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Abstract: Transitionmodelling is an emerging but growing nichewithin the broader field of sustainability tran-
sitions research. The objective of this paper is to explore the characteristics of this niche in relation to a range
of existing modelling approaches and literatures with which it shares commonalities or from which it could
draw. We distil a number of key aspects we think a transitionsmodel should be able to address, from a broadly
acknowledged, empirical list of transition characteristics. We review some of the main strands in modelling
of socio-technological change with regards to their ability to address these characteristics. These are: Eco-
innovation literatures (energy-economymodels and Integrated Assessment Models), evolutionary economics,
complex systemsmodels, computational social science simulations using agent basedmodels, systemdynam-
icsmodels and socio-ecological systemsmodels. Themodelling approaches reviewed can addressmany of the
features that di�erentiate sustainability transitions from other socio-economic dynamics or innovations. The
most problematic features are the representation of qualitatively di�erent system states and of the normative
aspects of change. The comparison provides transition researchers with a starting point for their choice of a
modelling approach, whose characteristics should correspond to the characteristics of the research question
they face. A promising line of research is to develop innovative models of co-evolution of behaviours and tech-
nologies towards sustainability, involving change in the structure of the societal and technical systems.

Keywords: Transitions Models, Qualitative System Change, Modelling Social Values and Norms, Behavioural
Change

Introduction

1.1 The solution of many problems related to the interaction of our societies with nature, such as climate change
and loss of biodiversity requires deep structural changes in key areas of humanactivity, includingour transport,
energy, agriculture, and other systems (STRN 2010). The field of sustainability transitions research has set out
to understand how such deep structural change happens and how it can be steered (Rip & Kemp 1998; Grin
et al. 2010). Transitionmodelling is a growing research areawithin the broader field of sustainability transitions
research. In this paper we define ‘transitionmodels’ as the application of existing modelling methodologies to
explain the dynamics of transitions. Transition models can be seen as a new application field for established
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modelling science for understanding the complex behaviours of societal system changes. A survey of peer-
reviewed articles reveals a developing interest in this area, with 41 articles1 published on transitions modelling
up to 2016 compared to 15 articles up to 2012.

1.2 Holtz et al. (2015) discuss the possible uses and benefits of modelling in transitions research providing exam-
ples of modelling to develop scenarios for examining transition narratives and to explore transition dynamics.
Papachristos (2014) argues that simulationmodelling can study system interactions and support policymaking
for transitions.

1.3 There are a few publications that have reviewed transitions models. Timmermans & de Haan (2008) found
almost no modelling research and proposed some mathematical and computational approaches, including
the importance of increasing returns to scale in economic representations. Holtz (2011) argued that transitions
models need to address transitions in specific contexts to enable the development of strongmicrofoundations
and empirical validation. Safarzyńska et al. (2012) reviewed evolutionary approaches to modelling transitions
and Zeppini et al. (2014) consider threshold models of transitions. Halbe et al. (2015) argue that Integrated
Assessment Models, environmental modelling and socio-ecological modelling have similar characteristics to
models in transitions research and develop a classification of uses of models from these fields in comparison
to transitions models. Li et al. (2015) review existing socio-technical energy transitions models and the extent
to which they include factors covered by transitions theory.

1.4 The objective of this paper is to clearly identify a niche for sustainability transition modelling in relation to the
broader range of existingmodelling approaches. It identifies some specific approaches whichmodellers could
use to contribute to the field of sustainability transitions research. As such, this paper is complementary to
the general discussion of the state of transitions modelling and its potential in Holtz et al. (2015). Of the many
model uses in transitions research Holtz et al. (2015), the models we will consider in particular are models for
understanding the dynamics of transitions in socio-technical systems towards sustainability. We do not aim to
identify an ‘ideal’ or ‘preferred’ approach, nor do we suggest excluding approaches to modelling transitions.
A wide range of di�erent kinds of models and model uses are also viable and useful in transitions research.
The comparison of di�erent classes of model provides researchers with a starting point for their choice of an
approach to modelling transitions, in order to address the characteristics of the research question they face.

1.5 We look at modelling approaches in other fields to identify a portfolio of approaches we think will be useful
for transitions modelling. Many approaches can potentially be used to model sustainability transitions, so it
is not feasible to undertake a comprehensive review. Instead, we adopt the reverse approach and review key
sustainability transition concepts and issues that sustainability transition models are intended to address.

1.6 Section 2 discusses the characteristics of sustainability transitions as identified in the sustainability transitions
literature (Rip & Kemp 1998; Geels 2002; Geels & Schot 2007; Grin et al. 2010; STRN 2010) and the features in
models that could represent these characteristics. Transitions are complex, multifaceted processes, thus we
argue that there are several separate qualities that can contribute to making a model a ‘transitions model’. We
distil a list of key features from a broadly acknowledged, empirical group of transition characteristics – though
not all of themwill be addressed by eachmodel.

1.7 Section 3 then identifies some of the main strands in modelling socio-technological change and discusses the
extent towhich theyaddress these characteristics. Examplesof themodels areprovided. Modellingapproaches
can be grouped both in terms of the theoretical approach to social and technological change used and in terms
of the simulationmethodology. Environmental or eco-innovation has an extensive literature in economicmod-
elling, especially in energy and climate changepolicy research usingmacroeconomicmodelling approaches in-
corporatingendogenous technical changeandcombinedenergy technology-energyeconomicsmodels (Köhler
et al. 2006; Popp et al. 2010; Li et al. 2015; Babatunde et al. 2017). Integrated Assessment Models (IAMs) of cli-
mate change combine energy technology andmacroeconomicmodels with a representation of climate change
(Clarke et al. 2014; Bruckner 2016).

1.8 Evolutionary economics (Nelson&Winter 1982; Beinhocker 2006) generalises economic analysis using theanal-
ogy of biology to consider economic dynamics through variation, selection and di�erential replication. These
ideashavebeenapplied to thesimulationofmicroeconomicdynamics (Safarzyńskaetal. 2012;Zeppini&vanden
Bergh 2011). Beinhocker (2006) shows how evolutionary economics is a part of complexity science in general.
Complexity science has also been applied in simulationmodels of innovation processes (Geroski 2000; Frenken
2006).

1.9 These literatures are limited in that they do not directly include ecosystem feedbacks in their analyses. This is
the objective of the Socio-ecological systems (SES) literature (Halbe et al. 2015; Haberl et al. 2016). Modelling
in this field was reviewed by Schlueter et al. (2012). While these frameworks provide a typology of theories that
could be applied inmodelling sustainability transitions, there are also two general simulation approaches that
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that can model and implement transitions. System Dynamics (SD) is a modelling approach that emphasises
the generation of dynamics through feedbacks between system elements (Sterman 1994; Moallemi et al. 2017;
Papachristos 2017; Walrave & Raven 2016). Computational social science agent-based modelling (CSS ABM) is
a strand of research that uses simulation methods with large numbers of decision makers to analyse social
systems from a bottom-up perspective (Gilbert & Troitzsch 2005; Heckbert et al. 2010; Holtz et al. 2015).

1.10 These four modelling frameworks and two simulation approaches are used to provide a typology of the mod-
elling literatures that could address the features of sustainability transitions identified in Section 2. Actual sim-
ulation models necessarily combine a theory with a simulation approach such that there are many overlaps
between these six categories. We discuss how the di�erent approaches are interrelated.

1.11 We then summarise the capabilities of these six modelling literatures with respect to their ability to represent
the critical features of sustainability transitions. Weargue that themodelling approachesofwhichweare aware
are limited in their ability to cover some of the critical features of transitions and identify a research need for a
new class of models which addresses these gaps.

Specifying (Empirical) Characteristics of Transitions

2.1 We quote here from STRN (2010):

"The starting point for transitions research is a recognition that many environmental problems,
suchasclimatechange, lossofbiodiversity, resourcedepletion (cleanwater, oil, forests, fish stocks),
are formidable societal challenges, whose solution requires deep structural changes in key areas of
human activity, including our transport, energy, agriculture, housing, manufacturing, leisure and
other systems. Furthermore,we recognise that thecrucial challenge for sustainabledevelopment is
the fact that existing systems tend tobe very di�icult to ‘dislodge’ out of their current state, because
they are stabilized by various processes that lead to path dependent developments and ‘entrap-
ment’ lock in. A variety of highly institutionalised processes tend to perpetuate existing systems:

• the knowledge, capabilities and employment of various actors relevant to the maintenance
of existing systems;

• the technical infrastructures and institutions (that have developed over time to service those
systems);

• the economies of scale andmarkets of incumbent systems;
• the social significance of these systems, and their links to political power;
• the mutually reliant clusters of technologies used by these systems; and,
• the everyday practices and lifestyle values that have come to rely on these systems.

In transitions researchwecall thesemutually reinforcingprocessesa ‘socio-technical regime’." (STRN
2010)

2.2 These features mean that transitions involve what the transitions literature calls socio-technological systems.
Following the neo-Schumpeterian ideas of radical technological change leading toKondratiev or LongWaves of
growth (Köhler 2012), such systems involve co-evolutionbetween thepolitical, scientific, economic, technology
and culture sub-systems (Freeman & Louçã 2001). The consequence of this is that such socio-technical systems
need to be understood as non-linear, complex systems.

2.3 From this empirically based observation, which emphasises transitions to sustainability and therefore the link
between nature and society, we draw on the work of Halbe et al. (2015); Geels & Schot (2007); Rotmans et al.
(2001); Smith et al. (2005); Smith&Stirling (2010); Coenen et al. (2012); Shove&Walker (2010) in order to provide
a more complete list of characteristics. Socio-technical transitions:

1. Profoundly alter the way a societal system2 functions and the actors, practices, institutions and tech-
nologies involved in production and consumption. During a transition, new products, services, business
models, regulations, norms, organizations and infrastructures may emerge, complementing and/or sub-
stituting existing ones. Transitions can be di�erentiated from other kinds of social or technical change
because they address a system change which alters the ways a socio-technical system functions. They
involve a change from one socio-technical regime to another in which the new is simultaneously consti-
tuted as the old unravels;
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2. Have dynamics that typically start slowly due tomultiple sources of inertia (STRN 2010) in the old regime
(although various transition patterns have been distinguished in the literature);

3. Are polycentric processes of societal system change: multiple actors, multiple factors, multiple tem-
poral and spatial scales are relevant for shaping transition dynamics. They can hence be initiated and
driven from various directions (behaviour/social practice and expectations, cultural changes, technology
and economy trends, institutional change, environmental changes, policy) and from various levels (e.g.
citizen-initiatives or EU policy);

4. May be triggered purposively or emerge from ongoing developments;

5. Are open, path dependent processes with uncertain outcomes. The dynamics are not only determined
by external developments and conditions (“landscape developments") but also emerge endogenously
from interactions within the system. The nature, timing and intensity of interactions are crucial for the
unfolding dynamics.

From transitions characteristics tomodel features

2.4 Theessential featuresof transitions identifiedabove imply somekeymodelling features for ‘transitionsmodels’
for the purposes of this review:

• Capability of representing non-linear behaviour
Transitions occur over periods of time in which change is happening faster or slower. An archetypical
pattern is that of an S-curve, in which the rate of change is initially slow, then accelerates, and slows
down again as the new regime configuration stabilizes. A transitions model should be able to reproduce
such variations of the rate of change and other dynamics through which the end-state of the transition is
not proportional to changes in the initial state. A special class of non-linear behaviour that is particularly
pertinent to transitions is path-dependence.

• Capability of representing qualitatively di�erent system states
A transition implies that the configuration of elements fulfilling a particular societal function changes i.e.
new elements are included, old ones are dropped, elements might adapt, and the interactions between
elements are reconfigured. Therefore, a transition is not just change towards more or less of the same.
This aspect of a transition should be (explicitly or implicitly) captured by transitions models.

• Capability of representing changes in social values and norms
Transitions to sustainability also involve changes in the value system of society and actors. This will lead
to changes in the decision making rules (preferences, in economics terminology). Models should be ca-
pable of representing changes in the decision making structure.

• Capability of representing diversity and heterogeneity
Transitions involve diverse actor groups (producers, consumers, politicians, NGOs etc.) and actorswithin
these groups are heterogeneous (e.g. producers following di�erent strategies, consumers having di�er-
ent preferences). These di�erences should be represented in the structure of a transitions model.

• Capability of representing dynamics at and across di�erent scales
There is also a consensus in the literature that transitions bridge di�erent scales. As is acknowledged by
Geels&Schot ((2010), inGrin et al. 2010) amongothers, this canbe seenas anapplicationofGiddens’ The-
ory of Structuration (1984), in which agents act within a set of social structures. Their actions can change
these structures, such that there arepotentially feedbacksbetween themicroandmacro levels in societal
systems. The di�erent scales can be spatial (e.g. local, regional, global), temporal (e.g. years, decades,
centuries), functional (e.g. in societal sub-systems – economy, policy, science, education, etc.), epistemo-
logical (e.g. microeconomic vs. macroeconomic) or institutional (e.g. in the legal context constitutions,
laws and directives) scales. In the multi-level perspective (Grin et al. 2010) niches can be considered as a
micro-level phenomenon, while regimes are ‘meso’ to macro level and the landscape is macro-level. For
example, an energy transition is influenced by global climate agreements, by national or federal regula-
tions, as well as local initiatives that become engaged in energy production and become new players in
the game.

• Capability of incorporating open processes and uncertainties or contingencies
Transitions are influenced by unpredictable events that by their very nature cannot be predicted, such as
thedevelopment of radical innovations andpolitical decisions. If the system is responsive to these events
(or not), the future transition dynamics might change direction (or not).
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Current Modelling LiteraturesWhich Address the Characteristics of Tran-
sitions

3.1 In this sectionwe review someof themain relevant strands inmodelling of long-term transformational changes
with regards to their ability to address the characteristics of sustainability transitions we have identified in the
previous section.

Eco-innovation in energy-economymodels and IAMs

3.2 Transitions research can be seen as a subset of innovation research. Modelling of innovation processes is a very
extensive literature, but is mainly based on management and/or economics methods (Fagerberg et al. 2006).
In eco-innovation, economics models of energy systems (so-called energy-economy models) are categorised
into three types (Köhler et al. 2006; Popp et al. 2010; Li et al. 2015). Bottom-up sectoral models include energy
demand and technologies (MARKAL: Loulou et al. 2004; the TIMES/TIAM family of energy systemand Integrated
AssessmentModels: ETSAP 2017a; Li et al. 2015; MESSAGE:Messner & Strubegger 1995). Top-downmodels have
a macroeconomic structure including energy demand (MERGE: Manne et al. 1995. Hybrid models combine a
macroeconomic structurewith extra detail for the energy sector (REMIND-R: Leimbach et al. 2010, E3MG: Köhler
et al. 2006). This literaturehas includedendogenousgrowthwith increasing returns to scale throughknowledge
and learning curves.

3.3 Thebroadestmodelling approach in these literatures is Integrated AssessmentModelling (IAMs), which couples
economics and technology representations to environmental emissions. Feedbacks of environmental changes
into economies and technologies are limited. Examples are IMAGE (Stehfest et al. 2014), TIAM (ETSAP 2017b).

3.4 These models are programmed in general purpose so�ware such as C++ or economic modelling so�ware, es-
pecially GAMS (e.g. in the TIMES and TIAMmodel family).

3.5 Links to other model categories
Most of these models are founded on economic theory with cost minimisation of a technology mix to achieve
required climatemitigation goals. They are linked to theother theories in the sense that they all include costs or
prices in the simulation. However, the representationof decisionmakingand the resultingdynamics is di�erent
to the other groups of theories. These models do not use system dynamics (SD) or agent based model (ABM)
methods.

3.6 Capability of representing non-linear behaviour
Endogenous growthmodels and learning curvemodels explicitly include non-linearities in their mathematical
formulation. In this sense, they are non-linearmodels. However, for optimal growthmodels, the possible solu-
tions identified by the model are constrained through the dynamic optimization procedure. In this sense, they
cannot have the same flexibility of outcomes as e.g. the evolutionary economicsmodels discussed below. They
are used to answer questions such as: which is the cost minimizing technological pathway to achieve a given
environmental objective?

3.7 Capability of representing qualitatively di�erent system states
The ability of these methods to represent qualitatively di�erent states is limited, because they rely on histori-
cal data, mainly generated by the current socio-technical structures and regime. If alternative technologies are
represented, as in many energy economics models for example, a transition to a di�erent set of technologies
can be modelled. They will o�en require the input of exogenous changes e.g. in market structure of an elec-
tricity supply network to allow for large scale household power generation through decentralised renewable or
demandmanagement.

3.8 Capability of representing changes in social values and norms
Eco-innovation models are not very suitable for addressing cultural shi�s and changes in the preference struc-
tures of decisionmaking agents. They can allow for changes in preferences through exogenous scenario inputs
(e.g. van Sluisveld et al. 2016). The limitation here is that changes in culture or institutions, such as the devel-
opment of an environmental movement supporting stronger environmental policies in response to perceived
climate change can only be addressed by exogenous assumptions.

3.9 Capability of representing diversity and heterogeneity
These modelling approaches do not usually include heterogeneity explicitly in the decision making agents.
Diversity across economic sectors and countries is included in large scale models, but diverse actor groups
are usually limited to aggregated producers, consumers and a social decision maker in some of the macroeco-
nomics basedmodels.
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3.10 Capability of representing dynamics at and across di�erent scales:
These modelling approaches can be used across scales, both by aggregating results e.g. in climate change
assessment and by disaggregating results e.g. from global greenhouse gas emissions scenarios to sectoral or
regional economic activity. Some of these models, in particular the Integrated Assessment Models, include
both macro- andmicroeconomic and technology features in a single model (Köhler et al. 2006).

3.11 Capability of incorporating uncertainties or contingencies
The di�erent modelling approaches outlined here di�er considerably in how they address uncertainties. The
larger scale energy-economy models and IAMs may include statistical estimations of their parameters. How-
ever, the analysis of uncertainties in these models is limited. They address uncertainty through scenario anal-
ysis. The eco-innovation literature also uses scenario analysis to allow for contingent futures.

3.12 These economic eco-innovation models have adopted non-linear features, but have closely constrained eco-
nomic structures and are therefore limited in their ability to represent the behavioural changes and resultant
qualitative system changes associatedwith socio-technical system change. They can be used to simulate paths
of technologyoutcomes that represent large scale change, aswith the IAMsused for climatemitigation scenario
development.

Evolutionary economics

3.13 Evolutionarymodelling in economic and technology innovation literatures represents processes of change and
competition in a population of decision makers or agents using three core concepts from evolutionary biology
(Safarzyńska et al. 2012): variation, selection and di�erential replication. Populations of agents in evolutionary
models interact and reproduce, and the “genome" of individual agents changes through mutation or recom-
bination. This alters agents’ fitness to their environment with the result being success or failure to pass their
“genome" to future agent generations.

3.14 Evolutionary theories andmodels havebeenapplied in innovation and complex adaptive systems research (Sa-
farzyńska et al. 2012). In socio-technical transition studies, innovation leads to variation in supply and demand
practices, technology competition and institutional changes. In evolutionary economics, heterogeneity varies
along three dimensions: variety, balance, and disparity (Stirling 2010). Selection acts to reduce the heterogene-
ity that variation generates. This approach has been applied in energy policy and sustainability innovations
research (Stirling 2010). Additional concepts applied in evolutionary economics research include: bounded ra-
tionality, pathdependence and lock-in, group selection and co-evolutionary dynamics (VandenBergh&Gowdy
2008; Gazheli et al. 2015).

3.15 It follows that evolutionary thinking can contribute to studying a wide variety of changes in consumer prefer-
ences, social structure and institutions, in addition to technology innovation. Evolutionary simulation models
of demand and supply dynamics have already been developed and the insights produced can be applied or
are directly relevant to transitions. Some of the most prominent models in the literature are e.g.: Silverberg
et al. (1988); Windrum & Birchenhall (1998, 2005); Janssen & Jager (2002); Oltra & Jean (2005); Windrum et al.
(2009); Malerba et al. (1999, 2001, 2008); Safarzyńska & van den Bergh (2010); Valente (2012). Some of themod-
els aremore accurately described as co-evolutionary as they incorporate two ormore populations (supply, de-
mand) that are linked together, with each one influencing the evolutionary trajectory of the other. Windrum
& Birchenhall (1998) developed such a model, with firms innovating to attract consumers. Di�erent firms sell
products with unique characteristics to consumers. The consumers are distributed over a set of classes with
di�ering preferences. Firms innovate to change their product characteristics and consumers can change the
product they choose, depending on their preferences that change over time. Windrum et al. (2009) developed
this framework to include the pollution characteristics of the competing firms and products. Thesemodels use
general simulation so�ware e.g. Mathematica.

3.16 Links to other model categories
Models using an evolutionary economics approach to innovation are based on economic decision making and
as such extend the economicmodels discussed above. Beinhocker (2006) reviews the literature applying com-
plexity science to economics and shows that models applying evolutionary structures to innovation can be
considered as complexity models. Therefore, they are a sub-set of complexity models discussed below. We
treat them separately here because the explicit application of the principles of evolution to simulation models
of innovation is an established literature.

3.17 Capability of representing non-linear behaviour
Evolutionary models have been used to reproduce non-linear patterns on the firm level but also on amore ag-
gregate industry level. An early model was developed to look at organizational adaptation of search strategies,
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competences and aspirations in a dynamic environment (Levinthal &March 1981). Another classic illustration of
non-linear behaviour is di�usionprocesses in an evolutionary environmentwith technological andbehavioural
agent heterogeneity and learning processes (Silverberg et al. 1988).

3.18 Capability of representing qualitatively di�erent system states
Evolutionary models of demand-supply co-evolution have been used to see whether market competition can
reach a locked-in state of a single dominant firm-product combination (Windrum & Birchenhall 1998). More re-
centlymodels have been developed to explore policies tomove themarket out of a state of lock-in and towards
less carbon intensive trajectories (Safarzyńska & van den Bergh 2010).

3.19 Capability of representing changes in social values and norms
Evolutionarymodels are able to represent emergent norms values andpreferences of individual agents, or even
emergent normative change at the population level through changes in the agent “genome". For example, they
can represent how the agent acting as a consumer derives utility not only from the intrinsic value of a good, but
also from its social embeddedness.

3.20 Capability of representing diversity and heterogeneity
Heterogeneity is an inherent aspect of the evolutionary approach to modelling and heterogeneity is therefore
included in all these models. The representation of diverse actor groups is also a feature of the models of e.g.
Silverberg et al. (1988) and Windrum & Birchenhall (1998).

3.21 Capability of representing dynamics at and across di�erent scales
Evolutionary thinking has been applied at di�erent spatial andorganizational/institutional levels. For example,
the model of Levinthal & March (1981) is at the organization level while the models of Windrum & Birchenhall
(1998), Windrumet al. (2009), Safarzyńska & van denBergh (2010) are at the level of firmpopulations. This class
of models concentrates on macro phenomena as emerging as patterns from micro-level interactions, rather
than explicit representation of macro-level structures.

3.22 Capability to incorporate uncertainties or contingencies
Models do incorporate uncertainties both in the stochasticity of change and adaptation of a single organization
to its environment (Levinthal & March 1981) and at the level of uncertainties impacting a population of organi-
zations.

3.23 Evolutionary modelling is a very flexible approach and can (in principle) incorporate all the features of tran-
sitions models identified in Section 2. However, applications so far have concentrated on the microeconomic
level. There are few examples of evolutionary models of macroeconomic processes, or of the behaviour of
socio-technical regimes and their organisational complexity. Therefore, their application to normative change
has so far been limited.

Complex systemsmodels

3.24 Under this categorywe include frameworksand themessuchas ‘complex, adaptive systems’ (e.g.Holland 1992),
‘self-organisation’ (e.g. Kau�man 1993), ‘self-organised criticality’ (e.g. Bak 1996) and a variety of others. These
approaches are advocated and were pioneered by the Santa Fe Institute. The sciences of complexity are not
a theoretically unified field, rather they are a portfolio of approaches to understand a class of phenomena –
referred to as ‘complex’. They draw on various – though typically exact, or mathematical – fields of research,
such as statistical and non-linear physics, theoretical biology and computer science.

3.25 Transitions are usually considered to be an example of complex phenomena and it is therefore no surprise to
find key terms such as non-linearity or (co-)evolution to be common in both fields. Transition Management
in particular has adopted this perspective and some of the concepts of complexity (see e.g. Rotmans & Loor-
bach 2009), though not in the formal mathematical or modellingmanifestations. Given this kinship one would
perhaps expect a blooming field at the interface of transitions and complexity studies exchanging methods,
concepts and cases but in practice the overlap seems limited in the modelling arena. Exceptions are the com-
plexitymodelling studieson innovationbymeansof di�usion, networkandpercolationmodels. Frenken (2006)
provides an overview of some of these under three headings: NK models, complex network models, and per-
colation models.

3.26 NK models were introduced by Kau�man (1993) as generalised models of genetic evolution. In an NK model,
each individual in the set of N elements interacts with K other elements within a fitness landscape. As such,
they can potentially be applied to a large class of phenomena including many that are relevant to transitions
research. Unlike the evolutionary economics models summarised above, economic variables do not neces-
sarily explicitly determine the interactions. Instead, they emphasise search strategies over an abstract fitness
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space. One such application can be found in Alkemade et al. (2009). In this model, a single agent searches over
a fitness landscape of di�erent design configurations. Alternatively, a decentralised search where only one ele-
ment changes at a time can be simulated. Local search generates local optima as Nash equilibria (Zeppini et al.
2014).

3.27 Complex network models make extensive use of graph-theoretical representations. The nodes in these net-
works could be agents such as individuals or firms, but also technologies (Frenken 2006, p. 144). Network
measures such as cliquishness and average path length are used to study how easily knowledge is created and
exchanged for example (Frenken 2006, p. 146).

3.28 Percolationmodels are a class ofmodels adopted fromphysicsmodels of di�usion of a liquid through a porous
medium. The models simulate the adoption of new technologies by neighbouring elements, with adoption
dependent on a willingness to pay parameter. Interesting phenomena in these models are phase transitions
which represent abrupt shi�s fromonequalitatively distinct state to another, for example from limitedadoption
to mass adoption of a technology. Examples of these models can be found in Zeppini et al. (2014) and de Haan
(2008).

3.29 We can extend the categories suggested by Frenken (2006) to also include di�usionmodels. Thesemodels can
be used to see how ‘something’ (e.g. knowledge, use of a technology) spreads through a population of agents
or across a spatial region. Geroski (2000) reviews models for S-curves of innovation di�usion, including epi-
demicmodels, probit models, density dependencemodels and finally the evolutionarymodels of competition
between variants of a technology as developed by e.g. Silverberg et al. (1988).

3.30 As with the evolutionary economicsmodels, thesemodels use general simulations so�ware e.g. Mathematica,
MATLAB, etc.

3.31 Links to other model categories
As the Sciences of Complexity are such a conceptually and methodologically eclectic field, there are several
overlaps with some of the other literatures discussed in this part of the article. To give a – non-exhaustive –
illustration: there is considerable overlap with eco-innovation models in modelling di�usion of innovation. As
discussed above, there is overlap in the use of evolutionary principles. Agent-Based Modelling is a accepted
approach tomodel complex systems, and so is SystemDynamics. Non-linear populationdynamics are interests
sharedby complexity researchers and socio-ecologicalmodellers alike asdiscussed inSections 3.61-3.70below.

3.32 Capability of representing non-linear behaviour
All complexity phenomena share this aspect and consequently the approaches used by the sciences of com-
plexity typically feature this aspect very prominently. Path dependency is also a key aspect. Some complexity
models feature hysteresis, which can be considered a form of path dependency.

3.33 Capability of representing qualitatively di�erent system states
Phase transitions –which per definition lead to qualitatively di�erent states – are a central concern in complex-
ity models. Complex, adaptive systemsmodels may evolve to qualitatively di�erent states.

3.34 Capability of representing changes in social values and norms
In principle, the normative aspects of transitions can be addressed methodologically with complexity models
just as easily as the agent-based models of computational social science. However, in practice this aspect is
usually not explored much.

3.35 Capability of representing diversity and heterogeneity
The situation here is similar to that for the normative aspects. Though this is theoretically a core component of
what makes systems complex and adaptive, this is not necessarily strongly reflected in the models employed.

3.36 Capability of representing dynamics at and across di�erent scales
The ability to represent di�erent scales is in some sense a matter of implementation, a methodological choice
rather than a capacity complexity models inherently do or do not have. However, some models of non-linear
dynamics, particularly those concerned with pattern formation (see e.g. Van Saarloos 2003), feature emergent
scales or allow these to be studied. Emergent scales are scales that do not feature explicitly in the equations
that govern themodel but that appear ‘spontaneously’. A well-known example is ripples on a sandy beach that
feature wavelengths seemingly unrelated to those of the water waves or the size of the grains of sand.

3.37 Capability to incorporate uncertainties or contingencies
This is a common feature of complexity models, o�en even endogenously represented. The non-linearity of
themodels entails an intrinsic degree of unpredictability. Stochasticity of themodels can be used to represent
contingency.

3.38 In summary, this is in principle abroad class of highly non-linearmodels. Their application tonormative change
and diverse actor groups is limited in the current literature.
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Computational social science: Agent-basedmodels

3.39 A strand of research within Computational Social Science (CSS) uses Agent-Based Modelling (ABM) to analyse
behaviour of complex social systems from a bottom-up perspective (Gilbert & Troitzsch 2005; Heckbert et al.
2010; Hedström 2005). We discuss the practical ability in general of ABMs to meet the transition characteris-
tics, referring to twomodels where appropriate: the classic Sugar Scape model (Epstein & Axtell 1996) and the
MATISSE ABM of transitions (Bergman et al. 2008; Köhler et al. 2009). The model core consists of the agents
that represent interacting decision makers. Using ABM allows for the generation of emergent phenomena on
the level of a group, organisation or other collection of actors – be they spatial or temporal patterns or charac-
teristic statistical distributions of variables of interest. As such, ABM is one method of implementing complex
systems. The representation ofmultiple agents enables actors to have di�ering behaviours or strategies. In the
context of sustainability transitions analysis, this enables di�erentiation between regime(s) and niches, as well
as distributions of choices of di�erent firms or consumer/household decision makers.

3.40 The Sugarscapemodel (Epstein &Axtell 1996) used agents and their local interactionswith each other in finding
a resource necessary for survival (sugar) to demonstrate some of the fundamental properties (or stylised facts)
of real economies andmarkets. The Santa-Fe institute used an ABM to analyse stock-market behaviour (Arthur
et al. 1996; Ehrentreich 2008). Various ABMs have been developed to simulate eco-innovation (Schwoon 2006;
Chappin &Dijkema 2010). Percolationmodels of technology adoption are discussed in Paragraph 3.28; they are
one approach using an Agent-Based structure to simulate innovation processes.

3.41 Chappin &Dijkema (2010) and Chappin (2011) use ABMs to study transitions in energy systems. Schwoon (2006)
used an ABM to look at fuel cell vehicle adoption. van der Vooren & Alkemade (2012) develop an ABM to analyse
the competition between new technologies and an incumbent technology in low carbon vehicles.

3.42 TheMATISSEmodel of transitions to low carbonmobility (Bergman et al. 2008; Köhler et al. 2009) uses an ABM
to represent niche and regime actors as well as the mobility lifestyle decision of households. In this model,
households decide upon their mobility behaviour through a choice of the regime mobility lifestyle or one of
the niches. The choice depends on the similarity of the regime/niche characteristics (e.g. environmental per-
formance, cost, preference for private transport, preference for short distance trips) to the preferences of the
household. The regime and niches innovate in accordance with di�erent strategies to maintain support from
households (regime) or increase their influence (niches) allowing for changing households’ preferences.

3.43 ABMs use a range of so�ware applications. The MATISSE model is written using Repast Simphony. AnyLogic
and Netlogo are commonly used ABM applications.

3.44 Links to other model categories
Computational social science starts from the understanding that social systems are a class of complex systems.
Therefore, CSS models are a sub-set of the complex system models discussed above. Because evolutionary
economicsmodels also study interactions between actors with varying individual properties or strategies, they
can also be considered as agent-basedmodels. CSS ABMs can be seen as emphasising large scale societal phe-
nomena, while evolutionary models have tended to concentrate on micro-level processes of innovation. The
overlap is however extensive. The socio-ecologicalmodels discussedbeloware aparticular class of CSSmodels
that represent ecological systems in addition to social systems. The overlap is emphasised by the use of agent-
basedapproaches in the socio-ecologicalmodels. Systemdynamicsmodelling (seebelow) canbe regardedasa
complementary approach to ABMs. Models such as the MATISSE transitionsmodel combine systems dynamics
and ABMmethods (Köhler et al. 2009).

3.45 Capability of representing non-linear behaviour
Agent-based models typically start with an initial state that is out of equilibrium and during the simulation
the mechanisms in the model generate emergent system-level behaviour. Exogenous drivers that a�ect these
mechanisms are o�en important: they typically drive changes in agent decisions that again lead to evolving
system-level behaviour over simulated time. The observed behaviour is typically non-linear and the process of
pattern formation ismodelled endogenously. Di�erent attractors in the simulated systemmay represent stable
regimes. What ABMs typically do not model is how existing patterns disintegrate. Therefore, modelling the
decomposition of an initially stable regime would be an interesting extension of current CSS ABMmodelling.

3.46 Capability of representing qualitatively di�erent system states
SomeCSSABMs are not only able to represent di�erent systemstates but can also endogenously generate qual-
itatively di�erent emergent phenomena from the same underlyingmechanisms, when some parameter values
are changed, or under the di�erent sets of randomnumbers. This is a core strength of ABMs. For instance, in the
MATISSEmodel, various qualitatively di�erent types of system behaviour have been demonstrated. One possi-
bility is a steady, but relatively smooth transition away fromconventional transport technologies to anewdom-
inant technology e.g. hydrogen (Köhler et al. 2009). Another possibility is a complex set of waves of support for
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di�erent technologies, with no single technology dominating over the 50 years simulation period. The purpose
of such modelling is to connect sets of assumptions with their resulting sets of system-level behaviours. Fur-
thermore, in ABMs, actors are o�en assumed to learn, and/or actors with particular characteristics are selected
based on their performance in some evolutionary process and this causes non-linear behaviour and possibly
di�erent system states. In the Sugar Scape model, for instance, the agent population evolves because agents
are selected with a high ability to spot resources and low specific consumption. Such learning and evolution,
however, typically does not imply the introduction of completely new actors or elements in the model, but
rather a variation and selection of characteristics of existing ones.

3.47 Capability of representing changes in social values and norms
ABMsare able to represent social interactions amongagents aswell as learning and cognition tohighdegrees of
complexity and sophistication. They are, therefore, able to represent changes in norms, values and preferences
of agents, including emergent normative change on the group or societal level (e.g. Conte et al. 2013). However,
highly sophisticated representations of cognition and emergent norms come at the price of high model com-
plexity and epistemic uncertainty and therefore most CSS ABMs choose simpler representations.

3.48 Capability of representing diversity and heterogeneity
Incorporating actor heterogeneity is seen as amajor strength of ABMs and is oneof the key reasons to adopt this
approach in computational social sciences. ABMs usually include heterogeneity in values of agent’s attributes.
Agents can also have diverse behavioural rules, that correspond sometimes to di�erent roles (e.g. producers
and consumers or mobility services and households in the MATISSEmodel).

3.49 Capability of representing dynamics at and across di�erent scales
CSS ABMs o�en represent processes on di�erent scales that interact in the model. For some experiments con-
ducted with the Sugar Scape model, the artificial landscape is divided into two areas which have alternating
seasons. This introduces a spatial sub-scale into the model, as well as the temporal scale of seasonal change
which complements faster agent behaviour of moving and harvesting, and slower time scales of agents’ repro-
duction (births and deaths).

3.50 Capability to incorporate uncertainties or contingencies
CSS ABMs involve multiple feedbacks between the model elements, facilitating the representation of contin-
gencies and uncertainties, for instance in the order in which agents make their decisions. Uncertainties can be
captured as exogenous variables that a�ect individual decisions.

3.51 ABMs are in principle able to represent all transition characteristics identified above, because they can repre-
sent any target system and any process operating it at the intended level of detail. Individual models exist that
meet single characteristics to a very high degree. Practical limitations of the approach arise from the concep-
tual and theoretical basis for representing micro-level social science phenomena, from the availability of data
for calibration and validation of models, as well as frommodel complexity that becomes increasingly unman-
ageable if evermoremodel aspects are represented in a highly sophisticatedway (Sun et al. 2016; Schulze et al.
2017). Therefore, existing CSS ABMs typically meet only a few of the model feature criteria.

System Dynamics models

3.52 System Dynamics (SD) is an approach to model, simulate and enhance learning of complex systems (Sterman
1994). System dynamics models provide an endogenous view on how the dynamic behaviour of a system un-
folds, generated solely from system element interactions taking place within the system boundary (Richard-
son 2011). SD models are developed based on causal relations between stock and flow variables and constant
parameters (Sterman 2000). The causal relations can form feedback loops that reinforce a certain system be-
haviour (reinforcing loops), or balance it and direct system towards stability (balancing loops). Several studies
have used the SD approach tomodel transition processes (Li et al. 2015;Moallemi et al. 2006; Papachristos 2011,
2017; Struben&Sterman2008;Walrave&Raven2016; Yücel &Meza2008). Theextent towhichSDmodels satisfy
the characteristics identified depends on their underpinning theoretical framework, the way that the model is
formulated and their connections to other modelling approaches. These models use several well-established
so�ware applications for SDmodelling including VENSIM, STELLA, Anylogic and POWERSIM (SYSTEMDYNAMICS
2017). In the following, the strengths and limitations of the SD approach in each characteristic is discussedwith
a couple of modelling examples.

3.53 Links to other model categories
SD as a general modelling approach can be applied to many di�erent types of problems. SD models of eco-
innovation such as the ASTRA model (AsTra 2017) use the economic theory of the eco-innovation models. The
representationof dynamics through feedbackbetween systemelementsmeans that SDcanbeused to simulate
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complex systems including evolutionary economics structures. The emphasis on the particular properties of
feedbacks between nodes of the system is di�erent to the CSS ABMs, where the feedbacks between agents tend
to be similar and the emphasis is more on the variation in behaviours between the agents.

3.54 Capability of representing non-linear behaviour
SD models describe the dynamic interactions between multiple system components, that form reinforcing or
balancing feedback loops. They can produce non-linear behaviours between the initial and end states. This
chain of feedback loops can generate threshold e�ects and time-delayed behaviours. It can also result in ac-
cumulative but profound changes in the functioning of systems. Sterman (1982) has represented this char-
acteristic by describing the non-linear dynamics of a drastic shi� in the energy system from conventional to
unconventional sources. This shi� was represented by the non-linear behaviours in the price, production and
consumption of energy along with their non-linear impacts on the standard of living, inflation and economic
growth. The model structure di�erentiated between intermediate and long-term non-linear e�ects of energy
depletion on the economy through feedback loops with the e�ect of several physical and information delays.
It was also able to reproduce the di�erent paces of the transition, i.e. whether it happens gradually (a smooth
change) or suddenly (a crisis).

3.55 Capability of representing qualitatively di�erent system states
Dependingon thechosen timehorizon in simulation, SDmodels can representdi�erent statesof a systemquan-
titatively with stock variables. Their quantitative values change through the accumulation of flow variables
which are the results of interactions between several internal and external variables. They can be interpreted
in di�erent qualitative states of system. As an example, Sterman (1982) considered energy transition as a long-
term process of transformation in an intergenerational timescale. Themodel was then able to capture possible
pathways and journeys from 1950 to 2050. It also represented changes between qualitatively di�erent states
in energy production, energy import, etc. In another example, Walrave & Raven (2016) used a transition-based
SD model to reproduce di�erent transition pathways, e.g. de-alignment and re-alignment pathway and tech-
nological substitution pathways, with di�erent qualitative end-states. Moallemi et al. (2017) developed a SD
transitionsmodel to simulate the qualitative transformation of Indian electricity sector, as a sustainability tran-
sition, over 25 years period from 1990 to 2015.

3.56 Capability of representing changes in social values and norms
The SD approach can include normative changes as one of the drivers of transition dynamics in models. Yücel
& Meza (2008) used an SD approach to model changes in actors’ preference in actor decisions about di�erent
options. They refer to these changes as ‘mechanisms related to actors’ behavioural identity’. Generally, the use
ofparticipatorymodelling (Venniz 1996) can facilitate the integrationof social normsandvalueson thedirection
and desire for a direction of change in change processes as a part of the process of model development (see
Moallemi&Malekpour 2017) for the integrationof a participatory approach in aSD transitionsmodel). However,
most SDmodelling applications take an aggregated viewof the system components and do not deal with actor-
level changes in norms and values.

3.57 Capability of representing diversity and heterogeneity
SD models can represent diversity in the sense that they include di�erent internal and external components.
For example, Sterman (1982) modelled the dynamics of energy-economy system based on the interactions of
its multiple aspects including production (e.g. goods, capital and energy production), households (e.g. labour
and the consumerof thegoods), financial (e.g. interest rates and inflation), government (e.g. monetarypolicies,
taxes and energy policies) and OPEC (e.g. imports, energy price). Various sources of energy and types of goods
were also taken into account. Nevertheless, SDmodels do not fully regard actor heterogeneity in terms of vari-
ations in consumer and producer’s behaviour. This can be explained by the aggregated view of SD approach in
modelling of system interactions. The capability of system dynamics models to incorporate diversity and het-
erogeneity e�ectively and its implications for analysis purposes has been explored in Rahmandad & Sterman
(2008).

3.58 Capability of representing dynamics at and across di�erent scales
The SD approach can model changes at di�erent rates (i.e. timescales). These models are also capable of rep-
resenting dynamics across di�erent spatial and organisational scales although in most cases they choose to
concentrate on a specific scale (e.g. national, sectoral or organisational scale) for the sake of having a well-
defined boundary. An example of a spatially multi-scale model can be found in Sterman (1982), where the de-
cisionmaking process wasmodelled based on the economic behaviours of actors at firm and individual levels.
Themodel also explained changes in price of energy, amount of import/exports, etc. as the global-scale driving
forces for energy transition. A more recent example explores the geopolitical consequences of shale gas, using
two interconnectedmodels to account for national and international dynamics (Auping et al. 2016).
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3.59 Capability of incorporating uncertainties or contingencies
SD models represent changes through stock accumulation processes that create path-dependent system be-
haviours. It can include contingencies as external variables, imposing a sudden change on the endogenously
driven dynamics of the system. The SD approach, in its classical form, deals with uncertainties to a limited ex-
tent by conducting sensitivity analysis tests for uncertain parameters (see Steel 2013; Sterman 1982 for some
examples). However, it can be linked to other approaches, such as exploratorymodelling, to fully address deep
uncertainty conditions. In this case, SD model can incorporate every possible variation in input parameters as
well as in model structures and can generate an ensemble of plausible future scenarios. Kwakkel et al. (2013);
Kwakkel & Pruyt (2013); Moallemi et al. (2017) have discussed the use of exploratorymodellingwith SD for deal-
ing with deep uncertainty.

3.60 In summary, SD is a very adaptable modelling approach. It is non-linear and has been used to model systems
across scales to a limitedextent. The treatmentof changes innormsandbehavioural diversity is usually limited,
as are applications to modelling qualitative changes in systems.

Socio-Ecological Systems (SES) modelling

3.61 SESmodelling has the objective ofmodelling interlinkeddynamics of social and ecological systems. It has been
developed from natural resources modelling literatures in ecology, economics and conservation. Examples of
SES models are Christensen et al. (2011), which models fishing costs and benefits or Fletcher & Hilbert (2007)
who analyse path dependency and resilience in land use systems. Becu et al. (2003) used an agent basedmodel
to consider water management. Schlueter et al. (2012) reviewed this emerging field and conclude that it does
not have a unified analytical ormethodological framework, but combines approaches and insights from di�er-
ent fields in a similar way to transitions modelling. SES are addressed as complex, co-evolutionary adaptive
systems. Schlueter et al. (2012) identify issues of the inherent uncertainty and the emergence of macroscale
patterns frommicroscale drivers of human behaviour as major research themes in the field. These lead to the
consideration of resilience of SES and strategies for resilience in natural resource management. Halbe et al.
(2015) consider that the similarities between social-ecological modelling and transition modelling are strong
with regards to multi-domain and multi-level interactions, path-dependency and involvement of multiple ac-
tors. Other characteristics of transitions are also shared, but to a lower extent.

3.62 The Vienna School of Social Ecology (Haberl et al. 2016) is an example of this socio-ecological modelling ap-
proach. It tries to address the interplay between decisions taken by di�erent types of actors, socioeconomic
processes and political and institutional framework conditions on the one hand and essential ecological pat-
ternsandprocesseson theother. Theaim is toapply thosemodels to structure interdisciplinary communication
processesbymaking variables and their interactionexplicit. Researchersuseparticipativemodel development,
wheremodels are created together with stakeholders, andwork on di�erent spatial and temporal scales, rang-
ing from local studies to global changes in the diet system, land use and biomass flows. In one project they
used an integrated socio-ecological model SERD (Simulation of Ecological Compatibility of Regional Develop-
ment). Themodel includes an agent-based actormodule coupledwith a spatially explicit land usemodule and
a biophysical stock-flow module capable of simulating socio-ecological material flows (Gaube & Haberl 2013).
This group ofmodels applies some of the approaches discussed above to society-nature interaction, an aspect
which is missing in most models of innovation. This model used the AnyLogic simulation so�ware combined
with a GIS mapping system.

3.63 Links to other model categories
The combined environmental and socio-economic analyses of this approachmean that they can be considered
as one form of IAM (Integrated Assessment Model), although the model structure is di�erent to the climate
policy IAMs such as IMAGE noted (see eco-innovation models). The use of agent based modelling in e.g. the
SERDmodel mean that they are within the class of CSS ABMs and are models of complex systems as discussed
above. They are identified as a separate class of model because they place an emphasis on the coupling of
ecological and social processes which is not the case in most complexity models of innovation or in the CSS
ABMs.

3.64 Capability of representing non-linear behaviour
This approachmodels thedynamic feedbacksbetween interconnected social andnatural resource systemsand
therefore can represent and facilitate research on the non-linear behaviour of these systems.

3.65 Capability of representing qualitatively di�erent system states
The SES models have the objective of modelling coupled ecological and social system dynamics. The SERD
model (Gaube & Haberl 2013) illustrates the use of these models to simulate coevolution across social and
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ecological systems. They can therefore generate scenarios of system state changes, as emergent macroscale
patterns.

3.66 Capability of representing changes in social values and norms
The use of participatory modelling also facilitates the integration of social norms and values on the direction
and desire for a direction of change in change processes. In this way, norms and values can be incorporated in
the model as a part of the process of model development.

3.67 Capability of representing diversity and heterogeneity
The inclusion of di�erent types of actors in these models enables the representation of diversity and hetero-
geneity.

3.68 Capability of representing dynamics at and across di�erent scales
Thismodelling literaturehas anexplicit focuson thedynamic interactionbetweenmicroscaledrivers andemer-
gent macroscale patterns and therefore does consider dynamics across di�erent scales.

3.69 Capability to incorporate uncertainties or contingencies
The simulation of thesemodels withmultiple interactions between agents and ecological systems involves the
representationof future contingencies. Analysis of uncertainties is seenbySchlueter et al. (2012) as a continuing
challenge for this field.

3.70 Because SES models have adopted the modelling approaches of complex systems and CSS ABMs, they have
the same potential advantages of being in principle able to represent all the features of transitions identified
above. Themainchallenge forSESmodels is commonwithother IAMapproaches: theverywide scopeof linking
ecosystems to socio-technical systems easily leads to very complex models.

Discussion

4.1 The ability of the di�erent kinds of models reviewed to address the characteristics of transition models identi-
fied in Section 2 is summarised by the diagrams in Figure 1. In order to provide an overview and some compa-
rability between model approaches, we have provided in these diagrams a quasi-quantitative scoring of each
model approach with respect to each transition characteristic, based on the discussion in Section 3 and our
background knowledge. Figure 1 represents the current practice in the modelling strands discussed.

4.2 The comparison of the approaches and their characteristics shows that they have di�erent strengths andweak-
nesses in terms of the transition characteristics. The energy system models (Li et al. 2015; ETSAP 2017a) and
climate policy IAMs (Stehfest et al. 2014; ETSAP 2017b) provide quantitative forecasts of energy markets and
emissions with an emphasis on market structures. They are extensively used for policy support. The three
classes of general complexity complexity models: ecological economics (Silverberg et al. 1988; Windrum et al.
2009; Safarzyńska & van den Bergh 2010), complex systems (Frenken 2006; Alkemade et al. 2009; Zeppini et al.
2014) and CSS ABMs (Ehrentreich 2008; Köhler et al. 2009; Chappin & Dijkema 2010) are o�en more abstract,
but includemore detailed and complex models of socio-economic systems, behaviours and dynamics. The SD
models (Moallemi et al. 2006; Papachristos 2011, 2017; Walrave & Raven 2016) emphasise system analysis with
dynamics generated by feedbacks. The SES models (Becu et al. 2003; Gaube & Haberl 2013) extend the CSS
ABMs to include ecosystem feedbacks in an integrated assessment.
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Figure 1: Comparative assessment of the modelling literatures reviewed.

4.3 A first conclusion is therefore that it is possible for transitionsmodelling tomake use of a variety of approaches.
Di�erent models and approaches can emphasise di�erent aspects of sustainability transitions research. Fig-
ure 1 furthermore provides transition researchers with a starting point for their choice of amodelling approach,
whose characteristics should correspond to the characteristics of the research question they face. It is also im-
portant to note that some models can be regarded as combinations of these approaches. Köhler et al. (2009)
combine theSDandCSSABMapproachesandGaube&Haberl (2013) includeaCSSABMaspart of anSESmodel.

4.4 However, a clear picture (based on a qualitative assessment of themodelling approaches) does emerge for the
set of types of models considered. The ability to represent non-linear system behaviour and path dependency
is high, because of the system nature of these approaches. They are all built around system concepts of a set
of modelling entities with feedbacks and behaviour rules that may have positive or negative feedback e�ects.
Taken together, the set of model types can also represent heterogeneity well, especially the CSS ABMs and
evolutionary models.

4.5 The ability to represent di�erent scales within the same model is more mixed. While all the approaches can
be applied in principle to both micro and macro levels of analysis, evolutionary economics models and com-
plex systems models have been used more for micro level analysis. The energy system models (Li et al. 2015)
climate policy IAMs (Köhler et al. 2006) and SES models (Schlueter et al. 2012) are applied to more aggregated
levels, with simpler representations of micro-level behaviour. Most models in these literatures have used a
‘bottom-up’ system approach, where the model is built up from small scale components which can then ex-
hibit emergent large scale system behaviour, a feature of complex systems. Some models also have higher
level structure included aswell, such as regime and landscape features in Köhler et al. (2009) or some of the SD
models (Papachristos 2011; Moallemi et al. 2006). The energy-economy models (ETSAP 2017a; Leimbach et al.
2010) and IAMs o�en represent themacroeconomic scalewhile having a basis inmicroeconomic theory (Köhler
et al. 2006; Stehfest et al. 2014; ETSAP 2017b).

4.6 The model approaches are weakest in representing qualitatively di�erent states and the normative aspects of
change, such as new fields of social activity, new ways of living or changes in cultural values. It is important
to emphasise here that we know of no other modelling approaches that consider such topics that do a better
job. The problem ismore an inherent problemofmodelling evolving complex social systems. In order to imple-
ment a computer model, it is necessary to specify beforehand the variables, relationships and data. Evolution
requires however the emergence of new patterns of behaviour though both random changes and recombina-
tion i.e. new combinations of science, technology/products, markets, institutions and culture. Such processes
have only rarely been applied in sustainability transitions modelling. Recombinant technologies are explored
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in e.g. Frenken et al. (2012); Van den Bergh (2008); Zeppini & van den Bergh (2011), but these concentrate on
technologies rather than social changes or norms.

4.7 Another area of qualitative change where models are limited is in addressing changes in the system structure
e.g. markets and other institutions, norms and values, emerging new actor groups. Epstein & Axtell (1996) have
however demonstrated that the representation of emergent institutions using a CSS ABM approach is possible.
Sustainability transitions involve bydefinition the creation andemergence of new socio-technological systems,
which involve these structural changes. Developingmodelsof changes in theseareas requires the incorporation
ofmechanisms for changing decision rules or heuristics, as opposed to changing decisions based on changes in
e.g. relative prices in economicmodels. Evolutionary models with recombination would seem to be promising
approaches for exploring structural change. Zeppini et al. (2014) develop this argument, citing examples of
evolutionary economics models that model recombinant innovation (Zeppini & van den Bergh 2011; Frenken
et al. 2012).

4.8 The incorporation of uncertainty and contingencies presents a particularly di�icult problem for models in this
field. Since all the approaches use non-linear simulation methods, contingencies/uncertainties are incorpo-
rated inall themodels. However, the flexibility this allowsand theneed to consider systemchanges in the future
result in a very high level of uncertainty in the projections generated by suchmodels. Uncertainty is addressed
through limited scenario analysis, rather than statistical methods of uncertainty analysis. Holtz et al. (2015)
suggest that in the context of (highly) complex socio-technical systems addressed in transitions research, mod-
els can be used for simulation experiments to assess the consequences of uncertainties. Kwakkel et al. (2013)
have discussed the use of exploratory modelling with SD for dealing with uncertainty. Halbe et al. (2015) dis-
cuss approaches used for addressing uncertainty. Sensitivity analyses are widely applied (Bennett et al. 2010;
Schlueter et al. 2012). Monte Carlomethods have also been applied to someABMs of ecosystems (e.g. Schouten
et al. 2014).

4.9 What is o�en not explicitly represented are the feedbacks between socio-technical systems and the biosphere.
It can be argued thatmodels taking the environmental issue as given (e.g. climate change as a social and policy
issue) can regard the feedbacks from the biosphere as constant in the timescale of the model. However, since
the argument for sustainability policy is at least partly based on the desire to reduce the impacts of ecosystem
change on society, it should be a part of analysis in sustainability transitions. This is an important contribu-
tion of the SES (socio-ecological systems) models (Schlueter et al. 2012) and of the IAMs (Stehfest et al. 2014).
For other approaches, there is usually at most an (o�en implicit) unidirectional link – from human activity to
emissions through the use of technology. Some system dynamics models, such as Meadows’ Limits to Growth
(Meadows et al. 1972) and more recently Feng et al. (2013) have addressed these issues of feedbacks from the
biosphere to socio-technical systems.

Conclusions: Identifying a Niche for Transitions Modelling

5.1 In this paper, we have reviewed some of the main strands in modelling of socio-technological change. While
Holtz et al. (2015) review the possible roles of simulationmodelling in transitions research, the present paper is
intended to discuss the ability of these approaches to address key characteristics of sustainability transitions as
identifiedby empirical research (Rotmans et al. 2001; Smith et al. 2005; Smith&Stirling 2010; Coenenet al. 2012;
Grin et al. 2010; STRN 2010). We have identified six features that we argue models require in order to address
these characteristics:

• Capability of representing non-linear behaviour

• Capability of representing qualitatively di�erent system states

• Capability of representing changes in social values and norms

• Capability of representing diversity and heterogeneity

• Capability of representing dynamics at and across di�erent scales

• Capability of incorporating open processes and uncertainties or contingencies

5.2 It is not the objective of this paper to argue that some modelling approaches are not relevant because they
do not have these features. However, we argue that a model that seeks to represent the social processes that
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according to the current literaturemakeup sustainability transitionsdoesneed to include (several of) these fea-
tures. This reviewprovides transition researcherswith a starting point for their choice of amodelling approach,
which should address the characteristics of the research question they face.

5.3 We identify six approaches that are of particular relevance to modelling transitions:

• Eco-innovation (energy-economymodels and Integrated Assessment Models)

• Evolutionary economics

• Complex systems

• Computational social science: Agent-Basedmodels

• System Dynamics (SD)

• Socio-ecological systems (SES)

5.4 These modelling approaches can address many of the required characteristics that di�erentiate sustainability
transitions from other socio-economic dynamics or innovations. The most critical features are the representa-
tionof qualitativelydi�erent states andof thenormative aspects of change, i.e. that of representingprofoundor
qualitative changes in societal systems including actors, practices, institutions and technologies. Such changes
are linked in transitions theory with changes in norms and culture (Freeman & Louçã 2001; Grin et al. 2010).
These are also identified as areaswheremodelling is limited, even in the analyses that include transitions think-
ing. Analogous to physical systems, the evolutionary economics and complex systems models are intended to
allow for emergent system properties or phase changes (Safarzyńska & van den Bergh 2010; Zeppini et al. 2014;
de Haan 2008).

5.5 However, there are very few representations of transitions to di�erent states of combined economic, technical,
social and institutional systemsas identified in the transitions literature (e.g.Grin et al. 2010). CSSABMs (Epstein
& Axtell 1996) and evolutionary economicsmodels including recombinant innovation (Zeppini & van den Bergh
2011; Frenken et al. 2012) indicate approaches for generating new institutions and social/economic structures.

5.6 The importanceof theseaspects and the lackofmodel approaches toaddress themsuggests innovativemodels
need to be developed that explicitly address the co-evolution of preferences/values, institutions/norms, tech-
nological innovations and behaviour. This would enable models to address the emergence and stabilization of
niches and the discontinuation of regimeswith a broader indicator set than onlymarket shares of technologies
(Grin et al. 2010; STRN 2010). This suggests one possible direction of development for transitions modelling:
models of co-evolution of behaviours and technologies towards sustainability, involving change in the struc-
ture of the societal and technical systems. For such a development, an early and fundamental challengewill be
to definemore precisely “change in the structure of the societal and technical systems", and how it can be rep-
resented in a computer model. The literature on sustainability transitions and eco-innovation provides some
suggestions for pathways towards sustainability (e.g. Geels & Schot 2007; Papachristos et al. 2013), but these
require interpretation for the development of formal relationships that can be implemented in a simulation
model.

5.7 The representation in simulation models of cognitive and regulative institutions and the dynamics of forma-
tion and changes of norms and values (Elsenbroich & Gilbert 2014 provide a recent review of methods) is also
an area for further investigation, and an important building block for models of the broader type mentioned
beforehand.

5.8 A further direction where the currentmodelling can be developed is themodelling of ecosystems coupled with
transitions in socio-technical systems. This would be an extension of current Integrated Assessment Modelling
of environmental policy issues such as water catchment (Becu et al. 2003) or forestry and also urban sprawl,
where the response times of the eco-system are of the same order as the changes in socio-technical systems.
The socio-ecologicalmodelling literature also provides a relevantmodelling basis for the ecosystem-social sys-
tem feedbacks (Fletcher & Hilbert 2007; Gaube & Haberl 2013).

5.9 The linkages between the niche and meso/macro scales (regime, landscape) also require further research. As
Rotmans et al. (2001) and Geels & Schot (2007) argue, the relative timing of events and feedbacks between the
scales and (socio-technical) subsystems (niches, innovation systems,multiple regimes) determine the possible
pathways of transition.
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Notes

1Based on the search conducted on 10 of October 2016 with the following string in Scopus: TITLE-ABS-KEY
((“sustainability transition*") OR (“socio-technical transitions") OR (“Societal transition") OR (“multi-level per-
spective") OR (“transition management")) AND TITLE-ABS-KEY ((modelling) OR (“transition model") OR (simu-
lation)). The irrelevant articles were removed from the results. The papers published in the proceedings of IST
(sustainability transitions research network) conferences in 2015 and 2016 were added manually, because IST
is the only conference specifically on transitions research.

2Societal systems as we use the term here include the regime as defined by STRN (2010) as well as niches
that relate to the same societal function as the regime.
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