
Modelling Stochastic Timed Systems
Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, Ric Klaren

Formal Methods and Tools Group, Faculty of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

E-mail: {dargenio, hermanns, katoen, klaren}@cs.utwente.nl

Abstract— Real-time, performance and reliability as-
pects are of vital importance in the entire system de-
sign trajectory. Therefore, modelling techniques are
needed that cover quantitative system aspects. This pa-
per presents MoDeST, a modelling language that allows us
to specify soft real-time constraints (i.e., stochastic timing)
as well as hard real-time constraints. MoDeST combines
conventional programming constructs – such as iteration,
alternatives, atomic statements, and exception handling
– with means to describe complex systems in a compo-
sitional manner. The language is influenced by popular
and user-friendly specification languages, and deals with
compositionality in a light-weight process-algebra style. In
summary, MoDeST (i) covers a very broad spectrum of
modelling concepts, (ii) possesses a rigid, process-algebra
style semantics, and (iii) yet provides modern and flexible
specification constructs.

Keywords— hard real-time, soft real-time, probabilistic
behaviour, specification language, process algebra

I. Introduction

System design is primarily focussed on functional
aspects. Non-functional aspects such as reliability
and performance typically play a role – if at all – in
the final stages of the design trajectory. To overcome
this problem, sometimes identified as the insularity
problem of performance engineering [14], [11], it has
been widely recognised that quantitative system as-
pects should be considered during the entire system
design trajectory. Although a complete insight in the
quantitative aspects might not be present at each de-
sign stage, even with partial information (or rough es-
timates) design alternatives may be rejected early due
to unsatisfactory performance or dependability char-
acteristics. For this purpose, modelling techniques
used by system engineers or those that provide an
easy migration path for users need to be adapted to
take quantitative system aspects into account.

This has resulted in extensions of light-weight for-
mal notations such as SDL and UML on the one hand,
and the development of a whole range of more rigor-

Supported by the STW-PROGRESS project TES-4999,
”HaaST: Verification of Hard and Softly Timed Systems”, and
the NWO project 612.069.001.

ous formalisms based on e.g., stochastic process alge-
bras, or appropriate extensions of labelled transition
systems. Light-weight notations are typically closer
to engineering techniques, but mostly lack a formal
semantics; rigorous formalisms do have such formal
semantics, but their learning curve is typically too
steep from a practitioner’s perspective. In this paper,
we propose a description language that is intended to
have a rigid formal basis (i.e., semantics) and incor-
porates several ingredients from light-weight notations
such as exception handling1, modularisation, atomic
statements, iteration, and simple data types. The se-
mantics enables formal reasoning and provides a solid
basis for the development of tool support, whereas
the light-weight ingredients are intended to pave the
migration path towards engineers.

The modelling language presented in this paper,
called MoDeST (a MOdelling and DEscription lan-
guage for Stochastic and Timed systems) contains the
following key features:
• light-weight control structures such as iteration, and
exception handling
• simple data types that can be user-defined using
modularisation (packages)
• composition and abstraction mechanisms to struc-
ture specifications
• atomic statements to control the granularity of tran-
sitions
• non-deterministic and probabilistic alternatives
• non-deterministic and probabilistic timing (soft and
hard real-time constraints).
Organisation of the paper. Section II discusses the
main rationales behind the development of MoDeST.
Section III introduces the language ingredients of
MoDeST in an incremental way. Section IV reviews
the syntax and semantics. Section V briefly addresses
the current status of our tool support for MoDeST,
while Section VI concludes the paper. The paper fo-
cuses on behavioural aspects and omits considerations

1Exception handling in specification languages has received
scant attention. Notable exceptions are Enhanced-LOTOS [12]
and Esterel [3].

Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, Ric Klaren

on data manipulation.

II. Design rationales

Important rationales behind the development of the
description language, called MoDeST (Modeling and
Description language for Stochastic Timed systems),
are:
• Orthogonality. The language has been set up in an
orthogonal way such that timing and probabilistic as-
pects can easily be added to (or omitted from) a spec-
ification if these aspects are of (no) relevance.
• Usability. Syntax and language constructs have
been designed to be close to other commonly used
languages. The syntax resembles that of the pro-
gramming language C and the modelling language
Promela [17]. Data modularisation concepts and
exception handling mechanisms have been adopted
from modern object-oriented programming languages
such as Java [13]. Process algebraic constructs have
been strongly influenced by FSP (Finite State Pro-
cesses [19]) a simple, elegant calculus that is aimed at
educational purposes.
• Practical considerations. The design of the language
and the development of accompanying prototype tool-
support have taken place hand-in-hand. Considera-
tions about the tool handling of language constructs
have been a driving force behind the language devel-
opment.
• Expressiveness. We have identified a handful of se-
mantic concepts which are well-established in the con-
text of computer-aided verification and modelling for-
malisms for stochastic discrete event systems:
(1) Action nondeterminism is often used in concur-

rent system design to leave parts of the description
under-specified, and is an appropriate means to re-
flect that the order of events in concurrent executions
is out of the control of a modeller.
(2) Probabilistic branching is a way to include quan-

titative information about the likelihood of choice al-
ternatives. This is especially useful to model random-
ized distributed algorithms, but also suitable to repre-
sent scheduling strategies, quantify data dependencies
etc. on an abstract level.
(3) Clocks are a means to represent real time and to

specify the dynamics of a model in relation to a certain
time or time interval, represented by a specific value
of a clock.
(4) Delay nondeterminism allows one to leave the

precise timing of events unspecified. In many cases,
the system dynamics depends on events taking place
in some time interval (e.g., prior to a time-out) where

it is left unspecified when in the interval the event will
occur.
(5) Random variables are often used to give quan-

titative information about the likelihood of a certain
event to happen after or within a certain time interval.

While (1) and (2) affect the dynamics of a model
via the (discrete) set of next events, (4) and (5) are
means to affect the model dynamics by the (continu-
ous) elapse of time. Thus, (1) and (4) describe two dis-
tinct types of nondeterminism, while (2) and (5) rep-
resent distinct types of probabilistic behaviour. We
believe that each of these concepts is indispensable if
striving for an integrated consideration of quantita-
tive system aspects during the entire system design
trajectory. However, we are not aware of any other
formalism, model, or tool that is powerful enough to
cover the complete spectrum spanned by this classifi-
cation. Some approaches however come close, among
them [22], [4], [1], [6], [20].

III. A gentle language primer

This section introduces the core language features
of MoDeST by specifying a real-time cashier. This
is done in an incremental manner starting from an
untimed, non-probabilistic description.

A. Functional behaviour

processCashier() {
do{:: get prod ; alt {

:: cash
:: set price ;

cash }
}

}
The system is informally described as follows. In a su-
permarket customers arrive at the cashing point and
queue in order to pay their selected products. The
customers provide their products on a conveyor belt
and the cashier takes the products one-by-one from
the belt (this is modelled by action get prod). The
product is either cashed (action cash), or in case there
is no price tag, the cashier calls for assistance to es-
tablish the price (action set price) after which cashing
takes place (action cash). This behaviour is described
by the above process, where ; denotes sequential exe-
cution and :: is used as a separator for the different
alternatives of the choice construct alt . This construct
is a way to model action nondeterminism. The cashier
repeats his (or her) behaviour (indicated by do{:: . . .}
which is executed repeatedly, unless a break occurs).

28 PROGRESS 2001

Modelling Stochastic Timed Systems

B. Probabilistic branching

In case more information is available about the like-
lihood with which a customer delivers a product with-
out price tag, the nondeterministic choice may be re-
placed by a probabilistic choice. This yields the pro-
cess below, where weights (in the form of positive re-
als) are used to determine the likelihood with which a
certain alternative should be chosen. Here, price infor-
mation is available with probability 0.98 and the price
tag is absent with probability 0.02. In the terminology
of Section II, palt is a means to incorporate probabilis-
tic branching. Each probabilistic choice-construct is
required to be action guarded, i.e., immediately pre-
ceded by an action.

processCashier() {
do{:: get prod palt {

:49: cash
: 1: set price;

cash }
}

}
C. Exception handling

Another uncommon but very serviceable language
construct is the possibility to raise and handle excep-
tions. To illustrate this concept, we slightly adapt the
description of the cashier as depicted below. In case a
product cannot be cashed due to an absent price tag,
the cashier calls for assistance by raising an exception
(modelled by action no price of exception type). On
handling this exception the price is determined and
the product is cashed.

processCashier() {
do{:: try { get prod palt {

:49: cash
: 1: throw(no price) }

}
catchno price {

set price;
cash }

}
}

In a construct like try {P } catch e {Q } the body P
in general models the normal behaviour, whereas if ac-
tion e occurs while executing P , an exception is raised
that shall be handled by Q, i.e., control is passed from
P to Q. Note that compared to our previous specifica-
tion, an additional action (of exception type) has been
introduced to signal the occurrence of the exceptional
situation.

D. Adding real-time constraints

So far, our descriptions were timeless, i.e., we did
not include any timing considerations with respect to
the activities involved. In the next step, we will put
some simple timing constraints on the cashier. Like in
timed automata [2], the elapse of time in MoDeST is
modelled by means of clock variables. Values of clock
variables increase linearly as time progresses. For in-
stance, in order to impose a delay of at least 120 time
units between catching the exception no price and de-
termining the price of the product at hand (set price),
we equip the previous description with clock variable
y, and obtain the following process:

processCashier() {
do{:: try { get prod palt {

:49: cash
: 1: throw(no price) }

}
catchno price {

y = 0 ;
when(y ≥ 120)

set price;
cash }

}
}

Clock y is reset just after catching the exception
no price and the price can be determined at any time
point after a delay of at least 120 time-units as indi-
cated by the when-clause. In fact, each action needs to
be preceded by a when() constraint, but unless other-
wise specified when(true) is a default constraint (that
can be omitted).

E. Hard real-time constraints

When-clauses thus indicate when a certain action
may (i.e. is allowed to) happen. Similar to location
invariants in safety timed automata [15] and deadlines
in timed automata with deadlines [5], we need a sepa-
rate mechanism to force certain actions to happen at
some time instant. To that end, we use deadlines. For
instance, the process

processCashier() {
do { try { get prod palt {

:49: cash
: 1: throw(no price) }

}
catchno price {

y = 0 ;
urgent(y ≥ 240)

Workshop on Embedded Systems 29

Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, Ric Klaren

when(y ≥ 120)
set price;

cash }
}

}

specifies that set price is enabled from 120 time units
after catching the exception (as before), and that it
should happen before 240 time units after the catch
– as indicated by the urgent-clause. More precisely, if
the exception is caught at time t, say, then set price
will happen at some time instant t+∆ where ∆ is
nondeterministically chosen from the closed interval
[120,240]. Thus, differences in guards and deadline
constraints induce delay nondeterminism.

In general, if an action is guarded by urgent(B),
for boolean expression B, it must be executed as
soon as B becomes true. Therefore, a system is al-
lowed to idle as long as none of its activities becomes
urgent. The language user can influence whether
by convention activities are assumed to be urgent
(guarded by urgent(true)), or non-urgent (guarded by
urgent(false)), via setting a flag in the preamble of a
MoDeST specification.

F. Soft real-time constraints

As a next step, we impose a delay on the cash-
ing of the cashier, i.e., on action cash. Depending
on (the price of) the product, environmental circum-
stances (such as the mood of the cashier, the time of
the day), and so on, the duration of cashing may vary.
We assume that cashing takes between 10 and 20 time-
units. If no more information is available this could be
modelled in a similar way as we just treated set price.
However, we now assume that the duration of cashing
is uniformly distributed over the interval [10, 20]. In
this case, the modelling as just above does not suf-
fice, as it would choose a time instant nondetermin-
istically without taking the likelihoods into account.
To that end, we equip the specification with a clock
variable x, say, and add a float variable xd, say, that
is used to store a sample value drawn from a prob-
ability distribution. Thus, the occurrences of cash
in process Cashier is replaced by invoking a process
Cashing depicted below. In the latter, the statement
[. . .] contains a set of assignments that are executed
atomically, i.e., without interference with executions
of other processes in the system. In this example, the
variable xd is assigned a (float) value according to a
uniform distribution on interval [10, 20], and clock x
is reset. The urgent- and when-clause make sure that

cash takes place as soon as x has reached the value
xd.

processCashier() {
do {:: try { get prod palt {

:49: Cashing()
: 1: urgent(true)

throw(no price) }
}
catchno price {

y = 0 ;
urgent(y ≥ 240)
when(y ≥ 120)

set price;
Cashing() }

}
}
processCashing() {

[xd = U [10, 20] , x = 0];
urgent(x ≥ xd)
when(x ≥ xd)

cash
}

G. Overall system specification

The overall system could be modelled by, for in-
stance:

exceptionno price;
clock x, y;
floatxd;
patient get prod , cash, set price;

par {
:: Arrivals() ;
:: Queue(N) ;
:: Cashier()

}
where N is the parameter (i.e., the length) of the
queue. Variables do not need to be declared globally,
a variable (or action, or exception) can equally well
be declared local to a process. Processes are put in
parallel via the par{::. . .} construct. These processes
execute their activities independently from each other,
except that common (non-local) actions need to be ex-
ecuted synchronously, à la CSP [16]. One of the key-
words appearing in the preamble needs further expla-
nation. We distinguish patient and impatient actions.
If a patient action is common to multiple processes,
then the synchronized action becomes urgent as soon
as all partners require urgency. In contrast, a process

30 PROGRESS 2001

Modelling Stochastic Timed Systems

that intends to synchronise on an impatient action is
not willing to wait for the partner. Thus a synchro-
nized impatient action is urgent as soon as at least
one synchronization partner requires urgency.

IV. Syntax and semantics

A. Syntax

The set of processes of MoDeST is given by the fol-
lowing grammar:

P ::= stop | ProcName(e1, . . . , ek)

| error | alt{::P1 . . . ::Pk}
| when(b) P | urgent(b) P

| a palt {:w1 :asgn1 ; P1 . . . :wk :asgnk ; Pk}
| a | throw(excp)

| try{P} catch ex1 {P1} . . . catch ex k {Pk}
| break | do{::P1 . . . ::Pk}
| P1; P2 | par{::P1 . . . ::Pk}
| hide{a1 , . . . , ak} P

| extend{a1 , . . . , ak} P

| relabel {a1 , . . . , ak} by {a ′1 , . . . , a ′k} P

where, wi is a positive integer representing a weight,
a, a ′i are (either patient, impatient or invisible)
actions, ai is an (patient or impatient) action,
ex , ex i are exceptions, b is a boolean expression,
ei is an expression not containing random vari-
ables, and asgn i is a list of assignments of the form
[x1 = e1, x2 = e2, . . . , xn = en] where xi is a vari-
able. A MoDeST process is defined by

process ProcName(t1 x1, . . . , tk xk) {dcl P}

where ti is a valid type, dcl is a sequence of
declarations possibly including process definitions,
ProcName is a process name and P is as before. Type
indications are often omitted for convenience.

B. Some handy shorthands

MoDeST provides some further useful operations
which are shorthand notations for some common con-
structions. For instance, both alt and do allow an else
alternative (as in Promela). else is a shorthand that
can be calculated at compile time, e.g.,

alt{::when(b) P ::when(b′) P ′ ::else Q}
= alt{::when(b) P ::when(b′) P ′ ::when(¬(b ∨ b′)) Q}.

In a probabilistic alternative, either assignments or
processes (but not both) can be omitted, e.g., a palt
{:1 : [y = 3] :2 : PN(4) } should be interpreted as
a palt {:1 : [y = 3]

√
:2 : [] PN(4) }. Notice however

that, strictly speaking, the last process is not a legal
MoDeST expression since

√
is not in the language.

The following shorthands for assignment are also al-
lowed in MoDeST:

[x = e, y = e′]
= urgent(true) tau palt {: 1 : [x = e, y = e′]

√}

and
x = e = [x = e].

Furthermore, invariants like in safety timed automata
[15] can be defined by

invariant(b)P = urgent(¬b)when(b)P.

MoDeST also provides other useful forms of relabelling
apart from relabel and hide, and standard program-
ming constructs are provided, such as:

while(b){P} = do{::when(b) P ::else break}.

This defines the behavioural part of MoDeST. The
data part is described in [18]. In a nutshell, we allow
simple and structured data types, and modularization
(packages). Object-oriented enhancements (classes,
sub-typing, polymorphism) are under development.

C. Semantics

The formal interpretation of a MoDeST specifica-
tion is defined in terms of a state transition diagram
which is extended with clock variables in order to
keep track of the passage of time. This is similar
to the popular model of timed automata for real-
time systems [2]. Our model integrates timed au-
tomata [2] (using the deadline style of [5]), stochas-
tic automata [9], [8], and simple probabilistic au-
tomata [23]. These three models have been carefully
selected from a wide range of possible alternative mod-
els. They were chosen because they complement each
other very well and yield precisely the desired expres-
siveness as discussed in Section II. Due to their indi-
vidual compositional properties, the resulting model
is elegant to come up with a compositional semantics
for MoDeST.

In a nutshell, the model has the following ingredi-
ents. Locations represent the current state of the sys-
tem (that includes the values of variables and clocks),
while edges indicate how the system can evolve from

Workshop on Embedded Systems 31

Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, Ric Klaren

��

��

��

��

�	
�cash
w(x ≥ xd)
u(x ≥ xd)

no price
u(true)

0.020.98

get prod

u(true)

tau

tau

y := 0

x := 0
xd := U [10, 20]

u(true)

set price

u(y ≥ 240)
w(y ≥ 120)

Fig. 1. A stochastic timed automaton of the cashier

one location to another. The mapping of MoDeST ex-
pressions onto these automata, called stochastic timed
automata, is defined in [10]. Edges are labelled with
three attributes: an action that is offered once the
edge is executed, a guard, and a deadline. Guards and
deadlines are both logical expressions over variables,
possibly including clock variables. An edge labelled
with guard g outgoing from location l is enabled if
g holds given the current values of the variables. If
in addition the deadline d holds, then the system is
obliged to execute the edge before time progresses.
Due to this fact, the system is allowed to wait in lo-
cation l as long as no deadline in one of its outgo-
ing edges becomes true. Once the edge is executed,
the system moves to location l′ with some appropri-
ate probability while assigning values according to an
indicated assignment. An example clarifies this.

Fig.1 depicts the stochastic timed automaton that
corresponds to the final Cashier specification of Sec-
tion III. Locations are represented by circles. A prob-
abilistic edge is represented by a solid line from which
dotted arrows fan out. The solid line is labelled by the
guard, deadline, and action. Each dotted arrow repre-
sents a probabilistic alternative, and is labelled with a
probability value and a set of assignments. Their tar-
get is the next location. Deadlines are prefixed by a ‘u’
(urgent) and omitted if they are false, and guards are
prefixed by a ‘w’ (when) and omitted whenever they
are true. Trivial probabilities and empty assignments
are typically also omitted.

V. Tool development

We are currently implementing a tool suite to sup-
port modeling and analysis with MoDeST. The lan-
guage parser is being finalised (using the ANTLR
parser generator), and we are currently working on
the state space generator and state space explorer.
The state space generator generates a stochastic timed

automaton where parallel sub-automata are not fully
expanded (i.e., interleaved) so as to diminish the state-
space explosion problem. It is the intention to provide
the user with a flexible application programming in-
terface (API) at this level to link MoDeST with other
state-of-the-art tools. In this way, an open tool archi-
tecture should result. More concretely, we are busy
with linking to Uppaal [21] for real-time model check-
ing and to Möbius [7] for discrete-event simulation
and numerical analysis. A sketch of the tool architec-
ture is given in Fig. 2.

MoDeST
compiler

Discrete
event

simulator

0

20

40

60

80

100

STA

LTS

TorX,
CADP, Spin

TA

Uppaal
Kronos

PTA

PrUppaal

CTMC

TIPP
E MC2

Möbius

Other tools’
outputs

APIs and
file formats

T

Fig. 2. Sketch of MoDeST tool architecture

VI. Conclusion

In this paper we have presented a modelling and
description language that allows to combine a wide
range of quantitative system aspects with functional
behaviour into a single integrated specification. We
gave an overview of the main rationales behind the
language, and introduced the language by means
of a simple, incremental example. In the next
phase of the HaaST project, MoDeST and its sup-
porting tools will be applied to the modelling and
analysis of case studies of representative complex-
ity. More information on the project can be found
at http://fmt.cs.utwente.nl/HaasT.

Acknowledgement The authors are grateful to Ed
Brinksma for inspiring discussions.

References

[1] L. de Alfaro, T.A. Henzinger and R. Majudmar. Stochastic
modules. Unpublished manuscript, 1999.

[2] R. Alur and D. Dill. A theory of timed automata. Th.
Comp. Sc., 126:183–235, 1994.

[3] G. Berry. Preemption and concurrency. In: R.K. Shyama-

32 PROGRESS 2001

Modelling Stochastic Timed Systems

sundar, ed, Found. of Software Techn. and Th. Comp. Sc.,
LNCS 761, pp. 72–93. Springer-Verlag, 1993.

[4] L. Blair, T. Jones, and G. Blair. Stochastically enhanced
timed automata. In: S.F. Smith and C.L. Talcott, eds,
Proc. 4th IFIP Conf. on Formal Methods for Open Object-
based Distributed Systems (FMOODS’00), pp. 327–347.
Kluwer, 2000.

[5] S. Bornot and J. Sifakis. An algebraic framework for ur-
gency. Inf. and Comp., 163:172–202, 2001.

[6] M. Bravetti and Gorrieri. The theory of interactive gen-
eralized semi-Markov processes. Th. Comp. Sc., 2001 (to
appear).

[7] D. Daly, D.D. Deavours, J.M. Doyle, P.G. Webster, and
W.H. Sanders. Möbius: An extensible tool for perfor-
mance and dependability modeling. In B.R. Haverkort,
H.C. Bohnenkamp, and C.U. Smith, eds, Computer Per-
formance Evaluation, LNCS 1786, pp. 332–336. Springer-
Verlag, 2000.

[8] P.R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. PhD thesis, Faculty of Computer Sci-
ence, University of Twente, 1999.

[9] P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An al-
gebraic approach to the specification of stochastic systems
(extended abstract). In: D. Gries and W.-P. de Roever,
eds, Proc. IFIP Working Conf. on Programming Concepts
and Methods, pp. 126–147. Chapman & Hall, 1998.

[10] P.R. D’Argenio, H. Hermanns, J.-P. Katoen and J. Klaren.
MoDeST – a modelling and description language for
stochastic timed systems. In: L. de Alfaro and S. Gilmore,
eds, Process algebra and probabilistic methods, LNCS 2165,
Springer-Verlag, 2001.

[11] D. Ferrari. Considerations on the insularity of performance
evaluation. IEEE Trans. on Soft. Eng., 12(6): 678–683,
1986.

[12] H. Garavel and M. Sighireanu. On the introduction of
exceptions in E-LOTOS. In: R. Gotzhein and J. Bred-
ereke, eds, Formal Description Techniques IX, pp. 469–484.
Kluwer, 1996.

[13] J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

[14] C. Harvey. Performance engineering as an integral part
of system design. Br. Telecom Technol. J., 4(3): 142–147,
1986.

[15] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. Inf. and Comp.,
111:193–244, 1994.

[16] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[17] G.J. Holzmann. Design and Validation of Computer Pro-
tocols. Prentice-Hall, 1991.

[18] R. Klaren, P.R. D’Argenio, J.-P. Katoen, and H. Her-
manns. MoDeST language manual. CTIT Tech. Rep. Uni-
versity of Twente, 2001. To appear.

[19] J. Kramer and J. McGee. Concurrency: State Models and
Java Programs. John Wiley and Sons, 1999.

[20] M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.
Verifying quantitative properties of continuous probabilis-
tic timed automata. In C. Palamadessi, ed, Concurrency
Theory, LNCS, Springer-Verlag, 2000.

[21] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nut-
shell. Int. J. of Software Tools for Technology Transfer,
1(1/2):134–152, 1997.

[22] J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic

activity networks: Structure, behavior and application. In:
Proc. Int. Workshop on Timed Petri Nets, pp. 106–115,
IEEE CS Press, 1985.

[23] R. Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, Dept. of Electrical
Eng. and Computer Science, MIT, 1995.

Workshop on Embedded Systems 33

