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SUMMARY. In longitudinal data analysis one frequently encounters non-Gaussian data that

are repeatedly collected for a sample of individuals over time. The repeated observations could be

binomial, Poisson or of another discrete type or could be continuous. The timings of the repeated

measurements are often sparse and irregular. We introduce a latent Gaussian process model for

such data, establishing a connection to functional data analysis. The proposed functional methods

are nonparametric and computationally straightforward as they do not involve a likelihood. We

develop functional principal components analysis for this situation and demonstrate the prediction

of individual trajectories from sparse observations. This method can handle missing data and leads

to predictions of the functional principal component scores which serve as random effects in this

model. These scores can then be used for further statistical analysis, such as inference, regression,

discriminant analysis or clustering. We illustrate these nonparametric methods with longitudinal

data on primary biliary cirrhosis and show in simulations that they are competitive in comparisons

with Generalized Estimating Equations (GEE) and Generalized Linear Mixed Models (GLMM).
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1. Introduction

1.1. Preliminaries

When undertaking prediction in longitudinal data analysis involving irregularly-spaced and infre-

quent measurements, there is often relatively little information available about each subject, due

to sparse and irregular measurements. Irregularity of measurements for individual subjects is an

inherent difficulty of such studies. Therefore it is especially important to use all the information

that can be accessed. This requires us to model the relationships among measurements made at

widely separated time points. We aim at a flexible nonparametric functional data analysis ap-

proach, which is in contrast to commonly used parametric models such as the generalized linear

mixed models (GLMM) or generalized estimation equations (GEE) – see, e.g., Heagerty (1999)

for recent discussions on applying such models to repeated binary measurements, Pourahmadi

(2000) for related aspects of covariance modeling, and Heagerty and Zeger (2000), Heagerty and

Kurland (2001) and Chiou and Müller (2005) for discussions on limitations, modifications and

feasibility of the underlying parametric assumptions.

A nonparametric functional approach for the analysis of longitudinal data, with its philosophy

to let the data speak for themselves and its inherent flexibility, is expected to perform better than

the parametric GEE/GLMM approaches in many situations. However, it faces difficulties due

to the potentially large gaps between repeated measurements in typically sparse longitudinal

data. The parametric methods overcome this easily by postulating a parametric form of the

underlying functions. In contrast, in the presence of such gaps, the classical nonparametric

approach to smooth individual trajectories in a first step is not feasible (Yao et al., 2005). The

problems caused by gaps are exacerbated in the commonly encountered case of non-Gaussian

longitudinal responses such as binomial or Poisson responses (see Section 5).

We demonstrate how one can overcome the difficulties posed by such data for nonparamet-

ric approaches, by applying suitably modified methods of functional data analysis (FDA). FDA

methods have been primarily developed for smooth and densely sampled data (Ramsay and

Silverman, 2002, 2005). The basic idea to connect the data we wish to analyze to FDA method-

ology is to postulate an underlying latent Gaussian process (for other examples of latent process

modeling for longitudinal studies compare, e.g., Diggle et al., 1998; Jowaheer and Sutradhar,

2002; Hashemi, Jacqmin-Gadda and Commenges, 2003; Proust et al., 2006). Specifically, the

Gaussian property makes it possible to overcome sparseness by a conditioning argument. Rele-

vant features of the stochastic relationships of the observed data are reflected by the mean and
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covariance properties of this latent Gaussian process. Simulations indicate that the method is in

practice quite insensitive to the Gaussian assumption for the latent process.

Since sufficiently flexible parametrizations of the underlying Gaussian process would suffer

from a large number of parameters, making corresponding maximum likelihood approaches com-

putationally demanding and unstable, we propose instead to directly connect the latent Gaussian

process to random trajectories for individual observations by means of a link function. These

subject-specific trajectories correspond to the probabilities of a response in the binary response

case. While the link function is assumed known, the mean and covariance of the Gaussian process

are assumed to be unknown but smooth. This proposition is attractive on grounds of flexibility,

but it raises the challenging problem of constructing appropriate estimators.

The proposed methodology is a first attempt to extend functional data analysis technology

to the case of non-Gaussian repeated measurements. Prominent examples for such data are

repeated binary measurements or repeated counts. The proposed methods are motivated by

several considerations: The variation of random coefficients may be relatively low, and in this

case a simple Taylor approximation motivates simple, explicit and nonparametric mean- and

covariance-function estimators; and these estimators are elementary to compute, irrespective of

whether the low-variation assumption is satisfied or not. The simple, low-variation estimators

that we propose are attractive due to their flexibility and numerical simplicity.

The analysis of continuous Gaussian sparse longitudinal data by functional methods has been

considered previously (e.g., Shi et al., 1996; Rice and Wu, 2000; James et al., 2001; James and

Sugar, 2003). Our main tool from functional data analysis is functional principal component

analysis, where observed trajectories are decomposed into a mean function and eigenfunctions

(e.g., Rice and Silverman, 1991; Boente and Fraiman, 2000). Various aspects of the relationship

between functional and longitudinal data are discussed in Staniswalis and Lee (1998), Rice

(2004) and Zhao and Marron (2004); an early study of modeling longitudinal trajectories in

biological applications with functional principal components is Kirkpatrick and Heckman (1989).

Functional principal component analysis allows us to achieve three major goals: Dimension

reduction of functional data by summarizing the data in a few functional principal components;

the prediction of individual trajectories from sparse data, by estimating the functional principal

component scores of the trajectories; and further statistical analysis of longitudinal data based

on the functional principal component scores.

In the next subsection, we introduce the latent Gaussian process model, then in section 2

the proposed estimates, followed by applications to prediction (section 3). The results from a
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simulation study, including a comparison of the proposed method with GLMM and GEE, are

reported in Section 4. The analysis of non-Gaussian sparse longitudinal data is illustrated in

Section 5, with the longitudinal analysis of the occurrence of hepatomegaly in primary biliary

cirrhosis. This is followed by a brief discussion (Section 6) and an Appendix, which contains

derivations and some theoretical results about estimation.

1.2 Latent Gaussian process model

Generally, denoting the generalized responses by Yij , we observe independent copies of Y , but,

in each case, only for a few sparse time-points. In particular, the data are pairs (Tij , Yij), for

1 ≤ i ≤ n and 1 ≤ j ≤ mi, where Yij = Yi(Tij) for an underlying random trajectory Yi, and

each Tij ∈ I = [0, 1]. The sparse and scattered nature of the observation times Tij may be

expressed theoretically by noting that the mi’s are uniformly bounded, if these quantities have a

deterministic origin, or that they represent the values of independent and identically distributed

random variables with sufficiently light tails, if the mi’s originate stochastically. We are aiming

at the seemingly difficult task of making such sparse designs amenable to functional methods,

which have been primarily aimed at densely collected smooth data.

A central assumption for our approach is that the dependency between the observations Yij

is inherited from an underlying unobserved Gaussian process X: Let Y (t), for t ∈ T , where T is

a compact interval, denote a stochastic process satisfying

E
{
Y (t1) . . . Y (tm)

∣∣X} =
m∏

j=1

g{X(tj)} , E
{
Y (t)2

∣∣X} ≤ g1{X(t)} (1)

for 0 ≤ t1 < . . . < tm ≤ 1 and 0 < t < 1. Here, X denotes a Gaussian process on I, g is a smooth,

monotone increasing link function, from the real line to the range of the distribution of the Yij ,

and g1 is a bounded function. While we observe independent copies of Y , these are accessible

only for a few sparse time-points for each subject. The Gaussian processes Xi and measurement

times Tij , for 1 ≤ i ≤ n and 1 ≤ j ≤ mi, are assumed to be totally independent, the Tij ’s are

taken to be identically distributed as T , say, with support I, and the Xi’s are supposed to be

identically distributed as X. When interpreted for the data (Tij , Yij), the model (1) implies that

E
{
Yi(Ti1) . . . Yi(Timi)

∣∣Xi(Ti1), . . . , Xi(Timi)
}

=
mi∏
j=1

g{Xi(Tij)} . (2)

The assumption that X at (1) is Gaussian provides a plausible way of linking stochastic

properties of Y (t) for values t in different parts of I, so that data observed at each time-point
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can be used for inference about future values of Y (t) for any specific value of t. The idea of

pooling data across subjects to overcome the sparseness problem is motivated as in Yao et al.

(2005). The link function g is assumed known, for example one might select the logit link in the

binary-data case, g(x) = ex/(1+ ex), and the log link for count data; under some circumstances,

the link can also be estimated nonparametrically. An important special case of the model at (1)

is that of binary responses, i.e., zero-one data, where the first identity in (1) simplifies to:

P
{
Y (t1) = `1, . . . , Y (tm) = `m

∣∣X} =
m∏

j=1

g{X(tj)}`j [1− g{X(tj)}]1−`j , (3)

for all sequences `1, . . . , `m of zeros and ones. In this case, the link function g would be chosen as

a distribution function and the proposed methodology corresponds to an extension of functional

data analysis to longitudinal binary data.

2. Estimating mean and covariance of latent Gaussian processes

In order to use (1) to make predictive inference about future values of Y (t), we need to estimate

the defining characteristics of the process X, i.e., its mean and covariance structure. In a

setting where the distribution of Y can be completely specified, for example in the binary-data

model (3), one possible approach would be maximum likelihood. This is however a difficult

proposition in the irregular case, where it would necessitate the specification of a large number

of parameters for the various means and covariances involved, a difficulty which can only be

overcome by invoking restrictive assumptions, limiting the flexibility of the approach. Moreover,

we are considering a non-stationary case, and the number of parameters would need to increase

with n, the sample size. Finally, another major motivation is to extend the functional approach

to non-Gaussian longitudinal data. To sustain the nonparametric flavor, we prefer not to make

stronger assumptions than (1), and in particular do not wish to make the restrictive assumptions

that would be necessary to employ maximum likelihood methods.

Our approach is based on the supposition that the variation of Xi about its mean is relatively

small. In particular, we assume that

Xi(t) = µ(t) + δ Zi(t), where µ = E(Xi), (4)

Zi is a Gaussian process with zero mean and bounded covariance, and δ > 0 is an unknown small

constant. In this case, assuming g to have four bounded derivatives, and writing (X,Z) for a
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generic pair (Xi, Zi), one has:

g(X) = g(µ) + δ Z g(1)(µ) + 1
2 δ

2 Z2 g(2)(µ) + 1
6 δ

3 Z3 g(3)(µ) +Op

(
δ4
)
, (5)

whence it may be deduced that

E{g(X(t))} = g(µ) + 1
2 δ

2E{Z2(t)} g(2)(µ(t)) +O
(
δ4
)

(6)

and

cov
[
g{X(s)}, g{X(t)}

]
= δ2 g(1){µ(s)} g(1){µ(t)} cov{Z(s), Z(t)}+O

(
δ4
)
. (7)

Here and throughout we make the assumption that g(1) does not vanish, and that infs∈D g
(1)(s) >

0, where D is the (compact) range of the mean function µ. Setting

α(t) = E{g(X(t))}, ν(t) = g−1(α(t)), τ(s, t) =
cov[g{X(s)}, g{X(t)}]
g(1){µ(s)} g(1){µ(t)}

, (8)

we obtain

µ(t) = E{X(t)} = g−1[E{g(X(t))}] +O
(
δ2
)

= ν(t) +O
(
δ2
)
, (9)

σ(s, t) = cov{X(s), X(t)} =
cov[g{X(s)}, g{X(t)}]
g(1){µ(s)} g(1){µ(t)}

+O
(
δ4
)

= τ(s, t) +O
(
δ4
)
. (10)

These formulas immediately suggest estimators of µ and σ, if we are willing to neglect the

effect of orders O
(
δ2
)
. Indeed, we may estimate

α(t) = E{Y (t)} = E[E{Y (t)|X(t)}] = E[g{X(t)}] (11)

by passing a smoother through the data (Tij , Yij), and estimate

β(s, t) = E{Y (s)Y (t)} = E
[
g{X(s)} g{X(t)}

]
(12)

(using (1)) by passing a bivariate smoother through the data ((Tij , Tik), YijYik) for 1 ≤ i ≤ n

such that mi ≥ 2, and 1 ≤ j, k ≤ mi with j 6= k. It is necessary to omit the diagonal terms in

this smoothing step, since according to (1) we have

E{Y 2(t)} = E[E{Y 2(t)|X(t)}] > E[E{Y (t)|X(t)}]2 = E[g{X(t)}]2,

whenever var{Y (t)|X(t)} > 0, so that the variance along the diagonal in general will have an

extra component, leading to a covariance surface that has a discontinuity along the diagonal.
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More details about this phenomenon can be found in Yao et al. (2005). Implementation of these

smoothing steps, using local least squares estimators, is discussed in Appendix A.

From the resulting estimators α̂ and β̂ of α and β, respectively, we obtain estimators

ν̂(t) = g−1(α̂(t)) , τ̂(s, t) =
β̂(s, t)− α̂(s) α̂(t)
g(1){ν̂(s)} g(1){ν̂(t)}

(13)

for

ν(t) = g−1(α(t)) and τ(s, t) =
β(s, t)− α(s)α(t)
g(1){ν(s)} g(1){ν(t)}

, (14)

respectively. By virtue of the approximations (9) and (10) we may interpret ν̂ and τ̂ as estimators

of µ and σ, respectively, i.e., we set

µ̂(t) = ν̂(t), σ̂(s, t) = τ̂(s, t). (15)

Note that these estimators do not depend on the constant δ, which therefore does not need to

be known or estimated. While the estimator τ̂(s, t) is symmetric, it will generally not enjoy the

positive-semidefiniteness property that is required of a covariance function. This deficiency can

be overcome by implementing a method described in Yao et al. (2003), which is to drop from

the spectral decomposition of τ̂ those terms that correspond to negative eigenvalues. It is easy

to show that in doing so, the mean squared error of τ̂ is strictly improved by omitting a term

that corresponds to a negative eigenvalue; details can be found in Appendix B. In the following,

we work with the resulting estimators τ̃ as defined in Appendix B. Properties of the estimators

α̂, β̂, ν̂ and τ̂ , defined at (32), (33) and (13), respectively, and of estimators µ̂ and σ̂ at (15) are

discussed in Appendix C.

3. Predicting individual trajectories and random effects

3.1 Predicting functional principal component scores

One of the main purposes of the proposed functional data analysis model is dimension reduction

through predicted functional principal component scores. These lead to predicted trajectories of

the underlying hidden Gaussian process for the subjects in a study. Specifically, the predicted

functional principal component scores provide a means for regularizing the irregular data, and

also for dimension reduction, and can be used for inference, discriminant analysis or regression.
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The starting point is the Karhunen-Loève expansion of random trajectories Xi of the latent

Gaussian process,

Xi(t) = µ(t) +
∞∑

j=1

ξijψj(t), (16)

where ψj are the orthonormal eigenfunctions of the linear integral operator B with kernel σ(s, t),

that maps a L2 function f to Bf(s) =
∫
σ(s, t)f(t) dt, i.e., the solutions of∫

cov(X(s), X(t))ψj(t) ds = θjψj(t),

where θj is the eigenvalue associated with eigenfunction ψj . The ξij =
∫
Xi(t)ψj(t) dt are

the functional principal component (FPC) scores that play the role of random effects, with

E(ξij) = 0, var(ξij) = θj , where θj is the eigenvalue corresponding to eigenfunction ψj . Once

the estimator σ̂(s, t) (15) is determined, the corresponding estimates θ̂j , ψ̂j of eigenvalues and

eigenfunctions of latent processesX are obtained by a standard discretization procedure, whereby

these estimates are derived from a discrete principal component analysis step.

We aim to estimate the best linear predictor

E{Xi(t)|Yi1, . . . , Yim} =
∞∑

j=1

E(ξij |Yi1, . . . , Yim)ψj(t) (17)

of the trajectory Xi, given the data Yi1, . . . , Yimi . Here a truncation of the expansion to include

only the first M components is needed. Then, focussing on the first M conditional FPC scores

will allow us to reduce the dimension of the problem and also to regularize the highly irregular

data. According to (17), the task of representing and predicting individual trajectories can

be reduced to that of estimating E(ξij |Yi1, . . . , Yim). In the following we develop a suitable

approximation in the non-Gaussian case by means of a moment-based approach, as follows. The

repeated measurements per subject are assumed to be generated by

Yik = Yi(Tik) = g{Xi(Tik)}+ eik, (18)

with independent errors eik, satisfying

Eeik = 0, var(eik) = γ2v[g{Xi(Tik)}]. (19)

Here, γ2 is an unknown variance (overdispersion) parameter and v(·) is a known smooth variance

function, which is determined by the characteristics of the data. For example, in the case of

repeated binary observations, one would choose v(u) = u(1− u). In the following, we implicitly

condition on the measurement times Tij .
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With a Taylor expansion of g, using (4) and assuming as before that inf g(1)(·) > 0, we obtain

g{X(t)} = g{µ(t)}+ g(1){µ(t)}{X(t)− µ(t)}+O(δ2). (20)

Defining

εik =
eik

g(1)(µ(Tik))
, Uik = µ(Tik) +

Yik − g{µ(Tik)}
g(1){µ(Tik)}

,

(19) and (20) lead to Uik = Xi(Tik) + εik +O(δ2). We next substitute estimates (15) and errors

εik by

ẽik = Zikγ
(v[g{µ̂(Tik)}])1/2

g(1){µ̂(Tik)}
,

where the Zik are independent copies of a standard Gaussian N(0, 1) random variable, so that the

first two moments of ẽik are approximating those of εik. Then, for small δ, Uik ≈ Xi(Tik) + ẽik,

implying

E(ξij |Yi1, . . . , Yimi) = E(ξij |Ui1, . . . , Uimi) ≈ E(ξij |Xi(Ti1) + ẽi1, . . . , Xi(Timi) + ẽimi).

Owing to the Gaussian assumption for latent processes Xi, the last conditional expectation is

seen to be a linear function of the terms on the right hand side, and therefore,

Ê(ξij |Yi1, . . . , Yimi) = AijX̃i (21)

is a reasonable predictor for the random effect ξij , where X̃i = (Xi(Ti1)+ẽi1, . . . , Xi(Timi)+ẽimi)
T

and the Aij are matrices depending only on γ, µ, v, g, and g(1). These quantities are either known

or estimates are available, with the sole exception of γ, the estimation of which is discussed below.

The explicit form of (21) is given in Appendix D.

3.2 Predicting trajectories

Motivated by (16) and (21), predicted trajectories for the latent Gaussian processes are obtained

as

X̂i(t) = Ê{Xi(t)|Yi1, . . . , Yimi} = µ̂(t) +
M∑

j=1

AijX̃iψ̂j(t), (22)

and predicted trajectories for the observed process Y as

Ŷi(t) = Ê{Yi(t)|Yi1, . . . , Yimi} = g{X̂i(t)}, (23)

where t may be any time point within the range of processes Y , including times for which no

response was observed. Predicted values for Y (t) can sometimes be used to predict the entire

8



response distribution when the mean determines the entire distribution, such as in binomial and

Poisson cases. This method could also be employed for the prediction of missing values in a

situation where missing data occur totally at random.

To evaluate the effect of auxiliary quantities on the prediction, we use a cross-validation

criterion where we compare predictions of Yik, obtained by leaving that observation out, with

Yik itself. Computing

Ŷ
(−ik)
ik = Ê(Yik|Yi1, . . . , Yi,k−1, Yi,k+1, . . . , Yimi) = g{X̂(−ik)

i (Tik)}, 1 ≤ i ≤ n, 1 ≤ k ≤ mi, (24)

where

X̂
(−ik)
i (Tik) = µ̂(t) +

M∑
j=1

Ê(ξij |Yi1, . . . , Yi,k−1, Yi,k+1, . . . , Yimi)ψ̂j(t), (25)

we define the Pearson-type weighted prediction error

PE(γ2) =
∑
i,k

(Ŷ (−ik)
ik − Yik)2

v[g{X̂(−ik)
i (Tik)}]

, (26)

which will depend on the variance parameter γ2 and implicitly also on the number of eigenfunc-

tions M that are included in the model.

We found the following iterative selection procedure, for choosing the number of eigenfunc-

tions M and the overdispersion parameter γ2 simultaneously, to lead to good practical results:

Choose a starting value for M , then obtain γ2 by minimizing the cross-validated prediction error

PE with respect to γ2,

γ̂ = argminγ PE(γ2). (27)

Then in a subsequent step, update M by the criterion described below, and repeat these two

steps until the values of M and γ2 stabilize. This iterative algorithm worked very well in practice;

typical starting values for M would be M = 2, 3.

Specifically, for the choice of M , we adopt a quasi-likelihood based functional information

criterion (FIC) that is an extension of the Akaike information criterion for functional data (com-

pare Yao et al., 2005, for a related pseudo-Gaussian likelihood-based criterion). The number of

eigenfunctions M , to be included in the model, is chosen in such a way as to minimize

FIC(M) = −2
∑
i,k

∫ bYik

Yik

Ŷij − t

γ2v(t)
dt+ 2M. (28)
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The penalty 2M corresponds to that used in AIC; other penalties such as those corresponding

to BIC could be used as well.

Some simple algorithmic restrictions can be imposed in this iteration for the choice of M and

γ so that loops cannot happen, although we never observed this to occur. We also investigated

direct minimization of (26) simultaneously for both γ and M . Besides being considerably more

computing-intensive, this alternative minimization scheme tended to choose more components

and resulted in less parsimonious fits without obtaining better predictions. Instead of making

a parametric assumption about the variance function v, in some cases it may be preferrable to

estimate it nonparametrically. This can be done via semiparametric quasi-likelihood regression

(Chiou and Müller, 2005).

4. Simulation Results

4.1 Comparisons with GEE and GLLM

The simulations were based on latent processes X(t) with mean function E(X(t)) = µ(t) =

2 sin (πt/5)/
√

5, and cov(X(s), X(t)) = λ1φ1(s)φ1(t) derived from a single eigenfunction φ1(t) =

− cos (πt/10)/
√

5, 0 ≤ t ≤ 10 with eigenvalues λ1 = 2 (λk = 0, k ≥ 2). Then 200 Gaussian and

200 non-Gaussian samples of latent processes consisting of n = 100 random trajectories each

were generated by Xi(t) = µ(t) + ξi1φ1(t), where for the 200 Gaussian samples, the FPC scores

ξi1 were simulated from N (0, 2), while the ξi1 for the non-Gaussian samples were simulated from

a mixture of two normals, N (
√

2, 2) with probability 1/2 and N (−
√

2, 2) with probability 1/2.

Binary outcomes Yij were generated as Bernoulli variables with the probability E{Yij |Xi(tij} =

g{Xi(tij)}, using the canonical link function g−1(p) = log{p/(1− p)} for 0 < p < 1.

To generate the sparse observations, each trajectory was sampled at a random number of

points, chosen uniformly from {8, . . . , 12}, and the locations of the measurements were uniformly

distributed over the domain [0, 10]. For the smoothing steps, univariate and bivariate product

Epanechnikov weight functions were used, i.e., K1(x) = 3/4(1 − x2)1[−1,1](x) and K2(x, y) =

9/16(1− x2)(1− y2)1[−1,1](x)1[−1,1](y), where 1A(x) = 1 if x ∈ A and 0 otherwise for any set A.

The number of eigenfunctions K and the overdispersion parameter γ2 were separately selected

for each run by the iteration (27), (28). These iterations converged fast, requiring only 2-4

iteration steps in most cases.

We compare the proposed nonparametric latent Gaussian process (LGP) method with the

10



popular parametric approaches provided by GLMM (Generalized Linear Mixed Models) and

GEE (Generalized Estimating Equations). For GEE, we used the unstructured correlation op-

tion and both GEE and GLMM were run with linear (GEE-L and GLMM-L) and in addition

with quadratic (GEE-Q and GLMM-Q) fixed effects. We use four criteria for the comparisons,

measuring discrepancies between estimates and targets both in terms of latent processes X and

response processes Y = g(X), and comparing both estimates for mean functions µ = EX resp.

g(µ) and predictions of subject-specific trajectories Xi resp. g(Xi). The latter are available for

LGP and GLMM, but not for GEE, which aims at marginal modeling. The specific criteria for

the comparisons are as follows:

XMSE =

∫
I{µ̂(t)− µ(t)}2dt∫

I µ
2(t)dt

, YMSE =

∫
I [g{µ̂(t)} − g−1{µ(t)}]2dt∫

I g
2{µ(t)}dt

, (29)

XPEi =

∫
I{X̂i(t)−Xi(t)}2dt∫

I X
2
i (t)dt

, YPEi =

∫
I [g{X̂i(t)} − g{Xi(t)}]2dt∫

I g
2{Xi(t)}dt

, (30)

for i = 1, . . . , n. Summary statistics for the values of these criteria from 200 Monte Carlo runs

are shown in Table 1.

These results indicate that, first of all, the proposed LGP method is not sensitive to the

Gaussian assumption for latent processes. While there is some deterioration in the non-Gaussian

case, it is minimal. This non-sensitivity to the Gaussian assumption has been described before in

functional data analysis in the context of principal analysis by conditional expectation (PACE;

see Yao et al., 2005). Secondly, the nonlinearity in the target functions throws the parametric

methods off track, even when the more flexible quadratic fixed effects versions are used. We

find that LGP conveys clear advantages in estimation and especially in predicting individual

trajectories in such situations. While the parametric methods are sensitive to violations of

assumptions, LGP is designed to work under minimal assumptions and therefore provides a

useful alternative approach.

4.2 Effect of the size of variation

Here we examine the influence of the size of the variation constant δ on model estimation,

including mean function, eigenfunctions and individual trajectories. In addition to criteria (29)

and (30), we also evaluated the estimation error for the single eigenfunction in the model (noting∫
I φ

2
1(t)dt = 1),

EMSE =
∫
I
{φ̂1(t)− φ1(t)}2dt. (31)
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Table 1: Simulation results for the comparisons of mean estimates and individual trajectory

predictions obtained by the proposed nonparametric latent Gaussian process method (LGP)

with those obtained for the established parametric methods of GLMM-L, GLMM-Q, GEE-L and

GEE-Q, respectively, with linear (L) and quadratic (Q) fixed effects (see Section 4.1). Simulations

were based on 200 Monte Carlo runs with n = 100 trajectories per sample, generated for both

Gaussian and non-Gaussian latent processes. Simulation results are reported through summary

statistics for error criteria XMSE and YMSE (29) for relative squared error of the mean function

estimates of latent processes X and of response processes Y , and the 25th, 50th and 75th

percentiles of relative prediction errors XPEi and YPEi (30) for individual trajectories of latent

and response processes.

XPEi YPEi
XMSE

25th 50th 75th
YMSE

25th 50th 75th

LGP .1242 .1529 .2847 .7636 .0076 .0101 .0205 .0433

GLMM-L .4182 .3405 .5843 1.283 .0265 .0278 .0369 .0577

Gaussian GLMM-Q .4323 .3479 .5990 1.319 .0271 .0285 .0377 .0584

GEE-L .4168 — — — .0264 — — —

GEE-Q .4308 — — — .0272 — — —

LGP .1272 .1664 .3166 .9556 .0078 .0109 .0228 .0459

GLMM-L .4209 .3309 .5943 1.364 .0266 .0280 .0372 .0589

Non-Gaussian GLMM-Q .4373 .3385 .6118 1.404 .0274 .0287 .0380 .0597

(Mixture) GEE-L .4227 — — — .0268 — — —

GEE-Q .4396 — — — .0277 — — —
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Using the same simulation design as in subsection 4.1 and generating latent processes X(t; δ) =

µ(t) + δξ1φ1(t) for varying δ, we simulated 200 Gaussian and 200 non-Gaussian samples (as

described before) for each of δ = 0.5, 0.8, 1, 2. The Monte Carlo results over 200 runs for the

various values of δ are presented in Table 2.

Table 2: Simulation results for the effect of the variation parameter δ. Design and outputs of

the simulation are the same as in Table 1. EMSE denotes the average integrated mean squared

error for estimating the first eigenfunction.

XPEi YPEi
δ XMSE EMSE

25th 50th 75th
YMSE

25th 50th 75th.

.5 .1106 .7662 .1188 .1815 .3366 .0068 .0077 .0119 .0205

.8 .1205 .3801 .1430 .2437 .5710 .0076 .0094 .0171 .0338

Normal 1 .1280 .2434 .1513 .2809 .7857 .0077 .0101 .0203 .0431

2 .1616 .0429 .2025 .3851 .8137 .0102 .0144 .0362 .0752

.5 .1134 .7198 .1243 .1913 .3651 .0071 .0081 .0126 .0217

.8 .1258 .3910 .1498 .2563 .6691 .0078 .0100 .0188 .0366

Mixture 1 .1323 .2256 .1624 .2986 .7944 .0081 .0113 .0227 .0450

2 .1633 .0397 .2041 .3840 .8140 .0103 .0158 .0387 .0768

We find substantial sensitivity of the error EMSE in estimating the eigenfunction on the value

of δ. This is caused by the fact that as δ gets smaller, more and more of the variation in the

observed data is due to error rather than the patterns of the underlying latent Gaussian process,

and therefore it gets harder and harder to estimate the eigenfunction. This phenomenon is also

observed in ordinary FPCA, where the error in estimating an eigenfunction is tied to the size of

its associated eigenvalue – the larger, the better the eigenfunction can be estimated. While large

values of δ increase the errors in predicting individual trajectories, this is within expectations:

For the predictor processes X, this is due to the fact that the variation of individual trajectories

increases, while the binary nature of the responses imposes constraints on how much of this

variation is reflected in the sparse observations; for the response processes, the error increases

much more which is due to the fact that biases in the approximations that are used for these

predictions are increasing with δ.

The errors in estimating the mean functions remain fairly stable as long as δ ≤ 1. This is

especially – and not unexpectedly – observed for the mean of predictor processes X, since this
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mean estimate is not affected by any approximation error. We conclude that unless δ is large, its

exact value has a small impact on the errors in mean function estimates and a modest impact on

the errors in individual predictions, and note that the strong effect on the error in eigenfunction

estimation does not spill over into the predictions for individual trajectories or the mean function

estimates, as the effect is mitigated by the multiplication with δ.

5. Application

Primary biliary cirrhosis (Murtaugh et al., 1994) is a rare but fatal chronic liver disease of

unknown cause, with a prevalence of about 50 cases per million population. The data were

collected between January, 1974 and May, 1984 by the Mayo Clinic (see also Appendix D of

Fleming and Harrington, 1991). The patients were scheduled to have measurements of blood

characteristics at six months, one year, and annually thereafter post diagnosis. However, since

many individuals missed some of their scheduled visits, the data are sparse and irregular with

unequal numbers of repeated measurements per subject and also varying measurement times Tij

across individuals.

To demonstrate the usefulness of the proposed methods, we restrict the analysis to the

participants who survived at least 10 years (3650 days) since they entered the study and were

alive and not transplanted at the end of the tenth year. We carry out our analysis on the

domain from 0 to 10 years, exploring the dynamic behavior of the presence of hepatomegaly

(0=no 1=yes), which is a longitudinally measured Bernoulli variable with sparse and irregular

measurements. Presence or absence of hepatomegaly is recorded on the days where the patients

are seen. We include 42 patients for whom a total of 429 binary responses were observed, where

the number of recorded observations ranged from 3 to 12, with a median of 11 measurements

per subject.

We employ a logistic link function, and the smooth estimates of the mean and covariance

functions for the underlying process X(t) are displayed in Figure 1. The mean function of the

underlying process shows an increasing trend until about 3000 days, except for a short delay at

the beginning, and a subsequent decrease towards the end of the data range. We also provide

pointwise bootstrap confidence intervals which broaden (not unexpectedly) near the endpoints

of the domain. The estimated covariance surface of X(t) displays rapidly decreasing correlation

as the difference between measurement times increases. With variance function v(µ) = µ(1−µ),

the iterative procedure for selecting the number of eigenfunctions and the variance parameter γ
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described in section 3.2 yielded the choices M = 3 for the number of included components and

γ̂2 = 1.91 for the overdispersion parameter. The leave-one-point-out cross-validated prediction

error PE(γ2), as in (26), obtained for the final iteration (3rd iteration), is shown in the left panel

of Figure 2 in dependence on γ2, and the dependence of the FIC scores (28) on the number of

included components M is shown in the right panel.

Smooth estimates of the first three eigenfunctions of the underlying Gaussian process X,

resulting from the choices made in the iterative selection procedure, are shown in the left panels

of Figure 3. The variation is mainly captured by the first two leading eigenfunctions. The first

eigenfunction is roughly similar to the mean function, accounting for 74.2% of total variation,

and the second eigenfunction essentially is a contrast between early and late times, explaining

23.2% of total variation.

The predicted trajectories Xi(t), defined by (22), for the three patients with the largest

projections in the directions of the respective eigenfunctions are shown in the top right panels of

Figure 3. The original data and the predicted trajectories (23) are illustrated in the bottom right

panels of that figure. Note that the sign of the eigenfunctions is arbitrary. These extreme cases

clearly reveal how the individual trajectories Xi and Yi are influenced by the dominant modes

of variation. The predicted trajectories of Yi(t), obtained by (23) for nine randomly selected

subjects, are shown in Figure 4. The predicted trajectories Ŷi(t) describe the time-evolution of

the probability of the presence of hepatomegaly for each individual; it is often increasing, but

there are also subjects with mild or strong declines.

We find that the overall trend of the predicted trajectories Yi(t) agrees well with the observed

longitudinal binary outcomes, and one-leave-out analysis using (24) confirmed this. In making

the comparison between observed data and fitted probabilities, one needs to keep in mind that

the Bernoulli observations consist of zeros or ones, while the fitted probabilities and response

processes are constrained to be strictly between 0 and 1. Therefore, long “runs” are expected for

extreme cases such as the one shown in the middle panel of the first row of Figure 4, where the

fitted function is bound to be always larger than the data. Generally, in generalized response

models, the variation in the data that corresponds to the conditional variance of the observa-

tions, given their Bernoulli probability, is in principle unexplained by any model, and only the

probabilities themselves and their variation can be modeled, which may explain only a relatively

small portion of the overall observed variation seen in the data.

To illustrate further statistical analysis after estimates for the FPC scores have been obtained,

we regress the first two FPC scores of the underlying Gaussian process on the variable age at
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entry into the study S. For this regression of response curves on a scalar predictor we use the

model E(X(t)|S) = µ(t)+
∑M

j=1E(ξj |S)ψj(t) (Chiou, Müller and Wang, 2004). We demonstrate

the estimated regression functions E(ξ̂j |S) for two components j = 1, 2 in Figure 5. The fits are

obtained by local linear smoothing of the scatterplots ξ̂j versus S by local linear smoothing. The

regression fits indicate that the second FPC of the latent process is not much influenced by age

at entry, while the first FPC remains flat for lower ages but then increases nonlinearly for ages

after 45. For age at entry above 45, the conditional response curves therefore move increasingly

upwards as age at entry increases, where the shape of the average increase corresponds to the first

eigenfunction in Figure 3. This means older age at entry is associated with increasing probability

of hepatomegaly.

6. Discussion

The assumption of small δ implies that the variation of the latent process X is assumed to be

limited, according to the assumption X(t) = µ(t) + δZ(t). We note that the small δ assumption

does not affect the proposed methodology, for which the value of δ is not needed and plays no

role. The proposed estimators always target and are consistent for the unique latent Gaussian

process X̃, characterized by mean function ν(t) and covariance function τ(s, t), as defined in

(8). On the other hand, biases may be accrued for response process estimates and especially

predicting individual response trajectories for the case of large δ.

Processes X̃ characterize the data, and their functional principal component scores can be

used for further statistical analysis. When δ is small, then X ∼ X̃ so that (1)-(3) are satisfied

(approximately) for X̃ as well. While the proposed approach is always useful to represent the

data, even in the case where δ is not small, the small δ assumption is needed to obtain reasonably

accurate estimates of probability trajectories Y (t).

Simulation results demonstrate that the proposed methodology outperforms classical para-

metric models such as GEE and GLMM in situations where their parametric assumptions do

not apply. The proposed nonparametric method relies on far fewer assumptions which makes it

more universally applicable. Further statistical analysis such as exploring the effect of subject-

specific covariates can be based on the estimated functional principal component scores. We note

that in the data example, mean function and subject-specific trajectories are highly nonlinear,

emphasizing the need for nonparametric methodology to analyze such data.
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Appendix A: Local linear smoothers

Local-linear versions of the estimators α̂ and β̂, introduced in Section 2.1, are given explicitly by

α̂(t) =
P2(t)Q0(t)− P1(t)Q1(t)
P0(t)P2(t)− P1(t)2

, (32)

β̂(s, t) = Z̄ +
1
R

(s− T̄10

h
,
t− T̄01

h

) ( R02 − R11

−R11 R20

) (
S10

S01

)
, (33)

where

Pr(t) =
n∑

i=1

mi∑
j=1

(t− Tij)r Kij(t) , Qr(t) =
n∑

i=1

mi∑
j=1

(t− Tij)r Yij Kij(t) ,

Rqr(s, t) =
∑

i : mi≥2

∑∑
j,k : j 6=k

{
Tij − T̄10(s, t)

h

}q {Tik − T̄01(s, t)
h

}r

Kij(s)Kik(t) ,

Sr(s, t) =
∑

i : mi≥2

∑∑
j,k : j 6=k

{Zijk − Z̄(s, t)}
{
Tij − T̄10(s, t)

h

}q {Tik − T̄01(s, t)
h

}r

×Kij(s)Kik(t) ,

Uqr(s, t) =
∑

i : mi≥2

∑∑
j,k : j 6=k

T q
ij T

r
ik Kij(s)Kik(t) , T̄qr = Uqr/U00 ,

Z̄ = U−1
00

∑
i : mi≥2

∑∑
j,k : j 6=k

Zijk Kij(s)Kik(t) , R = R20R02 −R2
11 ,

Zijk = Yij Yik, Kij(t) = K{(t−Tij)/h}, K is a kernel function and h a bandwidth. Of course, we

would not use the same bandwidth to construct α̂ and β̂; we expect the appropriate bandwidth

for β̂ to be larger than that for α̂.

Both α̂ and β̂ are conventional, except that diagonal terms are omitted when constructing

the latter. The data within the ith block, i.e. Bi = {Yij for 1 ≤ i ≤ mi}, are not independent

of one another, but the n blocks or trajectories B1, . . . ,Bn are independent. Therefore, a leave-

one-trajectory-out version of cross-validation (Rice and Silverman 1991) can be used to select

the bandwidths for either estimator.
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Appendix B: Positive-definiteness of covariance estimation

Since the estimator τ̂(s, t) is symmetric, we may write

τ̂(s, t) =
∞∑

j=1

θ̂j ψ̂j(s) ψ̂j(t) , (34)

where (θ̂j , ψ̂j) are (eigenvalue, eigenfunction) pairs of a linear operator A in L2 which maps a

function f to the function A(f), defined by A(f)(s) =
∫
I τ̂(s, t) f(t) dt. It is explained after

equation (16) how these estimates are obtained. Assuming that only a finite number of the θ̂j ’s

are nonzero, the operator A will be positive semi-definite, or equivalently, τ̂ will be a proper

covariance function, if and only if each θ̂j ≥ 0. To ensure this property we compute (34)

numerically, and drop those terms that correspond to negative θ̂j ’s, giving the estimator

τ̃(s, t) =
∑

j≥1 : θ̂j>0

θ̂j ψ̂j(s) ψ̂j(t) . (35)

The modified estimator τ̃ is not identical to τ̂ if one or more of the eigenvalues θ̂j are strictly

negative. In such cases, the estimator τ̃ has strictly greater L2 accuracy than τ̂ , when viewed as

an estimator of τ .

Theorem 1. Under regularity conditions, it holds that∫
I2

(τ̃ − τ)2 ≤
∫
I2

(τ̂ − τ)2 . (36)

In order to prove this result, we show that (36) holds with strict inequality whenever τ̃ is

a nontrivial modification of τ̂ , i.e. when τ̃ 6= τ̂ . In the series on the right-hand side of (34)

we may, without loss of generality, order the terms so that those corresponding to nonzero θ̂j ’s

are listed first, for 1 ≤ j ≤ J say, and θ̂j = 0 only for j ≥ J + 1. The sequence ψ̂1, . . . , ψ̂J is

necessarily orthonormal, and we may choose ψ̂J+1, ψ̂J+2, . . . so that the full sequence ψ̂1, ψ̂2, . . .

is orthonormal and also complete in the class of square-integrable functions on I.

We may therefore express the true covariance τ in terms of this sequence, as a conventional

expansion in a generalized Fourier series:

τ(s, t) =
∞∑

j=1

∞∑
k=1

ajk ψ̂j(s) ψ̂k(t) , (37)

where ajk =
∫
I2 τ(s, t) ψ̂j(s) ψ̂k(t) ds dt. Expansions (34), (35) and (37) imply that∫

I2

(τ̃ − τ)2 =
∑∑
j,k : j 6=k

a2
jk +

∞∑
j=1

(ajj − θ̃j)2,
∫
I2

(τ̂ − τ)2 =
∑∑
j,k : j 6=k

a2
jk +

∞∑
j=1

(ajj − θ̂j)2 , (38)
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where θ̃j = θ̂j if θ̂j ≥ 0 and θ̃j = 0 otherwise. The fact that τ is a proper covariance function,

and so enjoys the positive-semidefiniteness property, implies that ajj ≥ 0 for each j. Result (36)

follows from this property and (38).

Appendix C: Some theoretical properties of estimators (32), (33), (13) and (15)

Standard arguments show that local-linear forms of the estimators α̂ and β̂, given in Appendix

A, converge to α and β at mean-square rates ρα(h) = (nh)−1 + h4 and ρβ(h) = (nh2)−1 + h4,

respectively, where h denotes the bandwidth used to construct either estimator. Therefore,

the optimal bandwidths are of sizes n−1/5 and n−1/6, respectively, and the optimal mean-square

convergence rates are n−4/5 and n−2/3, for α̂, ν̂ and β̂, respectively. Hence, in view of the manner

of construction (13) of τ̂ in terms of α̂ and β̂, the optimal mean-square convergence rate of τ̂ to

τ is also n−2/3. To obtain these results it is necessary to incorporate a small ridge parameter

into the denominators of estimators, to guard against difficulties with data sparsity among the

observation times Tij . The ridge may be taken as small as n−c, for sufficiently large c > 0.

Adjustments of this type are common for local-linear estimators (Fan, 1993; Seifert and Gasser,

1996; Cheng, Hall and Titterington, 1997).

The above results are exact, for example in the sense that upper and lower bounds to mean

squared errors of α̂, ν̂ and for β̂, τ̂ are of sizes ρα(h) and ρβ(h), respectively, provided the mi’s are

uniformly bounded and the number of mi’s that strictly exceed 1 is bounded above a constant

multiple of n. However, the mean squared errors will not admit standard asymptotic formulae, for

example ρβ(h) ∼ C1 (nh2)−1+C2 h
4 for positive constants C1 and C2, unless additional conditions

are imposed to ensure, for instance, that the mi’s that strictly exceed 1, and the proportion of

times that they exceed 1, have well-defined long-run “average” values in an appropriate sense. It

is sufficient, but not necessary, that the mi’s represent conditioned-upon values of independent

and identically distributed random variables distributed as the integer-valued variable M , where

P (M ≥ 2) > 0 and, for some integer k ≥ 2, P (M ≤ k) = 1. Additionally, more conventional

regularity conditions should be assumed. In particular, both α and β should have two continuous

derivatives, and the moment conditions (1) should hold. Standard methods may also be used to

show that leave-one-block-out cross-validation achieves asymptotic optimality, in the estimation

of α and β, to first order and in an L2 sense.

We remark that if we leave the longitudinal situation, and contrary to what we assumed before

and the conditions we discussed earlier, assume for a moment the mi’s can take very large values,
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with high frequency as n increases, then convergence rates can be faster than those discussed

above. In particular, if the number of values of m1, . . . ,mn that exceed a divergent quantity is

bounded below by a fixed constant multiple of n; that is, if lim infn→∞ 1
n

∑n
i=1 I{mi > p(n)} >

0 , where p(n) → ∞ and I(·) denotes the indicator function of the indicated property; then

the mean squared errors of α̂, ν̂ and of β̂, τ̂ equal o{(nh)−1} + O(h4) and o{(nh2)−1} + O(h4),

respectively, rather than simply the values O{(nh)−1 + h4} and O{(nh2)−1 + h4} discussed

in the second paragraph of this section. In these formulas the terms in (nh)−1 and (nh2)−1

represent variance contributions to mean squared error. The fact that variance contributions are

of relatively small order if the proportion of large mi’s is sufficiently high reflects the additional

information that is available about the process Xi in such cases.

Appendix D: Details for (21)

Let X̃i = (X̃i1, . . . , X̃imi)
T and ψi,j = (ψj(Ti1), . . . , ψj(Timi))

T , referring to expansion (16). One

has cov(ξij , X̃i) = θjψ
T
i,j ,

σikl ≡ cov(X̃ik, X̃il) =
∑

j

θjψj(Tik)ψj(Til) + δkl
γ2v[g{µ(Tik)}]
g(1){µ(Tik)}2

,

where δkl = 1 if k = l and 0 otherwise, and

di ≡ X̃i − EX̃i =
(
Yi1 − g{µ(Ti1)}
g(1){µ(Ti1)}

, . . . ,
Yi1 − g{µ(Ti1)}
g(1){µ(Ti1)}

)T

.

Denote cov(X̃i, X̃i) by Σi = (σikl)1≤j,l≤mi
. Then the explicit from of the matrices Aij in (21) is

given by

Ê(ξij |Yi1, . . . , Yimi) = θ̂jψ̂i,jΣ̂−1
i d̂i, (39)

where we substitute µ by µ̂ at (15), γ by γ̂ at (27), and θj , ψj by the corresponding estimates

for eigenvalues and eigenfunctions, derived from σ̂(s, t) to obtain the estimated version.
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Figure 1: Left panel: Smooth estimate µ̂(t) (15) of the mean function of the latent process

X(t) with pointwise 95% bootstrap confidence intervals. Right panel: Smooth estimate of the

covariance function σ̂(s, t) of X(t) (for PBC data).
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Figure 2: Left panel: Plot of PE(γ2) values (26) of the final iteration versus corresponding

candidate values of γ2, where γ̂2 = 1.91 minimizes PE(γ2). Right panel: FIC scores (28) for

final iteration based on quasi-likelihood using the binomial variance function for 10 possible

leading eigenfunctions, where M = 3 is the minimizing value (for PBC data).
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Figure 3: Left panels: Smooth estimates of the first (solid), second (dashed) and third (dash-

dotted) eigenfunctions which explain 69.6%, 26.0% and 3.9% of total variation. Top right panels:

Predicted trajectories of Xi(t) (solid) as in (22) for the three individuals with the largest projec-

tions on the respective eigenfunctions in the left panel, overlaid with the overall estimated mean

function (dashed). Bottom right panels: Observations (dots) and predicted trajectories of Yi(t)

as given in (23), corresponding to the above three subjects (for PBC data).
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Figure 4: Observed responses (dots) and predicted subject-specific trajectories obtained as in

(23) for nine randomly selected subjects (PBC data).
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Figure 5: Scatterplot (dots) and fitted nonparametric regression of the first (left) and second

(right) FPC scores on age at enrollment into the PBC study.
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