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Abstract

Efficiently learning accurate models of dy-
namical systems is of central importance for
developing rational agents that can succeed
in a wide range of challenging domains. The
difficulty of this learning problem is partic-
ularly acute in settings with large observa-
tion spaces and partial observability. We
present a new algorithm, called Compressed
Predictive State Representation (CPSR), for
learning models of high-dimensional partially
observable uncontrolled dynamical systems
from small sample sets. The algorithm ex-
ploits a particular sparse structure present in
many domains. This sparse structure is used
to compress information during learning, al-
lowing for an increase in both the efficiency
and predictive power. The compression tech-
nique also relieves the burden of domain spe-
cific feature selection. We present empirical
results showing that the algorithm is able to
build accurate models more efficiently than
its uncompressed counterparts, and we pro-
vide theoretical results on the accuracy of the
learned compressed model.

1. Introduction

Learning accurate models of complex domains is a fun-
damental problem for developing rational autonomous
agents. In the case of dynamical systems, the learned
models can be used for a variety of tasks, such as
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tracking, prediction, resource allocation, planning, and
much more. The problem of learning models of dynam-
ical systems is particularly difficult in settings with
large observation spaces and partial observability.

Predictive state representations (PSRs) offer one
model for discrete time finite action and observation
systems, which represent system states as predictions
about future events. Unlike other popular frame-
works for modelling dynamic systems, such as Hid-
den Markov Models (HMMs) for uncontrolled systems
(Rabiner, 1990) and Partially Observable Markov De-
cision Processes (POMDPs) (Kaelbling et al., 1998)
for controlled systems, PSRs do not rely on hidden or
latent states. Instead, PSR models are rooted directly
in observable quantities. This allows PSRs to be con-
structed without expectation maximization (EM) style
algorithms, and thus allows for the efficient construc-
tion of globally optimal models. Furthermore, PSRs,
which are closely related to certain spectral learning
algorithms for HMM’s (Hsu et al., 2008), are a more
general model of stochastic dynamic systems that con-
tain the latent state model as a special case (Singh
et al., 2004).

Despite the fact that there are many theoretical re-
sults demonstrating the rich representational capacity
of PSRs (Singh et al., 2004; Wiewiora, 2007), there is a
lack of efficient algorithms for learning these represen-
tations. A number of promising algorithms based on
spectral learning have been proposed recently (Boots
et al., 2009; Boots & Gordon, 2011). These have
been shown to perform well on some challenging tasks.
However, they are still somewhat limited in large ob-
servation spaces, since they typically consider a combi-
natorial number of observation sequences. This can be
avoided by assuming a functional representation of the
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observation space, but this requires additional knowl-
edge from a human designer.

The goal of this paper is to provide a sound agnos-
tic general purpose algorithm for learning PSRs from
large-dimensional batch data. The algorithm exploits
a particular sparse structure that is present in many
domains. This sparse structure is used to compress
information using random projections, thus achieving
efficient learning without requiring explicit structural
information about the domain. The primary benefits
of our approach are that it is algorithmically simple,
it is applicable to a large variety of domains, and it
provides guarantees on the fidelity of the learned com-
pressed model.

The current paper focuses exclusively on uncontrolled
systems (i.e. observation-only systems, no actions),
as our theoretical results pertain directly to the qual-
ity of the learned model in that case. However, our
algorithm is easily extended to include actions using
techniques already developed for other PSR represen-
tations (e.g. TPSRs). We present empirical results
showing the good performance of our approach on two
contrasting domains.

2. Technical Background

This section outlines a number of useful technical con-
cepts related to our approach.

2.1. Predictive State Representations

Predictive State Representations (PSRs) (Singh et al.,
2004) are designed to represent dynamical systems di-
rectly with observable events. The dynamics are cap-
tured through probability distributions over tests (se-
quences of possible future observations, denoted τ)
conditioned on histories (sequences of past observa-
tions, denoted h). Formally, a PSR in an uncontrolled
partially observable system can be defined by four ele-
ments {O, Q,m0, F}, where O is a set of observations,
Q is a set of sufficient (core) tests, m0 is a vector of
prior probabilities (i.e. prediction vector conditioned
on an empty history), and F is a function relating tests
in Q to all possible tests.

The primary goal of a PSR is to maintain probabilities
of the form: P (τi|hj) = P (o1t+1o

2
t+2...o

3
t+3|o41o52...o6t )

for all i, j (superscripts label different observations and
subscripts denote time). If we knew P (τi|hj)∀i∀j (i.e.
all possible tests conditioned on all possible histories)
then trivially we would have all the information nec-
essary to characterize a system. Of course, obtaining
estimates for all possible events (i.e. tests/histories of
arbitrary length) is not feasible. This is where the set

Q of sufficient tests comes into play.

We say a set of tests Q is sufficient if and only if we
can form a prediction vector of these tests p(Q|h) =
[P (τ1|h), P (τ2|h), ....P (τ|Q|, |h)]T such that for any his-
tory and for all tests there is a projection function fτ
such that P (τ |h) = fτ (p(Q|h)). That is, the set Q
is sufficient if and only if all other tests can be repre-
sented by some function of the tests in Q. Through-
out this paper (as with much of the previous work on
PSRs), we restrict our attention to linear projection
functions. Thus the function fτ can be expressed as a
vector mτ , and the expression above can be rewritten
as:

P (τ |h) = mT
τ p(Q|h). (1)

Once we have these projection functions, we need only
maintain p(Q|h) for one particular history (i.e. the
current history) at each time step. Thus, using time-
dependent notation, we need to maintain only a single
prediction vector mt = p(Q|h).

We then define Mol to be a matrix with molτi ∀τ ∈
Q as rows, where molτi is defined by P (τol|h) =
molτimt. In other words, Mol contains the projection
functions for all tests that consist of the observation
ol appended to a core test τi ∈ Q. Using this matrix,
the prediction vector can be recursively updated after
seeing observation ol by:

mt+1 =
Molmt

m∞Molmt
, (2)

where the normalizing factor m∞ satisfies m∞mt =
1 ∀t.

The above update equation also reveals the full set of
parameters which belong to F in our initial definition
of PSR’s. These parameters consist of the following:
|O| matrices Mol of size |Q| × |Q| (one for each obser-
vation) and the |Q| × 1 normalizing factor m∞.

These learned parameters, along with the prediction
vector mt, provide a complete and sufficient model of a
system. For any test τi /∈ Q, where τi consists of some
observation sequence, for example o1t+1, o

2
t+2...o

n
T , we

can compute mτi with:

mτi = m∞MonT
Mon−1

T−1
· · ·Mo1t+1

. (3)

The PSR model can also be used to produce T -step
predictions (i.e. the probability P (olt+T |ht) of seeing

an observation ol T -steps in the future) by:

P (ojt+T |ht) = c∞Mol(M?)
T−1mt, (4)

where M? =
∑
oi∈OMol is a matrix that can be com-

puted once and stored as a parameter for quick com-
putation (Wiewiora, 2007).
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2.2. The TPSR Learning Algorithm

Early results showed that a minimal PSR model of
an uncontrolled partially observable system will be
at least as concise as a corresponding HMM (Singh
et al., 2004). However, they did not provide an efficient
method for learning such a representation. Currently,
the most successful learning method for PSRs, termed
transformed PSRs (TPSRs), is based on spectral learn-
ing algorithms (Rosencrantz et al., 2004; Boots et al.,
2009). In this approach, a large set of tests is cho-
sen (large enough so that it almost certainly contains
a sufficient set as a subset), and empirical estimates
are obtained for these tests. These estimates are then
grouped into matrices, and the size of these matrices
are reduced using spectral projection methods. The
TPSR parameters can then be learned using regres-
sion and these reduced estimates.

Formally, one defines two observable matrices PT ,H,
PH, and |O| observable matrices PT ,ol,H (one for each
observation). PT ,H is a |T |×|H|matrix which contains
the joint probabilities of all specified tests and possi-
ble histories. PH is a |H| × 1 vector containing the
marginal probabilities of each possible history. The
PT ,ol,H matrices are also of size |T | × |H| and con-
tain the joint probabilities of observing each history,
followed by a particular observation (corresponding to
that matrix) and a test. The transpose of the thin
SVD of PT ,H, denoted UT , is then used to reduce the
dimension of the observable matrices by left multiply-
ing each observable matrix, excluding PH, by UT with
some of the least significant singular vectors removed.
The use of SVD also allows for the tuning of the dimen-
sion of the representation by removing least significant
vectors from U .

The TPSR approach can also be extended to work
with features of tests and histories (Boots et al., 2009;
Boots & Gordon, 2011). This is useful in cases where
the observation space is too complex for standard tests
to be used. When features of tests and histories are
used, however, they are specified in a domain-specific
manner, such as through kernel methods in continu-
ous domains (Boots et al., 2009). Some authors have
also used randomized Fourier methods to efficiently
approximate kernel-based feature selection (Boots &
Gordon, 2011). These methods are quite successful
in continuous domains. However, they still require
domain-specific specification, and in some cases they
also require an extremely large number of features in
order to obtain high prediction quality (Boots & Gor-
don, 2011). The benefit of the algorithm presented
here is that it implicitly performs general purpose fea-
ture selection of tests using random compression.

2.3. Compressed Estimation

Despite the fact that spectral algorithms can specify
a small dimension for a transformed space, there are
still a number of computational limitations. They re-
quire that the |T | × |H| matrix PT ,H be estimated in
its entirety, and that the PT ,ol,H matrices be partially
estimated as well. In many domains, such as the Poc-
Man (Silver & Veness, 2010) domain described below,
these observable matrices can become far too large and
cannot be manipulated directly. More importantly,
these algorithms also require that spectral decompo-
sition be performed on this large PT ,H matrix, which
can be prohibitively expensive. In order to circumvent
these computational constraints, the CPSR algorithm
we propose (in the next section) performs compressed
estimation.

This method is borrowed from the field of com-
pressed sensing and works by projecting matrices down
to spaces determined via randomly generated bases.
More formally, a m × n matrix Y is compressed to a
d× n matrix X (where d < m) by:

X = ΦY, (5)

where Φ is a d × m projection matrix composed of
entries drawn from the gaussian distribution N (0, 1/d)
(Baraniuk & Wakin, 2009).

The fidelity of this technique depends only on what is
called the sparsity of the matrix Y. Sparsity in this
context refers to the maximum number of non-zero
entries which occur in any column of Y. Formally, if
we denote a column vector of Y by yi, we say that a
matrix is k-sparse if:

k ≥ ||yi||0∀yi ∈ Y, (6)

where || · ||0 denotes Donoho’s zero “norm.”

This method of compression has a number of useful
properties. It is computationally efficient, as it re-
quires only the construction of the matrix X. The ma-
trix multiplication above can, in fact, be avoided, and
one can work in the compressed space directly. Fur-
thermore, as we discuss later in the paper, the fidelity
of the compression and the size of the compressed rep-
resentation have only a logarithmic dependency on the
original dimension (m), allowing for massive compres-
sion in some cases.

This compression technique is very well suited for ap-
plication to PSRs. Informally, the sparsity condition
is the requirement that for every history hi, only a
subset of all tests have non-zero probabilities (a more
formal definition appears in the theory section below).
This seems realistic in many domains. For example, in
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the PocMan domain described below, we empirically
found the average column sparsity of the matrices to
be roughly 0.018% (i.e. approximately 0.018% of en-
tries in a column were non-zero).

3. The Compressed PSR Algorithm

Given the technical background outlined above, the
compressed PSR (CPSR) algorithm is relatively
straight-forward. It first constructs the random ma-
trix Φ. It then directly computes empirical estimates
of the compressed matrices ΦPT ,H and ΦPT ,ol,H from
the batch of data, as well as the marginal probability
of histories, PH.

The ΦP̂T ,H and ΦP̂T ,ol,H estimates are then used to
construct Col matrices for all ol ∈ O, using linear re-
gression. Intuitively, these Col matrices are linear op-
erators that encode, at any particular history, the joint
probability of seeing that history and then the observa-
tion ol. A c∞ vector is constructed in a similar manner
but with P̂H replacing the ΦP̂T ,ol,H estimates. This
vector functions as a normalizer and is used to convert
the joint probabilities computed with the Col matrices
to conditional ones. That is, c∞ and a Col matrix are
used together to compute the conditional probability
of ol given a history. Lastly, a c0 is constructed from
the first column of ΦP̂T ,H and simply defines an ini-
tial probability distribution over tests. It is used as
the initial prediction vector in the CPSR model of the
system. The Col matrices, the c∞ normalizer, and the
initial prediction vector c0 form a sufficient model and
can be used with equations (1)-(4) to make predictions
and track through a system.

CPSR Algorithm
Inputs: T : set of tests , H: set of indicative events, W:
a diverse sample of events, d: projection size.
Returns: CPSR model parameterized by
{co, c∞,Col ∀ol ∈ O}

1: Sample Φd×|T | with i.i.d. entries from N (0, 1/d).
2: Obtain empirical estimates for PH, ΦPT ,H, and

ΦPT ,ol,H ∀ol ∈ O from sample events W as follows:
(a) Parse each event w ∈ W into a τi and history

h ∈ Hj .

(i) For each τi and Hj pair, add column i of Φ

to column j of ΦP̂T ,H, and similarly for all

ΦP̂T ,ol,H matrices.

(ii) Increment [P̂H]j .

(b) Normalize estimates by observation counts.
3: Compute:

(a) c0 = ΦP̂T ,∅

(b) Col = ΦP̂T ,ol,H(ΦP̂T ,H)† ∀ol ∈ O

(c) c∞ = (ΦP̂T ,H)†P̂H

The algorithm generally assumes that data is provided
in a batch. It is primarily designed to work with
episodic domains where all events wi start at the same
state. However, if this is not the case, one can sim-
ply replace the equation 3-a of the CPSR algorithm
with c∗ = ΦP̂T ,H1d. In this situation, c∗ would no
longer correspond to a start state and instead would
correspond to a distribution over feasible states. Thus
prediction is still possible but will be subject to greater
error. This error should decrease as the model receives
updates, as the updates allow the prediction vector to
converge to a true model state over time.

4. Theoretical Analysis

To simplify the analysis, assume that our test set is
a core test set Q. Therefore, random projections are
applied on P̂Q,H and P̂Q,o,H matrices1. Define:

Bo = PQ,o,H(PQ,H)†, b∞ = (PQ,H)†PH. (7)

Since Q is a core test set, the above is a TPSR repre-
sentation (Boots et al., 2009; Rosencrantz et al., 2004).
Assume we have enough histories in H such that ma-
trices are full rank. Defining PQ,h and PQ,o,h to be
the vectors containing the joint probabilities of all core
tests and fixed history h, we have (by linearity of PSR):

∀h : PQ,o,h = BoPQ,h, Ph = bT∞PQ,h. (8)

One can thus think of finding the Bo and b∞ param-
eters as regression problems, having the estimates of
PQ,h’s as noisy input features. We also have noisy
observations of the outputs PQ,o,h and Ph. Since the
sample set is noisy both on the input and output val-
ues, direct regression in the original space might result
in large estimation error. Therefore, we apply random
projections to reduce the estimation error (variance)
at the cost of a controlled approximation error (bias).
Working in the compressed space also helps with the
computation complexity of the algorithm.

Note that there is an inherent difference between our
work and the TPSR framework. In TPSR, one seeks
to find concise linear transformations of the observa-
tion matrices, whereas CPSR seeks to find good ap-
proximations in a compressed space (which cannot be
linearly transformed to the original model). The fol-
lowing sections provide an analysis of the error in-
duced by this compression and how the error prop-

1Note that projections from over-complete test sets with
rank bigger than |Q| down to d dimensions can be achieved
by first projecting to size |Q| and then projecting from |Q|
to d. The combination of two random projection should be
similar to one random projection but needs more detailed
and complicated analysis.
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agates through the application of several compressed
operators.

4.1. Error of One Step Regression

There are several bounds on the excess risk of regres-
sion in compressed spaces (Maillard & Munos, 2009;
Maillard et al., 2012; Fard et al., 2012). In this work,
we assume the existence of a generic upper bound for
the least squares regression. Assume we have a tar-
get function f(x) = xTw where x is in a k-sparse
D-dimensional space. We observe an i.i.d. sample set
{(xi, f(xi) + ηi)}ni=1, where ηi’s are independent zero-
mean noise terms for which the maximum variance is
bounded by σ2

η, and xi’s are sampled from distribution

ρ. Let f̂d(x) be the compressed least squares solution
on this sample with a random projection of size d. We
assume the existence of a generic upper bound func-
tion ε, such that with probability no less than 1− δ:

‖f(x)− f̂d(x)‖ρ(x) ≤ ε(n,D, d, ‖w‖‖x‖ρ(x), σ2, δ), (9)

where ‖g(x)‖ρ(x) =
√

Ex∼ρ(g(x))2 is the weighted L2

norm under the sampling distribution.

We make the following sparsity assumptions. For all
h, PQ,h and PQ,o,h are k-sparse. Assuming that the
empirical estimates of zero elements in these vectors
are not noisy, for ∆x = P̂Q,h−PQ,h we have that ∆x is

k-sparse (similar argument for ∆y = P̂Q,o,h −PQ,o,h).
Finally, we assume that for all observations, Bo∆x and
Bo∆y are k′-sparse.

In order to simplify the analysis, in this section we
define our Co matrices to be slightly different from
the ones used in the described algorithm2. The results
should only change very slightly if we use the original
definitions.

Let Ai be the ith row of matrix A, and A−i be matrix
A with ith row removed. We have the following:

Theorem 1. Let H be a large collection of sampled
histories according to ρ, and let Φ be a random pro-
jection as described before. We observe noisy estimate
P̂Q,h = PQ,h + ∆x of input and P̂Q,o,h = PQ,o,h + ∆y

of the output, where elements of ∆x and ∆y are in-
dependent zero-mean random variables with maximum
variance σ2

x and σ2
y respectively. For 1 ≤ i ≤ d, define:

ui = ΦiP̂Q,o,H(Φ−iP̂Q,H)†.

Define Co to be a d× d matrix such that:

(Co)i = [ui,1,ui,2, . . . ,ui,i−1, 0,ui,i,ui,i+1, . . . ,ui,d−1].

2We do not use the ith feature for the ith regression to
avoid dependence between the projection and the target
weights.

Then with probability no less than 1− δ we have:

‖Co(ΦPQ,h)− ΦPQ,o,h‖ρ(x)
≤
√
dε(|H|, |Q|, d, Lo, σ2

o , δ/d), (10)

where we define σ2
o = maxi,j(Φij)

2(kσ2
y + k′‖Bo‖σ2

x)
and Lo = maxi ‖ΦiBo‖‖PQ,h‖ρ(x).

Proof. We have:

∀h : ΦiPQ,o,h = (ΦiBo)PQ,h (11)

Therefore we have a linear target and by definition ui
is the COLS estimate with projection Φ−i.

First we analyze the effective noise variance in the sam-
ple output. We have:

ΦiP̂Q,o,h = ΦiPQ,o,h + Φi∆y (12)

= ΦiBo(P̂Q,h −∆x) + Φi∆y (13)

= ΦiBoP̂Q,h − ΦiBo∆x + Φi∆y.(14)

And thus the (P̂Q,h,ΦiP̂Q,o,h) is the same as:

(P̂Q,h,ΦiBoP̂Q,h − ΦiBo∆x + Φi∆y). (15)

Since ∆y is k-sparse and Bo∆x is k′-sparse, the effec-
tive variance of the noise term is bounded by:

max
j

(Φij)
2(kσ2

y + k′‖Bo‖σ2
x). (16)

Maximization over i gives the σ2
o defined in the theo-

rem and holds simultaneously for all i.

We now apply the union bound to Equation 9: With
probability no less than 1− δ, for all 1 ≤ i ≤ d:

‖ui(Φ−iPQ,h)− ΦiPQ,o,h‖ρ(x)
≤ ε(|H|, |Q|, d, Lo, σ2

o , δ/d). (17)

Note that by our definition of Co we have that
ui(Φ−iPQ,h) = (Co)i(ΦPQ,h), which immediately
gives the theorem by combining the error bounds on
each row.

For large |Q| � d, using the properties on the dis-
tribution of the maximum of i.i.d. normal vari-
ables, we have with high probability maxi,j(Φij)

2 =
O((log |Q|)/d) (Fisher & Tippett, 1928). The norm of
Bo is largely problem dependent, but it is likely to be
close to 1 in many cases. Assuming k′ = k, we see that
the effective variance term is a (k log |Q|)/d factor of
the original variance. Thus, setting d = O(k log |Q|)
should suffice to control the effective noise variance.
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The effectiveness of the compressed regression is
largely dependent on how the Lo term behaves com-
pared to the norm of the target values. We refer the
reader to the discussions in Maillard & Munos (2009)
and Maillard et al. (2012) on the ‖w‖‖x‖ρ(x) term. If
the target functions are smooth, then we expect an
analysis similar to that of Fard et al. (2012) to prove
that projections of size logarithmic in |Q| are enough to
outperform the baseline predictor (constant output).
A full discussion on such analysis is beyond the scope
of this paper.

4.2. Error of The Compressed Normalizer

The c∞ operator is the normalization operator for
the compressed space. Therefore, for any history h,
cT∞ΦPQ,h should equal Ph. The following theorem
provides a bound over the error of such prediction:

Theorem 2. Let H be a large collection of sampled
histories according to ρ. We observe noisy estimate
P̂Q,H = PQ,H+∆x of input and P̂H = PH+∆z of the
output, where elements of ∆x and ∆z are independent
zero-mean random variables with maximum variance
σ2
x and σ2

z respectively. Define c∞ = (ΦiP̂Q,H)†P̂H.
Then with probability no less than 1− δ we have:∥∥cT∞(ΦPQ,h)− Ph

∥∥
ρ(x)
≤ ε(|H|, |Q|, d, L∞, σ2

∞, δ),

where we define effective noise σ2
∞ = σ2

z + σ2
x‖b∞‖2

and L∞ = ‖b∞‖‖PQ,h‖ρ(x).

Proof. Similar to Theorem 1, we have Ph = bT∞PQ,h
for all h. Therefore we have a linear target and by
definition c∞ is the COLS estimate with projection Φ.
We have:

P̂h = Ph + ∆z = bT∞PQ,h + ∆z (18)

= bT∞P̂Q,h − bT∞∆x + ∆z. (19)

Thus the effective variance is bounded by the σ2
∞ de-

fined in the theorem. We complete the proof by an
application of the bound in Equation 9.

4.3. Error Propagation

Once we have the one step errors of compressed op-
erators, we can analyze the propagation of errors
as we concatenate the operators. Define o1:t =
o1o2 . . . ot. We would like to bound the error between
P{ho1:T } and our prediction c∞CoTCoT−1 . . .Co1ch,
where ch = ΦPQ,h. Since the theorems in the previ-
ous sections were in terms of a fixed measure ρ, we
have to make distributional assumptions to simplify
the derivations. Assume that if we sample h from ρ,

for all o, PQ,o,h has the same distribution as PQ,h.
Thus, by induction ‖f(PQ,o1:t,h)‖ρ = ‖f(PQ,h)‖ρ.

For all t, define eht such that CotCot−1 . . .Co1ch =
PQ,o1:t,h + eht . Also let εt be the bound of Theorem 1
for Cot .

For a fixed t assume that ‖eht ‖ρ ≤ αt. After applying
the (t+ 1)th compressed operator we have:

‖eht+1‖ρ = ‖Cot+1CotCot−1 . . .Co1ch − PQ,o1:t+1,h‖ρ
= ‖Cot+1(PQ,o1:t,h + eht )− PQ,o1:t+1,h‖ρ
≤ ‖Cot+1PQ,o1:t,h − PQ,o1:t+1,h‖ρ + ‖Cot+1eht ‖ρ
≤ ‖Cot+1PQ,h − PQ,h‖ρ + ‖Cot+1‖‖eht ‖ρ (20)

≤ εt + αt‖Cot+1‖. (21)

Line 20 uses the distribution assumption discussed
above. We can see that there is an additive error after
each compressed operator, and also a multiplicative
part that amplifies the error of the previous steps. As-
suming that ε∞ is the bound of Theorem 2, one can
apply a similar analysis to the compressed normaliza-
tion operator to obtain an additive error of ε∞ and the
amplification of the previous error by ‖c∞‖.

We finish the analysis by assuming that the norm of all
Co terms and the c∞ term is bounded by c, and that
all εt and the ε∞ term are bounded by ε. The total
propagated error is thus bounded by ε(cT −1)/(c−1).

5. Empirical Results

To complete our analysis, we consider the empirical
performance of the CPSR algorithm on two synthetic
domains, called GridWorld and PocMan. Both do-
mains were originally defined as POMDPs; we consider
here the non-controllable version (i.e. only observa-
tions). The goal therefore is to learn a good predictive
representation of the domains, rather than attempt
to plan using these representations. Throughout our
experiments, the agents were given fixed exploration
policies, and only the sequences of observations were
recorded. The CPSR algorithm was then used to con-
struct models, which produce probability distributions
over observation sequences.

5.1. GridWorld

The GridWorld domain is a 5 × 12 grid maze (see
Figure 1) where the agent must navigate towards a
goal state. The primary difficulty in this domain is
that the agent receives aliased observations, designat-
ing whether or not there is an adjacent wall in any
of the four cardinal directions. The domain also has
the added complication that state-to-state transitions
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are stochastic (0.2 transition noise probability). The
primary purpose of this experiment is to illustrate the
computational efficacy of the CPSR method compared
to an uncompressed naive TPSR approach.

Figure 1. Image shows the structure of the GridWorld
maze. The + target is the start state and the shaded green
square is the goal.

Method and Evaluation: In all trials, the learning
algorithm was given a sample of 1000 training runs
to learn a model representation of the domain. We
compare the model accuracy and algorithm runtime
for building TPSR and CPSR models. In both the
CPSR and TPSR cases, tests of length at most four
were used and the final model dimension was set to 30.

The quality of the models were evaluated according
to their T -step prediction performance. That is, each
model was asked to produce probability distributions
for the terminal observation at each time step (up to
the history bound). In other words, the models pro-
duced must predict what observation would occur at
each time-step (up to some bound) using only the ini-
tial PSR state (i.e. without performing any updates).

In all models, these predictions were computed using
equation (3) and the prediction performance was eval-
uated on 10 test sets. The model predictions P̂ (ojk|h0)
were then compared to Monte-Carlo rollout predic-
tions P̃ (ojk|h0) (produced using knowledge of the un-
derlying state dynamics) according to the prediction
error ‖P̂ (ojk|h0)− P̃ (ojk|h0)‖2.

Results: As shown in Figure 2, the CPSR algorithm
was able to produce competitive predictions, compared
to the TPSR algorithm, showing that the compression
does not have detrimental effects on model quality.
Moreover, as shown in Figure 3, performing the es-
timation in the compressed space greatly reduced the
runtime of the algorithm.

5.2. PocMan

The PocMan domain is a partially observable variant
of the popular video game Pac-Man (Silver & Veness,
2010). Like in the video game, the goal here is to col-
lect randomly distributed food pellets while navigat-
ing in a 17× 19 maze and avoiding coming in contact
with any of four ghosts. Unlike the video game, how-
ever, the agent does not have knowledge of the full
environment state and only has access to a set of lo-
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Figure 2. Graph shows T -step prediction error of the CPSR
and TPSR in the GridWorld domain. The TPSR outper-
forms the CPSR algorithm by a slight margin; however,
it is unlikely that this small difference would lead too a
significant advantage in practice.
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Figure 3. Graph shows runtimes for the TPSR and CPSR
algorithms. Runtime here includes both estimation and the
construction of the model. The CPSR algorithm is able to
build a model in significantly less time compared to the
TPSR algorithm due to the use of compressed estimation.

cal observations. This domain is especially interesting
as its large state space (|S| ≈ 1056) and observation
space (|O| = 210) make it intractable for conventional
EM style algorithms (Silver & Veness, 2010). Exper-
imentation in this domain illustrates how the CPSR
method is able to produce higher quality models due to
the fact that it performs estimation in the compressed
space and can, therefore, include more information in
its estimates.

Method and Evaluation: The algorithms were
once again given 1000 trials to learn a model repre-
sentation. However, due to the extremely large obser-
vation space, the CPSR method is able to include more
information in its empirical estimates. Specifically, the
CPSR algorithm is able to include tests of all lengths
in its estimates, whereas the TPSR algorithm is only
able to include tests of length 1 while not exceeding
memory limits (8 GB in this case).

We compared quality of models produced by a CPSR
with all tests and a TPSR with tests of length 1.
Again, the T -step prediction error was used as a mea-
sure of quality.
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Figure 4. Graph shows T -step prediction error in the Poc-
Man domain. The CPSR algorithm has far lower error due
to its ability to include more tests. The oscillation present
is due to periodicity in the domain and is not an artifact
of the algorithms.

Results: As shown in Figure 4, the CPSR algorithm
was able to learn a more accurate model due to its abil-
ity to include longer tests. This effect will be strongest
in domains, such as PocMan, that are strongly par-
tially observable and that have very large observation
spaces. Of course, a domain specific feature mapping
technique could be used to reduce to memory load for
the TPSR algorithm. However, such a feature map-
ping would not be general and would require expert
construction. The benefit of the CPSR approach is
that the random projections are agnostic with respect
to the domains characteristics.

In this experiment, we did not directly compare em-
pirical runtimes, since the algorithms did not use the
same tests. However, for simplicity, we set the com-
pressed dimension of the CPSR model to be equal to
the number of tests, |T |, used by the TPSR algorithm.
We also set this as our final model dimension (the av-
erage final dimension was 140). Thus, by design, the
runtime for the algorithms is asymptotically equal at
O(|O||H||T |2) and they use comparable resources.

6. Discussion

The CPSR algorithm provides a memory efficient tech-
nique for learning compressed representations of dy-
namic domains with large observation spaces using
batch data. It provides theoretical guarantees for the
fidelity of the compression and shows good empiri-
cal performance. One particular advantage is that
it relieves researchers of the burden of determining
an appropriate compact representation. Selecting a
compact latent state representation, in the case of
HMMs/POMDPs, is a difficult problem; some recent
work shows promise, but is much more expensive com-
putationally than the methods we present here (Veness
et al., 2011). Similarly, selecting a compact set of tests
to use when learning PSR representations is a difficult

issue, and currently, there are no principled approaches
beyond enumerating observed tests with fixed bounds
on test length, and applying spectral methods to re-
duce the dimension. The benefit of the CPSR algo-
rithm is that a much greater number of possible tests
can be considered without affecting the space complex-
ity of the learning process.

It is worth noting that the CPSR algorithm does not
reduce the dimension of histories. There is a trade-off
here: we can reduce either the dimension of tests, or
of histories; reducing both would likely alter the spar-
sity of the matrices. Reducing the dimension of tests
is probably preferable since in general, the space of all
possible tests is greater than, or equal to, the space of
all histories (in any domain with a defined start state
it will be combinatorially larger) (Singh et al., 2004).
Moreover, a number of methods already exist to reduce
the memory burden induced by the number of histo-
ries, such as the improved batch algorithm (Boots &
Gordon, 2011), and the use of large set sizes in in-
dicative events (which are the sets of histories used
in the estimation). Most importantly for CPSRs, the
matrices representing the learned parameters are all of
size d × d, where d is the reduced dimension of tests
(d = |T | if no compression is performed).

Throughout this paper, we described the CPSR algo-
rithm in the uncontrolled case (i.e. only observations,
no actions) primarily for simplicity of exposure. It is
worth noting that the CPSR approach is fully compat-
ible with work on planning using TPSRs (Boots et al.,
2009; Boots & Gordon, 2011). One simply substitutes
the CPSR states for the corresponding TPSR states.
This is useful as planning algorithms can be developed
independently of the type of PSR approach being used.

In conclusion, the CPSR algorithm provides a novel
lightweight algorithm for efficiently learning models of
dynamic systems in large discrete observation spaces.
We have used it to learn an effective representation in
the PocMan domain, which has on the order of 1056

states and 210 observations. We believe that the type
of sparsity required for CPSR is present in a large num-
ber of dynamic systems. We are now considering ex-
tensions of the algorithm for continuous spaces.
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