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Abstract

Presented is an approach to modelling session variability for

GMM-based text-independent speaker verification incorporat-

ing a constrained session variability component in both the

training and testing procedures. The proposed technique re-

duces the data labelling requirements and removes discrete cat-

egorisation needed by techniques such as feature mapping and

H-Norm, while providing superior performance. Experiments

on Switchboard-II conversational telephony data show improve-

ments of as much as 48 % in detection cost with a single train-

ing utterance and 68 % with multiple training utterances over a

baseline system.

1. Introduction

While research in the field of speaker recognition and verifi-

cation has been ongoing for many years, the greatest cause of

errors still remains the same. The issue of mismatch caused

by session variability. This term encompasses a number of

phenomena including transmission channel effects, transducer

characteristics, environment noise and variability introduced by

the speaker.

A number of techniques have been proposed to compensate

for various aspects of session variability at almost every stage in

the verification process with some success; a state of the art ver-

ification system will often incorporate a number of these tech-

niques. An example system [1] from the NIST Speaker Recog-

nition Evaluation might include feature warping [2] and map-

ping [3] to produce more robust features as well as score com-

pensation techniques such as H- and T-Norm [4].

Feature mapping in particular addresses some of the known

causes of session variability by attempting to map feature vec-

tors extracted under identified conditions to a neutral feature

space using a mapping based on adapted GMMs. It trains a

discrete number of context models, such as for each handset

transducer type, that are learnt from labelled training data. Due

to this discrete identification of the context of a recording, fea-

ture mapping can only effectively be used for categorical data,

such as transducer type, with ample labelled training data. Also,

the number of contexts increases rapidly when combinations of

factors are addressed.

The requirement for labelled training data can be overcome

through blind clustering techniques as demonstrated for feature

mapping in [5], however the discrete nature of the mapping is

still problematic.

The techniques mentioned attempt to nullify session vari-

ability at the either the feature extraction or score normalisation

stages but do not address the actual modelling of the speaker.

Speaker model synthesis (SMS) [6] is a modelling based tech-

nique however it also suffers from issues with discrete decisions

and data labelling requirements. It operates in a similar way to

feature mapping but uses a transformation of GMM parameters

to produce a model suited to the encountered context in which

an utterance was recorded.

The motivation behind the proposed technique is to attempt

to directly model session variability in the model space with-

out discrete categories and with less restrictive data labelling

requirements. It is proposed to incorporate session differences

into the way a speaker is modelled within a speaker verification

system, in both the training and testing phases of the system.

This work draws heavily on the results of Kenny et al. [7, 8]

with some distinct differences.

In contrast to Kenny et al. [7] the presented approach does

not perform speaker adaptation in a subspace adopting a more

traditional GMM-UBM structure and obviating the need to train

a speaker subspace transform and significantly reducing train-

ing complexity. The necessity to constrain session variability

modelling to a low-dimensional space is also emphasised. Fi-

nally, a simplified verification score is used that is more in line

with the GMM-UBM approach.

Section 2 describes the approach to modelling speakers

in the presence of session variation, including the approach

to representing a speaker during training, and how to exploit

this method during testing. Training of the constrained session

variability subspace is also addressed in 2.2. Experimental re-

sults are then presented on a modified NIST protocol using the

Switchboard-II conversational telephony corpus in Section 3,

and discussed in Section 4.

2. Modelling Session Variability

The approach to modelling the session variability in telephony-

based speaker verification adopted in this paper is to introduce

a constrained offset of the speaker’s Gaussian mixture model

mean vectors to represent the effect of session differences. In

other words, the Gaussian mixture model that best represents

the acoustic observations of a particular recording is the com-

bination of a session-independent speaker model with an addi-

tional session-dependent offset of the model means. This can

be represented by,

mi(s) = m(s) + Uxi(s). (1)

Here, each speaker s has a supervector m(s) independent of

session variations which is the concatenation of the GMM com-

ponent mean vectors, xi(s) is a low-dimensional representation

of the variability in recording i and U is the low-rank transfor-

mation matrix from the constrained session variability subspace

of dimension RX to the GMM mean supervector space of di-

mension RS = MD (where the GMM is of order M and di-

mension D).

Ideally, a training algorithm will be able to accurately dis-

cern the session-independent speaker model m(s) in the pres-
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ence of session variability.

2.1. Speaker Model Training

Speaker models are trained through the simultaneous optimi-

sation of the speaker model parameters themselves, which in

this work corresponds to the supervector of GMM component

means, and the session dependent subspace factors. In the case

of the session variability vectors, there are as many of these as

there are sessions available to train a particular speaker’s model.

In this work the speaker mean supervector m(s) is opti-

mised according to the maximum a posteriori (MAP) criterion

often used in speaker verification systems [9]. The prior distrib-

ution in this case is derived from a universal background model

(UBM).

The MAP criterion is also employed for optimising each of

the session variablility vectors xi(s). As described by Kenny

et al. [7] the prior distribution in this case is assumed to be

a standard normal distribution in the subspace defined by the

transformation matrix U . The optimisation of such a criterion

has previously been described for speaker recognition prob-

lems [7, 10].

The MAP criteria ensure that there is not a “race condition”

between the simultaneous optimisation criteria as the prior in-

formation ensures a unique (local) optimum.

An EM algorithm is used to optimise the model described

in (1) as there is no sufficient statistics for mixtures of Gaus-

sians due to the missing information of mixture component oc-

cupancy of each observation.

The direct solution to the simultaneous optimisation equa-

tions in the Maximisation step of this EM algorithm is possible,

however it requires the decomposition of an (RS+RX)×(RS+
RX) matrix for each iteration. This matrix is required to capture

the relationships between the variables being optimised. This

translates to a (12288+20)× (12288+20) matrix decomposi-

tion for the size of speaker model and session variable subspace

used in this work. Even with this matrix being positive-definite,

this is impractical both in memory and processing requirements.

For this reason a procedure analogous to the Gauss-Seidel

method for solving simultaneous equations is used:

1. Initialise all the session vectors and speaker model su-

pervector estimates to 0.

2. Calculate the statistics and component occupancies of

the observations in each training session based on the

current variable estimates.

3. Re-estimate the session vector xi(s) for each training

session based on these statistics and the current estimate

of the speaker supervector m(s).

4. Re-estimate the speaker model supervector m(s) based

on these statistics and the new estimate of the session

vectors xi(s) obtained in step 3.

5. Repeat steps 2–4 until convergence.

While this method converges more slowly than direct si-

multaneous optimisation, each iteration only requires the de-

composition of one RX × RX (20 × 20) matrix per training

session and the trivial decomposition of an RS × RS diagonal

matrix for the speaker supervector. In this work 5–10 iterations

were found to provide sufficient convergence for the speaker

verification task.

2.2. Training the Session Variability Subspace

For the session variation modelling described in the previous

section to be effective, the constrained session variability sub-

space described by the transformation matrix U must represent

the types of intra-speaker variations expected between sessions.

To this end, the subspace is trained on a database containing

a large number of speakers each with several independently

recorded sessions.

Another EM algorithm is used to maximise the total (a pos-

teriori) likelihood of all segments in the training database by

training a speaker model for each speaker represented using the

procedure in section 2.1. This procedure is described in detail

in [8], with the caveat that a modified speaker model training

procedure was used.

As stated in [7] this optimisation converges quite slowly

and requires significant processing resources however our expe-

riences with the process indicate that there is little improvement

in verification performance to be gained with a fully converged

algorithm; 10 iterations of the EM algorithm proved to be suffi-

cient.

2.3. Verification

The session variation introduced in the verification utterance

must also be considered. There are a number of possible meth-

ods to achieve this that vary considerably in complexity and

sophistication. This paper investigates only one possibility that

is marginally more complex than Top-N ELLR scoring [9] (the

basis of most current text-independent speaker verification sys-

tems). Alternative approaches are discussed in Section 4.

The approach used in this paper is to estimate the session

variation xi(s) of the verification utterance for each speaker

prior to performing standard Top-N ELLR scoring. This es-

timation is similar to that described in section 2.1 with a few

differences: It is a MAP estimation using the same standard

normal prior distribution, however, the speaker supervector is

considered known from previous training and not simultane-

ously estimated. Also, only a single adaptation step is used.

To substantially reduce the processing required, a further sim-

plification is made in that the mixture component occupancy

statistics for the observations are calculated based on the UBM

(rather than independently for each speaker). This allows for

only one additional pass of the verification utterance than stan-

dard scoring and implies that only one matrix decomposition is

necessary, regardless of the number of speakers being tested.

3. Experiments

3.1. Baseline System and Evaluation Protocol

The baseline recognition system used in this study utilises fully

coupled GMM-UBM modelling using iterative MAP adaptation

and feature-warped MFCC features with appended delta coef-

ficients, as described in [2]. An adaptation relevance factor of

τ = 8 and 512-component models are used throughout and a

session variation subspace of dimension RX = 20 is used un-

less stated otherwise.

The proposed technique was evaluated using data from

the NIST 2003 Speaker Recognition Evaluation Extended Data

Task (EDT) [11]. The evaluation data is a subset of the

Switchboard-II Phase 2 & 3 databases. To mirror the NIST 2004

evaluation conditions, the NIST EDT ’03 evaluation procedure

was restructured to include three training length conditions:

one, three and eight conversation sides. The training and testing
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Figure 1: DET plot for the 1-side training condition for the

baseline system and one incorporating session variability com-

pensation, with and without score normalisation.

lists for the new 1- and 3-side conditions were derived from the

existing four conversation side lists. More impostor trials were

also added to the evaluation to better reflect the minimum DCF

operating region. Additionally, the protocol has three indepen-

dent splits to allow for the development of background models

and fusion training sets in an unbiased fashion. This modified

protocol is referred to as the QUT EDT ’031. With 420 models

under each training condition, there is a total of 35,130 trials,

evenly divided between both genders.

3.2. Results

Figures 1 and 2 show detection error trade-off (DET) plots com-

paring systems with and without session variability modelling

for the 1- and 3-side training conditions respectively. Tables 1

and 2 present the minimum detection cost function (DCF) and

equal error rate (EER) performance corresponding to these DET

plots.

With no score normalisation applied, the session modelling

technique provided a 32 % reduction in DCF for the 1-side con-

dition and a 54 % reduction in the 3-side condition with similar

trends in EER. While the improvement in the 3-side training

condition is very substantial, the 1-side result is at least as inter-

esting and in many ways more surprising. In the 1-side condi-

tion, there was not multiple sessions from which to gain a good

estimate of the true speaker characteristics by factoring out the

session variations, however the technique successfully factored

out the variations between the training and testing sessions even

with the simplified verification approach described in this paper.

Also presented are results with normalisation applied to all

systems. The normalisations applied were Z-Norm to charac-

terise the response of each speaker model to a variety of (im-

postor) test segments followed by T-Norm to compensate for

the variations of the testing segments, such as duration and lin-

guistic content. Again the proposed technique outperforms the

1The QUT EDT ’03 protocol is available on request from the au-
thors.
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Figure 2: DET plot for the 3-side training condition for the

baseline system and one incorporating session variability com-

pensation, with and without score normalisation.

Table 1: Minimum DCF and EER for the 1-side training condi-

tion for the baseline system and one incorporating session vari-

ability compensation, with and without score normalisation.

Baseline Session Comp

1-Side DCF EER DCF EER

No Norm .0458 13.6 .0311 9.0

Z-Norm .0415 13.0 .0251 6.8

ZT-Norm .0367 12.7 .0191 5.3

baseline system, but also in fact gains more from this normali-

sation process than the baseline system with the improvements

in DCF growing to 48 % and 68 % respectively for the 1- and

3-side conditions.

Table 2: Minimum DCF and EER for the 3-side training condi-

tion for the baseline system and one incorporating session vari-

ability compensation, with and without score normalisation.

Baseline Session Comp

3-Side DCF EER DCF EER

No Norm .0243 5.9 .0110 2.8

Z-Norm .0252 5.6 .0089 2.0

ZT-Norm .0213 5.7 .0069 1.9

Presented in Table 3 are results obtained by varying the di-

mension of the session variability subspace for the female por-

tion of the 1-side training condition. The necessity to constrain

the amount of information in the utterance apportioned to ses-

sion variation is highlighted by the degrading performance in

the RX = 50 case.

Figure 3 compares the performance of the presented tech-

nique to a feature mapping system trained with a data-driven

clustering [5] on equivalent development data (similar results

can be achieved with standard feature mapping as described

in [3]). Again, it can be seen that the session variation mod-
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Figure 3: Comparison of session variation modelling to blind

feature mapping for the 1-side training condition.

Table 3: Minimum DCF and EER results for the female-only

1-side condition when varying the number of session subspace

dimensions, RX .

1-Side DCF EER

Baseline .0468 13.5

RX = 10 .0335 8.9

RX = 20 .0327 9.3

RX = 50 .0353 10.7

elling technique has a clear advantage with a 19 % improvement

at the minimum DCF operating point.

4. Discussion

One of the major advantages of the approach presented in this

paper is the more relaxed requirements for training corpus la-

belling. This technique removes the necessity of labelling data-

bases for channel, handset type and other forms of session vari-

ability, which is often difficult, error prone and expensive if not

impossible.

The benefits gained with score normalisation, particularly

Z-Norm, seem to imply that a model produced with the pro-

posed technique exhibits much more uniform response to a va-

riety of test segments from different conditions. In contrast the

baseline system improved little with Z-Norm while it is well

known that H-Norm — utilising handset type labels — is more

effective. This difference apparently indicates that the session

modelling techniques are indeed successfully compensating for

session differences such as handset type.

More sophisticated verification techniques are also possi-

ble. Future research will investigate the effectiveness of Bayes

factor techniques in conjunction with modelling session vari-

ability in a similar approach to [12]. Under this approach the

speaker model parameters are not assumed to be known at test-

ing time, but rather to have posterior distributions refined by the

training procedure.

5. Conclusion

A technique was proposed to compensate for session variabil-

ity in text-independent speaker verification by adding a session-

dependent variable to the speaker modelling process that is con-

strained to lie in a session variation subspace. Experiments on

conversational telephony data demonstrated the effectiveness of

the technique for both single and multiple training session con-

ditions with up to 68 % reduction in detection cost.
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