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New density functional theory and ab initio computations on the [Fe(CO)5] system are
reported. Careful exploration of basis set and correlation effects leads to ‘‘best ’’ values for
the difference in energy DE(1,3) between ground state 3[Fe(CO)4] and the singlet excited
state of ca. 8 kcal mol�1, and for the bond dissociation energy BDE(3) of [Fe(CO)5] with
respect to ground state fragments 3[Fe(CO)4]+CO of ca. 40 kcal mol�1. A modified form of
the B3PW91 functional is used to explore the potential energy surface for the spin-
forbidden recombination reaction of CO with 3[Fe(CO)4]. A Cs-symmetric minimum energy
crossing point (MECP) between the reactant (triplet) and product (singlet) potential energy
surfaces is found, lying 0.43 kcal mol�1 above the reactants. The rate coefficient for
recombination is computed using a non-adiabatic form of transition state theory, in which
the MECP is treated as the critical point in the reaction. Semi-quantitative agreement with
experiment is obtained: the predicted rate coefficient, 8.8� 10�15 cm3 molecule�1 s�1, is only
six times smaller than the experimental rate. This is the first computation from first
principles of a rate coefficient for a spin-forbidden reaction of a transition metal compound.

Introduction

As well as the many synthetic applications of [Fe(CO)5] as a (very) fundamental building block for
organometallic compounds of iron, it has been the subject of a great many investigations using the
methods of physical chemistry and of physical organometallic chemistry, aimed at understanding
the fundamental aspects of its chemistry.1,2 This is no doubt in part due to its modest size, ready
availability and significant vapour pressure. Another factor is surely that for such a small molecule,
its chemistry encompasses a surprisingly broad range of principles and reaction types. For example,
the reaction which forms the topic of the present paper, i.e. gas-phase recombination of CO with
the [Fe(CO)4] fragment to regenerate iron pentacarbonyl, is in many respects an archetypal ligand
addition reaction to an unsaturated species. Therefore, the theoretical study in this paper should be
of broader interest to computational and experimental transition metal chemists.
Our particular focus of interest here is a set of experiments carried out in the Weitz group.3,4 In

this work, [Fe(CO)5] or some other stable organometallic is photodissociated in a flow tube using
UV light, and the time-evolution of the fragments is monitored by transient infrared spectroscopy.
In the presence of ligands such as CO, N2 or C2H4 in the backing gas, these can then react with
fragments such as [Fe(CO)4] to generate the corresponding saturated species. Many recombination
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reactions of simple ligands with unsaturated metal fragments involve purely attractive potential
energy surfaces and thereby proceed essentially at the gas-collision rate. Reaction (1) is an example
of such a very fast recombination process whose rate has been measured by Weitz et al.3 The
homologous reaction (2) is very different, as it occurs roughly 400 times slower than (1). The
authors explained this observation based on the spin-conserving nature of these two reactions. It
is well established, both from computation (see below) and experiment that the unsaturated
[Fe(CO)3] and [Fe(CO)4] species have spin triplet ground states. Reaction (1) is thereby spin-
allowed. [Fe(CO)5], which has 18 electrons, is of course a singlet. Therefore, reaction (2) is spin-
forbidden, and this may account for its slow rate. Similar slow rates have been observed for related
spin-forbidden reactions.4

½FeðCOÞ3� þ CO ! ½FeðCOÞ4� k ¼ 2:2� 10�11 cm3 s�1 molecule�1 ð1Þ

½FeðCOÞ4� þ CO ! ½FeðCOÞ5� k ¼ 5:2� 10�14 cm3 s�1 molecule�1 ð2Þ

There have been a large number of computational and theoretical papers concerning the
chemistry of [Fe(CO)5]. The bond energies have been addressed by various groups, using ab initio5

and density functional methods.6 Potential energy curves relevant to the photodissociation of
[Fe(CO)5] have also been computed,7 and several studies have attempted to account for some of the
reactivity issues discussed here.2c,6c,d However, these have not been able to provide quantitative
insight into reaction rates, which is the aim of the present study. Also, some of the computed
properties vary considerably from one level of theory to another, and the lack of accurate
experimental data means that there are still considerable uncertainties about the correct value of
these observables, in particular the singlet/triplet energy splitting and the bond energy.

The spin-forbidden character of recombination reaction (2) makes its computational study
highly challenging. In the limit of very strong spin–orbit coupling, spin-forbidden reactions are in
principle no more complex than other reactions: As the system evolves from reactant to product,
coupling between the different spin states will lead to the overall wavefunction smoothly changing
its spin character, from being e.g. mainly ‘‘ triplet ’’ in nature to mainly ‘‘ singlet ’’. However, even in
such cases, the computational challenge is severe, as most electronic structure codes do not include
the spin–orbit coupling part of the Hamiltonian, so that only pure spin states can be addressed, and
the correct adiabatic potential energy surfaces can therefore not be readily obtained.

In fact, as we shall see below, the [Fe(CO)4 ,CO] system is not at the strong coupling limit, so that
this system is inherently non-adiabatic. This means that dynamics will tend to evolve mainly on
zeroth-order potential energy surfaces, of defined spin, with transfer between surfaces occurring,
with a probability dependent on the strength of spin–orbit coupling, in the regions where these
diabatic surfaces cross or at least lie very close in energy. Although this makes the treatment of the
dynamics more complex, it does mean that traditional computational methods can be used to
compute the energy of the different electronic states. It is however necessary to locate the important
regions of the potential energy surfaces where the relevant spin states lie close in energy. In most
cases, these surfaces actually cross, and the problem is reduced to finding the crossing points. One
approach for finding such points treats the system in a pseudo-one-dimensional way, in which each
surface is mapped out for several values of a given reaction coordinate, usually a bond length or
angle. The crossing point between the resulting one-dimensional curves is a rough approximation
to the lowest energy crossing point between the surfaces. However, it is usually more accurate, and
faster, to use a gradient-based method to explicitly locate the exact minimum energy crossing point
(MECP) between the surfaces. Several algorithms to do this have been proposed in the literature.8,9

We10 and others11 have shown how the energy and geometry of MECPs (or more generally of
crossing points) can be used to provide a qualitative estimate of the rate of spin-forbidden reac-
tions. Most relevant to the present work, we have carried out a number of studies of spin-forbidden
processes in transition metal chemistry, including both organometallic12 and bioinorganic13

reactions.14,15

For more precise estimates of rate coefficients, one must either resort to non-adiabatic dynamical
studies, or to non-adiabatic statistical rate theories. The latter basically involve using a multi-
plicative ‘‘ transmission factor ’’, related to the spin–orbit coupling strength, to correct the rate
computed using standard transition state theory, treating, where appropriate, the MECP like the
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transition state of adiabatic statistical methods. Such methods have already been applied to a
number of small gas-phase reactions,16–18 but not, at least as far as we are aware, to transition
metal chemistry.
In the present study, we aim to calculate the rate coefficient for addition of CO to triplet

[Fe(CO)4] using non-adiabatic transition state theory (NA-TST). We will start by presenting the
NA-TST method used here, which is based on the unimolecular method of ref. 16, as already used
by us in conjunction with MECPs.18 We will also explain how the different pieces of input needed
for this study, in particular the properties of the MECP, can be derived from computation. Then,
we will present the technical computational details relating to our calculations. As usual when
applying statistical rate theories, it is extremely important to obtain accurate estimates of the
barrier height, here the energy of the MECP. As mentioned above, the correct splitting between
singlet and triplet states and the bond energy are not very well known. Accordingly, we have
carried out a large number of computations aimed at elucidating these questions, as well as
characterising the reactants and MECP, and we will next present these results. Finally, we shall
present our computed rates for the title reaction, compare these to experiment, and discuss the
implications for other spin-forbidden reactions.

Non-adiabatic transition state theory (NA-TST)

The reaction of interest in the present study is in some respects of the most simple type possible for
a spin-forbidden bimolecular reaction, as illustrated by the schematic potential energy surfaces of
Fig. 1. There is only one step, corresponding to the spin-crossing or MECP. The addition is suf-
ficiently exothermic, the size of the molecule large enough, and the pressure of the experiments to
be modelled3 high enough that only the forward reaction needs to be taken into account, with
collisional cooling certain to occur faster than reverse dissociation. Also, there are no intermediate
species involved. Singlet [Fe(CO)4] lies too high in energy to play a significant role in the kinetics at
room temperature. Finally, the seam of crossing around the MECP, even though the latter is low-
lying (see below), is certain to represent a clear dividing surface between reactant and product
configurations so that variational effects are not expected to be important.
For all these reasons, the rate coefficient can be written in the following relatively simple way:

kðTÞ ¼ 1

hQRðTÞ

Z1
0

NMECPðEÞe�E=kBT dE

In this equation, h is Planck’s constant, QR(T ) is the reactant partition function, including
electronic, vibrational and rotational degrees of freedom for both reactants 3[Fe(CO)4] and CO, as
well as the relative translational motion. NMECP(E) is an effective number of states (or integrated

Fig. 1 Schematic potential energy surfaces for the [Fe(CO)5] system.
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density of states) at the MECP for a given energy E relative to the zero-point level of the reactants,
and kB is Boltzmann’s constant. This equation is identical to that used in normal transition state
theory, except concerning the expression used for the number of states, which is given here as:

NMECPðEÞ ¼
ZE
0

rMECPðE � EHÞpSHðEHÞdEH

As can be seen, this equation involves a second integration, over EH , which is the part of the
total energy E which is in the coordinate orthogonal to the seam of crossing between the two
surfaces. For each value of this energy, the contribution to the integrated sum of states NMECP(E)
is obtained as a product of the density of states within the crossing seam rMECP(E�EH), and a
probability for hopping from one surface to the other, pSH(EH). The first of these terms is similar to
the traditional density of states term used within the dividing surface around a saddle-point: the
crossing seam defines a sub-space within which the available energy E�EH may be distributed in
many different ways amongst the rotational and vibrational degrees of freedom. The term pSH
corresponds in fact to the sum of the probabilities for hopping from one surface to another upon
approaching the seam from below, and of that for hopping upon recrossing the seam in the other
direction. To a first approximation, this term depends only on EH , and can be calculated in a
pseudo-one-dimensional way using either Landau–Zener theory or from WKB theory (using an
expression given by Delos and Thorson).16,19

The general Landau–Zener surface-hopping probability is given by:

pLandau�Zener
SH ðEHÞ ¼ ð1þ PÞð1� PÞ

P ¼ exp
�2pV2

12

hDF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH

2ðE � EMECPÞ

r� �

where (1�P) is the probability of hopping on the first passage, and P(1�P) the probability for (a)
not hopping on first crossing the seam, then (b) hopping upon crossing it again in the reverse
direction, and their sum gives pSH . In this expression, V12 is the electronic matrix element for
coupling between the two surfaces (which is due to spin–orbit coupling in our case), mH is the
reduced mass for movement along the direction orthogonal to the crossing seam, and DF is the
norm of the difference of the gradients on the two surfaces. Note that in the common case of small
spin–orbit coupling, this expression reduces to:

pLandau�Zener
SH ðEHÞ �

4pV2
12

hDF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH

2ðE � EMECPÞ

r

which is essentially the equation given in ref. 18. Note that for energies below or exactly equal to
that of the crossing point, this expression is not defined, and the probability is instead zero.

The alternative expression for the hopping probability, based on WKB theory, is:

pDelos
SH ðE � EMECPÞ ¼ 4p2V2

12

2mH
�h2FDF

� �2=3

Ai2 ðE � EMECPÞ
2mHDF

2

�h2F4

� �1=3
" #

In this equation, �h is Planck’s constant divided by 2p, and F is the geometric mean of the norms
of the gradients on the two surfaces at the crossing point. Ai denotes the Airy function. The
advantage of this second expression is that it is not equal to zero for E below the crossing point,
although it does decrease rapidly in this regime. This allows for tunnelling from one surface to the
other below the crossing point.

The data needed to apply this theory are a set of properties of the two reactants and of the
MECP. For the reactants, all that is needed is the geometry (and hence the rotational constants)
and vibrational frequencies of CO and 3[Fe(CO)4]. For the MECP, one needs its energy relative to
the reactants, its geometry, the vibrational frequencies within the seam of crossing needed to
compute rMECP(E), the reduced mass along the reaction coordinate, the norm of the difference in
gradients on the two surfaces, and their geometric mean, as well as the root mean square spin–orbit
coupling matrix element V12 between the singlet and triplet wavefunctions. These properties will be
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calculated at the levels of theory described below. The methods needed to locate and characterize
the MECP have been described before.9,18,20 Briefly, a script program has been developed which:
(a) generates suitable input files for an electronic structure code; (b) calls the code; (c) extracts from
the output the energies and gradients on the two surfaces; (d) combines these to yield an effective
gradient which is directed towards the MECP; (e) uses this to update the geometry until con-
vergence to the MECP is reached.

Computational details

The bulk of the density functional theory computations have been carried out using the Gaussian
program,21 with a flexible, triple-zeta basis set. Specifically, the all-electron basis sets of Ahlrichs
et al.22 are used, as implemented in Gaussian. These are segmented contractions of the form
(17s9p6d)/[6s3p3d] for Fe and (11s6p)/[5s3p] for C and O. A set of two diffuse, uncontracted 4p-
like functions23 was added to the Fe basis (a ¼ 0.134915 and 0.041843), as well as one f polar-
isation function (a ¼ 1.0) on iron, and one d function each on C and O (a ¼ 0.8 and 1.2,
respectively). Test calculations using larger basis sets (e.g. ‘‘VQZ-VTZ’’ below) led to very similar
results, so we assume the present basis to be more or less converged in size for DFT computations.
Where required, this basis is simply referred to as ‘‘TZV’’. Full geometry optimisation was carried
out for all species. Some DFT computations were also carried out using the MOLPRO 2002.3
code,24 with the same TZV basis.
All ab initio computations were carried out using MOLPRO 2002.3 using a variety of methods

and basis sets. MCSCF and internally-contracted multi-reference perturbation theory25 (CASPT2
for short) calculations were carried out using a variety of active spaces, as discussed in the text. The
MCSCF calculations included all configurations for the chosen active space and wavefunction
symmetry (CASSCF computations). For the CASPT2 calculations, typically only the configura-
tions with a weight in the CASSCF wavefunction exceeding a certain threshold (0.001 to 0.01) were
included in the reference wavefunction. In all cases, these configurations made up more than 99.9%
of the CASSCF wavefunction by weight, and convergence tests were carried out to make sure the
threshold was small enough. To compute bond energies, single-reference MP2 energies for CO were
used in conjunction with CASPT2 energies for [Fe(CO)4] and [Fe(CO)5] (see discussion below).
Also in the CASPT2 calculations, a level shift, typically of 0.3 au, was applied to the virtual orbitals
so as to avoid ‘‘ intruder ’’ state problems.26 In the absence of the level shift, catastrophic con-
vergence problems were sometimes observed. Single-reference CCSD and CCSD(T) computations
were also carried out.27 As discussed in the text, it was found that using density functional theory
‘‘orbitals ’’ to expand the CCSD wavefunction led to improved performance in some cases. In all
correlated calculations, the core Fe (1s2s2p3s3p) and C and O (1s) orbitals were held frozen.
The basis sets used for these ab initio computations covered a broad range of sizes. We will refer

to these basis sets using labels such as ‘‘double-zeta ’’ (DZ) which loosely describe their size. In
detail, the ‘‘DZ’’ basis used the same basis from ref. 22 on the Fe atom, without additional p or f
functions, and the cc-pVDZ basis of Dunning28 on C and O, but without the d polarisation
functions. The ‘‘VDZ’’ basis adds the two diffuse p functions and the f function mentioned above
on Fe, and uses the full cc-pVDZ basis on C and O. The ‘‘VTZ-VDZ’’ basis adds an extra d
function (a ¼ 0.134915) on Fe, and replaces the single f function with a [2f1g] set (af ¼ 3.265953,
0.786787, ag ¼ 2.248) taken from the VTZ correlation-consistent iron basis sets of Ricca and
Bauschlicher.29 The ‘‘VQZ-VDZ’’ basis expands this basis set by uncontracting the most diffuse
primitive d function in the contraction scheme, replacing the diffuse a ¼ 0.134915 d function by a
set of two (a ¼ 0.12, 0.05), and using a larger [3f2g1h] polarisation set (af ¼ 5.138777, 1.51900,
0.44901, ag ¼ 3.705809, 1.011411, ah ¼ 2.48) also taken from ref. 29. This leads to a final basis of
(17s12p8d3f2g1h)/[6s5p6d3f2g1h] size. Finally, the ‘‘VTZ’’ and ‘‘VQZ-VTZ’’ bases use the same
Fe bases as the VTZ-VDZ and VQZ-VDZ sets, but with the larger cc-pVTZ basis28 on C and O. To
test for possible relativistic effects, some CCSD(T) calculations were repeated using relativistic
(Douglas–Kroll) one-electron integrals,30 as implemented in MOLPRO. Negligible changes in
relative energetics were obtained.
For the NA-TST computations, MECPs were optimised using the code developed by one of

us,9,18,20 and the frequencies within the seam of crossing were also computed as described.9,18
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Vibrational densities of state within the harmonic approximation were computed using the steepest
descent method.31 The spin–orbit coupling between singlet and triplet states was computed at the
geometry of the 3[Fe(CO)4] minimum, and at the geometry of the MECP determined at the
B3PW91/TZV level, using the full Breit–Pauli Hamiltonian, as implemented in MOLPRO,32 using
state-averaged CASSCF wavefunctions, and the large, 12 electrons in 12 orbitals active space
described below. The basis set used was a variation on the VDZ basis described above: The Fe basis
was the same, but the cc-pVDZ basis, whose general contraction pattern cannot be treated by the
spin–orbit integral routine, was replaced by the double-zeta basis of ref. 22 for C and O, with one d
function in each case (aC ¼ 0.55, aO ¼ 1.185).

Results: DFT and ab initio calculations

In previous studies of spin-forbidden reactions of transition metal compounds, we have used
standard density functional theory,33 e.g. using the well established hybrid B3LYP functional, to
compute the necessary points on the potential energy surfaces.12–14 Based on this and other pre-
vious experience, this functional should yield reasonable, qualitatively accurate potential energy
surfaces. It is well known, however, that rate calculations require very accurate potential energy
surfaces, as properties such as the barrier height have a very large influence on computed rate
coefficients. In the present case, we are attempting to reproduce a difference between rate coeffi-
cients of roughly 500: this corresponds to an approximate difference in barrier heights of less than 4
kcal mol�1, so our results need to be significantly more accurate than this, at least for the barrier
height. As can be seen from Fig. 1, this also requires the computed singlet–triplet energy separation
DE(1,3) to be well reproduced.

To test whether DFT was capable of providing this level of accuracy for the present system, we
first of all computed the key energetics using a variety of different functionals. This often provides a
useful informal check as to the overall accuracy of DFT approaches:33 when large differences are
observed between functionals, great care should be taken to ascertain which is most reliable. Our
DFT results for the [Fe,(CO)5] system are summarised in Table 1.

It is to be noted first of all that the computed geometries for the different species are found to be
very similar with all the functionals. [Fe(CO)5] has a D3h trigonal bipyramid structure with two
axial and three equatorial ligands. Both singlet and triplet [Fe(CO)4] have C2v minima, which are
best described as truncated forms of the parent pentacarbonyl species, in which one of the equa-
torial ligands has been removed, and some relaxation of the axial ligands towards the vacant site

Table 1 Computed energetics of the [Fe(CO)5] system (in kcal mol�1)
using a variety of different functionals, and the TZV basis. DE(1,3),
BDE(3) and BDE(1) are defined in the text. All results include a cor-
rection for zero-point energy computed at the B3PW91* level. For each
functional, the corresponding percentage of ‘‘exact ’’ exchange is indi-
cated in brackets

Functional DE (1,3) BDE(3) BDE(1) Erel MECP

LDA (0%) �5.91 68.26 62.35 —
BP86 (0%) 0.92 42.94 43.86 —
BLYP (0%) 1.43 34.23 35.66 1.30
G96LYP (0%) 1.61 33.48 35.08
HCTH147 (0%) 0.43 37.32 37.75
BPW91 (0%) 1.64 41.03 42.67 —
B3LYP (20%) 9.78 25.91 35.70 3.69
B1LYP (25%) 12.92 21.03 33.95 —
mPW1PW91 (25%) 12.11 30.42 42.53 1.64
PBE0 (25%) 9.15 34.12 43.26 —
KMLYP (55%) 21.61 21.11 42.72 —
MPW1K (42%) 20.21 20.67 40.88 —
B3PW91 (20%) 9.65 31.64 41.30 2.17
B3PW91* (15%) 6.88 36.47 43.35 0.49
B300PW91** (10%) 4.09 41.53 45.62 —
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has occurred. The details of these geometries have been discussed exhaustively in previous
studies.5,6

Turning to the energies, the agreement between functionals is much less good. Thus, the pre-
dicted DE (1,3) ranges from slightly negative values to as large as 20 kcal mol�1. This too is in line
with previous observations.6 By and large, the results do all follow one general trend, whereby the
splitting increases upon inclusion of gradient corrections and especially of ‘‘ exact ’’, Hartree–Fock
exchange. Thus, the LDA gives a singlet ground state, whereas gradient-corrected ‘‘pure ’’ density
functionals such as the standard BP86 and BLYP, as well as the newer G96LYP34 and HCTH14735

give very small state splittings. Standard hybrid functionals such as B3LYP and B3PW91, which
are based on Becke’s 3-parameter fit to the G2 set of compounds36 (and include 20% exact
exchange), or the newer, B1LYP,37 mPW1PW91,38 and PBE039 functionals, where the proportion
is slightly larger, at 25%, all give values of the order of 10 kcal mol�1. Functionals such as
KMLYP40 or MPW1K,41 which have been developed mainly so as to reproduce more accurately
certain activation barriers for simple hydrogen abstraction reactions, include a very large amount
of exact exchange, and yield very large DE(1,3) values. As will be discussed below, these are cer-
tainly incorrect, which confirms that functionals of this type, whilst valuable in the context for
which they have been developed, are certainly not of general applicability.
The above observations are in fact not really new: previous calculations with the B3LYP

functional give values very close to that in Table 1, and ‘‘pure ’’ functionals have been found to give
the same sort of small splitting obtained here.6 The dependence on the amount of exact exchange
has also been observed more generally for the splitting between high- and low-spin states of metal
compounds.42 In fact, Reiher et al. have found energy splittings to depend almost linearly on the
proportion of exact exchange for a set of Fe(II) and other complexes, and they have found that a
modified form of the B3LYP functional, with 15% exchange (instead of 20%), often gives the best
agreement with experiment for these and other compounds.43 We have reproduced a similar result
for the energy splitting between singlet and triplet [Fe(CO)4], computed at the B3LYP optimised
geometries, with modified forms of B3LYP with different values of the c3 coefficient for admixture
of ‘‘exact exchange ’’. This splitting (uncorrected for ZPE, and with the version of B3LYP as
installed in MOLPRO, which differs slightly from that installed in Gaussian) varies almost linearly
from �2.20 kcal mol�1 for c3 ¼ 0.0 to 7.44 kcal mol�1 for c3 ¼ 0.20 (i.e. the ‘‘normal ’’ B3LYP
functional) to 21.03 kcal mol�1 with c3 ¼ 0.50. As explained further below, we believe that the
modified B3PW91 functional, with c3 ¼ 0.15 as suggested by Reiher et al.,43 gives the ‘‘best ’’
result, and this is also shown in Table 1. Following their notation, we refer to this as B3PW91*.
Results for c3 ¼ 0.10 (B3PW91**) are also shown.
It is to be noted that the bond energies also vary significantly from one functional to another. We

include in Table 1 dissociation energies referenced not only to the triplet ground state (which we
call BDE(3)), but also those (BDE(1)) referenced to the excited singlet fragment, which has an
electronic structure more similar to that of the [Fe(CO)5] molecule. The latter ‘‘ intrinsic ’’ bond
energies vary less strongly than the former, as these in effect also depend indirectly on DE(1,3).
Nevertheless, the choice of the correlation functional, especially, does affect the computed BDE(1),
with the LYP functional giving noticeably smaller values.
Clearly, a reliable set of calibration data is necessary. Unfortunately, there is not much

experimental data for this system, and it is not very accurate. DE (1,3) is known to be positive, so
that [Fe(CO)4] has a triplet ground state.1 However, the fact that even rather weak ligands, such as
methane and xenon, form singlet adducts which are stable at low temperature in matrices, suggests
that the energy splitting between the two states cannot be very large. Concerning the bond energy,
the most reliable determination44 is fairly accurate, at 41� 2 kcal mol�1, but there is some
uncertainty as to whether it refers to BDE(1) or to BDE(3). This point is discussed lower down.
Instead, then, we sought to calibrate our computations using traditional ab initio computations,

using both single- and multi-reference methods. These results are summarised in Tables 2 and 3. In
principle, multi-reference methods should be the most accurate, given the known tendency of
transition metal compounds to display multi-configurational character, and so we therefore started
with these methods. As always in such cases, the most difficult choice to make is that of the
reference, multi-configurational, wavefunction, which most often means selection of an active space
(AS). At first sight, the partly occupied d-orbital manifold might appear to be the most appropriate
choice, which would lead to an eight electron, five orbital (8,5) AS. However, this neglects the most
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important source of static correlation in transition metal compounds: correlation of d-orbital
electron pairs. This effect is due to the fact that in the absence of correlation the resulting over-
estimate of interelectronic repulsion leads to doubly occupied d orbitals having the ‘‘wrong’’ shape,
which makes them inappropriate as reference orbitals for the ensuing PT2 treatment. Within a
multi-reference framework, this effect can be largely treated by using a ‘‘double-shell ’’ of d orbi-
tals5b within the AS: the eight d electrons are now allowed to occupy 10 orbitals (8,10). The second
set of orbitals, which are significantly if weakly occupied, are not ‘‘4d’’ orbitals (their radius is
rather similar to that of the first set of d orbitals, but with an extra radial node), but serve to
describe the radial correlation of the electron pair. This choice of AS, referred to as AS I in Table 2,
leads to a large predicted singlet-triplet energy difference DE (1,3), rather similar to that obtained in
previous ab initio studies.5 The value obtained is fairly stable from one basis to another, suggesting
that basis set effects are not enormous in this system. The bond energies also are consistent. It is
notable that the predicted DE(1,3) is larger than that obtained with almost all the DFTs, except
those with the most exact exchange. This is unlike what has been found by Reiher et al.,43 where the
best agreement with experiment came from including less exact exchange than in functionals such
as B3LYP.

Table 3 CCSD and CCSD(T) computed energetics (kcal mol�1) for the
[Fe(CO)5] system, using various basis sets. All computations were carried
out at the B3LYP/TZV optimised geometries, and do not include a cor-
rection for ZPE

DZ VDZ VTZ-VDZ VQZ-VDZ

CCSD DE (1,3) 12.9 13.1 12.1 10.9
BDE (3) 30.1 30.7 31.5 33.7
BDE (1) 43.0 43.8 43.6 44.6

CCSD(T) DE (1,3) 8.0 7.6 5.7 4.1
BDE (3) 36.4 38.8 40.7 43.5
BDE (1) 44.4 46.5 46.4 47.6

CCSDa DE (1,3) 14.8 14.8 13.7 12.5
BDE (3) 27.7 28.4 29.2 31.4
BDE (1) 42.5 43.1 42.9 44.0

CCSD(T)a DE (1,3) 13.4 11.6 10.0 8.1
BDE (3) 31.4 34.9 36.6 39.6
BDE (1) 44.8 46.6 46.6 47.7

a These coupled-cluster computations used ‘‘orbitals ’’ optimised with the
BP86 DFT method instead of the more usual Hartree–Fock method.

Table 2 CASPT2 computed energetics (in kcal mol�1) for the [Fe(CO)5] system. All compu-
tations were carried out at the B3LYP/TZV optimised geometries, and do not include a cor-
rection for ZPE

DZ VDZ VTZ-VDZ VTZ VQZ-VDZ VQZ-VTZ

AS I DE(1,3) 18.9 16.4 15.4 14.3 — 13.9
BDE (3) 31.0 37.7 39.4 39.5 — —
BDE (1) 49.9 54.1 54.8 53.8 — —

AS II DE(1,3) 12.4 10.3 9.2 8.4 8.0 7.9
BDE (3) 36.2 43.3 45.1 45.0 47.6 45.5
BDE (1) 48.6 53.6 54.3 53.3 55.6 53.4

AS III DE(1,3) 10.6 10.2 7.9 7.8 6.3 6.8
BDE (3) 25.2 33.6 50.6 36.1 59.8 43.2
BDE (1) 35.8 43.8 58.5 43.9 66.1 50.0
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However, further calculations showed that AS I does not lead to a balanced reference function.
The problem is that, like doubly occupied d orbitals, L–M dative bonding is poorly described by a
single-reference ansatz such as Hartree–Fock theory, or indeed with CASSCF methods in which
the bonding pair is not included in the active space, such as with AS I here. This problem is
especially severe where doubly occupied ligand orbitals donate into empty metal d orbitals.5b Thus,
in 1[Fe(CO)4] and

1[Fe(CO)5], there is formally one empty d orbital on the metal (of a1 symmetry for
the tetracarbonyl), which leads to dative bonding with a linear combination of carbon lone pair
orbitals of same symmetry. To describe multi-configurational character in this M–C bonding, it is
desirable to have both of these orbitals in the active space, leading to a (10,11) active space. This
can be somewhat reduced in size by removing one of the second-shell d orbitals of a1 symmetry, as
there is no corresponding d-electron pair. This gives AS II, which is (10,10) for the two singlet
species. The corresponding choice for 3[Fe(CO)4] is to use a double set of d orbitals only for the
three doubly-occupied d orbitals (of a1 , a2 , and b1 symmetry), and to use just the single d orbital
for the singly-occupied a1 and b2 orbitals, where multi-configurational effects are less important. AS
II is therefore of (8,8) size for the triplet state. Although the ‘‘ same’’ active space is therefore not
used for all the species involved for AS II, the inclusion of all near-degeneracy effects in the
reference function should lead to good results for CASPT2 energies.45

As can be seen in the Table, the DE(1,3) calculated with AS II is much smaller, intermediate in
value between that obtained with hybrid and pure functionals. The BDEs are not necessarily
reliable in this case (as with AS III, below), because it is not immediately clear how the AS should
be treated upon dissociation: At the 1[Fe(CO)5] minimum, the AS includes, at least to a certain
extent, the CO lone pair, whereas this has to be treated in a single-reference ansatz in the dis-
sociated moiety.
Finally, we also used the larger AS III, which is designed using the same general principles, but is

chosen to be larger and more consistent: occupied ligand orbitals of a1 and b2 symmetry were
included for all species (12 electrons), and a second shell of d orbitals was added for all d orbitals.
This leads to a (12,12) AS for all species. As can be seen in the Table, the predicted DE (1,3) is
rather close to that obtained with AS II, which agreement, together with the fact that both of these
ASs have been explicitly designed to reproduce all the near-degeneracy effects (in contrast to AS I
where metal–ligand bonding effects were not included) suggests that these values are close to the
correct value.46

Further evidence for this comes from the single-reference coupled-cluster calculations. These
were not possible using the large VTZ and VQZ-VTZ bases, however, as can be seen in Table 2, the
results with VQZ-VDZ and even VTZ-VDZ are by and large similar to those with the larger basis
sets. At first sight, coupled-cluster methods may seem inappropriate for cases where the wave-
function is deemed to be multi-configurational. However, as discussed above, this is only partly so
for this system, where the need for multiple references is more due to the poor quality of the
Hartree–Fock reference than to the contribution of any other significant, chemically relevant,
configurations. There are some indications that the single-reference method is only of borderline
applicability from the value of the t1 diagnostic, which measures the weight of single excitations
and thus of the importance of other configurations.47 This is between 0.04 and 0.06 for all the iron
species, depending mainly on the basis set, as against a desirable value of 0.02 or smaller. This casts
some doubt on the coupled-cluster energetics. However, the use of DFT (BP86) ‘‘orbitals ’’, which
have been optimised using a functional which includes correlation, and can thus be expected to give
a better n-electron basis for the description of the correlated wavefunction, leads to much smaller t1
values, of 0.02–0.025. The total energies obtained are by and large similar to those with the normal,
Hartree–Fock orbital basis, except for 3[Fe(CO)4] where the energies are a bit lower.
The relative energetics at the coupled-cluster level are by and large similar to those obtained with

CASPT2 with AS II and III. The bond energies are more reliable, as there is no question about the
effect of splitting the active space. Also, it is to be noted that the use of BP86 orbitals leads to a
lower relative energy of 3[Fe(CO)4], and thus to larger DE(1,3). Our feeling is that the CCSD(T)/
VQZ-VDZ results, using BP86 orbitals, are the most reliable, giving DE(1,3) of 8.1 kcal mol�1, and
BDE(3) of 39.6 kcal mol�1. After adding the zero-point energy correction from the B3PW91*
calculations, this gives respectively DE(1,3) ¼ 8.8 kcal mol�1 and BDE(3) ¼ 36.0 kcal mol�1.
However, these results are still not fully converged: BDE(3) is probably somewhat too small, and
DE(1,3) still somewhat too large.
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Returning to the DFT results, we observe that the modified B3PW91* functional, with the
amount of exact exchange reduced to 15%, gives the results closest to those we believe would
emerge from CCSD(T) calculations with larger basis sets. We have therefore mainly used this
functional in exploring the surface-crossing behaviour, and in our rate computations.

MECP calculations and NA-TST results

Following the calibration studies described in the previous section, we also located the MECP for
intersection of the reactant triplet surface with the singlet surface using several different DFT
functionals, and the results are shown in Table 1. The geometry of the MECP was found to be more
or less the same using the different methods. However, these structures are remarkable in one way
which is important to discuss. Thus, based on the D3h structure of [Fe(CO)5], and the C2v , trun-
cated trigonal bipyramid, structures of both singlet and triplet [Fe(CO)4], it would perhaps be
natural to assume that the lowest crossing occurs at C2v geometries corresponding to an extended
Fe–C bond for one of the equatorial carbonyl ligands. In fact, we made this very assumption in our
previous, unpublished, study of the MECP in this system, cited in the review, ref. 14a. Another
study aimed at understanding the surface crossing behaviour in this system,6d in which the partial
optimisation method was used to study the crossing point, also made this assumption. In fact, this
is in some ways inevitable in the latter case, as this method involves carrying out a set of geometry
optimisations at fixed values of a given geometric coordinate, chosen here to be the equatorial
Fe–C distance. On the singlet surface, the minimum energy path for dissociation is presumably of
C2v symmetry so the set of partially optimised structures on that surface will be C2v symmetric.

We have located MECPs under the constraint of C2v symmetry, at the B3LYP, B3PW91 and
B3PW91* levels, with the TZV basis. These lie 6.9, 6.5 and 5.4 kcal mol�1, respectively, above the
separated reactants (without correction for ZPE). The first of these values is in good agreement
with the value of 5.2 kcal mol�1, derived at the B3LYP/SVP level reported in ref. 14a. However,
upon calculating the vibrational frequencies within the seam of crossing at the C2v MECP,9,18 it
becomes apparent that these points are not minima within the seam of crossing: in each case, three
imaginary frequencies are obtained, corresponding to various symmetry-breaking bending motions
of the incoming carbonyl.

Accordingly, we searched for a less symmetric MECP, and found one at the geometry shown in
Fig. 2. This structure can be described as involving ‘‘ sideways ’’ approach of the CO to 3[Fe(CO)4],
both in terms of the incoming CO (cFe–C–O ¼ 135�) itself, and of the [Fe(CO)4] moiety and its
C2v axis (Ceq–Fe–Cincoming angles: 99

� and 163�, vs. 129� for both angles in the C2v MECP). The
reason for this approach seems to be that the triplet potential energy surface is much less repulsive
along this coordinate: along the C2v axis, there is a repulsive three-electron two-centre interaction
between the CO lone pair and the singly occupied d orbital of a1 symmetry. With the side-on
approach, the CO lone pair is less oriented towards the metal, thus less repulsive, and the b2 singly-
occupied d orbital on the metal can form a back-bonding interaction with the p* orbital on the CO.

Fig. 2 Two views of the B3PW91*/TZV structure of the MECP between singlet and triplet states of
[Fe(CO)5]. On the left, ‘‘ side-on’’; on the right, looking down the approximate C2v symmetry axis of the
[Fe(CO)4] moiety.
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Indeed, at the crossing point, the triplet gradient is only very weakly repulsive, and geometry
optimisation on the triplet surface, although it does lead to dissociation of the Fe–C bond, involves
a very flat potential energy curve. We have not found any weakly bound triplet complex: although
such a van der Waals complex certainly exists, the interaction will be very weak, and will be poorly
described by DFT methods. Along the Cs approach pathway, the incoming CO ligand can
approach much closer on the triplet surface before significant repulsion sets in, and thereby, the
intersection with the attractive, singlet, curve, occurs at lower energies. In agreement with this
discussion, the triplet wavefunction at the Cs MECP involves significant spin density on the
incoming CO ligand (0.23 unpaired electrons), as predicted from the donation into the p* orbital.
Also, r(Fe–C) is much smaller for the Cs MECP (2.24 Å) than for the C2v one (2.65 Å). All the
frequencies at the Cs MECP are real.
The energetics of the Cs MECP are given, for the different DFTs where it has been located, in

Table 1. It can be seen that the barrier is very low, especially at our preferred B3PW91* level. One
interesting aspect is that the height of the MECP does not vary in any immediately obvious way
with the energy splitting DE(1,3), as would be suggested by considering Fig. 1. Thus, the BLYP and
mPW1PW91MECPs have very similar relative energies, even though the state splitting is extremely
small in the first case, and large in the second. This is because, as we have discussed before,12–14 the
one-dimensional picture is only qualitatively correct for understanding surface crossings:
1[Fe(CO)4] and

3[Fe(CO)4] have significantly (if not radically) different geometries,5,6 and some
energy needs to be provided to bring them both to the same geometry: this factor may be as
important as the differing behaviour along the ‘‘ reaction coordinate ’’ in establishing the height of
the MECP.
We have also computed the other properties needed for the NA-TST computations at the

MECP. Most of these, such as the slopes on the two surfaces, or the reduced mass in the direction
orthogonal to the seam of crossing (9.2 u), are obtained directly from the MECP computation. We
have also calculated the rms spin–orbit coupling, at the CASSCF level, using AS III as described
above, and get a value of 66 cm�1. At the optimum geometry of 3[Fe(CO)4], the rms spin–orbit
coupling is somewhat smaller, at 29 cm�1.
Putting all these elements together leads to the predicted NA-TST results, shown in Fig. 3.

As can be seen, the quantitative agreement with experiment is not perfect – the computed rate

Fig. 3 Arrhenius plot of the computed rate coefficients for addition of CO to 3[Fe(CO)4]. The heavy line uses
the WKB-derived expression for pSH in computing k, the light line uses the Landau–Zener expression, and the
dot–dashed line, provided for comparison (see text) assumes adiabatic behaviour (pSH ¼ 1). The dot is the
experimental rate at room temperature from ref. 3.

Faraday Discuss., 2003, 124, 129–143 139



coefficient at room temperature, 8.8� 10�15 cm3 molecule�1 s�1, is too low, by a factor of six. Given
the approximate nature of the NA-TST theory, and the remaining uncertainties concerning the
potential energy surfaces, agreement to within better than one order of magnitude cannot in any
case be expected.18 For example, increasing or decreasing the energy of the MECP by a small
amount, 0.5 kcal mol�1, (which is a conservative estimate for the error on this quantity) roughly
halves or doubles, respectively, the computed 300 K rate coefficient. Doubling or halving the rms
spin–orbit coupling, V12 , again provides a conservative uncertainty for the inaccuracy of the non-
adiabatic treatment, and leads to rate coefficients roughly four times larger or smaller, respectively.
Finally, it is to be noted that for both the 3[Fe(CO)4] reactant and the MECP, there are several very
low frequencies (5 and 7, respectively, below 100 cm�1), whose contribution to the partition
function and density of states may be poorly described by the standard approximations for the
harmonic oscillator.

Taking into account these inevitable uncertainties,18 we believe that the computed 300 K rate
coefficient is in fact in excellent semi-quantitative agreement with the experimental value. This lends
support to the NA-TST approach, and to the accuracy of our computed potential energy surfaces.
Computed rates using potential energy surfaces obtained with different methods are in less good
agreement. For example, using the B3PW91/TZV MECP, which lies 2.17 kcal mol�1 above the
reactants, the computed rate coefficient is 8.5� 10�16 cm3 molecule�1 s�1, one order of magnitude
smaller than that obtained using B3PW91*, which is already somewhat too small.

Overall, our computations are in agreement with many other experimental observations, and
also provide much additional insight. First, the computed rate is confirmed to be significantly
slower than the gas-collision rate, as was found experimentally. This emphatically confirms that the
difference in rate with the analogous spin-allowed CO+ 3[Fe(CO)3] reaction is due to the spin-
forbidden nature of the reaction. The need to change spin leads to two differences compared to
spin-allowed reactions: instead of only having a variational barrier,48 there is a true, albeit small,
energy barrier to surmount, and the system must undergo a somewhat improbable hop from one
surface to the other at the MECP. It is possible to quantify the contribution of both of these effects
to the rate reduction by considering the ratio of the computed rates with and without non-adiabatic
behaviour. The ‘‘adiabatic ’’ rate coefficient plotted in Fig. 3 is obtained using traditional transition
state theory, using all the properties of the MECP but treating it instead as an adiabatic TS
(equivalently, pSH is set to 1). As can be seen, this rate coefficient is about 20 times higher than the
non-adiabatic one at all temperatures. Since the overall rate coefficient is ca. 500 times lower than
for the analogous spin-allowed reaction, it appears that this reduction in rate is due in roughly
equal parts to the presence of the barrier, and to the need for surface-hopping.

Another interesting observation is that the temperature dependence is weak: between 250 and
400 K, the computed WKB-derived rate can be fitted to the Arrhenius equation with an apparent
Ea of 1.2 kcal mol�1. In the experiments, a very limited temperature range only was accessible and
accordingly no change in rate was observable within experimental error. Smirnov49 has measured
the kinetics of shock-tube thermal dissociation of [Fe(CO)5], and modelled them using a complex
kinetic scheme of dissociation and recombination reactions. The best agreement with experiments
involved a barrier to reverse addition of CO to [Fe(CO)4] of 2.5� 1.5 kcal mol�1, but this result was
obtained under the assumption that pSH ¼ 1, which can be expected to lead to an overestimate of
the barrier. It is to be noted that the temperature dependence is close to that of the ‘‘adiabatic ’’
rate, showing that the spin-hopping constraint does not lead to an increase in the activation energy
(enthalpic effect), but only to a decrease of the rate at all temperatures (entropic effect). This is
explained by the fact that the integration to give N(E) is dominated at all energies by the terms with
a small amount of energy EH in the direction orthogonal to the crossing seam. This is because the
hopping probability pSH is largest for small EH , and so is the density of states in the orthogonal
modes. Since the latter increases with energy in the same way for non-adiabatic and adiabatic
reactions, the energy and temperature dependence of the rate coefficients are also similar in both
cases. It can also be noted that the WKB-derived expression for the hopping probability and the
Landau–Zener one give very similar results, suggesting that tunnelling does not play an important
role in the present reaction.

The observation that the activation barrier is small is important: it means that the activation
barrier of the reverse reaction, unimolecular dissociation of [Fe(CO)5], should not exceed by much
the endothermicity of the reaction. This means that the experimental determination of the BDE,44
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based on measuring this activation energy, and hitherto assumed to refer to BDE(1), is much more
likely to pertain to BDE(3), and it can be seen from Tables 1 and 3 that our computed values for
BDE(3) are in good agreement with the experimental value (41�2 kcal mol�1), whereas those for
BDE(1) agree less well.

Conclusions

In this contribution, we have tried to show how accurate DFT and ab initio computations, com-
bined with an appropriate form of non-adiabatic transition-state theory, can be used to predict the
rate coefficient for a spin-forbidden ligand recombination reaction. Whilst the size of the system
involved is relatively small, accurate calculations for metal complexes of this type are highly
challenging. We have shown how the CASPT2 level, and especially the CCSD(T) level, can be used
to derive fairly accurate energetics, provided great care is taken in the choice of active space, of
basis set, of reference orbitals, etc. It is apparent from Tables 2 and 3 that very different values can
be obtained from different calculations: Reliable calibration can only be obtained from a hierarchy
of calculations! Despite having carried out a broad range of computations, our best estimates for
the energy difference between singlet and triplet [Fe(CO)4], 8 kcal mol�1, and of the first bond
energy of [Fe(CO)5], BDE(3), 39.6 kcal mol�1, do not seem to be fully converged with basis set size,
and must therefore still be treated with some caution.
We have also shown how the MECP for the title reaction can be located and used to characterise

reactivity. Full characterisation of the MECP is essential: it is only through the computation of
frequencies that we realised that the true MECP is not of C2v symmetry, as had been previously
assumed. Finally, application of the NA-TST method gives useful insight into the origin of the slow
rate of this reaction, gives semi-quantitative agreement with the experimental rate, and allows us to
reinterpret the experiment which was used to derive the bond energy of [Fe(CO)5], thereby giving
a value in good agreement with our computations.
Finally, the experience gained in this study should be transferable to many other spin-forbidden

reactions, e.g. the other reactions studied by Weitz et al.,3,4 and the recombination of CO with
haem compounds.13
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