG-FEM to
the mesh quality, and they proved that the convergence is limited by the second-order time
integration we have used in the present study, despite the order of the basis function. Specific
analysis of the convergence in the scheme we have presented could be found in Etienne et al.
(2010).

5.2 2D finite-element discontinuous Galerkin method in the frequency domain

On land exploration seismology, there is a need to perform elastic wave modeling in area of
complex topography such as foothills and thrust belts (Figure 15) in the frequency domain.
Moreover, onshore targets often exhibit weathered layers with very low wave speeds in the
near surface which require a locally-refined discretisation for accurate modeling. In shallow
water environment, a mesh refinement is also often required near the sea floor for accurate
modeling of guided and interface waves near the sea floor. Accurate modeling of acoustic and
elastic waves in presence of complex boundaries of arbitrary shape and the local adaptation
of the discretisation to local features such as weathered near surface layers or sea floor
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Fig. 15. Application of the DG method in seismic exploration. (a) Velocity model
representative of a foothill area affected by a hilly relief and a weathered layer in the near
surface. (b) Close-up of the unstructured triangular mesh locally refined near the surface. (c)
Example of monochromatic pressure wavefield.

were two of our motivations behind the development of a discontinuous element method
on unstructured meshes for acoustic and elastic wave modeling.

5.2.1 hp-adaptive discontinuous Galerkin discretisation

Similarly to the time formulation we adopt the nodal form of the DG formulation, assuming
that the wavefield vector is approximated in triangular elements for 2D geometry which leads
to the following expression,

B

ilj(w,x,y,z) = ﬁ’](w, xj,yj,zj)q)ii(w, X,Y,z), (51)
j=1

where i is the wavefield vector of components such as the following vector if = (p, vy, vy, vz)
for acoustic propagation. The index of the element in an unstructured mesh is denoted by i.
The expression i;(w, x,y,z) denotes the wavefield vector in the element i and (x, y,z) are the
coordinates inside the element i. In the framework of the nodal form of the DG method, Pij
denotes Lagrange polynomial and d; is the number of nodes in the element i. The position of
the node j in the element i is denoted by the local coordinates (x;, ;, z;)-

In the frequency domain, the pseudo-conservative form (41) could be written in a 2D geometry
as
Mil = Z 99 (Nyil) + 53, (52)
0e{xyz}
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where Npyii are linear fluxes and the source vector is denoted by 5. Expressions of matrices M
and N could be found in Brossier et al. (2010).

The weak form of the system (52) is similar in the frequency domain and proceed by selecting
a test function ¢;, and then an integration over the element volume V; which gives

/%MiﬁidV:/ pir Y, g (Npil;) dV+/ ¢ir5idV, (53)
Vi Vi e{xy,z} Vi

where the quantity r € [1,d;]. In the framework of Galerkin methods, we used the same
function for the test function and the shape function. Similar procedures as for the 3D case
and related to standard steps of the finite-element method lead to the discrete expression,

= = 1 = = 2
Mi@K)ili=— Y (No®Eo)ilit+5 X [(Que® Fi) i+ (Qux ® Ga) ] + (20 Ky)
oe{xyz} keN;

(54)
where the mass matrix K;, the stiffness matrix &£; and the flux matrices F; and G; are similar to
those defined for the 3D case (equation (46)). The matrix Q is also defined as for the 3D case
(equation (46))

Itis worth repeting that, in the equation (46), arbitrary polynomial order of the shape functions
can be used in elements 7 and k indicating that the approximation orders are totally decoupled
from one element to another. Therefore, the DG allows for varying approximation orders in
the numerical scheme, leading to the p-adaptivity.

The equation (54) can be recast in matrix form as

Bu=s. (55)

5.2.2 Which interpolation orders to choose?

For the shape and test functions, we used low-order Lagrangian polynomials of orders 0, 1
and 2, referred to as Py, k € 0,1,2 in the following (Brossier, 2009; Etienne et al., 2009). Let
us remind that our motivation behind seismic modeling is to perform seismic imaging of the
subsurface by full waveform inversion, the spatial resolution of which is half the propagated
wavelength and that the physical properties of the medium are piecewise constant per
element in our implementation of the DG method. The spatial resolution of the FWI and the
piecewise constant representation of the medium direct us towards low-interpolation orders
to achieve the best compromise between computational efficiency, solution accuracy and
suitable discretisation of the computational domain. The Py interpolation (or finite volume
scheme) was shown to provide sufficiently-accurate solution on 2D equilateral triangular
mesh when ten cells per minimum propagated wavelength are used (Brossier et al., 2008),
while 10 cells and 3 cells per propagated wavelengths provide sufficiently-accurate solutions
on unstructured triangular meshes with the P; and the P, interpolation orders, respectively
(Brossier, 2011). Of note, the Py scheme is not convergent on unstructured meshes when
centered fluxes are used (Brossier et al., 2008). This prevents the use of the Py scheme in
3D medium where uniform tetrahedral meshes do not exist (Etienne et al., 2010). A second
remark is that the finite volume scheme on square cells is equivalent to second-order accurate
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FD?P DG DGFP DGFP

ng 1 1 3
ny| 9 59 13-25 24-48

Table 3. Number of nodes per element (11,;) and number of non-zero coefficients per row of
the impedance matrix (1) for the FD and DG methods. The number #, depends on the
number of wavefield components involved in the r.h.s of the first-order wave equation r,,,.

FD stencil (Brossier et al., 2008) which is consistent with a discretisation criterion of 10 grid
points per wavelength (Virieux, 1986). Use of interpolation orders greater than 2 would allow
us to use coarser meshes for the same accuracy but these coarser meshes would lead to an
undersampling of the subsurface model during imaging. On the other hand, use of high
interpolation orders on mesh built using a criterion of 4 cells par wavelength would provide
an unnecessary accuracy level for seismic imaging at the expense of the computational cost
resulting from the dramatic increase of the number of unknowns in the equation (55).

The computational cost of the LU decomposition depends on the numerical bandwidth of
the matrix, the dimension of the matrix (i.e., the number of rows/columns) and the number of
non-zero coefficients per row (11;). The dimension of the matrix depends in turn of the number
of cell (n.,y;), of the number of nodes per cell (1) and the number of wavefield components
(Mwave) (ranging from 3 to 5 in 2D geometry). The number of nodes in a 2D triangular element
is given by Hesthaven & Warburton (2008) and leads to the following expression ny; = (k +
1) (k+2) /2 where k denotes the interpolation order similar to what is done in the 3D geometry.

The numerical bandwidth is not significantly impacted by the interpolation order. The
dimension of the matrix and the number of non-zero elements per row of the impedance
matrix are respectively given by nuave X 15 X feer and (1 + npeign) X 14 X nger + 1, where
Myeign is the number of neighbor cell (3 in 2D geometry) and 7, is the number of wavefield
components involved in the rh.s of the velocity-pressure wave equation, equation (52).
Table 3 outlines the number of non-zero coefficients per row for the mixed-grid FD and DG
methods. Increasing the interpolation order will lead to an increase of the number of non-zero
coefficients per row, a decrease of the number of cells in the mesh and an increase of the
number of nodes in each element. The combined impact of the 3 parameters n,, 1., ny
on the computational cost of the DG method makes difficult the definition of the optimal
discretisation of the frequency-domain DG method. The medium properties should rather
drive us towards the choice of a suitable discretisation.

One must underline that the LU factorization is quite demanding in computer memory and
has also some drawbacks for scalability, suggesting that nodes with high memory should be
preferred at the expense of the CPU numbers.

5.2.3 Boundary conditions and source implementation

Absorbing boundary conditions are implemented with unsplitted PML in the
frequency-domain DG method (Brossier, 2011) following the same approach than for
the FD method: one can see that the PML implementation in the frequency is straightforward.
We have found that constraining the meshing to have edges of elements in the PML zone
parallel to the direction of dissipation of the waves improves the efficiency.
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Free surface boundary condition is implemented with the method of image. A virtual
cell is considered above the free surface with the same velocity and the opposite pressure
components to those below the free surface. This allows us to fulfill the zero pressure
condition at the free surface while keeping the correct numerical estimation of the particle
velocity at the free surface. Using these particle velocities and pressures in the virtual cell,
the pressure flux across the free surface interface vanishes, while the velocity flux is twice
the value that would have been obtained by neglecting the flux contribution above the free
surface. As in the FD method, this boundary condition has been implemented by modifying
the impedance matrix accordingly without introducing explicitely the virtual element in the
mesh. The rigid boundary condition is implemented following the same principle except that
the same pressure and the opposite velocity are considered in the virtual cell.

Concerning the source excitation, the point source at arbitrary positions in the mesh is
implemented by means of the Lagrange interpolation polynomials for k > 1. This means
that the source excitation is performed at the nodes of the cell containing the source with
appropriate weights corresponding to the projection of the physical position of the source on
the polynomial basis. When the source is located in the close vicinity of a node of a triangular
cell, all the weights are almost zero except that located near the source. In the case of the P,
interpolation, a source close to the vertex of the triangular cell is problematic because the
integral of the P, basis function over the volume of the cell is zero for nodes located at the
vertex of the triangle. In this case, no source excitation will be performed (see equation (54)).
To overcome this problem specific to the P, interpolation, one can use locally a P; interpolation
in the element containing the source at the expense of the accuracy or distribute the source
excitation over several elements or express the solution in the form of local polynomials (i.e.,
the so-called modal form) rather than through nodes and interpolating Lagrange polynomials
(i-e., the so-called nodal form).

Another issue is the implementation of the source in Py equilateral mesh. If the source
is excited only within the element containing the source, a checker-board pattern is
superimposed on the wavefield solution. This pattern results from the fact that one cell out of
two is excited in the DG formulation because the DG stencil does not embed a staggered-grid
structure (the unexcited grid is not stored in staggered-grid FD methods; see Hustedt et al.
(2004) for an illustration). To overcome this problem, the source can be distributed over
several elements of the mesh or P; interpolation can be used in the area containing the sources
and the receivers, while keeping Py interpolation in the other parts of the model (Brossier
et al., 2010).

Of note, use of unstructured meshes together with the source excitation at the different nodes
of the element contribute to mitigate the checker-board pattern in the in P; and P, schemes.
The same procedure as for the source is used to extract the wavefield solution at arbitrary
receiver positions.

6. Realistic examples for highly contrasted and strongly heterogeneous media
using finite-elements methods

We shall consider two examples for the illustration of the Discontinuous Galerkin approach.
The first one is related to the problem of 3D wave propagation inside an active volcano
using the time-domain approach while the second one deals with the problem of 2D wave
propagation above a oil reservoir using the frequency-domain approach.
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6.1 The volcano La Soufriere
6.1.1 Characteristics of the model

La Soufriere of Guadeloupe (France) is one of nine active volcanoes of Lesser Antilles. It
belongs to a recent volcanic system situated in the south part of the Basse-Terre. A P-wave
velocity model of the volcano has been obtained by first arrival time tomography (Coutant
et al., 2010). Figure 16 is the reconstructed Vp velocity model that reveals the existence
of a high velocity zone below the dome of La Soufriéere. The dimensions of the model are
1400 m x 1400 m x 1000 m in xyz respectively. We consider a constant Poisson ratio of 0.25
to assess the S-wave velocity model from Vp. The velocity ranges from 660 m /s to 3800 m/s
for Vp and 380 m/s to 2200 m/s for V5. Considering a maximum frequency of 25 Hz, the
minimum wavelength is about 15 m. In addition, we consider a constant density equal to
2000 kg/m3. Absorbing layers of CPML type with a thickness of 300 m are added at each
side edge of the model as well at the bottom edge. Therefore, the complete dimensions of the
numerical model are 2000 2 x 2000 m x 1300 1.

) s,

ST I

Vp (m/s)
l3000.

2650.
12300.
1950.

|1600.

Fig. 16. Topography of the volcano La Soufriére with the underlying reconstructed Vp
velocity structure. The position of the dynamite shot is indicated with a yellow circle and the
receivers with black triangles.

6.1.2 Construction of the tetraedral mesh

The mesh has been built with the mesher TETGEN (Si, 2006) combined with an iterative
h-refinement procedure to obtain a locally adapted mesh to the velocity field(with an average
of 3 elements per minimum wavelength A,,;,): a cross-section is shown in the left panel of
the Figure 17. For building this mesh, we have started our iterative reconstruction with a
uniform mesh shown in the right panel of the Figure 17. After the sixth refinement iteration,
the discretization criteria are met. Areas of high velocities are correlated with the parts of the
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Modelling time 5s
Nb elements 4.6 million
Nb unknowns 414 million
Min/Max element edge |1.29 - 58.62 m
Nb time steps 37787
Nb CPUs 512
Total memory 10 GB
Memory per CPU 14 - 23 MB
Computation time 6 h 45 min.
Time / unknown / time step|  0.79 us

Table 4. Statistics of the modelling for La Soufriere performed on an IBM Blue Gene machine.
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Fig. 17. On the left, cross-section of the P-wave velocity model in the plane xz in the middle
of the volcano La Soufriére. The back line represents the topography. On the right, initial
mesh of the volcano La Soufriére from which we deduce automatically the one used for
modeling by adapting the mesh size to the local P-wave velocity. Absorbing layers of CPML
type with a thickness of 300 m are added at each side edge of the model.

mesh where the elements are the largest ones. On the contrary, near the free surface, we find
the finest elements.

6.1.3 Numerical result

We have performed 3D simulations with the Discontinuous Galerkin Finite-Element Method
in the time domain. The computations have been performed on a Blue Gene machine with
512 processors. The statistics for these computations are given in Table 4.

The configuration of the seismic acquisition is given in Figure 16. This is a quasi-2D system
with a profile according to the East-West direction, which includes 100 single-component
receivers (v;) with 10 m between receivers. The source is a shot of dynamite. For the numerical
simulations, we used an explosive source with a Ricker function of dominant frequency of 10
Hz (maximum frequency 25 Hz). We present in Figure 18 a comparison between the observed
and computed data. Despite significant uncertainties and approximations (source function,
Poisson ratio, density, absence of attenuation, low signal to noise ratio), there are striking
similarities in the data. In particular, the seismic traces exhibit well marked discontinuities
related to the strong velocity contrasts and the complex topography of the volcano La Soufriere.
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400 600 800

Fig. 18. (a) Recorded seismograms (component v). (b) Computed seismograms. Some
similarities between both set of data are highlighted with color shapes.
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Fig. 19. The synthetic Valhall model for (a) P-wave and (b) S-wave velocities. Panel (c)

represents a zoom of the shallow mesh.

6.2 Application 2D in the frequency-domain: the synthetic Valhall application

This 2D application is based on a synthetic representation of the Valhall zone in the North Sea,
Norway. This model is representative of oil and gas fields in shallow water environments of
the North Sea (Munns, 1985). The model is described as an heterogeneous P- and S- wave
velocity model (Figure 19a-b). The water layer is only 70 m depth. The main targets are
a gas cloud in the large sediment layer, and in a deeper part of the model, the trapped oil
underneath the cap rock, which is formed of chalk. Gas clouds are easily identified by the low
P-wave velocities, whereas their signature is much weaker in the V5 model, as gas does not

affect S-waves propagation.
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source number
100 150

receiver number

Fig. 20. Frequency-domain data for the hydrophone component at 4 Hz. The data (real-part)
are plotted in the source/receiver domain.

In order to investigate seismic imaging in such environment, the selected acquisition mimics
a four-component ocean-bottom cable survey (Kommedal et al., 2004), as is deployed on the
field. A line of 315 explosive sources is positioned 5 m below water surface to simulated
air-gun sources and a cable of 315 3-components sensors is located on the sea floor (1
hydrophone and 2 geophones). This geological setting, which is composed of a significant
soft sea-bed with high Poisson’ratio due to soft and unconsolidated sediments leads to a
particularly ill-posed problem for S-wave velocity reconstruction, due to the relatively small
shear-wave velocity contrast at the sea bed, which prevents recording of significant P-to-S
converted waves.

For the meshing of the model, the narrow velocity range in most parts of the model requires
the use of a regular mesh as much as possible for computational efficiency. However, to
correctly discretize the shallow-water layer and liquid-solid interface, a p-adapted mesh
implemented with a mixed Py-P; interpolation is chosen (Figure 19c¢): a refined unstructured
Py layer of cells is used for the first 130 m of the subsurface for accurate modeling of the
interface waves at the liquid/solid interface, and for accurate positioning of the sources,
located 5 m below the surface, and of the receivers, located on the sea floor. Below this 130 m
depth zone, a regular equilateral mesh is used in combination of a Py interpolation.

Figure 20 illustrates an example of frequency-domain data (real-part of the complex-value
wavefield) at 4Hz. These data are plotted in the source/receiver domain for the full
acquisition survey. The diagonal part of the figure represents the collocation of the source
and the closest receiver, as the source moves in the acquisition. The Figure 21 illustrates
a time-domain shot-gather for the 3 components of the sensors and a source located at
position 4 km : the frequency-domain solutions at all the receiver positions have been
computed for the single source at all the frequencies of the source spectrum, between 0 and
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Fig. 21. Time-domain shot-gather for a source located at position 4 km. The data are
computed from frequency-domain simulation and Fourier transformed in the time-domain
for (a) the horizontal geophone, (b) the vertical geophone and (c) the hydrophone
components.

13 Hz. These frequency-domain complex-values data have then been Fourier transform to the
time-domain. The time-domain show specific properties of propagation in such environments
: the hydrophone and the vertical geophones are mainly sensitive to P-wave arrivals that
dominate the elastic propagation in soft-sediment zones. The horizontal geophone allows
however to record some late P-to-S conversions, which could be used to image the Vs model
from seismic imaging methods.

7. Conclusion

We have presented mainly two families of techniques for solving partial differential equations
for elastodynamics: some finite-differences formulations in both time domain and frequency
domain and some finite-element methods also in both time domain and frequency domain.
Both approaches have appealing features, especially when considering seismic imaging where
numerous forward problems should be performed. Such classification helps to understand
the advantages and limitations of each particular method to model a specific physical
phenomenon

The discretization of the strong formulation of the partial differential equations has been
presented through finite-difference techniques. These approaches are easy to implement
and quite flexible. They are currently the methods of choice for large-scale modelling
and inversion in exploration geophysics, especially in the marine environment. They may
however demand a very fine discretization when the earth model contains large contrasts;
and accurately modelling the responses around a sharp interface is quite challenging. We
have introduced various perspectives as summation-by-parts formulation or the immersed
boundary approach as well as simple mesh deformation might broaden the use of
finite-differences techniques by avoiding the stair-case approximation.
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The weak formulation expressed in the finite-element methods has been considered under
the specific family of Discontinuous Galerkin approaches. The use of test functions gives us
more freedom and the integral form provides us flexibility in the meshing. However, they
lead to numerical challenges: they are more difficult to implement than the finite-difference
method, they are often more expensive in computational time and memory, and they are
more complicated to use because the accuracy of the response depends on the quality of the
meshing. Therefore, they are not intensively used for seismic imaging and are until now more
oriented to seismic modeling in the final reconstructed model.

It should be noticed that attempts exist to combine the advantages of these methods in one
approach for computing elastic fields, at least for specific applications. Even, one can think
that decoupling the inverse problem procedure and the forward problem is possible: we
can flip-flop between the two forward problem formulations inside iterations of the inverse
problem.

When the modelling method serves as the kernel of an inversion algorithm, additional
constrains generally appear because the gradient of the misfit functional needs to be
evaluated. The choice of the modelling approach notably depends (1) on the needed accuracy,
(2) the efficiency in evaluating the solution and the gradient of the misfit functional in an
inversion algorithm, and (3) the simplicity of use.

Finally, the practical implementation shall probably be adapted to the data acquisition.
Densely sampled acquisition in exploration geophysics with or without blending, or in
lithospheric investigation with the recent deployment of sensors such as the USarray
experiment challenges our modelling choice. This seems to indicate that development in
modelling and associated inversion approaches remain crucial to improve our knowledge
of the subsurface, notably by extracting more information from the, ever larger, recorded data
sets.
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