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Summary. The Penn Ovarian Aging Study tracked a population-based sample of 436 women
aged 35–47 years to determine associations between reproductive hormone levels and meno-
pausal symptoms.We develop a joint modelling method that uses the individual level longitudinal
measurements of follicle stimulating hormone (FSH) to predict the risk of severe hot flashes in a
manner that distinguishes long-term trends of the mean trajectory, cumulative changes captured
by the derivative of mean trajectory and short-term residual variability. Our method allows the
potential effects of longitudinal trajectories on the health risks to vary and accumulate over time.
We further utilize the proposed methods to narrow the critical time windows of increased health
risks. We find that high residual variation of FSH is a strong predictor of hot flash risk, and that
the high cumulative changes of the FSH mean trajectories in the 52.5–55-year age range also
provides evidence of increased risk over that of short-term FSH residual variation by itself.

Keywords: Bayesian penalized B-splines; Functional regression; Increased risk window; Joint
modelling; Robust inference; Short- and long-term characteristics

1. Introduction

The Penn Ovarian Aging Study (Freeman et al., 2011) is a longitudinal study of a population-

based sample of 436 women aged 35–47 years selected via random-digit dialling in Philadelphia

County, Pennsylvania, during 1996–1997, and followed biannually through to 2010. The study

goal is to explore the associations between reproductive hormone levels and symptoms in the

transition to the menopause. Changes in hormone levels alter menstrual bleeding patterns,

culminating in the cessation of menstruation, which marks the end of a woman’s reproductive

years. This course of events, which is termed perimenopause, can last for 5 or more years and

coincides for a majority of women with the development of hot flashes, night sweats and other

symptoms. The extent to which these symptoms are associated with reproductive hormone

levels, trends over time or fluctuations is not well understood. This lack of understanding is
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due in part to limited prospectively collected data and is also due to limitations in our ability to

model various aspects of this dynamic process.

In this paper, we focus on the relationship between follicle stimulating hormone (FSH) and

presence and severity of hot flashes. FSH stimulates folliculogenesis, which is an important

factor in ovarian aging; thus there has been interest in using longitudinal FSH information to

define menopause transition stages as discussed by Sowers et al. (2008). Whereas elevated FSH is

an indicator of ovarian aging, Sowers et al. (2008) found that both acceleration and deceleration

periods in FSH levels were predictive of time to final menstrual period, suggesting that features

other than just the level of FSH may give rise to menopausal symptoms. Exploratory analysis of

the FSH data in the Penn Ovarian Aging Study shows both acute and gradual increase periods

of FSH levels in the population level and has given rise to clinical questions about whether it

is the rate of increase in FSH that signals risks of severe menopausal symptoms. Moreover,

identifying critical ages when women are at increased risk for symptoms would be helpful for

making decisions about treatment. To understand better the association between trajectories of

FSH and risk of severe menopausal symptoms in perimenopausal women, we develop a joint

modelling method that

(a) makes efficient use of the available information in the longitudinal FSH trajectories, by

including long-term trends captured by the mean trajectories or the time varying change

rates in the long-term trends that are captured by the derivatives of the mean trajectories

as potential predictors in the primary outcome submodel while also adjusting for the

previously identified effect of the short-term variation that is captured by the variance of

the residuals (Jiang et al., 2014) and

(b) allows selection of the longitudinal FSH features within certain clinically relevant time

windows to predict the risk of hot flash severities in the primary outcome submodel, where

the effects outside this particular time window are assumed to be negligible.

Joint models of longitudinal and health outcome data have been extensively developed in

the literature. The early developments of such joint models were mainly motivated by human

immunodeficiency virus and acquired immune deficiency syndrome clinical trials and cancer

research and often focused on summarizing mean longitudinal trends as time varying predictors

in survival outcome models (Tsiatis et al. (1995), Muthén and Shedden (1999), Wang and Taylor

(2001), Law et al. (2002), Song et al. (2002), Brown and Ibrahim (2003a, b), Ibrahim et al.

(2004) and Yu et al. (2008), among many others). In our work, we extend the existing joint

modelling approaches and shift the focus to relating scalar response and functional predictors

in a functional data analysis (FDA) paradigm. Our modelling strategies are motivated by the

need to account properly for three key features of the FSH trajectories in the longitudinal

submodel: non-linear trajectories that are observed at unequally spaced time points, short-

term elevated variation, which is shown by the residual variance, and the heterogeneous nature

between individuals, which is shown by the mixture components in both the mean trajectory

and the residual variance. Briefly, our work brings together advanced statistical ideas including

FDA, robust and semiparametric inference, and joint longitudinal and outcome modelling in

novel ways.

Unlike the typical FDA practice to smooth each individual trajectory independently of one

another, we formulate a robust semiparametric mixed effect model for all trajectories, where we

simultaneously model both the underlying mean and the residual variance of the longitudinal

FSH trajectories. We consider the Bayesian penalized spline approach by Lang and Brezger

(2004), which is a Bayesian version of the penalized splines proposed by Eilers and Marx (1996),

to estimate the underlying mean FSH trajectories. In contrast with fully parametric splines,
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penalized splines are not as sensitive to the exact number and location of the knots as long

as enough knots are being used, since ‘unnecessary’ knots will be smoothed away by shrinking

random effects towards 0. This feature enhances the flexibility to accommodate individual curve

fitting of FSH values when these subject level fitted curves may differ from each other. Examples

of applications of penalized B-splines for longitudinal data include Durbán et al. (2005), who

modelled the individual heights of children suffering from acute lymphoblastic leukaemia from

a clinical trial conducted at the Dana Farber Cancer Institute, and Chen and Wang (2011),

who considered modelling longitudinal systolic blood pressure data from the Framingham

Heart Study. For the residual variance, instead of treating it as a nuisance parameter as many

others did, we follow Elliott et al. (2012) and Jiang et al. (2014) to model the within-subject

residual variance in the FSH trajectories and study its prediction ability in the primary outcome

submodel. Finally, considering the bimodal nature in the FSH trajectories as suggested in Jiang

et al. (2014), which are also shown in Figs 3 and 7 in Sections 3 and 4 respectively, we allow for

mixtures for both mean trajectories and residual variances to reflect early or late rising patterns

in the FSH mean trajectories, crossed with high or low level of short-term variation patterns.

The structure assumed nicely reflects the heterogeneity features in the FSH observations. Besides

modelling individual trajectory via spline fitting, we extend the normal errors assumptions of

Jiang et al. (2014) by allowing for heavier tailed t-distributions for residual errors to avoid the

potential influence of outlying observations.

In the primary outcome submodel, while also adjusting for the effect of the residual variance,

we treat the smooth mean trajectories that are estimated from the longitudinal submodel, or

the corresponding derivatives as functional predictors linked to the risk of hot flash severities

through an FDA regression model in the sense of Ramsay and Dalzell (1991) and James (2002)

among many others. This modelling strategy implicitly allows the effects of FSH histories (i.e.

FSH values up to a particular time point) or the time varying change rates of FSH histories that

are represented by functional coefficient curves to be time varying and cumulative over time. To

estimate the functional coefficient curves, we also propose to use the Bayesian penalized spline

approach by Lang and Brezger (2004). In addition to the desirable semiparametric features

that were mentioned above, the Bayesian penalized spline approach also allows for simultane-

ous evaluation of the uncertainty of the estimated functional coefficient curves by providing

pointwise Bayesian credible intervals, which lead to identification of critical time windows of

increased risk of health outcomes of interest, whereas such intervals are typically obtained by

bootstrap methods in frequentist FDA regression. To the best of our knowledge, such a mod-

elling strategy has not been considered in the joint modelling literature. Instead, most of the

joint modelling developments have focused on using

(a) a summary of important features in the longitudinal trajectories, such as the random

effects and latent classes, or

(b) the last available ‘true’ value as a time-dependent covariate, with the earlier values being

considered irrelevant to the outcome of interest. In the context of joint modelling of

continuous longitudinal data and a binary outcome, Jiang et al. (2014) contrasted the

use of random-effects and latent classes approaches and discussed how to utilize the

information that they jointly provide to take advantage of each approach fully. Thorough

reviews of the joint modelling of continuous longitudinal data and and time-to-event

outcomes have been given by Tsiatis and Davidian (2004), Ibrahim et al. (2010) and

Rizopoulos (2012).

The rest of this paper is organized as follows. In Section 2, we provide the statistical modelling,

inference and model checking procedures that are needed to conduct the proposed analysis of
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the Penn Ovarian Aging Study data. In Section 3, we present the key features in the data, which

have motivated the modelling and methodology strategies that are given in Section 2, as well as

how we use these strategies to reach new scientific findings and discoveries in linking severe hot

flashes risk to FSH longitudinal features for the Penn Ovarian Aging Study. We conclude with

a discussion in Section 4. Algorithms to implement the Gibbs sampler for our proposed models

are available from

http://wileyonlinelibrary.com/journal/rss-datasets

2. The model proposed

In this section, we present our joint FDA regression models for the longitudinal FSH levels to

predict severity of hot flashes modelled by using ordinal multinomial probit models.

(a) Specifically, the longitudinal submodel for the FSH data is given by

Yij|bi =µ.bi; tij/+ "ij,

"ij ∼ tv.0, σ2
i /,

which is equivalent to

"ij ∼N.0, σ2
i =mij/

with

mij ∼gamma.v=2, v=2/,

µ.bi; tij/=
L∑

l=1

bil φl.tij/:
.1/

Here Yij denotes the observed longitudinal FSH values for subject i, i=1, : : : , n, at time

tij, j = 1, : : : , ni, µi.t/ ≡ µ.bi; t/ denotes the mean of Yij at time t, and the vector µi =
.µ.bi; ti1/, : : : , µ.bi; tini//

T defines the mean trajectory or trajectory for subject i, where

bi = .bi1, : : : , biL/ is the vector of the random effects that reflects the subject level trajectory

patterns, and φl.tij/, l=1, : : : , L, are the B-spline basis functions.

To model the mean trajectory µi flexibly, we use truncated power splines consisting of

piecewise polynomials of certain order connected at prespecified knot locations (Ruppert

et al., 2003). Given the same order and knot locations, truncated power splines and B-

splines are equivalent in the sense that there are unique one-to-one linear transformations

between these two sets of spline basis functions (Ruppert et al., 2003), leading to the

same fitted values from these two splines in the regression set-up. However, the B-spline

is more numerically stable than the truncated power spline because the B-spline basis

functions are almost orthogonal whereas the truncated power spline basis functions are

not. Therefore, we use B-spline basis functions φl.tij/ ≡φl,d.tij/, l = 1, : : : , L, of degree

d =3, where φl,3.tij/ is obtained by the recursion relation

φl,d.tij/=
tij −κl

κl+d −κl

φl,d−1.tij/+
κl+1+d − tij

κl+d+1 −κl+1
φl+1,d−1.tij/

for knots at points κ1, : : : , κL−d−1, where φl,0.tij/ = I.κl � tij � κl+1/. The number of

interior knots is denoted by Jµ.t/, such that Σ
L
l=1 φl.t/=1 with L=Jµ.t/ +d +1. We defer

the discussion of the selection of knot points to Section 2.5.

To allow for ‘heterogeneity’ in the mean trajectory in the sense of growth mixture
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models (Verbeke and Lesaffre, 1996; Muthén and Shedden, 1999; Jiang et al., 2014), we

consider a finite mixture of normal distributions for the random effect bi:

Di ∼multinomial.πD
1 , : : : , πD

KD
/;

bi = .bi1, : : : , biL/T|Di =d ∼N.βd , Σd/, d =1, : : : , KD,
.2/

where Di defines the corresponding latent class membership for the mean trajectory class

and βd = .βd1, : : : , βdL/T. Thus, the fixed effect coefficients βdl, l=1, : : : , L, determine the

shape and also the smoothness of the mean trajectory for the dth latent class, defined

as fd.tij/ = Σ
L
l=1 βdl φl.tij/, d = 1, : : : , KD. Following Lang and Brezger (2004), we use

Gaussian random-walk priors on βd to penalize large differences between coefficients

of the adjacent spline basis and therefore control the smoothness of the mean trajectory

curve to avoid potential overfitting. The specific prior distributions are given in Section

2.3. The random coefficients bil, l=1, : : : , L, then capture the individual deviations from

the class-specific mean trajectory.

The residual "ij denotes the deviation of Yij from the subject-specific mean at tij and is

assumed to follow a Student t-distribution with v degrees of freedom, assuming mean 0

and scale σ2
i . The value of v is assumed to be known. Thus the variance of Yij is equal to

{v=.v−2/}σ2
i , which can be interpreted as a measurement of the short-term variability

around the mean trajectory µi. In the case of v = ∞, "ij is normally distributed with

mean 0, variance σ2
i and mij ≡ 1. To allow for overdispersion and ‘heterogeneity’ in the

within-subject scale parameter σ2
i , we assume a mixture of log-normal distributions,

Ci ∼multinomial.πC
1 , : : : , πC

KC
/;

σ2
i |Ci = c∼ log-N.µc, τ2/, c=1, : : : , KC,

.3/

where Ci defines the corresponding latent class membership for the variance class and

we assume that Ci ⊥⊥ D̄i so that the common assumption that, for subject i, the mean

trajectory µi.t/ and the residual "ij are independent still holds.

(b) The outcome submodel for hot flash severities is defined through an ordinal probit model

that assumes that there is a latent continuous variable underlying the observed ordinal

outcomes. Specifically, let Wi denote this underlying latent variable. We observe the ordinal

outcome oi = s, s=0, : : : , S, if this latent variable Wi falls between the cut-off γs and γs+1,

i.e.

oi = s⇔γs <Wi �γs+1

where these cut-offs between categories are subject to the common constraint that −∞=
γ0 �γ1 �: : :� γS+1 =∞ with one reference cut-off, usually γ1, fixed at value 0. Then the

distribution of this latent variable Wi is specified conditionally on individual longitudinal

mean trajectories and variances as follows:

Wi ∼N.ηW
i , 1/, ηW

i =α0 +xT
i λ0 +

∫

T

µi.t/θ0.t/dt, .4/

where xi is a vector of baseline covariates with associated (constant) parameter λ0, and

the functional coefficient function θ0.t/ represents the effect of subject-specific mean trend

µi.t/ at time t while adjusting for the mean trends at other time points within the time

window T . The purpose of considering the integral over the chosen time domain T , i.e.∫
T

µi.t/θ0.t/dt, is to identify critical time windows of elevated outcome risks, which have

several advantages over simply summing up over the observed time points tij, j =1, : : : , n.
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First, longitudinal observations often have missing values and can be measured at different

time points (known as unbalanced data) and hence summation over the observed time

points becomes problematic. Second, µi.t/ is a smoothed functional representation of the

underlying mean function with the individual level variability ‘captured’ by σ2
i . Third,

since we have considered a mixed effect model to smooth all individual level curves and

hence borrow strength across individuals, we obtain more stable estimates of µi.t/ in

comparison with smoothing µi.t/ individually. Fourth, an integral over a chosen time

domain implicitly uses the information at infinite time points within time window T

whereas summation uses only the information at finitely observed time points. As in the

mean trajectories, we let θ0.t/ =Σ
K0

k=1 θ̃0k ψ0
k .t/ for cubic B-spline basis functions ψ0

k.t/,

with θ̃0k following a random-walk prior, given in Section 2.3, to avoid overfitting. Given

that we express µi.t/ by bT
i φ.t/ and θ0.t/ by ψ0.t/Tθ̃0, thus

∫

T

µi.t/θ0.t/dt =
∫

T

bT
i φ.t/ψ0.t/Tθ̃0 dt =bT

i G0
T θ̃0,

where φ.t/ is a vector of L basis functions chosen to express µi.t/ in the longitudinal

submodel and ψ0.t/ is a vector of K0 basis functions; G0
T =

∫
T

φ.t/ψ0.t/T dt. We can

calculate or evaluate numerically G0
T for any given spline basis functions and the estimation

of unknown parameters in the outcome primary model becomes fully parametric.

Alternatively, one may postulate that the cumulative changes of the individual trajectories

are potentially predictive of the outcome of interest. To accommodate such a possibility, we

can consider the first derivative of µi.t/, i.e. µ′
i.t/=@µi.t/=@t, as a functional predictor by taking

advantage of the nice properties of B-splines of continuity and replace the specification (4) for

the outcome model by the alternative form

Wi ∼N.ηW
i , 1/, ηW

i =α1 +xT
i λ1 +

∫

T

µ′
i.t/θ1.t/dt, .5/

where, as for θ0.t/, the functional coefficient function θ1.t/ can be interpreted as the effect of

the derivative of mean trend µ′
i.t/ or the rate of change in µ′

i.t/ at time t while adjusting for the

values of µ′
i.t/ at other time points within the time window T . To emphasize the fact that we can

use different spline basis functions to express θ1.t/, we express θ1.t/=Σ
K1
k=1 θ̃1k ψ1

k .t/ by using a

different set of B-spline bases ψ1.t/= .ψ1
1.t/, : : : , ψ1

K1
.t//T and the associated coefficient vector

θ̃1 = .θ̃11, : : : , θ̃1K0
/T. A penalized approach was used by requiring a random-walk prior on θ̃1,

i.e. θ̃1k ∼N.θ̃1k−1, τ2
θ1

/, k =2, : : : , K1. Similarly, we have

∫

T

µ′
i.t/θ1.t/dt =

∫

T

bT
i φ′.t/ψ1.t/Tθ̃1dt =bT

i G1
T

θ̃1,

where φ′.t/ = @φ.t/=@t given φ.t/ is a vector of L basis functions chosen to express µi.t/ in the

longitudinal submodel and ψ1.t/ is a vector of K1 basis functions; G1
T =

∫
T

φ′.t/ψ1.t/T dt.

2.1. Likelihood specification

Let φ= .πD
d , βd , Σd , d =1, : : : , KD; πC

c , µc, c =1, : : : , KC; τ2, α0, λ0, θ̃0, γ/, where we assume

that each parameter in φ has an independent prior distribution, with the joint prior distribu-

tion denoted by π.φ/, and z includes all unobserved latent variables, i.e. z = .b, σ, C, D/′. The

observed data x consist of the longitudinal trajectories y1, : : : , yn and the observed outomes

o1, : : : , on. Then the complete-data likelihood of φ based on .x, z/ is given by
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f.x, z|φ/∝
{

n∏
i=1

(
KD∏
d=1

[
πD

d .2π/−p=2|Σd |−1=2 exp

{
−

1

2
.bi −βd/′Σ−1

d .bi −βd/

}]I.Di=d/ )

×
KC∏
c=1

(
πC

c .2πτ2/−1=2σ−2
i exp

[
−

{log.σ2
i /−µc}

2

2τ2

])I.Ci=c/

×
ni∏

j=1

p.yij; v, bi, σ
2
i /

S∏
s=0

{Φ.γs −ηW
i /−Φ.γs+1 −ηW

i /}I.oi=s/

}
π.φ/ .6/

where Φ.·/ denotes the cumulative distribution function for the standard normal distribution

and

p.yij; v, bi, σ
2
i /=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
√

.2πσ2
i /

exp

[

−

{
yij −

L∑
l=1

bilφl.tij/

}2

2σ2
i

]

if v=∞,

Γ

(v+1

2

)

Γ

(v

2

)√
.πvσ2

i /

[

1+ 1
v

{

yij−
L∑

l=1

bilφl.tij/

}2

2σ2
i

]−.v+1/=2

if v<∞:

2.2. Data augmentation step to impute missing data

Given the minimum number of available repeatedly measured FSH levels in our final sample

(ranging between 6 and 26 per woman), we are limited with regard to the number of knots when

choosing cubic B-spline basis functions to express µi.t/. To maximize the number of knots that

we can consider, we fill in those with fewer than 26 observations based on data augmentation

within each iteration of Gibbs sampling (chapter 10 in Little and Rubin (2002)). When assuming

a missingness at random (MAR) missing data mechanism, this data augmentation procedure

proceeds as follows:

(a) draw Y
.t+1/

mis from p.Ymis|φ, Xobs/;

(b) draw φ.t+1/ from p.φ|Xobs, Ymis/.

Here φ denotes model parameters, Ymis denotes the missing longitudinal observations of FSH

levels and Xobs denotes all observed data including observed longitudinal observations and

the primary outcome of interest. This simulation leads to draws from the joint distribution of

.φ, Ymis/ given observed data Xobs. Therefore, this procedure leads to the same inference about

φ as when we focus only on the marginal distribution of φ given observed data Xobs. This trick

allows us to put in more knots to take advantage fully of the penalized spline approach that is

free from knot location selection given a sufficient number of knots.

2.3. Prior specification

We propose a fully Bayesian approach to estimate model parameters. For the mixture nor-

mal distribution of the random effects, we assume a first-order Gaussian random-walk prior

as proposed by Lang and Brezger (2004): βdl ∼ N.βd,l−1, τ2
βd/, l = 2, : : : , L, with diffuse prior

βd1 ∼ N.0, 100/ for the initial coefficient, and τ2
βd ∼ IG.1, 0:005/ to control the smoothness of

the fitted curves. We do not impose restrictions on the structure of the variance–covariance

matrix for the random effects Σd . To avoid problems with unbounded likelihoods in normal

mixture models with unstructured variance–covariance matrices (Day, 1969), we use an empiri-
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cal Bayes prior proposed by Kass and Natarajan (2006): Σd ∼ inverse-Wishart.df= r,Λ/, where

Λ= r{Σ
n
i=1 ĉov.b̃i/

−1=n}−1, where b̃i is given by the ordinary least squares estimator of bi for

subject i, and r is the dimension of bi.

For the mixture log-normal distribution for the residual variances, we used diffuse priors:

µc ∼ N.0, v/, τ2 ∼ IG.a, b/ with v = 1000 and a = b = 0:001. For the class membership proba-

bilities, we assume a conjugate Dirichlet.4, : : : , 4/ distribution on both πC = .πC
1 , : : : , πC

KC
/ and

πD = .πD
1 , : : : , πD

KD
/ (Frühwirth-Schnatter, 2006); this is equivalent to assuming a priori four

observations in each class, avoiding the existence of empty classes.

Lastly, in the probit submodel we assign independent priors N.0, 9=4/ for the α0 and ev-

ery element of λ0; for the coefficients that are associated with functional coefficient func-

tion θ0.t/, θ̃0 = .θ̃01, : : : , θ̃0K0
/′, similarly we use a first-order Gaussian random-walk prior, i.e.

θ̃0k ∼ N.θ̃0k−1, τ2
θ0

/, k = 2, : : : , K0, with θ̃01 ∼ N.0, 9=4/ and τ2
θ0

∼ IG.1, 0:005/, where the prior

variance 9=4 is chosen to bound the probabilities of oi = s, s = 0, : : : , S, to be away from 0 and

1 (Garrett and Zeger, 2000; Elliott, 2007; Neelon et al., 2011). We put flat uniform priors on γs

for s 
∈{0, 1, S +1}, i.e. γs ∼uniform.−∞, ∞/.

2.4. Posterior computation

Gibbs sampling is used to obtain draws from the corresponding posterior distributions. For

.α0, λ0, θ̃|b, σ, o/ we use the Albert and Chib (1993) data augmentation method for probit

regression models. The draws of .σ2
i |Ci, µc, γ, bi, oi, Wi, {yij}j/ for i= 1, : : : , n are obtained by

the inverse cumulative distribution method. The exact specification of all priors and Markov

chain Monte Carlo (MCMC) sampling procedures are provided in the Web-based supporting

materials.

For each model, we ran three chains of 100000 iterations from diverse starting points, dis-

carding the first 50000 as burn-in and retaining every 10th draw to reduce auto-correlation.

Gelman–Rubin statistics
√

R̂ (Gelman et al., 2003) (the square root of the total variance to

within-chain variance ratio) were used to assess the convergence of the MCMC chains. For the

population level parameters, the maximum
√

R̂= 1:030 for models assuming fewer than three

classes, and, when assuming three classes for either the mean trajectory or the variance class,

the maximum
√

R̂=1:184. For the well-documented issue of ‘label switching’ in finite mixture

modelling (Redner and Walker, 1984), various solutions have been proposed, including the re-

labelling algorithms by Stephens (2000), Jasra et al. (2005) and Rodrı́guez and Walker (2012).

We applied the post-processing relabelling algorithm by Stephens (2000), which considers all

possible permutations of class assignments at each iteration of the Gibbs sampler and chooses

the one which minimizes the Kullback–Leibler divergence of the estimated versus true proba-

bilities of class membership, thus maximizing the posterior probability so that the labelling of

classes was consistent with the previous assignments. We post-process the MCMC chains by

using Stephens’s algorithm to ‘untangle’ the draws for model parameters.

All the calculations were performed by calling standalone C++ code in R, developed by using

an open source C++ library for statistical computation, the Scythe statistical library (Pemstein

et al., 2007), which is available for free download from http://scythe.wustl.edu.

2.5. Choice of the number of classes and number of knots in penalized splines

We consider the deviance information criterion DIC, which was proposed by Spiegelhalter

et al. (2002), both to select the number of components for the latent classes and to choose

the number of knots in the penalized splines. DIC uses the discrepancy between the posterior

mean of the deviance D.φ/=Eφ[−2 log{f.x|φ/|x}] and the deviance evaluated at the posterior
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mean D.φ̄/ =−2 log[f{x|E.φ|x/}] to estimate the effective number of degrees of freedom in

the model pD. DIC is then given by the analogue of the Akaike information criterion AIC:

DIC.x/=D.φ̄/+pD =2D.φ/−D.φ̄/=−4Eφ[log{f.x|φ/|x}]+2 log[f{x|E.φ|x/}]:

In our setting, f.x|φ/, where x= .yobs, o/′, consisting of the fully observed data, is not available

in closed form; instead we use the approach that was outlined in Celeux et al. (2006) to obtain

DIC.x/=Ez{DIC.x, z/}=−4Ez,φ[log
{

f.x, z|φ/|x
}

]+2Ez.log[f{x, z|Eφ.φ|x, z/}]|x/

where integration over the latent variables z= .b, σ, C, D, ymis/
′ is obtained via numerical meth-

ods.

2.6. Goodness-of-fit evaluation

We assessed the model goodness of fit to the data in two ways: pivotal discrepancy measures

(PDMs) (Johnson, 2007; Yuan and Johnson, 2012), which yield an overall goodness-of-fit mea-

sure for the longitudinal predictor component, and the area under the receiver operating char-

acteristic (ROC) curve, AUC, which is a goodness-of-fit measure focusing on prediction of the

ordinal outcome of interest.

In contrast with more general posterior predictive distribution measures of fit (Gelman et al.,

1996), PDMs are defined to depend only on the data and the model parameters with a known

distribution. If the model is correctly specified, the PDMs that are evaluated at the true parameter

value and the draws from the posterior distribution should have the same sampling distribution.

Therefore, model adequacy can be tested by treating the PDMs as a test statistic to obtain a

uniformly distributed p-value. However, the posterior samples of PDMs are not independent as

they are all derived from the observed data (Johnson, 2004); thus p-value calculation is difficult.

Instead, Johnson (2007) and Yuan and Johnson (2012) focused on the upper bound of p-values,

and hence the upper bound of a p-value being less than 0.05 definitely provided strong evidence

of model inadequacy.

To examine the fit of the longitudinal trajectories, we consider subject level PDMs where,

for subject i, we let Di =Σ
ni

j=1 mij{yij −µi.tij/}2=σ2
i . When the assumed longitudinal submodel

defined in expression (1) is correct, the PDM Di is χ2
ni−1 distributed. We use repeated posterior

draws to obtain the sampling distribution of PDMs and compute the upper bounds of the p-

values based on the ordered statistics of PDMs by using the approach by Yuan and Johnson

(2012).

Second, we assessed the prediction of the outcome by using ROC curves, in particular the area

under the ROC curve, AUC. ROC curves plot the true positive rate TP versus the false positive

rate FP for all possible cut-offs based on predicted P.oi = s/=Φ.Z′
iη/ obtained from expression

(4) for s=0, : : : , S. The ROC curve and AUC were computed at each MCMC iteration by using

the ROCR package in R (Sing et al., 2005). The ROC is computed by ordering the observations

.i/= 1, : : : , n so that P̂.o.i/ = 1/� P̂.o.i+1/ = 1/, computing change points c = 2, : : : , nc, nc �n,

where the observations change from positive to negative (i.e. o.c−1/ =1 and o.c/ =0), and plotting

Σ
c
.i/=1.1−o.i//=Σ

n
.i/=1.1−o.i// on the horizontal axis against Σ

c
.i/=1 o.i/=Σ

n
.i/=1 o.i/ on the vertical

axis. The area under the ROC curve is then computed by using a trapezoidal approximation.

The posterior mean AUC is calculated as the average AUCs across MCMC iterations. To obtain

the posterior mean and the pointwise 95% credible interval of the ROC curve, we choose 250

points equally spaced along the FP-axis and take the vertical average or 95% quantiles of TPs

at the 250 chosen points. This approach was referred to as vertical averaging of ROC curves at

fixed FP-rates by Fawcett (2006).
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3. Predicting risks of hot flash severities from longitudinal follicle

stimulating hormone data

In the Penn Ovarian Aging Study, participating women had their hormone measures taken

annually during the early follicular phase of a menstrual cycle for two sequential menstrual

cycles, with up to 13 years of follow-up available at the time of our analysis. We focus our

analysis on the 234 women who

(a) had not experienced hot flash symptoms at baseline,

(b) had baseline measurements of body mass index BMI and smoking status (0 or 1) that are

to be included as baseline covariates in the outcome submodel and

(c) had at least six measurements of FSH levels.

Among this restricted sample, 144 (62%) women had fully participated in the study. Among

the remaining 90 (38%) women, 42 of them dropped out after at least six assessment periods,

whereas 48 of them had either sporadically skipped the assessments or dropped out of the study

at the very beginning but came back to the study later when increased incentives were offered.

Nelson et al. (2004) examined the factors that may predict the participation after six assessment

periods and concluded that dropping out was probably random; for those who came back to

the study because of increased incentives, their initial dropout was probably due to personal

reasons that were not symptom related. FSH values could be missing because of laboratory

errors or missing blood samples (7.1%), which are likely to be missing at random. Further, FSH

values were censored if a woman

(a) was pregnant and/or breastfeeding (0.3%),

(b) had a hysterectomy with or without oophorectomy (3.0%),

(c) was taking exogenous hormone replacement therapy (1.4%),

(d) was taking oral contraceptives (2.5%),

(e) was taking cancer treatment medications (0.6%) or

(f) was taking other oestrogen (0.2%) during the follow-up.

The average number of available FSH levels per woman is 18.7 (range: 6–26) in our final sam-

ple.

We let yij denote the natural log-transformed FSH levels, i.e. log(FSH), and oi denote the

ordinal outcome of interest, i.e. the severity of hot flashes (0, 1 and 2), defined as oi =0 if never

had severe hot flashes (severity score less than 2 throughout the follow-up period), oi =1 if had

severe but not more severe hot flashes (severity score at least once equal to 2 or once equal to

3 that occurred before 40 years old) and oi =2 if had more severe hot flashes (severity score at

least once equal to 3 after 40 years old). In our final sample, 117 (50%) never experienced any

severe hot flashes during follow-up (severity score 0), 80 (34%) had a severity score of 1 and

37 (16%) had a severity score of 2. Since most women start to experience menopausal-related

symptoms between the age of 45 and 50 years and reach the menopause by the age of 55 years,

we consider T = [45, 55] as a potential risk time window in our analysis for the effect of changes

in FSH levels on risk of severe hot flashes.

We use the longitudinal submodel defined in expression (1) to describe longitudinal mea-

sured FSH and the outcome model defined in expression (4) to relate long- and short-term

FSH characteristics to the risk of severe hot flashes. Preliminary analysis suggested using cubic

B-spline basis functions with 1–3 inner knots to express µi.tij/ and cubic B-spline basis func-

tions with 1–5 inner knots to express the functional coefficient function θ0.t/. Thus we consider

models with one, three or five knots, putting these knots at the equally spaced quantiles of the
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Table 1. DIC from various joint models for the analysis of the Penn Ovarian Aging study data, assuming
normal, t7- and t4-distribution for the longitudinal submodel and using µi .t/, i D1,. . . , n, within the time window
T D [45, 55] as a functional predictor in the primary outcome submodel†

Model Results for KC =1 Results for KC =2 Results for KC =3

KD =1 KD =2 KD =3 KD =1 KD =2 KD =3 KD =1 KD =2 KD =3

Normal
Jµ.t/ =1, Jθ0.t/ =1 11439:0 11477:2 11492:9 11333.6 11369:1 11399:3 11511:6 11545:1 11560:7
Jµ.t/ =1, Jθ0.t/ =3 11437:5 11487:9 11501:8 11327.7 11364:9 11386:7 11506:8 11542:9 11561:5
Jµ.t/ =1, Jθ0.t/ =5 11435:0 11480:5 11493:3 11330.6 11369:1 11385:7 11500:7 11552:2 11574:9
Jµ.t/ =2, Jθ0.t/ =1 11923:4 11912:4 11924:6 11809:6 11788:7 11798:9 12000:1 11977:5 11984:4
Jµ.t/ =2, Jθ0.t/ =3 11923:8 11901:3 11915:5 11807:0 11803:5 11799:8 11995:0 11971:6 11997:1
Jµ.t/ =2, Jθ0.t/ =5 11924:7 11892:4 11919:2 11799:7 11788:2 11801:4 11993:1 11965:6 11991:5
Jµ.t/ =3, Jθ0.t/ =1 12419:3 12400:5 12418:6 12319:9 12308:2 12316:5 12506:2 12489:0 12499:3
Jµ.t/ =3, Jθ0.t/ =3 12421:8 12398:8 12412:5 12317:6 12306:7 12320:6 12506:5 12486:7 12489:2
Jµ.t/ =3, Jθ0.t/ =5 12416:6 12399:3 12409:5 12317:0 12298:1 12307:5 12504:7 12472:7 12485:0

t4
Jµ.t/ =1, Jθ0.t/ =1 10335:0 10257:5 10271:0 10303:3 10215.4 10246:8 10425:0 10326:3 10347:2
Jµ.t/ =1, Jθ0.t/ =3 10333:2 10255:7 10272:5 10308:8 10210.8 10235:5 10419:9 10330:3 10374:1
Jµ.t/ =1, Jθ0.t/ =5 10331:2 10260:0 10273:9 10298:5 10230.4 10228:3 10432:3 10322:7 10371:9
Jµ.t/ =2, Jθ0.t/ =1 10831:8 10823:6 10826:4 10803:1 10774:6 10778:2 10947:6 10906:7 10889:1
Jµ.t/ =2, Jθ0.t/ =3 10830:0 10821:0 10833:2 10821:3 10776:0 10812:1 10929:6 10897:9 10934:2
Jµ.t/ =2, Jθ0.t/ =5 10828:0 10818:8 10822:3 10818:0 10780:1 10791:6 10936:8 10914:8 10922:0
Jµ.t/ =3, Jθ0.t/ =1 11280:6 11259:2 11256:8 11287:8 11255:8 11257:5 11406:5 11369:9 11397:4
Jµ.t/ =3, Jθ0.t/ =3 11275:4 11251:5 11256:8 11276:3 11251:4 11271:0 11393:9 11356:3 11382:0
Jµ.t/ =3, Jθ0.t/ =5 11278:3 11250:5 11265:0 11298:1 11253:6 11264:5 11409:9 11381:4 11384:1

t7
Jµ.t/ =1, Jθ0.t/ =1 10626:5 10585:0 10606:3 10566:9 10518.2 10533:3 10679:8 10603:3 10652:2
Jµ.t/ =1, Jθ0.t/ =3 10624:0 10584:2 10600:6 10567:8 10511.5 10532:0 10694:9 10633:9 10648:5
Jµ.t/ =1, Jθ0.t/ =5 10622:5 10579:8 10598:3 10558:1 10512.0 10536:6 10670:4 10615:5 10628:7
Jµ.t/ =2, Jθ0.t/ =1 11127:3 11114:8 11125:2 11065:8 11051:9 11067:9 11214:9 11205:2 11201:2
Jµ.t/ =2, Jθ0.t/ =3 11123:7 11116:2 11132:3 11074:7 11062:0 11061:8 11210:6 11195:2 11207:4
Jµ.t/ =2, Jθ0.t/ =5 11126:5 11115:4 11128:0 11069:1 11055:4 11056:6 11225:2 11185:2 11206:9
Jµ.t/ =3, Jθ0.t/ =1 11604:1 11582:4 11585:9 11570:0 11550:0 11544:7 11652:8 11651:3 11661:6
Jµ.t/ =3, Jθ0.t/ =3 11601:5 11577:1 11588:5 11572:0 11541:7 11547:4 11687:8 11644:0 11672:1
Jµ.t/ =3, Jθ0.t/ =5 11600:6 11586:8 11587:9 11569:2 11540:3 11548:9 11672:2 11671:7 11651:9

†Designs with the lowest DIC are given in italics.

distinctly observed ages of these women (Ruppert et al., 2003). This is equivalent to assuming

piecewise cubic orthogonal polynomials connected at those chosen knot locations. Next, we

consider the number of components for both mean trajectory and variance classes. Previous

analysis of fitting mixture distributions for both the random effects and the variances (Jiang

et al., 2014) successfully identified one mean trajectory class and two variance classes under

the normality assumption for "ij. However, our current approach assumes a t-distribution for

"ij that will potentially impact the effect of any outliers on estimation of the mean trajector-

ies, which may alter the optimal numbers of components for the mean trajectory and variance

classes. With all these considerations, we consider KD =1, 2, 3 and KC =1, 2, 3 in our analysis.

We attempted to estimate the degrees of freedom ν of the tν-distribution by treating it as a

true parameter in our model, but we found that its estimation was unstable without the use

of a strongly informative prior. Hence we performed a sensitivity analysis, comparing results
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Fig. 1. Upper bounds of p-values based on PDMs for individual trajectories fitted by our best-fitting models
with µi .t/, i D1,: : : , n, within the time window T D [45, 55] years as a functional predictor in the primary outcome
submodel: (a) best-fitting normal model; (b) best-fitting t7-model; (c) best-fitting t4-model

from a normal model with a submodel with t4- and t7-assumptions based on Jeffreys’s (1973),

page 65, suggestion to replace the normality assumption with a t-distribution with degrees of

freedom in the range 4–15. We chose these three scenarios as representative settings to reflect

the assumptions of presence of extreme outliers, mild outliers or absence of outliers relative to

a normal distribution in the FSH data.

Table 1 presents the DIC-statistics for all models considered: one, two or three latent classes

for the mean trajectories and variances, normal, t7- and t4-assumptions for the errors in the

longitudinal submodel, and one, three or five knots for the longitudinal trajectories or functional

varying-coefficient function. In general, DIC suggests that joint models with the t4-assumption

for the longitudinal submodel fit the data better than with t7 and much better than the normal

model. KD = KC = 2 is selected for both the t4- and the t7-assumption. Given these selected

numbers of components for both the mean trajectory and the variance classes for each model,

DIC further suggests that one knot (i.e. Jµ.t/ = 1) at 46.6 years of age for the longitudinal

trajectories and three knots (i.e. Jθ0.t/ =3) at 41.6, 46.6 and 51.5 years of age for the functional

varying-coefficient function offer the best balance between goodness of fit and smoothness

under all these three longitudinal submodel assumptions. Thus we shall focus on these three

best-fitting models:

(a) best-fitting normal model—KD =1, KC =2 with Jµ.t/ =1 at 46.6 years of age and Jθ0.t/ =3

at 41.6, 46.6 and 51.5 years of age;

(b) best-fitting t7- and t4-models—KD =KC =2 with Jµ.t/ =1 at 46.6 years of age and Jθ0.t/ =3

at 41.6, 46.6 and 51.5 years of age

For these best-fitting models, PDMs also confirmed our previous finding based on model

selection criterion DIC that the t4-model fits the longitudinal FSH trajectories better than the

t7- and normal distribution. Fig. 1 shows the upper bounds of the p-values based on PDMs for

longitudinal trajectories fitted by all three final models. If the upper bound of a p-value is less

than 0.05, there is strong evidence of inadequate fit. We see that the normal model fits the large

majority of subjects well, with seven individual trajectories being considered to have inadequate

fit by PDMs. Out of these seven individual trajectories, assuming a t-distribution with 7 degrees

of freedom improved the fits of four individual trajectories, leaving three individual trajectories
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with inadequate fit; among the three individual trajectories, assuming a t-distribution with 4

degrees of freedom resulted in only two individual trajectories with inadequate fit. Fig. 2(a)

shows the two trajectories that are considered to have inadequate fits by all three best-fitting

models based on PDMs. Fig. 2(b) shows the four trajectories that have upper bounds of p-values

less than 0.05 by our best-fitting normal model but upper bounds of p-values greater than 0.05

by both our best-fitting t7- and t4-models. Clearly, these plots suggest that t-models with 4 and

7 degrees of freedom show considerably less influence by outlying observations than the normal

model and they both have almost identical fits visually. Finally, Fig. 2(c) shows random selected

four trajectories that have upper bounds of p-values that are greater than 0.05 by all three of

our best-fitting models: the normal and t7- and t4-models show very similar fits. Therefore, the

inadequate fit of longitudinal FSH trajectories that was identified by PDMs is probably due to

these varying degrees of extreme outliers. Although we could consider even smaller degrees of

freedom of t-distribution or more heavily tailed distributions for the longitudinal submodel to

accommodate these extreme outlying observations, the t-model with either 4 or 7 degrees of

freedom already shows almost identical robustness to them and seems to provide a reasonably

good fit to more than 99% of the FSH data.

Next, we contrast the estimation results from these models to demonstrate the influence of

not appropriately accommodating outlying observations. Fig. 3 presents the mean trajectory

components and two variance components that were identified by the three best-fitting models.

Consistent with the finding that was reported in Jiang et al. (2014), under the normal model

assumption, a single-component mean trajectory is favoured by DIC. In contrast, under both

the t7- and the t4-model assumptions, a two-component mean trajectory is favoured by DIC:

the major mean class (86% of women) whose FSH levels begin to increase in their late 40s and

the minor mean class (14% of women) with increasing FSH levels starting around age 40 years

capturing a proportion of women who might transition into the menopause at an earlier age.

The variance class has different meanings under the t- and normal assumptions but in both

scenarios measure the short-term variations in FSH levels: according to their magnitudes, both

t- and normal models would classify them to either ‘low’ or ‘high’ variance classes. On the

basis of the posterior estimates of these component-specific parameters given in Table 1 in the

Web-based supporting material, we can see more subtle differences in these estimated mixture

components under varying assumptions.

Table 2 shows that all three models reach the same broad conclusions: high short-term vari-

ability (its effect is represented by θ3) in the FSH levels is strongly associated with increased risks

of more severe hot flashes, smoking (its effect is represented by θ2) is marginally associated with

more severe hot flashes, and there was no association with BMI (its effect is represented by θ1) or

the individual mean trajectories between age 45 and 55 years (its cumulative time varying effect

is represented by θ0.t/). The most dramatic difference between the different degrees-of-freedom

models occurs for the estimated functional coefficient θ0.t/ that captures the cumulative time

varying effect of the mean trajectory µi.t/. Figs 4(a), 4(b) and 4(c) show the estimated functional

coefficient θ0.t/ by our best-fitting normal, t7- and t4-models respectively. The estimated θ0.t/

under our best-fitting normal model tends to have larger effect size (larger magnitude in θ0.t/)

before age 53 years and an overall wider pointwise 95% credible interval than the estimated

θ0.t/s under our best-fitting t4- and t7-models. All three coefficient curves suggest that, when

adjusting for the whole history of mean FSH levels over the age range of age 45 to age 55 years,

higher mean FSH levels before age 53 years reduce the risk of severe hot flashes, whereas higher

mean FSH levels between age 53 and age 55 years increase this risk, but there is no conclusive

evidence of a true association between the FSH trajectory histories and the risk of more severe

hot flashes.
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Fig. 2. Selected individual FSH trajectories from the Penn Ovarian Aging Study fitted by our best-fitting joint
models with µi .t/, i D1,: : : , n, within the time window T D [45, 55] years as a functional predictor in the primary
outcome submodel ( , normal model; , t7-model; , t4-model): (a) the fitted trajectories by
all three models have upper bounds of p-values based on PDMs for individual trajectories of less than 0.05;
(b) fitted trajectories by the normal model have upper bounds of p-values based on PDMs for individual
trajectories less than 0.05 under the normality assumption but upper bounds of p-values greater than 0.05
under t4- and t7-model assumptions; (c) fitted trajectories under all three models have upper bounds of
p-values based on PDMs for individual trajectories of greater than 0.05

Finally, to consider the effect of the derivative of the mean trajectory µ′
i.t/, or the rate of

change in the mean trajectory µi.t/, we focus on the best-fitting t4-model. Fig. 5(a) considers the

effect of cumulative changes in the mean trajectories across the age range T = [45, 55], whereas

Fig. 5(b) considers the equivalent effect across the age range T = [50, 55], which is potentially a

more clinically relevant age range since the median age of menopause is 51 years and therefore

the hormone dynamics in this time window are more likely to play a role in the menopause-
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Fig. 3. Longitudinal mean trajectories for the Penn Ovarian Aging Study from our final models with Jµ D1 and
KD DKC D2 in the longitudinal submodel, µi .t/ as functional predictor with time window T D [45, 55] years and
Jθ0

D3 in the primary outcome submodel with different assumptions for the longitudinal submodel: (a) normal
assumption (2.58% not covered by the 95% prediction interval); (b) normal assumption; (c) t7-assumption
(2.93% not covered by the 95% prediction interval; , major mean class (86%); , minor mean class
(14%)); (d) t7-assumption; (e) t4-assumption (2.78% not covered by the 95% prediction interval); , major
mean class (86%); , minor mean class (14%)); (f) t4-assumption
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Fig. 4. Functional coefficient θ0.t/ for the Penn Ovarian Aging Study from our best-fitting (a) normal, (b) t7-
and (c) t4-models with µi .t/, i D1,: : : , n, within the time window T D [45, 55] years as a functional predictor in
the primary outcome submodel
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Fig. 5. Functional coefficient θ1.t/ for the Penn Ovarian Aging Study from our best-fitting model with
Jµ D1 and KD DKC D2 in the longitudinal submodel with t4-assumption, and Jθ1

D3 in the primary outcome
submodel: (a) µ0

1.t/ as functional predictor with T D [45, 55] years; (b) µ0

1 as functional predictor with T D [50, 55]
years

related symptoms. When fitted over the wider age range, higher values of µ′
i.t/ decrease risk

slightly before age 50 years and increase it over age 50 years, although the 95% credible intervals

include 0 by a wide margin. In contrast, a more narrowly focused age range of T = [50, 55] years

suggested a significantly increased risk of severe hot flashes that is associated with higher values

of µ′
i.t/ in the age range of 52.5–55 years, with θ̂1.52:5/ = 0:408 (95% credible interval 0.019,

0.843) and θ̂1.55/=0:514 (95% credible interval 0.003, 1.290).

Fig. 6 shows the ROC curves for the best-fitting t4-model, comparing the use of the µi.t/ and

µ′
i.t/ between ages 45 and 55 years to discriminate each of the hot flash severities (0, 1 and 2),

along with the other predictors (residual variance, BMI and smoking status). These ROCs and

their associated AUCs suggest that using either functional predictors led to moderately accurate

classifications of different hot flash severities. Visually, there is not much difference in these ROC

curves; a further comparison of AUCs also suggests that the predictive performances by using

both µi.t/ and µ′
i.t/ have negligible differences (the ∆AUCs for severity 0, 1 and 2 are −0.012

(−0.097, 0.070), −0.002 (−0.073, 0.071) and −0.020 (−0.131, 0.091) respectively).
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Fig. 6. ROC curves for the Penn Ovarian Aging Study from our final t-model (AUC0 is obtained by using
µi .t/ with Jθ0.t/ D3 within the time window T D [45, 55] years as a functional predictor in the outcome submodel
and AUC1 is obtained by using µ0

i
.t/ with Jθ1.t/ D 3 within the time window T D [45, 55] years as a functional

predictor within the outcome submodel): (a) AUC0 ( ) D 0.657 (0.606, 0.708) and AUC ( ) D

0.645 (0.581, 0.709); (b) AUC0 ( ) D 0.559 (0.512, 0.609) and AUC ( ) D 0.557 (0.505, 0.616);
(c) AUC0 ( ) D 0.697 (0.627, 0.765) and AUC ( ) D 0.678 (0.589, 0.757)

4. Conclusions and discussion

In this paper we develop a novel joint modelling approach to answer the scientifically important

research question of how long-term history of FSH values or their rate of change affects the

risk of hot flash severity, which is a symptom that almost every woman experiences during

the menopausal transition. Although many joint models have been developed in the context of

cancer research and human immunodeficiency virus or acquired immune deficiency syndrome

clinical trials in the past decade, most methods focus on the features in the true underlying

longitudinal process (i.e. mean trajectory) that take the forms of random effects or latent classes;

or alternatively the last available true underlying value as a time-dependent covariate. Following

Elliott et al. (2012) and Jiang et al. (2014), we seek the useful longitudinal features in both the

mean trajectories and the short-term variability. Further we allow the mean of the longitudinal

process and the corresponding derivatives to be time varying, and their effects on the responses

to be cumulative over time. To summarize, we propose a broadly applicable joint modelling

approach.

(a) The approach extends conventional functional data analysis to the framework of joint

modelling of both the longitudinal (functional predictor) and outcome data, which allows

us to study different aspects of the features in the dynamics of a longitudinal process as

functional predictors. In particular, we focus on the values and derivatives of the mean

trajectories at certain time windows as potential functional predictors. This will allow us

to identify ages of vulnerability and to test hypotheses about the association between the

functional predictors (FSH level and rate of change) and our outcome, severe hot flashes,

while also adjusting for the previously identified effect of short-term variability captured

by the variance of the residuals (Jiang et al., 2014).

(b) It uses flexible mixed effects models with a Bayesian penalized B-spline basis and latent

classes in the longitudinal submodel, which relaxes assumptions about the specific form of

the trajectories and allows uneven spacing and unequal length that are densely or sparsely

measured to be used as functional predictors.

(c) The approach allows the effects of FSH histories (the mean value or derivative) to be
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time varying and to accumulate over time. Statistical tests of these functional coefficient

functions in the primary outcome submodel for hot flashes can then be used to identify

critical time windows where the association exists. Using a Bayesian approach allows

easy calculation of pointwise credible intervals for the functional coefficient functions in

comparison with frequentist approaches.

(d) Finally, it uses a robust model to decrease the influence of outlying observations in the

FSH data.

To realize these modelling goals, we use a penalized spline approach to allow the flexible

modelling of longitudinal features and the functional coefficient curve representing the time

varying effect of the longitudinal features. Since the ultimate goal is to model simultaneously

both the mean trajectories and the residual variability but to distinguish between their effects in

the outcome submodel, we choose a t-distribution to model residual variability properly to avoid

the effect of outlying FSH values. In particular, we demonstrate the importance of assuming

this robust distribution assumption instead of the typical normal assumption that is used in

most of the joint modelling literature. However, because of the limited number of longitudinal

observations for some women (i.e. ranging from 6 to 26), there is insufficient information in

the data to assume individually varying degrees of freedom in the t-distribution; thus we are

limited to assuming a global degrees of freedom that is common to all trajectories. In addition,

our attempts to use the data to estimate even the global degrees-of-freedom parameter using

the informative exponential distribution that was proposed by Geweke (1993), the truncated

uniform prior on the inverse of the degrees of freedom that was suggested in Lange et al. (1989)

and Gelman and Hill (2007) and the Jeffreys prior that was derived by Fonseca et al. (2008)

all failed: the estimated global degrees of freedom were always close to a prior cut-off value,

implying extreme outliers in the FSH data that tend to drive the degrees of freedom in the

t-distribution to low values. Given that the fitted values are only modestly affected by different

values of the degrees of freedom in the t-distribution (Lange et al., 1989), we chose to fix the

degrees-of-freedom parameter at a small number of fixed values and to conduct a sensitivity

analysis using DIC to choose between the models.

The model proposed also allows latent heterogeneities in both the individual level mean

trajectories and the residual variability as in Jiang et al. (2014). Under our best-fitting t4-model,

as shown in Fig. 3(e), the mean FSH trajectories can be separated into two classes: one minor

class with 14% of trajectories and the other major class with 86% of trajectories. Both classes are

reflective of three typical FSH change patterns for women in the transition to the menopause

(Burger et al., 1999) in that the FSH level is relatively flat before the menopause transition, has

an increasing period during the menopause transition and eventually plateaus once women are 2

years post menopause; but women in the minor class tend to have earlier increases in FSH along

with higher FSH values than the women in the major class. Fig. 7 plots the fitted mean FSH

curves for the 28 women who were assigned to the minor class and a random sample of 20 women

who were assigned to the major class on the basis of the posterior mode. This once again shows

the heterogeneous nature in the mean FSH trajectories that is supported by our model selection

criterion DIC and implies that the women in the minor class tend to reach the menopause at a

much earlier age. Also, as shown in Fig. 3, even with the use of the t-distribution to account for

extreme outlying observations, it seemed that there is still a true mixture in residual variability,

with a low variance class consisting of one in three to one in five women, with the remainder in

a high variance class.

In summary, the model proposed gives added insights about hormone changes in the meno-

pausal transition and their associations with severe hot flashes. First, whether the robust
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Fig. 7. Individual FSH trajectories from the Penn Ovarian Aging Study that are assigned to the minor
( ) and major ( ) mean trajectory classes by our best-fitting t4-model with µi .t/, i D1,. . . , n, within
the time window T D [45, 55] years as a functional predictor in the primary outcome submodel

or normal models were used, we identified a strong association between residual variability

in FSH and hot flashes as in Jiang et al. (2014), and similarly to what has been reported for

depressive symptoms (Freeman et al., 2006). In addition, we identified latent heterogeneities in

both the individual level mean trajectories. Under our best-fitting t4-model, as shown in Fig.

3(e), the mean FSH trajectories can be separated into two classes: one minor class with 14%

of trajectories and the other major class with 86% of trajectories. Both classes are reflective of

three typical FSH change patterns for women in the transition to the menopause (Burger et al.,

1999) in that the FSH level is relatively flat before the menopause transition, has an increasing

period during the menopause transition and will eventually plateau once women are about 2

years post menopause; but women in the minor class tend to have an earlier increase in their

FSH trajectories along with higher FSH values than the women in the major class. As shown in

Fig. 7, the fitted mean FSH curves for the total 28 women who were assigned to the minor class

and a random sample of 20 women who were assigned to the major class on the basis of the

posterior mode were plotted. This once again shows the heterogeneous nature in the mean FSH

trajectories that is supported by our model selection criterion DIC and implies that the women

in the minor class tend to the reach the menopause at a much earlier age. Also, as shown in Fig.

3, even with the use of the t-distribution to account for extreme outlying observations, it seemed

that there is still a true mixture in residual variability. Another interesting finding is illustrated

in Fig. 5(b) depicting the association between increases in hot flashes and the functional coeffi-

cient which describes the rate of change in FSH between the ages of 50 and 55 years. This age

window corresponds precisely to when hot flashes are reported to be most likely (Harlow et al.,

2012). These findings have important ramifications for treatment of hot flashes with hormone

replacement therapy. These medications affect the levels of FSH and oestradiol, and reduce

variability. The current recommendation is for women to take these medications for no more

than 3–5 years; however, the optimal time frame and duration for treatment are unknown.
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Generally, the functional coefficient curves θ0.t/ and θ1.t/ can be fitted by any spline basis

with or without penalty parameters. In particular, if the shape of θ0.t/ or θ1.t/ is known—e.g.

θ0.t/ is a linear function—then we can let ψ0.t/= .1, t/ and assume a regular normal prior on

the coefficients that are associated with basis function 1 and t. When the true shape of θ0.t/

or θ1.t/ is unknown, we recommend starting the analysis by using a more flexible penalized

approach to obtain some idea of the shape of θ0.t/ or θ1.t/, which may be further reduced to

simple parametric form to stabilize estimation of model parameters and to reduce the length of

pointwise credible or confidence intervals for θ0.t/ or θ1.t/.

The methods that were presented for data augmentation of unobserved FSH values as-

sumes MAR. For the FSH values that were missing because of age at enrolment or reasons

such as a subject did not deliver a blood sample at a certain visit, we can reasonably assume

MAR. One known non-random source of missingness would be when women went on hor-

mone replacement therapy for relief of menopausal symptoms. These hormone values dur-

ing hormone replacement therapy were censored. In this subset who were symptom free at

baseline, 31=234 = 13% reported any hormone therapy use over the 13 years of follow-up,

and the majority, 26=31 = 84%, reported use at only one or two visits. Among the remain-

ing five women, three reported use of hormone replacement therapy at six visits, one woman

reported use at four visits, and one at three visits. However, skipped visits or dropout during

the first 5 years (i.e. 10 visits) for women were less likely to be due to menopausal symptoms

(Nelson et al., 2004). Furthermore, when fitting the individual’s FSH trajectory assuming MAR,

we did not observe noticeable irregular residual patterns from the FSH values that were col-

lected before and after skipped visits; therefore the effect from assuming MAR for the spo-

radic missingness should be minimal. We may underestimate the short-term variation if the

missingness is associated with a high level of FSH fluctuation and this could be a worthy

future research topic. For dropout, we may expect an effect if those who dropped out had

different profiles after they left from those who stayed. There are a total of 26 women who

dropped out after being in the programme for more than 5 years. Among them, 10 women

contribute 20 or more observations before the dropout and five women dropped out at age

54 years or older. A preliminary study that examined FSH patterns and values in the visits

before the dropout did not reveal a reason behind the dropout. Nor could we find an ex-

planation behind their dropouts based on factors such as their history of hot flash severity,

menopausal stage or HRT use. Future work will develop methods to examine thoroughly the

sensitivity to different missing data mechanisms through pattern mixture models or selection

models within our modelling framework, although the sensitivity of our results to failures of the

MAR assumption as expected would be relatively minor given the limited amount of missing

data.

Another direction for future work is to make use of the fact that longitudinal studies often

measure several variables repeatedly; for example, in the Penn Ovarian Aging Study several other

hormone trajectories are available. Developing methods to model these potentially correlated

longitudinal trajectories simultaneously while also using this information effectively to predict

or relate to the outcome of interest is a key area for future research.
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