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Modeling size effects using 3D density-based

dislocation dynamics

July 28, 2006

Michael Zaiser1, Nikos Nikitas1,2, Thomas Hochrainer3

and E.C. Aifantis2

1 The University of Edinburgh, Institute for Materials and Processes,
The King’s Buildings, Sanderson Building, Edinburgh EH9 3JL, UK

2 Aristotle University of Thessaloniki, Polytechnic School, 54006 Thessaloniki,
Greece

3 Universität Karlsruhe (TH), Institut für Zuverlässigkeit
von Bauteilen und Systemen, Kaiserstr. 12, 76131 Karlsruhe, Germany

Abstract

We use density-based continuity equations to model strain patterns

and size effects in confined plastic flow, namely, shearing of thin films,

and micro-bending. To this end, we use a representation in terms of

coupled equations for the densities of screw and edge components. We

show how these equations derive from a more general formulation in a

higher-dimensional configuration space, and discuss relations with other

density-based approaches proposed in the past. The new element here

is the incorporation into previous continuum formulations of geometrical

features and interactions of dislocation lines that cannot be neglected

or ’averaged out’ within a three-dimensional setting of plasticity at the

micron and nano scales.

1 Introduction

Plastic deformation of crystals results from the motion of interacting dislocation
lines. As dislocations move and interact under the action of stresses applied to
the deforming body, they may form patterns of intriguing complexity. Such
’dislocation patterning’ [1, 2] phenomena appear over a wide spectrum of space
and time scales in the form of dipoles or multipoles, walls or pileups, cells or
subcells, stationary or travelling strain bands. Thus, the pattern of discrete
dislocation lines in the deforming crystal, and the associated pattern of internal
stresses, exhibit various internal length scales ranging from the ’elementary’
length scale defined by the dislocation spacing over the scale of dislocation cells
and sub-grains to the macroscopic scale of deformation bands.

Accordingly, understanding the spatial organization of dislocation systems
is of key importance not only for capturing the internal stress state of a ma-

1
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terial and the associated material behavior (hardening/softening), but also for
analysing the interplay of internal and external length scales as it manifests itself
in the form of size effects in plasticity. Two main approaches have been pursued
so far: Discrete Dislocation Dynamics (DDD) and Continuum Density-based
Dislocation Dynamics (CDDD).

(i) Discrete Dislocation Dynamics (DDD) traces the evolution of the disloca-
tion systems on a ’microscopic’ scale where discrete dislocations can be resolved
- either by investigating the motion of discrete lines, which may be discretised
into segments [3, 4] or treated as continuous lines [5, 6, 7] or by tracing the
evolution of strain [8, 9] or dislocation fields [10, 11] on a ’microscopic’ scale. Ir-
respective of the formulation used, this approach has the advantage, but also the
drawback, that the complete information about the microscopic stress and de-
formation state is retained. This has obvious advantages in terms of conceptual
simplicity, and equally obvious disadvantages in terms of computational cost.
Indeed, because of the huge computational cost there has been, for instance, no
large-scale discrete simulation of dislocation cell patterning despite 15 years of
dedicated effort. In addition, simulation approaches based on discrete lines fit
badly into the traditional conceptual framework of continuum plasticity and to
’interface’ them with averaged continuum descriptions of the stress and strain
states is a formidable problem of multiscale materials modeling.

(ii) Continuum Density-based Dislocation Dynamics (CDDD) describes the
evolution of the dislocation microstructure in terms of continuous field variables
for which evolution equations are formulated. Historically this approach has
three roots: (a) simple internal-variable models as first advocated by Gilman
and later elaborated by Kocks, Mecking, and their school (see e.g. [12, 13]). In
these, the microstructure is described in terms of internal variables (’dislocation
densities’) which evolve with strain but do not possess any spatial degrees of
freedom (i.e., they do not undergo transport); (b) quasi-thermodynamic models
which derive the transport dislocations and their spatial organization into cells
and clusters from internal energy minimization [14, 15]; (c) the complex and
geometrically rigorous Kröner-type theories of continuous distributions of dislo-
cations [16, 17, 18, 19] (for overwiews, see [20, 21]) which, however, were never
truly elaborated into a theory of the dynamic evolution of dislocation systems
except on the level of discrete dislocation lines [10].

Dislocation transport was introduced into CDDD by Aifantis and co-workers
[22, 23, 24, 25, 26, 27, 28], and in a slightly different manner by Kratochvil [29]
(for a recent elaboration of this approach see [30]). The primary purpose of
introducing transport terms was to model dislocation patterning phenomena,
in particular the emergence of periodically ordered persistent slip band and
matrix patterns in cyclic deformation. Drawing on phenomenological analogies
with pattern formation in other reaction-diffusion systems, evolution equations
of the reaction-diffusion and reaction-diffusion-transport type were formulated
for different dislocation ’species’ or ’families’ distinguished by their geometrical
and dynamical properties (positive vs. negative, mobile vs. immobile disloca-
tions, moving dislocations vs. immobile dipoles). Internal length scales appear
in this type of theories in terms of diffusionlike transport terms which have
been linked to the cyclic mean free path of dislocations [31] or, more generally,
to their characteristic transport length before collisions (dislocation reactions).
This approach was later also applied to understand the spatial organization of
deformation on macroscopic scales during plastic instabilities where multiplica-

2
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tion and diffusionlike propagation of dislocations may lead to the emergence of
propagating deformation bands [32, 33, 34].

A topic which has been of particular interest in recent years concerns size
effects in plasticity and their modelling using continuum constitutive equations
with internal length scales. Modelling has been mainly done using phenomeno-
logical models which incorporate strain gradient terms into constitutive laws
for continuum plasticity [35, 36, 37, 38, 39, 40] but the relation with dislocation
behavior has not generally been made, even though arguments invoking geomet-
rically necessary dislocations are commonplace (e.g. [36, 37], for an overview
see [41]). A critical discussion of these arguments has been given by Zaiser and
Aifantis [42], who also illustrated the application of phenomenological reaction-
transport equations for dislocation densities to size effects in microbending.

Recently, various attempts have been made to go beyond phenomenologi-
cal evolution equations and to formulate the evolution of dislocation densities
within a more rigorous mathematical framework. In particular, Groma, Zaiser
and co-workers have addressed the evolution of systems of parallel straight dis-
locations in terms of concepts borrowed from the statistical mechanics of in-
teracting many-particle systems, which allow to derive equations of evolution
for dislocation density fields from the dynamics of discrete dislocations through
systematic averaging procedures.

For systems of straight parallel dislocation lines, Groma, Zaiser and co-
workers have developed a formalism to represent both the kinematics and inter-
actions of dislocations in a continuum framework [43]. Averaging the discrete
equations of motion leads to a hierarchy of equations for many-dislocation den-
sities which is truncated at second order, i.e., the interaction of a dislocation
with others in its vicinity is represented in terms of pair correlation functions.
Owing to the short-range nature of these correlations [44, 45], the interaction
can be approximately described in terms of a density dependent flow stress
plus a strain-gradient dependent ’back stress’ term, whereas the interactions
between distant dislocations are appropriately characterized in terms of a long-
range stress field which is a functional of the dislocation density pattern. This
approach has been tested against numerous benchmark problems and, in gen-
eral, yields excellent agreement between 2D discrete simulations and continuum
calculations both [46, 47].

In 3D, the problem is more complicated since the kinematic description of
systems of moving lines (as opposed to point particles in 2D) is not straight-
forward. Different kinematic formulations have been proposed in the literature
[48, 49] while a general analysis which allows to recover these formulations as
special cases has been provided by Hochrainer [50]. In the present paper, we
first formulate a density-based theory of the kinematics, dynamics and inter-
actions of systems of directed and connected dislocation segments moving on
a single slip system. We then discuss several examples where this is applied
to size effects in constrained plastic flow (channel slip, shearing of thin films)
and in microbending. Particular attention is devoted to assessing the respective
influences of dislocation self-interactions (line tension) and interactions between
different dislocations on the size-dependent yielding and hardening behavior.
We also use these examples to emphasize the importance of initial and bound-
ary conditions for the evolution of the dislocation system, and their possibly
crucial influence on the plastic response of a material. It is noted that such an
approach is more rigorous and reliable over other dislocation or strain gradient

3
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models for predicting size effects in small metal volumes such as those involved in
multilayer films and micro/nanoindentation where discrete dislocation features
should be effectively incorporated into continuum formulations.

2 Internal stresses, dislocation kinematics and

dynamics

2.1 Kinematics and dynamics

In the following we use as a starting point the kinematic framework developed
by Hochrainer [50, 51, 52], i.e., we use a dislocation density measure ρ which is
defined on a configuration space which consists of the positions and orientations
of dislocation segments, and treat the dislocation line curvature k as an indepen-
dent field variable. We specify our formulation to dislocations moving by glide
on a given slip system, such that the dislocation orientation can be expressed in
terms of a scalar variable φ which we define as the angle between the disloca-
tion line direction and the Burgers vector. (Situations with dislocations moving
on multiple slip systems can be treated straightforwardly by defining separate
measures ρi for each slip system i; in the following we drop the subscript i for
the simplicity of presentation.)

For a given orientation, we define a set of unit vectors n in the direction
of the glide plane normal, et(φ) in the direction tangential to the dislocation
line, and eg(φ) = n × et(φ) in the dislocation glide direction. Assuming that
dislocations move by glide only, the evolution of the density measure ρ is then
given by the continuity equation (cf. [51], this volume)

∂tρ = −∂φ[ρvφ] −∇ · [ρv] + ρvk (1)

Here, v = egv is the vectorial and v the pseudo-scalar velocity of the dislocation
segments, and the rotation velocity of the dislocation lines is given by

vφ = et ·∇v + k∂φ[v] . (2)

It is noted that the conservation law given by Eq.(1) is a generalization of pre-
viously formulated continuity equations for straight parallel dislocations (e.g.,
[2, 43]). The curvature-dependent term contained in the above continuity equa-
tion accounts for the expansion or shrinkage of dislocation loops, and in a im-
plicit manner for dislocation reaction (generation/annihilation) terms as they
have been introduced e.g. by Aifantis [2, 31, 38]. (Note that, in a three-
dimensional network of flexible dislocations, reactions necessarily occur through
the formation, motion and dissolution of nodes, i.e. of singularities in the cur-
vature field.)

The dislocation curvature is, in the kinetic theory of Hochrainer, understood
as an additional field variable. The theory is exact if all dislocations of a given
orientation in a given volume element have the same curvature [51]. The local
values of the curvature field pertaining to a given orientation then obey the
differential equation

∂tk = −k2v + k(eg ·∇v) − et ·∇[vφ] − k∂φ[vφ] − v ·∇[k] − vφ∂φ[k] . (3)

4
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The equations for the curvature field may be solved alongside with those for
the dislocation density measure. Alternatively, in the present investigation we
use later on a line tension approximation to evaluate the dislocation behaviour
under quasi-static conditions. In this approximation, the curvature ceases to be
an independent field and simply becomes a function of the shear stress acting
on the dislocation, and thereby a functional of the dislocation density measure.

The plastic strain rate can be recovered from the dislocation density measure
as

∂tγ(r) =

∫

(ρbv) dφ , (4)

where b is the modulus of the Burgers vector and the integral is extended over
all orientations φ ∈ [0, 2π]. This relation may be integrated alongside with the
evolution of the dislocation density measure to yield the plastic strain field at a
given moment in time.

To pass from dislocation kinematics to dynamics, we have to specify the
dislocation velocity v. We neglect dislocation inertia and assume that the dis-
location velocity is controlled by drag forces. In this case, the velocity becomes
a function of the local stress τ(r) acting on a dislocation at r,

v

B(φ)
= τ(r)b . (5)

where B is the (in general direction-dependent) dislocation mobility. The key
problem is now how to evaluate the stress τ(r) which, in order to obtain a closed
theory of plastic flow, must be expressed as a functional of the plastic strain
and/or the dislocation density measure.

2.2 Internal stresses

As already mentioned, by integrating Eq.(4), we can obtain the plastic strain
field at a given moment in time. It is then a standard problem of continuum
mechanics to determine the corresponding stress field for a given set of boundary
conditions. In the following we use a terminology where we split this stress field
into a field τext (’external stress’) that is due to the tractions applied from
outside to the deforming body, and a mesoscopic internal-stress field τmf which
arises from the in general inhomogeneous strain field γ(r) 1. In a small-strain
approximation (and only then) the two contributions are additive because of
the linearity of the problem. In an infinite crystal, the mesoscopic stress τmf

can be expressed as a functional of the dislocation density pattern via

τmf(r) =

∫

V

ρ(r′, φ′)τseg(r − r′, φ′)dr′dφ′ (6)

where τseg is the shear stress created at r by a segment of orientation φ′ located
at r′. Explicit expressions for segment stresses have been given by Devincre
and Condat [3]. We note, however, that, instead of evaluating the expression
given by Eq.(6) it is often more convenient to solve the elastic problem directly;

1The notion of a ’mesoscopic’ internal-stress field is motivated by the fact that this stress

field is defined on the same scale as the dislocation density measure ρ and the plastic strain

γ. If ρ and γ are considered as smooth averages over volume elements containing many

dislocations, the same holds for τmf .
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in cases where surface boundary conditions are imposed this may indeed be
the only feasible method of solution, and such a scheme is also adopted in the
subsequent examples.

The mesoscopic stress field, Eq.(6), varies on the same length scale as the
dislocation density pattern described by the dislocation density measure ρ. In
principle, ρ can be considered with a spatial resolution sufficient such that indi-
vidual dislocations can be resolved; in this case the complete information about
the internal stresses is contained in Eq.(6), and our theory is just a complicated
way of expressing the evolution of a discrete dislocation system. However, the
main point of a density-based description is to describe dislocation dynamics
on a mesoscopic scale where the ’elementary size’ of a volume element may be
above the mean dislocation spacing. In this case, any fluctuations of the stress
field on the scale of individual dislocations are averaged out. A straightforward
proposition might be to describe, within the framework of such a mesoscopic
theory, the local stress state in terms of τ(r) = τext + τmf and to evaluate
τmf – which in this case has the character of a mean stress field – from the
(mesoscopically averaged) dislocation density measure, or the (also mesoscopi-
cally averaged) strain field. This amounts to a mean-field dislocation theory of
plasticity as discusssed by Hochrainer et. al. [51] (this volume), or (in different
versions) by other authors in the past (e.g. Aifantis [32]).

It is, however, emphasized that such a mean-field theory, which from a sta-
tistical viewpoint corresponds to neglecting any correlations between dislocation
segments and/or dislocation lines, in general does not provide a full description
of the stresses acting locally on the dislocations. This can be seen immediately
by considering an infinite body deforming (on mesoscopic scales) in homoge-
neous simple shear. In this case, the mesoscopic shear strain is a constant, and
accordingly the mesoscopic stress τmf is zero. Since in a mean-field theory τmf is
the only term which accounts for dislocation interactions, such a theory predicts
for mesoscopically homogeneous dislocation arrangements that, irrespective of
the dislocation arrangement within the elementary volume, the flow stress is
zero unless obstacles other than dislocations are introduced in some way into
the stress-velocity law. It can be seen from dislocation dynamics simulations
but also from experiment (consider hardening Stage I of pure fcc metals) that
this assertion is incorrect.

A straightforward extension of the mean-field approach, which is particularly
well-adapted to the formulation used in the present paper, is to include into the
theory stresses associated with the large-scale curvature of the dislocations.
In a line-tension approximation, such stresses can be expressed as τlt = Tk/b
where T ≈ Gb2 is the dislocation line tension. Note, however, that k in the
present formulation is considered as a mesoscopic field, and therefore τlt does
not account for stresses due to fluctuations of the lineshape on the ’microscopic’
scale below the average dislocation spacing. Such stresses, which arise from
bowing out of dislocations between junctions and other localized obstacles, form
in a mesoscopic description part of the flow stress. This is discussed in the next
paragraph.

In general, dislocations during plastic flow arrange themselves in such a way
as to mutually obstruct their motion. These ’jammed’ dislocation configura-
tions [53] may consist of dislocation dipoles and multipoles, or of dislocation
junctions and locks. In either case, such configurations have an extension of one
or at maximum a few dislocation spacings, i.e. they pertain to a ’microscopic’

6
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length scale below the averaging scale of a mesoscopic theory. Formally, such
configurations and the associated ’microscopic’ stresses can be included into a
mesoscopic theory by considering dislocation-dislocation correlation functions.
This has been discussed for 2D dislocation systems (systems of parallel edge
dislocations) by Zaiser, Groma and co-workers [44, 43], and a similar proce-
dure for 3D dislocation systems was outlined in [52, 54]. The basic idea is that
dislocation pair correlations are short-ranged with a range of the order of one
dislocation spacing. Therefore, the dislocation interactions which are associated
with them can, on a mesoscopic scale, be expressed as local functions of the av-
eraged dislocation densities and their gradients (local density approximation).
The short-range nature of the correlation functions allows for a systematic ex-
pansion into dislocation density gradients of increasing order. The assertion
that dislocation pair correlations are short-ranged has recently been confirmed
for systems of straight parallel dislocations in a study by Groma et. al. [45]
(this volume). They derive an analytical expression for the pair correlation func-
tion and demonstrate quantitative agreement with discrete dislocation dynamics
simulations.

In the following we shall not analyse dislocation-dislocation correlations in
detail (for such an analysis, see the papers of Groma and co-workers [45] and
of El-Azab and co-workers [55] in the present volume). Rather, we adopt a
phenomenological approach where we describe the ’microscopic’ stress state in
terms of a dislocation-density dependent friction stress τf and a ’back stress’ τb

which depends on the dislocation density gradient (see also the introduction of
similar expressions in [56]). These are assumed in the form

τf = αGb
√

ρt , τb =
DGb

ρt

∫

(eg ·∇ρ)dφ . (7)

Here ρt =
∫

ρdφ denotes the total dislocation density in a given point and G
is the shear modulus of the material. The constants α and D may in general
depend on the line orientation φ and/or on the ’composition’ of the disloca-
tion arrangement (the distribution of dislocations over the different directions).
However, the basic structure of the ’flow stress’ and ’friction stress’ terms is
dictated by scaling properties as discussed in [44, 43] for two- and in [52, 54]
for three-dimensional dislocation systems. In particular, for a 2D dislocation
arrangement consisting of straight parallel edge dislocations these terms reduce
to expressions derived by Groma and co-workers using both statistical averag-
ing techniques [43] and extremal principles ([45], this volume). In passing, we
note that the ’flow stress’ expression is simply Taylor’s well-established rela-
tion for the dissipative friction stress that has to be overcome when deforming
a dislocation arrangement, whereas the ’back stress’ is a 3D generalization of
the 2D ’pile-up stress’ derived by Groma and Zaiser, which has been proven
in numerous studies of size-dependent plasticity to yield a correct continuum
representation of short-range dislocation repulsion in 2D dislocation dynamics
and the associated size effects.

In the following we use Eq. (7) with isotropic (direction-independent) coeffi-
cients α and D to describe the ’microscopic’ stress state and combine this with a
continuum approach to calculate the external and mesoscopic internal stresses.
Before applying the formalism to concrete examples, however, it is convenient
to re-formulate the kinetic equations in a form that is suitable for an analytic
treatment of the simple example problems we are going to discuss.
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2.3 Edge-Screw Representation

A practical hindrance to numerical implementation of the continuum disloca-
tion dynamics formulated above is that a reasonable resolution in angular space
requires a large number of dislocation fields ρ(r, φi). Since this obviously in-
creases the numerical cost, one may ask whether it is possible to use only a
coarse discretization, such as the edge-screw model proposed by Arsenlis et. al.
[57]. However, a ’naive’ edge-screw approach which allows for only 4 values of
φ (φ ∈ [0, π/2, π, 3π/2]) is problematic since line-tension effects and dislocation
multiplication are badly represented (one effectively deals with rectangular dis-
location loops). None of the subsequent examples can be adequately treated in
this too-simplistic approximation.

We therefore use a different approach where we start out from the kinematic
formulation outlined in Section 2.1, but then represent the dislocation orienta-
tion in terms of the edge and screw components of mixed dislocation segments.
We first consider the density measure ρ on a ’microscopic’ scale where individual
dislocation lines can be resolved, and associate it with the screw and edge seg-
ment densities Rs and Re. On the microscopic scale, the screw, edge, and total
densities fulfil the geometrical relation ρ2 = R2

s + R2
e , and the local dislocation

orientation is tanφ = Re/Rs. Assuming that the Burgers vector points in the x
direction and considering a direction-independent mobility B, we obtain from
Eqs. (1),(2) the following equations of evolution for the screw and edge densities
(for details of the derivation see Appendix):

∂tRe =

[

−R2
e

ρ2
∂x(ρv) +

ReRs

ρ2
∂y(ρv)

]

+ Rs

[

Rs

ρ
∂xv +

Re

ρ
∂yv

]

+ Revk , (8)

∂tRs =

[

−ReRs

ρ2
∂x(ρv) +

R2
s

ρ2
∂y(ρv)

]

− Re

[

Rs

ρ
∂xv +

Re

ρ
∂yv

]

+ Rsvk . (9)

It is important to note that in this model edge and screw segments move together
in the glide direction determined by the local ’composition’ of the dislocation
line and not separately by the ’edge’ and ’screw’ components.

In the following we are interested in a statistical description of the dislocation
system. We therefore proceed to average these equations. We introduce the
notations κs := 〈Rs〉, κe := 〈Re〉, ρ := 〈ρ〉, ρ2

s := 〈R2
s 〉, ρ2

e := 〈R2
e〉 and ρ2

se :=
〈RsRe〉, where the averages are understood as both spatial and directional. We
obtain

∂tκe =

[

−ρ2
e

ρ2
∂x(ρv) +

ρ2
se

ρ2
∂y(ρv)

]

+ ρ

[

ρ2
s

ρ2
∂xv +

ρ2
se

ρ2
∂yv

]

+ κevk , (10)

∂tκs =

[

−ρ2
se

ρ2
∂x(ρv) +

ρ2
s

ρ2
∂y(ρv)

]

− ρ

[

ρ2
se

ρ2
∂xv +

ρ2
e

ρ2
∂yv

]

+ κsvk (11)

for the average sign densities. In deriving these equations we have used the
relations 〈R2

e/ρ〉 = 〈R2
e〉〈ρ〉/〈ρ2〉 and similarly for Rs, which are proven in the

Appendix. As we assumed that the dislocation velocity is independent of the
segment orientation, there is no correlation between (Re/ρ), (Rs/ρ), (R2

e/ρ2), or
(R2

s/ρ2), and v. We note that, for a system of parallel edge dislocations where
Rs = 0 and hence ρse = ρ2

s = 0, ρ2
e = ρ2, Eq.10 reduces to the simple relation

∂tκe = −∂x(ρv) (12)
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which is one of the two equations describing the kinetics of such a system as
discussed by Groma et. al. [43]. Comparison with that work also demonstrates
that a closed description requires a second equation for the total density ρ (or,
equivalently, the density square ρ2). In the edge-screw case, we need in general
three additional equations as Eqs. (11) and (10) contain the product densities
ρ2
s , ρ2

e and ρ2
se. For these, evolution equations can be obtained by averaging the

evolution of the products R2
s , R

2
e , and RsRe. In the examples discussed in the

present paper, however, it is in fact sufficient to consider Eqs. (10) only, as will
become evident in the following.

3 Examples

In the following we consider some examples of plane-strain deformation to thin
films under different boundary conditions, viz, the shearing of a thin film teth-
ered to a non-deformable substrate and containing either one single or two sym-
metrically inclined slip systems, and the bending of a free-standing thin strip
containing two symmetrically inclined slip systems. In either case, we assume
that, as an initial condition, equal densities ρ0/2 of screw dislocations of both
signs but no edge segments are present. Owing to the plane-strain geometry, the
density of screw segments is conserved for this initial condition. Consequently,
we may use in Eq. (10) the closure approximation ρ2

e = κ2
e and ρ2

s = ρ2
0, while

ρ2
se and κs are zero at all times. We note that the same problems as in the

present study were considered in two papers by Sedlacek [58, 59]. The results
of Sedlacek can for all these problems be recovered from the present theory by
setting D = 0.

For the chosen geometry, κe is a function of the x coordinate only. This
leads to the equation

∂tκe = −κ2
e

ρ2
∂x(ρv) + ρ

ρ2
0

ρ2
∂xv + κevk , (13)

where ρ2 = ρ2
0 + κ2

e . We further note that, for the plane-strain configurations
under consideration, κe = −(1/b)∂xγ. In view of γ̇ = ρbv this leads to

ρ2
0

ρ2
∂tκe = ρ

ρ2
0

ρ2
∂xv + κevk , (14)

The dynamic formulation is completed by specifying how the pseudo-scalar
velocity v relates to the local stress. As stated above, we use a linear stress-
velocity relationship with a direction-independent dislocation mobility B. The
local stress is considered as a sum of four contributions: (i) the mesoscopic stress
τ(r) which derives from solving the elastic problem in a continuum setting using
the strain field γ(r). For the plane-strain geometries and initial conditions as
specified above, this can be simply obtained from the density κe, since κe =
−(1/b)∂xγ; (ii) the line-tension stress Tk/b; (iii) the flow stress τf . In the
present situation this is related to interactions with forest dislocations, as well as
interactions between screw (but not edge) segments of opposite signs. Since both
the density of screw dislocations and the planar density of forest dislocations
intersecting the glide plane are conserved, τf = αGb

√
ρ0 is considered constant

(a similar approximation of constant flow stress was made in [58, 59]); (iv) the
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back stress τb, which from Eq. (7) is evaluated as

τb =
DGb

ρ2
κe∂xρ , (15)

where we have used that the glide vectors of both dislocation orientations that
may occur at a given point have the same x component, egex = κe/ρ, and the
system is homogeneous in the y direction.

Since the flow stress has the character of a friction stress, whereas the other
stresses are conservative in nature and may recover upon unloading, it is con-
venient to define the local stress as τloc = τ(r) − τb − Tk/b. The dislocation
velocity is then given by

1

bB
v =







τloc − τf , τloc > τf ,
τloc + τf , τloc < −τf ,
0 otherwise .

(16)

In the following we focus on the quasistatic limit B → ∞, which gives in general
a good representation of the situation in weakly rate-dependent fcc crystals. In
this case, we find that

k =
(τ(r) − τf)b

T
− DGb2

T

κe

ρ2
∂xρ , τloc > 0 ,

k =
(τ(r) + τf)b

T
− DGb2

T

κe

ρ2
∂xρ , τloc < 0 . (17)

In the quasistatic limit, equation (14) reduces to a balance equation between
segment multiplication and segment rotation terms:

0 =
ρ2
0

ρ
∂xv + κevk , (18)

where v = const/ρ. Combining Eqs. (17) and (18) we arrive at the differential
equation

ρ2
0 + Dκ2

e

ρ2
∂xρ =

κe

Gb
(τ(r) − τf) . (19)

In the following, it is convenient to use non-dimensional variables defined by
x̃ = x

√
ρ0 where 1/

√
ρ0 is the characteristic length of the dislocation system,

κ̃e = κe/ρ0, ρ̃ = ρ/ρ0, and τ̃ = τ/Gb
√

ρ0. This gives the nondimensional
equation

1 + Dκ̃e
2

ρ̃2
∂x̃ρ̃ = κ̃e(τ̃(r) − α) . (20)

From now on we will always refer to Equation (20) for describing the dislocation
density pattern. Accordingly, in the following all variables are understood as
scaled, and tildes are omitted.

3.1 Shearing of a thin film on an elastic substrate

As our first example, we envisage the shearing deformation of a thin film teth-
ered to an elastic substrate. Using the continuum dislocation representation
formulated above, we will examine the size-dependent deformation behavior of
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this system in both single and symmetrical double slip, and investigate similar-
ities and differences with previous theoretical approaches.

In the following we adopt, instead of the slip system specific coordinate
system used to formulate the model equations, a Cartesian coordinate system
where the x axis is normal to the plane of the film. We consider a homogeneous
thin film of thickness H with infinite extension in the y and z directions as
depicted in Figure 1. The Burgers vector of the active slip system is contained
in the xz plane and forms an angle θ with the x direction (two angles ±θ in
case of symmetrical double slip). The elastic boundary condition on the free
surface of the film is σxx(H) = 0, and a constant surface traction σxz is applied
to this surface. The dislocation densities must fulfil the boundary condition
κe(H) = 0 [60]. (In fact, the problem under consideration is equivalent to the
shear deformation of a constrained channel with elastic walls on both sides; the
free surface of the thin film simply corresponds to the symmetry plane in the
middle of the channel [60].) The requirement of zero dislocation flux through
the interface with the elastic substrate (γ̇(0) = 0 for all times) imposes the
boundary condition γ(0) = 0 for the plastic strain. As initial condition we
assume on each slip system a density ρ0 of pure screw dislocations, with equal
numbers of dislocations of both signs.

Figure 1: Illustration of the free surface thin film shearing case.

The whole problem can be easily identified as a plane strain one. Since all
variables depend on the x coordinate only , the formulation effectively becomes
one-dimensional. The cases of single and symmetrical double slip are considered
separately.

3.1.1 Symmetrical double slip

For deformation in symmetrical double slip, the resolved shear stress in each
slip system is constant and given by |τ | = τext = −σxz cos 2θ (see Appendix B).
For each of the two slip systems, Eq.(20) transforms to

cos θ(1 + Dκ2
e)

ρ2
∂xρ = −κe(τext − α) , (21)

where ρ =
√

1 + κ2
e and the projection term cos θ stems from the fact that the

x coordinate now refers to the film normal direction instead of the slip direction
of the two slip systems. Solution of Eq.(20) is quite straightforward, namely

x = H − cos θ

τext − α

[

(1 − D)
κe

ρ
+ D arcsinhκe

]

. (22)

where H is the scaled film height.
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In the following we measure γ in units of (b
√

ρ0)/ cos θ so that ∂xγ = −κe

in scaled variables. The relation between γ and the dislocation density ρ from
substitution into Eq.(22) becomes

γ =
cos θ

τext − α
(
(D − 1) + Dρ2

ρ
) + c1 , (23)

where the constant c1 is determined from the boundary condition γ(0) = 0.
Figure 3 shows the size-dependent hardening behavior observed in the cases

D = 0 (only line tension) and D = 1 (line tension and back stress). In the
former case, one observes an Orowan behavior with an initial transient (bowing
out of dislocations) and then perfect plasticity at a critical stress which scales
in inverse proportion with the film thickness. The behavior for D = 1 is very
different, as the system displays sustained hardening with a flow stress that
increases, at large strains, approximately as the logarithm of strain.

To further elucidate this behavior, it is useful to have a look at the strain
profiles shown in Figure 3. For D = 0 these are segments of ellipses and,
at the critical stress, ∂xγ diverges at the interface with the elastic substrate,
indicating the onset of sustained dislocation motion at a constant stress level.
(We note that for D = 0 and at the critical stress, the boundary condition
γ = 0 at the interface need no longer be fulfilled. For D > 0, on the other
hand, γ = 0 at the interface for all stresses). For D = 1 the initial behavior is
similar. At larger strains, however, a roughly flat strain profile develops and a
boundary layer emerges at the film-substrate interface. The width of this layer
is inversely proportional to the applied stress, and the strain and dislocation
density profiles are roughly exponential. This can be seen immediately by noting
that the boundary layer is characterized by a large density of dislocations in
near-edge orientations such that |κe| ≈ ρ ≫ 1 in Eq. (21). The density of
edge dislocations piled up against the interface increases with increasing strain,
and the ever increasing back stress of these dislocations leads to the observed
hardening behavior.

3.1.2 Single Slip

In the case of single slip, the local stress is reduced by an amount τmf = −Θγ
which is proportional to the local strain (see Appendix). In non-dimensional
variables, the coefficient Θ is given by Θ = (sin 2θ)2/(2(1 − ν)cosθ). Hence our
governing equation is

cos θ(1 + Dκ2
e)

ρ2
∂xρ = κe(τext − α − Θγ) . (24)

Differentiating with respect to x and using ∂xγ = −κe and ρ2 = 1 + κ2
e yields

1 + Dκ2
e

ρ3
∂xxκe + ∂κe

(
1 + Dκ2

e

ρ3
)(∂xκe)

2 = (Θ/ cos θ)κe . (25)

Using the substitution w =
1+Dκ2

e

ρ3 ∂xκe into Eq.(25) we obtain an Abel equation
of the form

w
∂w

∂κe

=
Θ

cos θ
κe

1 + Dκ2
e

ρ3
, (26)
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Figure 2: Stress-strain curves for films of different thickness deforming in sym-
metrical multiple slip; parameters: ρ0 = 1013m2, θ = π/6, and b = 2.5 ·10−10m.
In each case the lower curve refers to D = 0 and the upper curve to D = 1.
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Figure 3: Plastic strain profiles for the cases D = 0 (left) and D = 1 (right),
thin film shearing in symmetrical double slip. In both cases the film thickness is
H = 1µm, and the other parameters are as in Figure . Stress values have been
chosen to cover the full behaviour range from bowing initiation to advanced
hardening.
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Figure 4: Stress-strain curves for films of different thickness deforming in single
slip; parameters as in Figure 3. In each case the lower curve refers to D = 0
and the upper curve to D = 1.

from which we find that

∂xκe = ± ρ3

1 + Dκ2
e

√

c + 2
Θ

cos θ
(
D − 1

ρ
+ Dρ) . (27)

In order to determine the value of the integration constant we adopt an iterative
procedure since the imposed boundary conditions do not allow for direct evalu-
ation. Starting from the condition κe(H) = 0 we seek c values that eventually
satisfy the prescribed relation γ(0) = 0. Alternatively, a purely numerical solu-
tion based on a forward difference has been used and found to produce equally
accurate and less cumbersome results.

The deformation behavior at first glance differs significantly from that in
symmetrical double slip. The reason for this is that a mesoscopic ’fibre stress’
is building up in the film.

This stress is proportional to the strain and counteracts the externally ap-
plied stress. As a consequence, one observes an apparent hardening even in the
D = 0 case. In this case, after an initial transient which depends on specimen
size, an asymptotically linear stress-strain relationship with size-independent
slope Θ is approached (see Figure 4). For D = 1, on the other hand, the
presence of an additional ’back stress’ due to dislocations piling up against the
film-substrate interface leads to an enhanced hardening which becomes more
pronounced as the specimen size decreases.

The presence of the strain dependent ’fibre stress’ diminishes the visible
differences in strain profile between the D = 0 and D = 1 cases (Figure 5).
However, the asymptotic characteristics of the profiles in the large-strain limit
remain similar to the double slip case, viz, a semi-elliptical profile with vertical
slope near the film-substrate interface for D = 0, and two boundary layers of
diminishing thickness for D = 1. This indicates that, in spite of the apparent
hardening associated with the build-up of a ’fibre stress’ in the film during
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single-slip deformation, the basic deformation mechanisms in either case are the
same as for symmetrical double slip.
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Figure 5: Plastic strain profiles for D = 0 (left) and D = 1 (right), thin film
shearing in single slip. Parameters as in Figure 3.

3.2 Bending of a free-standing thin film

The next problem we consider concerns the bending deformation of a free stand-
ing thin film with two symmetrically inclined slip systems. The geometry is
depicted in Figure 6, with a homogeneous film of infinite extension in the y and
z directions and of thickness 2H in the x direction (x ∈ [−H,H]). At the free
surfaces, we have the boundary conditions κe(±H) = 0 and, because of sym-
metry, γ(0) = 0. It is therefore sufficient to solve the problem on the interval
x ∈ [0,H]. We note in passing that Seldacek [59] treated the same problem
by imposing that the strain be zero within an ’elastic core’ of the strip. This
assumption necessarily introduces discontinuities in the derivative of the strain
γ, corresponding to points of infinite curvature of the dislocation lines. We
find it difficult to see how this can be reconciled with the use of a line-tension
approximation for describing the dislocation self-interactions.

The governing equation for this problem is similar to the previous ones,
with the difference that the ’external’ stress now is a linear function of the x
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coordinate,

cos θ(1 + Dκ2
e)

ρ2
∂xρ = κe(mx − Θγ − α) = κe(τext(x) − τmf(γ, x) − α) . (28)

where the constant m depends on the applied bending moment (cf. below).

Figure 6: Illustration of the free standing thin film bending case.

Again, there is a mesoscopic internal stress in the film which is a function of
the strain in either of the slip systems. Going through the same steps as in the
previous sections, we finally obtain

1 + Dκ2
e

ρ3
∂xκe = ±

√

c + 2
m[(1 − D)κe + D ρ arcsinhκe] + Θ(D − 1 + Dρ2)

ρ cos θ
.

(29)
Again, we use an iterative procedure to obtain a solution which is consistent

with the assumed boundary conditions. To this end, we chose a value of m and
then adjust the integration constant c to satisfy the boundary condition κe = 0
at the free surface x = H. We then evaluate the strain profile, using ∂xγ = −κe

with the boundary condition γ(0) = 0, and determine the average strain and
the scaled bending moment M defined by

M =
4

sin 2θ

H
∫

0

(τext + τmf)x dx =
4

sin 2θ

H
∫

0

(mx − Θγ)x dx . (30)

An investigation of strain profiles obtained in this manner (Figure 7) demon-
strates significant differences with the shearing problem. Strain profiles for
D = 0 and D = 1 are very similar, with strain fields that go smoothly to zero
at x = 0. No boundary layer effects are observed, and there is no evidence of
an ’elastic core’ as imposed by Seldacek [59] through a corresponding bound-
ary condition. A comparison with the results of Sedlacek shows that, in the
present model, strains may become negative in the vicinity of the neutral axis,
i.e., dislocations there bow in a direction opposite to that imposed by the ap-
plied bending moment. (An explicit comparison of strain profiles obtained with
our and with Sedlacek’s boundary condition has been given by Sedlacek in the
appendix to [59].) Generally speaking, our theory yields larger strains for small
stresses (the system is softer), however, for large bending moments our D = 0
results approach those of Sedlacek, since in this limit the boundary conditions
become asymptotically similar (zero strain at or near x = 0).

In spite of the apparent similarity in the strain profiles the hardening behav-
ior in the D = 0 and D = 1 cases is quite different. This can bee seen in Figure
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Figure 7: Inhomogeneous plastic strain distribution in bending for D = 0 (left)
and D = 1 (right). Both figures are produced for film thickness 2H = 1µm,
other parameters as in Figure 3

8 which shows for different film thicknesses H plots of the normalized bending

moment M/H2 versus the average strain in a half-strip, {γ} =
∫ H

0
γ(x)dx.

In the absence of the ’back stress’ term (D = 0), the normalized bending
moment M/H2 approaches a constant value which for large H is proportional
to the flow stress constant α. For smaller H, one observes an initial transient
and an asymptotically constant level of M/H2 which is roughly in inverse pro-
portion with H, indicating an Orowan-type size effect. If the back stress term
is taken into account (D = 1), on the other hand, the deformation behavior
changes significantly. Owing to the condition γ(0) = 0, dislocations increas-
ingly bend into edge orientations and the accumulation of edge dislocations of
the same sign in either half-strip leads to an ever increasing back stress which
gives rise to sustained hardening, with a hardening rate that increases strongly
with decreasing film thickness.

4 Conclusions

We have presented a framework which generalizes previous approaches towards
density-based dislocation dynamics in order to describe the kinematics and in-
teractions of curved dislocation lines. In conclusion of this study, it is useful
to discuss the relationship of the present approach with other density-based
approaches. In doing so, we shall focus on problems related to the formula-
tion of statistically averages and the incorporation of ’microscopic’ dislocation
interactions into such theories. A mathematical discussion of the formal rela-
tions between different density-based approaches that have been proposed for
describing systems of curved dislocations [20, 48, 49] can be found elsewhere
[50, 51].

The different theories proposed in the literature differ in the density mea-
sures used. Accordingly, the evolution equations have at first glance different
formal structure. For systems of discrete dislocation lines, however, any sensible
theory reduces to the classical kinematic evolution equation of the dislocation
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Figure 8: Size dependence of the bending response (Strain average over half-
strip vs. normalized bending moment) for D = 0 (left) and D = 1 (right).
Parameters as in previous figures.

density tensor, and therefore for this case all density-based theories tend to be
equivalent. The same is true for continuously distributed bundles of parallel
dislocations, where it is possible to uniquely assign a dislocation orientation to
each point in space. As far as the kinematics of such problems is concerned, the
choice of any particular theory seems to be largely a matter of taste.

Problems arise, however, as soon as one leaves the discrete-dislocation scale
and proceeds to do averages. In general, dislocation arrangements consist of
segments of multiple orientations within one and the same mesoscopic volume
element. This leads to two problems: (i) Relevant kinematic information is lost if
one uses the average dislocation density tensor only. This problem is well-known:
The rotation-free plastic distortion which results from the motion of ’statistically
stored’ dislocations with zero net Burgers vector cannot be captured in terms
of the averaged dislocation density tensor, which depends only on the excess

Burgers vector contained within the averaging volume. (ii) A second problem
is less commonly addressed. The dynamics of dislocation segments depends on
the stresses acting on the segments. It is therefore inadequate to describe the
local stress state in terms of a simple volume average over some mesoscopic
volume – rather, one has to take conditional averages over only those positions
within the meoscopic volume element which are actually occupied by the type
of dislocations under consideration. Speaking in physical terms, one has to find
a way of keeping track of the relative orientation of dislocation segments and
the topological structure of the dislocation network, as these are the parameters
which determine the local flow stress.

In the present paper, we used a semi-phenomenological model which de-
scribes ’microscopic’ dislocation interactions in terms of a local flow stress ful-
filling Taylor’s relation, plus two non-local terms related to dislocation curvature
(’line tension’ stress) and to repulsive stresses between individual dislocations in
pile-up configurations (’back stress’). In particular, we have shown for different
constrained deformation geometries (shearing of a thin film (or equivalently a
slip channel), microbending) that the first of these terms leads to an Orowan-
type size effect on the flow stress. Inclusion of the second term leads to sustained
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size-dependent hardening as dislocations in near-edge orientations with increas-
ing strain pile up against the intrinsic boundaries (the film-substrate interface
in case of thin film shearing and the neutral fiber in the case of bending). In
the thin film case, the ’back stress’ term gives rise to the formation of a bound-
ary layer with an excess dislocation density that decreases exponentially from
the boundary, and a corresponding increase of the strain. Similar exponential
boundary layers have been reported in experiments (deformation of bicrystals
[61]) as well as in discrete simulations of deformation of thin films or, equiva-
lently, slip channels [62].

Further investigations are required to validate the present or similar contin-
uum approaches by comparing the results with discrete dislocation dynamics
simulations. The present theory is capable of qualitatively reproducing some
key features of discrete simulations which have been proposed as benchmarks
for size-dependent plasticity [46, 62]. It allows to understand size effects on flow
stress and hardening, as well as the formation of boundary layers in constrained
plasticity. However, a quantitative comparison between continuum theory and
discrete simulation is not yet possible since the basic assumptions are too dif-
ferent: None of the presently available continuum models has yet managed to
include in a consistent manner the operation of localized sources (as opposed to
the bowing of dislocations which thread the entire system). On the other hand,
the simulations which have been proposed as benchmarks in the literature are
two-dimensional (systems of straight parallel dislocations) and can therefore not
account for the effects of line tension and dislocation bowing. In the next step,
we think it is therefore necessary to include dislocation multiplication into the
present, or related, continuum theories and to provide 3D benchmark simula-
tions for assessing the validity of such generalizations.

From a continuum mechanics viewpoint it is interesting to note that both
the ’back stress’ and ’line tension’ terms can be understood as stresses which
relate to second-order gradients of the plastic strain: The line tension is a second
gradient of the plastic shear strain in the dislocation line direction, and the back
stress (or ’pile-up stress’, cf. [43]) is a second gradient of the plastic shear strain
in the direction normal to the dislocation line. This suggests that, in the spirit of
Aifantis’ proposition to introduce second-order strain gradients into macroscopic
plastic flow rules (see e.g. [33, 39]), it might be possible to unify both terms to
yield a generic formalism of gradient-dependent dislocation dynamics. This is
another issue to be explored in the future.
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A Derivation of the edge-screw model

We start out from the fundamental kinetic equation (1),

∂tρ = −∂φ[ρvφ] −∇ · [ρv] + ρvk (31)
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Note that, for a discrete dislocation system, the density function ρ has the
structure ρ = ρ(r)δ(φ−φ(r)) since the dislocation orientation is uniquely defined
in each point. The partial densities Rs and Re are given by

Rs(r) =

∫

ρ cos φdφ , Re(r) =

∫

ρ sin φdφ . (32)

and for a discrete system the local dislocation orientation can be expressed
through the relation tanφ = Rs(r)/Re(r) = Rs/Re. Inserting these relations
into the kinetic equation, and assuming an orientation-independent dislocation
mobility (no explicit dependence of |v| on φ), we find

∂tRs = Rsvk − Re(et∇)v − Rs

ρ
(eg∇)[ρv] ,

∂tRe = Revk + Rs(et∇)v − Re

ρ
(eg∇)[ρv] . (33)

Finally we use that the dislocation glide and tangent vectors are given by eg =
sinφex−cos φey = (Re/ρ)ex−(Rs/ρ)ey and et = cos φex+sinφey = (Rs/ρ)ex+
(Re/ρ)ey, respectively. This leads to

∂tRe =

[

−R2
e

ρ2
∂x(ρv) +

ReRs

ρ2
∂y(ρv)

]

+ Rs

[

Rs

ρ
∂xv +

Re

ρ
∂yv

]

+ Revk , (34)

∂tRs =

[

−ReRs

ρ2
∂x(ρv) +

R2
s

ρ2
∂y(ρv)

]

− Re

[

Rs

ρ
∂xv +

Re

ρ
∂yv

]

+ Rsvk . (35)

When averaging these equations, it is necessary to consider terms of the type
〈R2

s/ρ2〉 or 〈Rs/ρ〉. The average is understood as an average over some meso-
scopic volume ∆V and all orientations of segments within that volume. To
prove some useful relationships, we divide all dislocation lines contained within
∆V into short segments of length l, which we label with the discrete index
β. The edge and screw lengths of a given segment are lβs = l cos φβ and
lβe . Clearly, ρ = NV l/V where NV is the number of segments in V , and
κs,e := 〈Rs,e〉 =

∑

β∈V lβs,e/V . It is then easy to see the identities

〈R
2
e

ρ2
〉 =

1

V

∑

β∈V

(lβe )2

l
=

1

NV

∑

β∈V

(lβe )2

l2
NV

l
V =

〈R2
e〉

〈ρ2〉 ,

〈R
2
e

ρ
〉 =

1

NV

∑

β∈V

(lβe )2

l2
=

∑

β∈V (lβe )2
∑

β∈V l2
=

〈R2
e〉

〈ρ2〉 〈ρ〉 ,

(36)

and similarly for Rs.

B Elastic solutions

To find the elastic solutions required in the examples we assume an isotropic
linear-elastic solid and use a small-strain approximation. The stress is related
to the elastic and plastic strain tensors by σ = E(εtot − εpl). The total strain
tensor εtot is the symmetric part of the elastic distortion tensor β = Gradu
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where u = [ux, uy, uz] is the displacement field, and εpl is the symmetric part

of the plastic distortion tensor βpl. The latter is determined from the crystal
plasticity relation βpl =

∑

i

γie
i
g⊗ni (the sum runs over all active slip systems).

Using the coordinate system in Figures 1 and 6, we find that the slip and
slip plane normal vectors in the case of symmetrical double slip are given by

e1
g =

[

cos θ 0 sin θ
]

, e2
g =

[

cos θ 0 − sin θ
]

,

n1 =
[

sin θ 0 − cos θ
]

, n2 =
[

sin θ 0 cos θ
]

,(37)

and the elastic strain tensor follows as

(εtot − εpl) =
1

2





2u′

x − (γ1 + γ2) sin 2θ 0 u′

z + (γ1 − γ2) cos 2θ
0 0 0

u′

z + (γ1 − γ2) cos 2θ 0 (γ1 + γ2) sin 2θ



 . (38)

The prime denotes derivative with respect to x coordinate (all other derivatives
vanish). The resolved shear stresses for each slip system are obtained via τ i(r) =
ni · [σei

g], and the case of single slip is simply recovered by setting γ2 = 0.
Due to the superposition principle, the stress state can then be considered

as a superposition of a ’mesoscopic’ internal stress related to the shear strain
fields γ1 and γ2, which is evaluated for a body with traction-free surfaces, and
an ’external stress’ which corresponds to the stress state of the same body under
the prescribed boundary conditions but without plastic distortions. Both fields
separately fulfill the stress equilibrium condition divσ = 0. We first determine
the internal stresses. The shear stress for each slip plane for both of the states
discussed is given by

τ1 =
σxx − σzz

2
sin 2θ − σxz cos 2θ , (39)

τ2 =
σxx − σzz

2
sin 2θ + σxz cos 2θ . (40)

Use of equilibrium conditions ∂xσxz = 0, ∂xσxx = 0 together with the traction-
free requirement provide us with σxz = 0 and σxx = 0. Thus for shear deforma-
tion in single slip the shear stress reduces to τ = −σzz sin 2θ/2. By replacements
in Hooke’s law

σxx =
2G(1 − ν)

(1 − 2ν)
(εxx +

ν

(1 − ν)
εzz) ,

σzz =
2G(1 − ν)

(1 − 2ν)
(εzz +

ν

(1 − ν)
εxx) ,

σxz = 2Gεxz . (41)

we eventually obtain

τmf = − sin2 2θ

2(1 − ν)
Gγ1 . (42)

For shear deformation in symmetrical double slip, γ1 = −γ2 and, hence, τmf = 0.
For bending in symmetrical double slip, on the other hand, γ1 = γ2 =: γ/2, and
we similarly find for either of the slip systems

τmf = − sin2 2θ

2(1 − ν)
Gγ . (43)
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In the most general case of arbitrary deformations on two generically inclined
slip systems, finally, one obtains

τ1
mf = −G

γ1 sin2 2θ1 + γ2 sin 2θ1 sin 2θ2

2(1 − ν)
) ,

τ2
mf = −G

γ2 sin2 2θ2 + γ1 sin 2θ1 sin 2θ2

2(1 − ν)
. (44)

In this case, two coupled equations for the evolution of strain on the two slip
systems have to be considered.

Stresses due to externally applied tractions superimpose on the internal
stresses evaluated above. For shearing, ∂xσxz = 0, ∂xσxx = 0 together with
the prescribed tractions simply yield a constant external stress

τext = −σxz cos 2θ . (45)

For bending assuming a constant curvature with bending radius R >> H,
having only σzz to be non zero in the plane, one obtains a linear stress profile

τext = −G sin 2θ

1 − ν

x

R
. (46)
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