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ABSTRACT

We present an implementation of a self-consistent way of modelling synchrotron self-Compton (SSC) effects in gamma-ray burst

afterglows, with and without approximated Klein–Nishina suppressed scattering for the afterglow modelling code BOXFIT, which

is currently based on pure synchrotron emission. We discuss the changes in spectral shape and evolution due to SSC effects, and

comment on how these changes affect physical parameters derived from broad-band modelling. We show that SSC effects can

have a profound impact on the shape of the X-ray light curve using simulations including these effects. This leads to data that

cannot be simultaneously fit well in both the X-ray and radio bands when considering synchrotron-only fits, and an inability

to recover the correct physical parameters, with some fitted parameters deviating orders of magnitude from the simulated input

parameters. This may have a significant impact on the physical parameter distributions based on previous broad-band modelling

efforts.
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1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) are high-energy bursts of γ -rays detected

at cosmological distances isotropically across the sky. Since the first

detection of a burst five decades ago, understanding of GRBs as the

result of mechanisms internal to a relativistic jet driven by some

central engine has been established (Rees & Meszaros 1992). The

jet interacts with the circumburst medium (CBM) producing the

afterglow emission (Wijers, Rees & Meszaros 1997). The canonical

approach to afterglow modelling is to assume that a relativistic

shock, formed at the jet-CBM interface, accelerates electrons into

a power-law energy distribution; and those electrons radiate energy

through the synchrotron emission process (Sari, Piran & Narayan

1998; Wijers & Galama 1999). This approach has proven remarkably

successful at modelling afterglow emission, especially when coupled

with hydrodynamic models of the jetted outflow (e.g. Chevalier &

Li 1999; Rhoads 1999; Granot & Sari 2002; Panaitescu & Kumar

2002; van Eerten, van der Horst & MacFadyen 2012).

In spite of the successes of synchrotron-dominated afterglow

models, many GRBs still remain resistant to characterization by this

method. Evidence increasingly points towards additional emission

mechanisms modifying, and at certain wave bands even dominating,

the afterglow emission. In particular, the up-scattering of the original

synchrotron emission off of the emitting electrons in synchrotron

self-Compton (SSC) emission occurs at some level in all afterglows;

and it can become a dominant mechanism in both the emission

and electron cooling processes, depending on the microphysical

⋆ E-mail: tjacovich@cfa.harvard.edu

parameters related to the electrons and magnetic fields (e.g. Lemoine,

Li & Wang 2013). SSC effects have been discussed in the literature,

with great care taken to discuss all physical implications with

the same level of detail as synchrotron emission in GRBs (e.g.

Sari & Esin 2001; Nakar, Ando & Sari 2009; Nava et al. 2014;

Beniamini et al. 2015; Lemoine 2015). In spite of this, SSC

effects have been applied inconsistently to afterglow modelling,

and mainly when GRB afterglows proved resistant to modelling

with only synchrotron emission (e.g. Chandra et al. 2008). Many

of these attempts adopted asymptotic descriptions of the emission

and simplified the dynamics to that of a thin, symmetric, shell of

homogeneous, relativistic material. These studies also tended to

neglect the frequency-dependent suppression of SSC up-scattering

through Klein–Nishina (KN) effects.

To improve the modelling of GRB afterglows, one needs a rigorous

and generic way to incorporate the effect of SSC processes on the

GRB spectrum into a model based on the microphysics of the outflow.

Doing this, one can consistently model all afterglows while taking

into account both synchrotron and SSC effects. To accomplish this,

we adopted the methodology of describing SSC effects with the

SSC-to-synchrotron power ratio Y, which is a function of frequency

and time. We re-derive equations for Y in different spectral regimes

and explain how it affects electron cooling. We discuss prior work in

the field and present equations for Y both without (Section 2; based

on Sari & Esin 2001) and with (Section 3; based on Nakar et al.

2009) taking KN effects into account. We note that the inclusion of

SSC effects can constrain afterglow physics without introducing any

additional parameters compared to modelling with only synchrotron

emission. The KN-approximated solution is coupled to the two-

dimensional hydrodynamic afterglow modelling code BOXFIT (van
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Modelling SSC and KN effects in GRB afterglows 529

Eerten et al. 2012) in Section 4, so we can model light curves and

spectra with an accurate consideration of the physics. With this new

tool, we discuss the observed impact of SSC cooling on the spectral

and temporal evolution of the afterglow with and without KN effects

in Section 5. We also discuss under what physical conditions these

effects become relevant. Finally, we close with a discussion of what

this means for past GRB modelling efforts in Section 6, as well as

future applications of this new addition to the afterglow modelling

toolkit in Section 7.

2 SSC IN THE THOMSON R EGIME

The standard method for modelling emission from a GRB afterglow

is to assume that electrons are instantaneously accelerated by a rela-

tivistic shock to a power-law distribution of Lorentz factor γ e, with

a power-law slope p above some minimum Lorentz factor γ m, which

is a function of several microphysical parameters. These electrons

are then assumed to radiate away energy through the synchrotron

process with a characteristic frequency ν(γe) = Cνǫ
1/2
B γ 2

e (Sari et al.

1998; Wijers & Galama 1999). The characteristic frequency depends

on the total blastwave energy fraction in the magnetic field ǫB, as

well as an overall constant, Cν , which has different values in the

literature depending on how the above characteristic frequency was

derived. In order to maintain consistency with BOXFIT, we chose Cν

and all other constants to match van Eerten (2015). A break in the

distribution occurs at the Lorentz factor where electrons are radiating

away significant portions of their energy on the dynamic time-scale

of the jet, denoted as the cooling Lorentz factor, γ c. We can write

down the full electron distribution in the fast-cooling (γ m > γ c) case

dn′
e

dγe

∝

{

γ −2
e , γc < γe ≤ γm

γ −p−1
e , γe > γm

, (1)

or slow-cooling (γ m < γ c) case

dn′
e

dγe

∝

{

γ −p
e , γm < γe ≤ γc

γ −p−1
e , γe > γc

. (2)

The full set of parameters required to model the afterglow includes

those mentioned above (ǫB, p) as well as the fraction of the shock

energy in the electron population, ǫe; the isotropic-equivalent energy

of the jet, Eiso; the opening angle of the jet, θ0; the observer angle

relative to the jet axis, θobs; the circumburst density, n (A in the case

of a wind-like medium); and the fraction of accelerated electrons ξN

(Sari et al. 1998; Chevalier & Li 1999; Wijers & Galama 1999)

In many cases, this description of an afterglow is a reasonable

approximation, but in cases where a small fraction of the shock

energy is diverted into the magnetic-field strength, i.e. ǫB is small,

synchrotron photon up-scattering begins to dominate electron cool-

ing. This particular form of inverse-Compton emission is known

as SSC emission. SSC effects present themselves in three distinct

ways: the first is as increased electron cooling which leads to a lower

value for γ c; the second is an overall decrease in synchrotron flux

above νc; and the third is increased emission for frequencies at and

above ∼ min(γm, γc)2ν, where ν is the seed photon frequency (Sari

& Esin 2001). In practice, the cooling effects occur in the canonical

observed afterglow regime, in particular, in the X-ray band, while

the SSC emission peak occurs at significantly higher energies. The

effects of SSC can be incorporated into the synchrotron spectrum

by solving the electron cooling equation assuming both synchrotron

and SSC cooling, the result of which is

γc = γ S
c (1 + Y )−1 . (3)

Here, γ S
c is the cooling Lorentz factor assuming only synchrotron

emission, while γ c is the effective cooling Lorentz factor. We have

also introduced the SSC parameter Y which relates the incident

synchrotron power to the SSC emission. In the context of electron

cooling, Y is of importance to us only in cases where the total SSC

power exceeds that of the synchrotron emission. We also note that

Y now appears explicitly in the cooling equation, which causes νc

to be reduced by (1 + Y)−2. In the Thomson scattering case, Y(γ e,

t) reduces to Y(t), which we denote as YT to differentiate it from the

general Y = Y(γ e, t).

To discuss YT in earnest, we must have a mathematical description

of it based on the physical afterglow system. It can be shown that

in the Thomson regime, YT can be defined as (Rybicki & Lightman

1979)

YT =
4

3
σTn′

0	R′
〈

γ 2
e

〉

. (4)

Here, σ T is the Thomson scattering cross-section, n′
0 is the electron

number density, 	R
′

is the length of a thin emitting shell at the shock

boundary, and 〈γ 2
e 〉 is the second moment of the electron Lorentz

factor distribution. Primed values are calculated in the co-moving

frame of the jet. Y is frame invariant, so it is sufficient to determine it

in only one frame. Although Y has an apparent dependence on the size

of the emitting region, 	R
′

, the dependence ultimately cancels, and Y

becomes a function of the microphysical parameters (see appendices

of this paper). We present a full derivation of Y in the Thomson

regime in Appendix A, and here, we give a brief discussion of the

three key regimes for the Thomson Y: fast cooling (γ c < γ m), slow

cooling (γ c > γ m), and the transition, where γ m = γ c. We present

the resulting equations for YT in Table 1.

2.1 Fast cooling

For YT in the fast-cooling regime, a closed-form solution can be

constructed by solving a third order polynomial in Y. In the ultra-fast

cooling approximation (γ c ≪ γ m), we obtain

Yfast ∝

⎧

⎨

⎩

√

ǫeǫ
−1
B , ǫeǫ

−1
B ≫ 1

ǫeǫ
−1
B , ǫeǫ

−1
B ≪ 1

. (5)

As the function approaches the transition between regimes, terms

proportional to γcγ
−1
m become important, and the function rises

steeply to the value calculated for the transition point. At the

transition between fast and slow cooling, the two critical frequencies

are identical, as are the respective electron distributions. The resulting

equation for Y reduces immensely, dropping all γ e dependence, and

giving a very clear depiction of the microphysical parameters that

modify YT. We denote this solution as Y∗.

2.2 Slow cooling

The slow-cooling regime requires more consideration than the

previously discussed regimes. The electron distribution shares the

same γ −p−1
e behaviour above the cooling break, but has a γ −p

e

dependence at lower energies. This dependence makes solving for YT

in the slow-cooling regime more difficult, as there is no closed form

solution without knowing a priori what the power-law slope is. Even

then, not all values of p yield a closed solution. One exists for p = 2.5,

which we will make use of below, but generally YT must be solved

numerically, and the computational costs of solving this equation

in real-time are far higher than can be reasonably incorporated into

BOXFIT, given that the code is meant to be used for iterative fitting of
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530 T. E. Jacovich, P. Beniamini and A. J. van der Horst

Table 1. Y in the Thomson regime.

Regime Requirements Yc

Fast cooling γ c < γ m YT(1 + YT) =
(p−2)ǫe

(p−1)ǫB

(

p−1
p−2

(1 + YT) −
γ s

c
γm

)(

(1 + YT) −
p−1
p

γ s
c

γm

)−1

Transition value γ c = γ m YT ≡ Y∗ = 1
2

(√

1 +
4p

p−1
ǫe
ǫB

− 1
)

Slow cooling γ c > γ m YT(1 + YT)2 =

p

(

ǫe
ǫB

γm
γ s

c
(1+YT)3−p p−2

p−3
+

ǫe
ǫB

1
3−p

(

γm
γ s

c

)p−2
)

p(1+YT)1−p−

(

γm
γ s

c

)p−1

Table 2. Approximating YT in the slow-cooling regime.

Rule 1 Rule 2 Yslow

γ m ≪ γ c Yslow(1 + Yslow)3−p ≈ ǫe
ǫB

1
3−p

(

γm

γ s
c

)p−2

γ m ≪ γ c Yslow ≫ 1 Yslow ≈

(

ǫe
ǫB

1
3−p

(

γm

γ s
c

)p−2
)

1
4−p

γ m ≪ γ c Yslow ≪ 1 Yslow ≈

(

ǫe
ǫB

1
3−p

(

γm

γ s
c

)p−2
)

data. To work around this hurdle, we introduce an asymptotic solution

to YT in the slow-cooling regime such that it returns approximately

the right value at the transition between the cooling regimes, while

also approximating the behaviour in the limit γ c ≫ γ m well. The

asymptotes are presented in Table 2.

3 A PPROX IMATING K N SUPPRESSION OF SSC

SCATTERIN G

At photon energies comparable to or larger than the electron rest

mass in the electron centre of mass frame, we can no longer assume a

purely Thomson scattering cross-section. At these energies, electron

recoil and KN suppression must be included to properly characterize

the various emission mechanisms. KN suppression is particularly

important as it has the effect of significantly reducing the electron

scattering cross-section for high-energy synchrotron photons. The

exact behaviour requires examining interactions at the individual

particle level, but we can make two assumptions that greatly simplify

the derived spectra, as was done in Nakar et al. (2009). First, we can

assume that a given photon with frequency ν is in the Thomson

regime for all electrons with Lorentz factor γ for which hν <

γ emec2. Beyond this point, we can consider energy transfer as

inconsequential, i.e. photons only gain a finite amount of energy

proportional to the electron mass, as opposed to a squared Lorentz

boost. We can denote the Lorentz factor of the maximum scattering

electron, using the definition from Nakar et al. (2009), as

γ̂e =
mec

2

hνe

=
mec

2

hCνǫ
1/2
B γ 2

e

∝
1

γ 2
e

. (6)

We can then assume the scattering cross-section takes on a step

function behaviour such that

σ (ν) =

{

σT, γe ≤ γ̂ (ν)

0, γe > γ̂ (ν)
. (7)

The modified scattering cross-section allows us to define a γ e-

dependent description of Y, such that Y transitions smoothly from

YT described above to regimes where most electrons are beyond the

KN limit for the observed photon frequency. A full description of

KN effects on both the synchrotron and SSC emission spectra can

be found in Nakar et al. (2009). We will briefly discuss the pieces

relevant for implementation in numerical codes such as BOXFIT.

The modified Y parameter is derived from

Y (γe) ∝

∫ ν̃(γe)

0

dν ′

∫

dγ ∗
e Pν′

(

γ ∗
e

) dn′
e

dγ ∗
e

. (8)

Unlike the Thomson case, where Y can be shown to simplify to an

integral over the electron population (see Appendix A), Y in the

KN regime is defined as a convolution of the electron and photon

populations, with a high-energy limit on the photon integral created

by the step-function behaviour of the scattering cross-section. We

omit the overall constants associated with equation (8), because the

results will ultimately be re-scaled such that they are consistent with

the Thomson regime. We introduce the maximum frequency photon

an electron can up-scatter in the Thomson regime ν̃, where

ν̃ = νsync (γ̃e) = Cνǫ
1/2
B γ̃ 2

e .

Here, γ̃e is the Lorentz factor of the electron that emitted the

maximally scattered photon

γ̃e =

(

γemec
2

hνsync (γe)

)1/2

= (γeγ̂e)1/2

and

ν̃ = Cνǫ
1/2
B (γeγ̂e) . (9)

Unlike the case in which we omit KN effects, we do not look for

exact solutions for the various regimes as there is no simple way

to merge them into a single equation that works for the entire GRB

parameter space. Instead, we determine the functional behaviour of

Y as a function of γ e in the KN-suppressed limit, and then self-

consistently connect it to our Thomson-derived solution such that

Y is continuous in both time and frequency space. We present the

derived solutions for the cooling regimes in Table 3 and briefly

discuss the behaviors below.

3.1 Fast cooling

In the fast-cooling case (γ m > γ c or equivalently γ̂c > γ̂m), there

are three key regimes worth discussing. The first is the Thomson

regime discussed above; the next regime occurs when νobs photons

can no longer scatter off of γ m electrons; and the final one occurs

when those same photons can no longer scatter off of γ c electrons.

In practice, this results in a Y parameter that goes as

Yfast (γe) ∝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ 0
e , γe ≤ γ̂m

γ −1/2
e , γ̂m ≤ γe ≤ γ̂c

γ −4/3
e , γ̂c ≤ γe

. (10)

The full derivation of these regimes has already been carried out by

Nakar et al. (2009), so we will not repeat that here. We note that

MNRAS 504, 528–542 (2021)
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Table 3. Approximating Y(νe) for KN-suppressed SSC.

Regime Rule 1 Rule 2 Y(νe)

Fast cooling γ c < γ m γe < γ̂m Y(νe) = YT

γ c < γ m γ̂m < γe < γ̂c Y (νe) = YT

(

γe

γ̂m

)− 1
2

γ c < γ m γ̂c < γe Y (νe) = YT
γc

γm

(

γe

γ̂c

)− 4
3

Slow cooling γ m < γ c γe < γ̂c Y(νe) = YT

γ m < γ c γ̂m < γe < γ̂c Y (νe) = YT

(

γe

γ̂c

)

p−3
2

γ m < γ c γe < γ̂m Y (νe) = YT

(

γ̂m

γ̂c

)

p−3
2

(

γe

γ̂m

)− 4
3

we omit several secondary regimes Nakar et al. (2009) defined as

the power-law segments where Y would be smaller than 1, as these

cases would look identical to the synchrotron curve that we calculate

independently. We do, however, include Y ≪ 1 asymptotes of the

regime above to help with the transition from SSC- to synchrotron-

dominated cooling.

3.2 Slow cooling

The slow-cooling case (γ c > γ m or equivalently γ̂m > γ̂c), presents

itself in a more complicated fashion. Unlike fast cooling, the weakly

suppressed regime has a p dependence. To deal with this, we again

look to Nakar et al. (2009) as a basis for defining Y in the KN regime,

and use our Thomson solution to create a smoothed and continuous

approximation for all times and frequencies

Yslow (γe) ∝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ 0
e , γe ≤ γ̂c

γ −(p−3)/2
e , γ̂c ≤ γe ≤ γ̂m

γ −4/3
e , γ̂m ≤ γe

. (11)

In practice, Yslow is further complicated by the strong p dependence

of YT in this regime, but we move any explicit discussion of that to

Appendix A.

3.3 Transition between cooling regimes

The low-energy regimes of both fast and slow cooling represent

scattering of photons that are not the characteristic frequency of

any electron, but are instead produced by the ν
1
3 tail of the single

electron spectrum. These photons are washed out at higher energies,

but do appear at frequencies below ν(min(γ m, γ c)). This places

an important check on self-consistency, as the transitional regime

removes the central power-law segment, and Yfast = Yslow becomes

Y∗ (γe) ∝

{

γ 0
e , γe ≤ γ̂c

γ −4/3
e , γ̂∗ ≤ γe

. (12)

4 IMPLEMENTING SSC EFFECTS INTO B OX F I T

4.1 Y in the Thomson regime

Now that we have established the exact solution for Y in each cooling

regime, or at least how to obtain it, we can produce a solution for

implementation in BOXFIT. There are two main issues that needed to

be addressed, the first of which is the issue of the cooling regime.

BOXFIT emission depends on the ordering of the critical frequencies

and that ordering depends on Y. The problem arises because Y

also depends on the ordering and value of the critical frequencies.

Figure 1. Y as a function of time in the Thomson regime. The solid orange

curve corresponds to the full solution for both cooling regimes with physical

parameters Eiso = 1053 erg, n0 = 5cm−3, p = 2.3, ǫe = 10−1, ǫB = 10−3, θ0

= 0.3 rad, and θobs = 0.0. The dashed, blue curve represents the exact Yfast

solution smoothly connected to the Yslow approximation. The solid horizontal

line denotes

√

ǫeǫ
−1
B , and the dashed line corresponds to the transition value

Y∗. The vertical line denotes the time for which γ c = γ m.

To alleviate this issue, we construct a smoothly broken power-law

description of the form

YT =
(

Y α
fast + Y α

slow

)1/α
, (13)

where α < 0. Here, we are taking advantage of the fact that the two

cooling regimes only intersect at the transition value, and that the

two functions blow up rapidly outside of their own cooling regime,

so we can select α such that Y always selects the smaller of the two

regimes. We find that a good fit for a large range of parameters is α

= −60p−2; a visualization of this for p = 2.3 is presented in Fig. 1

Even with this approximation, we still need to deal with the

numerical complexity of computing Yslow for an afterglow with

arbitrary parameters. We compute the asymptotic behaviour of the

slow-cooling case at late times, as was done in Beniamini et al.

(2015). The result is a much simplified equation, but still not exactly

solvable without cumbersome numerical techniques. To overcome

this, we perform an additional smoothing of Yslow using the limits

for Y ≫ 1 and Y ≪ 1. The reduced solution and its asymptotes are

also included in Appendix A. The doubly smoothed broken power

law is plotted together with the exact solution in Fig. 1. The full

solution for YT contains a maximum at the transition between the fast

and slow-cooling regimes. This is due to the shape of the assumed

electron distribution approaching a sharp power law at the transition.

In practice, the maximum is smoothed to the fast-cooling limit in

MNRAS 504, 528–542 (2021)
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532 T. E. Jacovich, P. Beniamini and A. J. van der Horst

BOXFIT due to multiple emitting regions and times contributing to the

observed emission. The maximum is still important for consistency

as it aligns the definition of Y with the definition used for synchrotron

emission in BOXFIT.

4.2 Implementing KN effects: Y at νc

Unlike the Thomson case, Y has a strong γ e dependence when KN-

suppression is important. Because, we are dealing with a code for

fitting observational data, it makes sense to continue discussing Y

as Y(νe). With that in mind, we need to have a solution specific

to νc, so that we can properly determine the cooling regime and

the location of γ c-defined breaks. To do this, we need to solve our

KN-approximated solution for γ e = γ c, and produce a solution

that is agnostic to both the cooling regime and the KN regime at

νc. We again invoke a smoothly broken power-law approximation,

combining not just the fast- and slow-cooling regimes, but also the

weak and strong KN regimes of each solution. This results in a nested

series of smoothly broken power-law solutions that culminate in an

approximate description of Y(νc) in all regimes. With a continuous

solution for Y(νc), we can determine the cooling regime and calculate

Y(νc) using the power-law functions defined in Section 3; these

solutions are found in Table 4. We plot Y(νe) as a function of time

for several frequencies and parameters in Fig. 2. In each regime, we

see the breaks due to KN effects, and we extract an additional break

defined as γ 0 in Nakar et al. (2009) at Y = 1.

4.3 Computational complexity

Because BOXFIT allows for multiple emission times and regions

to be taken into account, even at a single observer time, we

cannot define a global Y(νc) and must calculate it for every

emitting point in the jet. This does add to the computational

complexity and time required to run, with a Thomson-solution-

enabled version of BOXFIT running about 20–70 per cent slower

than the comparable synchrotron-only version, depending heavily

on the simulation resolution and the observer angle. In realistic

and typical examples, this has caused the fit time to increase

by about 40 per cent when none of the fit parameters are fixed.

The KN-enabled version presents additional hurdles as the Y(νc)

parameter becomes more complex in this case, and there is an

additional calculation that includes a series of Boolean checks for

every grid point. The overall effect on run time still remains within

50 per cent. SSC effects can be enabled at compile time using the

variables in the environment header file both with and without

KN effects.

As an alternative to the approach described in this paper, Y could

be solved for a grid of values and tabulated for use in BOXFIT in a

similar manner to how the jet dynamics are included. This would be

straightforward in the Thomson regime, as Y only explicitly depends

on three parameters
(

ǫeǫ
−1
B , γmγ −1

c , p
)

. Providing a sufficient sam-

ple to characterize the behaviour of Y in the KN regime would likely

be more difficult as the behaviour is more complex and dependent

on the individual values of the above parameters, along with γ e, in

addition to their ratios.

5 EF F ECTS O N BROAD-BAND SPECTRA AND

L I G H T C U RV E S

Nakar et al. (2009) present the effects of SSC on the synchrotron

spectrum in great detail, and our aim is to import their results into

a framework where the mathematics are agnostic to the cooling

and KN regime. Additionally, broad-band modelling with BOXFIT

is more sensitive to the time evolution in the data set of a given

GRB afterglow, as opposed to determining the exact spectral regime

at any given instant. Therefore, we focus largely on the evolution

of afterglow light curves. We do present an example of a typical

afterglow spectrum in Fig. 3.

SSC, both with and without KN effects, can have a profound effect

on light-curve behaviour depending on the microphysical parameters.

Parameters such as the isotropic equivalent energy and density are

degenerate in terms of their qualitative behaviour, and differences

from varying one or the other do not provide distinct changes in how

Y varies. The parameters ǫe and ǫB have a more direct impact on the

strength and longevity of SSC effects, which makes sense given that

Y depends on powers of ǫeǫ
−1
B . One would naively expect a direct

relationship between this ratio and the magnitude of any SSC effects,

but this is an incomplete description of reality. KN effects provide a

direct dependence on individual values of νc and νm as opposed to

only their ratio, which introduces a direct dependence on ǫe and ǫB

as individual parameters. This results in different behaviour in Y that

would not appear when considering only scattering in the Thomson

regime. Fig. 2 shows how varying ǫB affects the flux suppression,

with Y increasing up until ǫB ∼ 10−4, beyond which KN effects

dominate. There is a distinct set of breaks in the light curves caused by

the addition of KN effects, as illustrated in Fig. 4. Inverse-Compton

cooling on its own does not show obvious breaks, and presents an

overall suppression of the flux, followed by a smooth and largely

continuous rise back to the synchrotron light curve at late times. For

most parameters, Y is significantly overestimated, especially at later

times when KN effects drive Y much more quickly to 0 than would

be predicted by the Y computed in their absence, as seen in Fig. 5.

Most of the other parameters (Eiso, θ0, n0, and ξ ) result in similar

variations to the light curves as modifying ǫe, since those parameters

modify the total energy available to the electron population. ǫB is

an exception, since it dictates the transition time between YT and

YKN, while ǫe drives the magnitude of Y and has a strong impact

on the power-law index of the light curve as it transitions back

to synchrotron-only cooling. θ0 also effects the jet-break time, but

that occurs well beyond the end of observed SSC influence for all

parameters. The observer angle θobs requires a little more attention:

increasing the observer angle results in lower emission at earlier

times, which would seem to be an issue for detecting SSC cooling

in the afterglow. A larger observer angle also means that emission

from the far edge of the jet will be arriving at a later time than the

same emission on the near side of the jet. This results in an initial

increase in flux after detection as more of the jet becomes visible, as

well as changes to the decay of the light curves. One of the biggest

changes is a significantly smoothed and chromatic jet break. The Y

parameter in an off-axis jet becomes more complicated as the jet

now contains observed cooling asymmetries. These asymmetries,

combined with SSC cooling, can result in structures such as plateaus

and re-brightening events which appear in the light curves in Fig. 6

(see also e.g. Beniamini & Nakar 2019; Beniamini et al. 2020a). Y

shows a more rapid decay initially when viewed off-axis, but takes

longer to reach Y = 1 than in the on-axis case, as can be seen in

Fig. 7.

A final change to light-curve behaviour that we discuss here occurs

for frequencies ν < νc. In the case of fast cooling, the synchrotron

peak Fν(νc) is pushed to lower frequencies, resulting in an increase in

flux compared to the synchrotron-only case. For observations within

this regime, we see a marked increase in flux that transitions to

the synchrotron-only behaviour as νc approaches νm. We present an

on-axis example in the next section for completeness, but note that
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Table 4. Approximating Y(νc) for KN-suppressed SSC.

Regime Rule 1 Rule 2 Rule 3 Yc

Fast cooling γ c < γ m γc < γ̂m Y(νc) = YT

γ c < γ m γ̂m < γc < γ̂c Y ≫ 1 Y (νc) = Y 2
T

(

γ s
c

γ̂m

)−1

γ c < γ m γ̂m < γc < γ̂c Y ≪ 1 Y (νc) = YT

(

γ s
c

γ̂m

)− 1
2

γ c < γ m γ̂c < γc Y (νc) = YT

(

γ s
c

)−1
γ̂

1
2

m

Slow cooling γ m < γ c γc < γ̂c Y(νc) = YT

γ m ≪ γ c γ̂m < γc < γ̂c Y ≫ 1 Y (νc) =

(

ǫe
ǫB(3−p)

(

γm

γ s
c

)p−2 (
γ s

c

γ̂ s
c

)

p−3
2

)
2

p+2

γ m ≪ γ c γ̂m < γc < γ̂c Y ≪ 1 Y (νc) = ǫe
ǫB(3−p)

(

γm

γ s
c

)p−2 (
γ s

c

γ̂ s
c

)

p−3
2

γ m ≪ γ c γ̂m < γc Y ≫ 1 Y (νc) =

(

ǫe
ǫB(3−p)

(

γm

γ̂m

)− 4
3
(

γm

γ̂ s
c

)
7
3

)
3
7

γ m ≪ γ c γ̂m < γc Y ≪ 1 Y (νc) = ǫe
ǫB(3−p)

(

γm

γ̂m

)− 4
3
(

γm

γ̂ s
c

)
7
3

Figure 2. Y as a function of time for typical X-ray (1 keV; solid) and high-

energy gamma-ray (0.1 GeV; dashed) observing bands, for various values

of ǫe and ǫB (and other parameters the same as in Fig. 1). The dotted line

indicates 1 + Y = 2, below which SSC cooling is no longer dominant. The

maximum Y is dictated by

√

ǫeǫ
−1
B (upper solid black line), but the duration

of the effect depends strongly on the individual values ǫe and ǫB. As ǫe (ǫB)

increases, the X-ray curve transitions from a shape dominated by YT, denoted

by the second break during the decay phase, to KN-cooling dominated at

ǫe = 0.5 (ǫB = 5 × 10−4). The high-energy gamma-ray curves are always

strongly KN suppressed once they drop below the maximum.

such observations would have to occur within minutes of a burst

being detected. Likewise, we could potentially see suppression or

increased emission in the optical band, depending on the location of

νc, but this would also require very early observations to detect. The

exact behaviour of three example bands in the radio, near-infrared,

and ultraviolet are presented in Fig. 8.

6 SSC EFFECTS O N M ICRO PHYSICAL

PARAMETER S FRO M MODEL FITTING

The results presented in the previous section indicate that including

SSC effects can have a significant impact on the light curves

in various wavebands. Therefore, not including SSC effects in

modelling of broad-band data sets may result in a misinterpretation

of the characteristic spectral breaks, in particular νc; and as a result,

Figure 3. Example of a fast-cooling energy spectrum (upper panel) and

spectral power-law indices (lower panel). This and the slow-cooling case are

the most common instantaneous spectra produced with typical parameters,

but other spectra may play important transitional roles. The power-law indices

of the two energy spectra differentiate between the spectral cases. The dotted

lines correspond to slopes that we would expect from a fast-cooling spectrum

exhibiting SSC cooling with KN effects. The 1
2

slope is absent from the KN

spectrum because the afterglow is nearing the transition from fast to slow

cooling. This becomes readily apparent when compared to the synchrotron

spectrum, which has already entered slow cooling and shows a new break

beginning to form with a slope of
3−p

2
(thick dash–dotted line).

the physical parameters derived from the spectral breaks may be

significantly off from the true values. To quantify the changes to

physical parameters based on afterglow model fitting, we simulated

MNRAS 504, 528–542 (2021)
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Figure 4. X-ray (1 keV) light curves corresponding to the Y curves in Fig. 2,

for various values of ǫe and ǫB (and other parameters the same as in Fig. 1).

The overall shifts in the light curves are due to the effect of ǫe and ǫB

on the synchrotron spectrum. The strength of the suppression between the

synchrotron baseline (dashed lines) and the solid curves are due to SSC

effects. The transition time and behaviour do vary significantly as we vary the

two microphysical parameters. The vertical line indicates the approximate

transition time between the Thomson and KN regimes.

Figure 5. X-ray (1 keV) light curves for each of the possible cooling

mechanism combinations using the parameters listed in Fig. 1 (Eiso =

1053 erg, p = 2.5, ǫe = 10−1, ǫB = 10−4, ξ = 1, θ0 = 0.3 rad, θobs = 0.0). With

these fairly typical parameters, the overestimation of SSC cooling caused by

failing to include KN effects is evident. The vertical lines indicate typical

times at which X-ray, optical, and radio observations of GRB afterglows

commence.

two afterglows based on the on- and off-axis cases discussed in

the previous section. We generated synthetic light curves at various

wavelengths covering the radio, millimeter, near-infrared, ultraviolet,

and X-ray regimes, using our new implementation of BOXFIT with

SSC and KN effects enabled. The light curves were sampled with

cadences that are fairly typical of currently available instrumentation,

and the light-curve start times are consistent with the vertical lines

in Fig. 5. Gaussian noise was added to each data point with errors

consistent with observed bursts with similar fluxes in the respective

wave bands. We then performed iterative fitting using BOXFIT with

and without SSC and KN effects enabled. We did not consider the

case with Y = YT, as the light curves in that case appear to be far more

suppressed than would be expected in reality. We include a selection

of the fit light curves that showcase the difference in fitting that

results from attempting to fit the KN enabled synthetic afterglows

Figure 6. X-ray (1 keV) light curves for the parameters listed in Fig. 1

(dashed; Eiso = 1053 erg, p = 2.5, ǫe = 10−1, ǫB = 10−4, ξ = 1, θ0 = 0.3 rad,

θobs = 0.0), together with curves for the same parameters except for θobs =

θ0 = 0.3 rad (solid). The quantitative effects of the observer angle on Y can

be seen in Fig. 7. The vertical line indicates the typical time-scale at which

X-ray observations of GRB afterglows commence.

Figure 7. The observed Y parameter as defined by the ratio of the synchrotron

to SSC power for the light curves in Fig. 6. Once both values leave the early

YT behaviour, Yon shows stronger early time suppression, while Yoff exhibits

lower suppression for a longer period of time. The vertical line indicates the

typical time-scale at which X-ray observations of GRB afterglows commence.

Figure 8. SSC cooling effects (solid lines) on spectral bands in the ra-

dio (9 GHz), near-infrared (J), and ultraviolet (UVM2) compared to the

synchrotron-only cooling for the same bands (dashed), for the same pa-

rameters as Fig. 1. The J band is unique for this simulated set of parameters,

in that it initially exhibits suppression, followed by a re-brightening as νc

passes through the observing band, indicated by the left-most vertical line.

MNRAS 504, 528–542 (2021)
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Modelling SSC and KN effects in GRB afterglows 535

Figure 9. Broad-band light-curve fits for our simulated on-axis (left-hand panel) and off-axis (right-hand panel) data sets. The SSC/KN-cooling fits are solid

lines, while the synchrotron-only fits are the dashed ones. The black dash–dotted curve is a synchrotron-only X-ray light curve generated from the simulated

input parameters. Each band has been multiplied by a factor for ease of readability (see the legend in the top left-hand corner for the multiplication factors for

each band).

with a model that only includes synchrotron cooling below. We also

discuss the resulting changes in derived parameters in each case.

6.1 On-axis (θobs = 0)

The on-axis case is the more straightforward of the two cases, and the

full fits are shown in the left-hand panel of Fig. 9. Both models, with

and without SSC/KN-cooling, give a reasonable fit to the synthetic

X-ray, ultraviolet, optical, and near-infrared light curves. The major

issues in light-curve reconstruction occur when simultaneously

fitting the X-ray and radio bands, which has a profound impact on

the other observed bands. The simulated X-ray light curve is the only

one that shows obvious signatures of SSC cooling, with early time

suppression and an extended flattening of the light curve during the

transition back to the simulated synchrotron curve, which happens

at about a day after the burst. Fig. 9 shows the X-ray band fit plotted

together with the X-ray light curve for a synchrotron-only model with

the simulated parameters. The differences in fits not only explain the

need for including KN effects in any afterglow model, but it also

demonstrates the need for having robust radio data for modelling

broad-band afterglows.

In order to match the decreased early time emission, the syn-

chrotron curve requires significant changes to the derived physical

parameters, up to more than an order of magnitude (see Table 5 and

Fig. 10), and no longer resembles the unmodified synchrotron curve.

These changes result in significantly less emission at early times,

but unlike the SSC/KN case, the synchrotron emission is not being

up-scattered to higher energies. Instead, the overall emission of the

afterglow is lower, causing the radio curves to appear significantly

less bright than they should. Additionally, the synchrotron curve also

required the observing angle to be larger than the opening angle of

the jet, with θobs/θ0 being approximately 1, far from the simulated

value, as can also be seen in Table 5 and Fig. 10.

6.2 Off-axis (θobs = θ0)

Our off-axis modelling exhibits similar results to those of the on-axis

case; and the full fits are shown in the right-hand panel of Fig. 9. The

synchrotron fits misinterpret several key parameters in an attempt

to compensate for the missing breaks resulting from SSC effects,

for some parameters up to more than three orders of magnitude (see

Table 6 and Fig. 11). The clearest result of this is an inversion in

values of ǫe and ǫB, along with an observer angle that indicates a

nearly on-axis observer. Unsurprisingly, SSC cooling does a much

better job at constraining the fit parameters, even though it does

struggle with the observer angle, producing a bi-modal parameter

distribution just below the simulated value. This is in part due to

the opening angle being wider than simulated, resulting in a similar

Ejet in spite of the smaller value of Eiso. The values of ǫe and ǫB

are both well recovered, as are non-degenerate quantities such as

Eison
−1
0 (Fig. 11). In general, ǫB seems harder to constrain than ǫe

which may be caused by how well constrained ǫe is by the radio
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Table 5. Model fit parameters for an on-axis (θobs = 0) afterglow.

θ0 Eiso(1053 erg) n0 θobs p ǫB(10−4) ǫe ξ χ2
red

Input 0.3 1 10 0 2.5 3 0.3 1 –

SSC/KN cooling 0.43+0.04
−0.01 0.62+0.09

−0.28 12+2
−4 0.15+0.08

−0.05 2.49+0.01
−0.06 2.9+4.2

−0.7 0.21+0.02
−0.03 1 1.2

Synchrotron 0.20+0.01
−0.02 6.8+1.2

−2.8 260+100
−100 0.207+0.004

−0.004 2.01+0.16
−0.01∗ 0.79+0.62

−0.33 0.023+0.003
−0.005 1 4.2

Figure 10. Histograms for non-degenerate parameter ratios for the on-axis fits in Fig. 9: θobs/θ0 (left-hand panel), log10(ǫe/ǫB) (middle panel), and

log10 (Eiso/n0). The black lines indicate the input values for the simulated light curves, the blue histograms are for synchrotron-only, and the orange histograms

for SSC/KN-cooling fits.

Table 6. Model fit parameters for an off-axis (θobs = θ0) afterglow.

θ0 Eiso(1053 erg) n0 θobs p ǫB(10−4) ǫe ξ χ2
red

Input 0.3 1 10 0.3 2.5 1 0.1 1 –

SSC/KN cooling 0.48+0.02
−0.08 0.30+0.13

−0.08 3.6+1.9
−0.9 0.30+0.06

−0.02 2.49+0.03
−0.04 4.14.2

−1.7 0.10+0.01
−0.01 1 0.82

Synchrotron 0.42+0.02
−0.03 2.9+3.3

−1.9 0.033+0.021
−0.011 0.0002+0.0023

−7×10−5 2.55+0.05
−0.01 3400+3200

−2200 0.0076+0.0041
−0.0024 1 2.6

Figure 11. Histograms for non-degenerate parameter ratios for the off-axis fits in Fig. 9: θobs/θ0 (left-hand panel), log10(ǫe/ǫB) (middle panel), and

log10 (Eiso/n0). The black lines indicate the input values for the simulated light curves, the blue histograms are for synchrotron-only and the orange histograms

for SSC/KN-cooling fits.

band (Beniamini & van der Horst 2017). Freezing the observer angle

did allow for a minor increase in accuracy in recovering ǫe

ǫB
, with

the ultimate limitation being the uncertainty in the X-ray light curve

near the transition back to synchrotron-dominated cooling.

6.3 Potential effects on the observed GRB parameter

distribution

While some of the physical parameters derived from the synchrotron-

only fits are somewhat unusual, and in some cases, orders of

magnitude away from the simulation input parameters, they do not

appear non-physical. It would be natural for someone performing a

fit, without prior knowledge of the physical parameters, to assume the

burst is well constrained by their synchrotron-only model, despite the

fact that the spectrum was created by significantly different physical

parameters and in a regime where SSC cooling is, in fact, important.

This demonstrates that systematic biases in the values of inferred

parameters from modelling can arise when SSC is not treated self-

consistently. It is worth noting that the better fits including SSC/KN

cooling are mainly due to the early X-ray data points, highlighting the

MNRAS 504, 528–542 (2021)
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Modelling SSC and KN effects in GRB afterglows 537

need for such observations. That fact, coupled with the poor radio

fits in the on-axis case, point to a need to re-evaluate our current

understanding of the underlying parameter distributions derived from

modelling with synchrotron-only models.

At a population level, Beniamini, Nava & Piran (2016) have

shown that not accounting for SSC cooling effects leads to artificially

enhanced values of the GRB prompt efficiency and its scatter, which

are also inconsistent with independent constraints from Fermi-LAT

detected GRBs (Nava et al. 2014). For individual GRBs, these

effects have been illustrated by GRBs with well-constrained radio

data for which broad-band modelling has been a challenge (Granot

& van der Horst 2014). In those cases, poor fits may be due to

the modelling being largely constrained by the X-ray data. When

including SSC effects, the X-ray light curve deviates significantly

from what would be expected in a synchrotron-only model, and any

attempt at fitting the X-rays well will result in parameters that do not

represent the underlying physics. The optical fits are less sensitive to

these variations in the X-rays, but the radio data, which are strongly

influenced by deviations in ǫB and ǫe, are affected significantly. For

bursts lacking early-time X-ray observations, SSC effects can still

alter the X-ray light curve up to ∼1 d or more depending on the

parameters, and may only become noticeable when a broad-band

fit is performed. There are ways to produce a good radio fit with

unusual, but still physical, parameters. This can be seen clearly in

the off-axis fits where the synchrotron-only fit works well at late

times, but fails to fit the early time X-ray data, highlighting the need

for broad-band coverage of the afterglow over a long time span for

successful model fitting.

Population studies based purely on X-ray data will be particularly

affected, because it is still possible to get a well-constrained X-ray

fit even with a synchrotron-only model. Parameters that would not

produce large SSC cooling effects are still going to be reasonable, but

single band fits are likely not well constrained in general. The best

course of action would be to examine a large sample of bursts with

early-time X-ray observations, coupled with well-sampled optical

and radio light curves. Such recommendations are not new, but

including SSC effects drives home the fact that X-ray and optical data

alone are not sufficient to constrain the (micro)physical parameters

of the afterglow.

Finally, we note that all modelling performed using BOXFIT and

related numerical techniques still contain certain systematic biases.

In particular, the global treatment of cooling in BOXFIT leads to an

underestimate of flux above the cooling break (van Eerten, Zhang &

MacFadyen 2010). This effect should have only a minor impact on

parameter comparisons as our modifications would be subject to the

same systematic uncertainties as a synchrotron model with identical

parameters. The effects will be important when performing iterative

fitting on observational data and will need to be considered in the

same fashion as for the original BOXFIT.

7 SU M M A RY A N D F U T U R E WO R K

We have presented a methodology and implementation for fitting

synchrotron and SSC cooling in broad-band light curves from

GRB afterglows based on the afterglow modelling package BOXFIT

(van Eerten et al. 2012). SSC effects were implemented based on

a framework laid out in Nakar et al. (2009), with modifications

to remove any need to know the cooling and/or KN regime in

advance. We applied these modifications to simulated data sets,

to examine how they would change the derived physical parame-

ters compared to a synchrotron-only model. We found significant

differences between simulated versus extracted parameters in the

synchrotron-only model, up to three orders of magnitude for some

parameters. Finally, we discussed the impact these changes may have

on previous GRB parameter studies, and stress the need for broad-

band modelling including both radio and early time X-ray data,

in assessing the underlying physics, especially the microphysical

parameters.

Next steps would include re-examining the observed GRB param-

eter space by applying this technique to a sample of afterglows. The

sample would be composed of afterglows which were well sampled

in the radio bands and include early-time X-ray data. This will limit

the total number of bursts available to the sample, but should result

in well-defined constraints on the fit parameters. The model can also

be extended to include the effects of SSC emission rather than just

cooling, allowing broad-band fits to include GeV and TeV emssion

for bursts such as GRB 180720B (Abdalla et al. 2019), GRB 190114C

(Acciari et al. 2019), and GRB 190829A, to be included in the fitting

process (e.g. Derishev & Piran 2019; Wang et al. 2019; Fraija et al.

2019b). Another application of this effort will be to study (off-axis)

afterglows of future short GRBs detected due to a gravitational wave

(GW) trigger. These have, so far, been studied analytically (e.g. Fong

et al. 2019; Wu & MacFadyen 2019; Fraija et al. 2019a; Beniamini,

Granot & Gill 2020b) and numerically (e.g. Gottlieb et al. 2018; Wu

& MacFadyen 2018; Gill et al. 2019; Lu, Beniamini & McDowell

2020), but without taking into account SSC cooling. As discussed in

this work, this is well motivated so long as the observed bands lie

below the cooling frequency at all times. Indeed, the latter condition

appears to be satisfied in GRB 170817. In future GW-detected GRBs,

this may no longer be the case; and the modelling developed here

will become relevant.
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APP ENDIX A : D ERIVATION O F SSC IN THE THOMSON R EGI ME

A single population of electrons is generating both the photon field and the scattered photon field, so we can modify the spectrum of synchrotron

radiation through the use of Y as defined in Rybicki & Lightman (1979)

Y =
4

3
n′

0σT	R′〈γ 2
e 〉. (A1)

Here, σ T is the Thomson scattering cross-section, n0 is the electron number density, 	R is the length of a thin emitting shell at the shock

boundary, and 〈γ 2
e 〉 is the second moment of the electron Lorentz factor distribution

〈γ 2
e 〉 =

1

n′
0

∫ ∞

1

dγe

dn′
0

dγe

γ 2
e . (A2)

Primed variables are defined in the co-moving frame of the jet. Note that we have replaced the simple power law with the differential electron

energy distribution because we need to consider how cooling changes the electron population in time. Likewise

n′
0 =

∫ ∞

1

dγe

dn′
0

dγe

. (A3)

The γ 2
e term in the equation for Y means that the energy radiated in SSC emission scales identically to synchrotron emission, so we would

need to modify the electron cooling equation to demonstrate the effects on the spectrum. The modification is already presented above, and we

can see that Y only effects electrons cooling quickly for the same reason synchrotron losses only affect the same group of electrons.

A1 Fast cooling

For the fast-cooling case, we have the following electron energy distribution

dn′
0

dγe

=

⎧

⎪

⎨

⎪

⎩

C
(

γe

γc

)−2

γc ≤ γe ≤ γm

C
(

γm

γc

)−2 (
γe

γm

)−p−1

γm < γe

. (A4)

Inserting equations (A4) into (A3) gives us

n′
0 = Cγc

(

1 −
p − 1

p

γc

γm

)

(A5)

and

〈γ 2
e 〉 = (γmγc)

[

p − 1

p − 2
−

γc

γm

](

1 −
p − 1

p

γc

γm

)−1

. (A6)

Combining the latter with equation (A1) and using the definitions of γ m and γ c, we derive the full expression for Y in the fast-cooling regime

Y (1 + Y ) =
(p − 2)ǫe

(p − 1)ǫB

[

p − 1

p − 2
(1 + Y ) −

γ s
c

γm

](

(1 + Y ) −
p − 1

p

γ s
c

γm

)−1

. (A7)

Here, we have used the relation between γ c and γ S
c to remove any implicit Y dependence. Rearranging this equation, we arrive at a cubic

function of Y that can be solved analytically to produce one real analytic solution. While the full solution is rather lengthy, we get the expected

asymptotic result in the limit that γ c ≪ γ m. We also match with the transition value of Y described below.

A2 Transition from fast to slow cooling

In the limit that γ c = γ m ≡ γ ∗, we require that the fast- and slow-cooling solutions return the same result, and that this result matches with

the expectation from modifying the electron distribution such that

dn′
0

dγe

=
{

C
(

γe

γ∗

)−p−1

γ∗ ≤ γe . (A8)

Performing similar calculations as above, we derive

〈γ 2
e 〉 = (γmγc)

[

p − 1

p − 2
− 1

](

1 −
p − 1

p

)−1

(A9)

and

Y (1 + Y ) =
(p − 2)ǫe

(p − 1)ǫB

[

p − 1

p − 2
− 1

](

1 −
p − 1

p

)−1

. (A10)

In both cases, we made use of the fact that the γ ∗ = γ m = γ c to simplify Y. This equation can also be solved analytically to yield

Y =
1

2

(
√

1 +
4p

(p − 1)

ǫe

ǫB

− 1

)

. (A11)

MNRAS 504, 528–542 (2021)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
0
4
/1

/5
2
8
/6

2
1
2
2
1
9
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

4
 J

u
n
e
 2

0
2
1



540 T. E. Jacovich, P. Beniamini and A. J. van der Horst

A3 Slow cooling

In the slow-cooling regime, γ c and γ m are reversed, such that only a small fraction of electrons are cooling on a time-scale comparable to that

of the dynamical time-scale of the shock. As a result

dn′
0

dγe

=

⎧

⎪

⎨

⎪

⎩

C
(

γe

γm

)−p

γm ≤ γe ≤ γc

C
(

γc

γm

)−p (
γe

γc

)−p−1

γc < γe

. (A12)

Given this electron energy distribution, we derive

n′
0 = C

[

γ p
mγ 1−p

c

p(1 − p)
+

γm

p − 1

]

(A13)

and

〈γ 2
e 〉 =

[

γ p
mγ 1−p

c

p(1 − p)
+

γm

p − 1

]−1 (
γ 3

m

p − 3
+

γ p
mγ 3−p

c

(3 − p)(p − 2)

)

. (A14)

From this, we find that

Y (1 + Y )2 = p

[

ǫe

ǫB

γm

γ s
c

(1 + Y )3−p p − 2

p − 3
+

ǫe

ǫB

1

3 − p

(

γm

γ s
c

)p−2
][

p(1 + Y )1−p −

(

γm

γ s
c

)p−1
]−1

. (A15)

APPENDIX B: D ERIVATION O F SSC WITH KN SUPPRESSION

Derivations involving KN effects are more approximate than the ones above, in part, because the scattering cross-section is now dependent on

the energy of the individual scatters. We derive here equations based on the bulk properties of the electron population, and assume a simplified

version of the KN cross-section so that we can ignore effects due to individual photon scatterings. We also assume an optical depth τ e ≪

1 which is a reasonable assumption as a typical n0 of order 1 cm−3 will yield τ e ∼ 10−8, given the characteristic size associated with early

afterglows of 1017 cm. This means multiple scatterings are sufficiently suppressed so that we can safely ignore them. Unlike in the Thomson

scattering regime, we cannot assume that Y is a simple function of 〈γ 2
e 〉 because there is now a dependence on the incident photon energy. We

follow a framework similar to the one by Nakar et al. (2009), while including our more detailed description of Y in the Thomson regime.

We define the synchrotron emissivity of a single electron, Pν(γ ∗), in equation (8) as

Pν

(

γ ∗
)

∝

{

δ (ν − ν (γ ∗)) ν(γ ∗) ν � ν (γ ∗)

ν
1
3 ν ≪ ν (γ ∗)

, (B1)

where the upper limit corresponds to the high-energy emission of the electron, and the lower limit corresponds to the low-energy synchrotron

tail. We substitute equations (B1) into (8) to obtain two equations for Y depending on what portion of the photons can be Thomson scattered

by γ ∗ electrons

Y (γe) ∝

∫ ν̃(γe)

0

dν ′ν ′ 1
3

∫

dγ ∗
e

dn′
0

dγ ∗
e

(B2)

and

Y (γe) ∝

∫ ν̃(γe)

0

dν ′

∫

dγ ∗
e δ

(

ν ′ − ν ′
(

γ ∗
e

))

ν ′(γ ∗
e )

dn′
0

dγ ∗
e

. (B3)

B2 is a straightforward integration which results in Y ∝ ν̃− 4
3 . For B3, we can exploit the fact that ν ∝ γ 2

e , along with a property of the Dirac

delta, to arrive at an equation for the high-energy scatterings

Y (γe) ∝

∫ γ̃ (γe)

1

dγ γ 2
e

dn′
0

dγe

. (B4)

At this point, there are two ways to proceed. The simpler method is to determine the functional form of the major KN regimes, and then

smoothly join them to the Thomson regime solution. This method requires only knowing the γ e dependence of Y, and lets the simpler Thomson

solution for Y dictate the magnitude of Y. The second method is to compare B4 to A1, determine what constants are needed for B4 to equal A1

in the Thomson regime, and then perform similar derivations to the ones found above. Doing the latter would give

Y (γe) =
4

3
σTn′

0	R′ 1

n′
0

∫ γ̃ (γe)

1

dγeγ
2
e

dn′
0

dγe

. (B5)

However, in our implementation, we chose the former as it greatly simplified implementation in BOXFIT and allowed us to directly compare

our results to Nakar et al. (2009). Here, we present the derivation used to determine the functional dependencies.
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B1 Fast cooling

In the fast-cooling regime, we use equation (A4) for the electron energy distribution and A5 for n0. Equation (B2) yields one regime, while B5

yields two major regimes: γ̃e > γm and γ̃e < γm.

B1.1 Weak KN regime

The weak KN regime, for which γc < γ̃e < γm, yields the main difference between the Thomson Y and Y(νe, t) as the other regime (γ̃e > γe)

very quickly returns to the Thomson Y. Substituting equations (A4) and (A5) into (B5), and using the definitions of γ c and γ m, leads to the

following solution

Y (γe) =
ǫe(p − 2)

ǫB(p − 1)(1 + Yc)

[

(

γe

γ̂m

)− 1
2

−
γc

γm

]

[

1 −
1 − p

p

γc

γm

]−1

. (B6)

Here, we have introduced Yc = Y(νc). Taking the ultra fast-cooling limit results in Y ∝ γ − 1
2 , which we can connect to our Thomson solution

at the boundary. One important thing to note is that although Y goes to 0 at the boundary, this is an artefact of the approximation made for

Pν(γ e). To alleviate this, we use only the ultra-fast-cooling approximation, so that we can smoothly connect this regime to equation (B8).

B1.2 Transition to the Thomson regime

The derivation in this regime follows the same method as the one above. Since γ̃e > γm, there are contributions from γ −p − 1 electrons

Y (γe) =
ǫe(p − 2)

ǫB(p − 1)(1 + Yc)

[

p − 2

p − 1
−

1

p − 2

(

γe

γ̂m

)

p−2
2

−
γc

γm

]

[

1 −
1 − p

p

γc

γm

]−1

. (B7)

In the limit, γ̂m ≫ γe, equation (B7) reduces to A7. Additionally, it agrees with B6 in the limit γe = γ̂m.

B1.3 Strong KN regime

In this regime, for which γ̃e < γc, Y depends only on ν̃, which can be rewritten in terms of γ as

Y ∝ γ −4/3
e . (B8)

To connect the three regimes, we approximate B7 as the Thomson Y, then choose constants for equations (B6) and (B8) such that they agree

at the boundaries. These normalized equations are then used to solve for Y.

B2 Slow cooling

In the slow-cooling regime, we use equation (A12) for the electron energy distribution and A13 for n0. As in the fast-cooling case, equation (B2)

yields one regime, while B5 yields two major regimes: γ̃e > γc and γ̃e < γc.

B2.1 Weak KN regime

Using the same methods as in the fast-cooling weak KN regime, but now for γm < γ̃e < γc, we can substitute equations (A12) and (A13) into

(B5), resulting in

Y =
ǫe(p − 2)

ǫB(3 − p)(1 + Yc)

[

(

γe

γ̂c

)− 1
2
(

γe

γ̂m

)

p−2
2

−
γm

γc

][

1 −
1

p

(

γm

γc

)p−1
]−1

. (B9)

This can be rewritten as

Y =
ǫe(p − 2)

ǫB(3 − p)(1 + Yc)

(

γm

γc

)p−2
[

(

γe

γ̂c

)

p−3
2

−

(

γm

γc

)3−p
][

1 −
1

p

(

γm

γc

)p−1
]−1

, (B10)

which brings it in line with the solution presented in Nakar et al. (2009).

B2.2 Transition to the Thomson regime

In this regime, for which γ̃e > γc, we gain contributions from γ −p−1
e photons, which results in

Y =
ǫe

ǫB(3 − p)(1 + Yc)

[

(

γm

γc

)p−2

−
p − 2

3 − p

γm

γc

+ (p − 3)

(

γe

γ̂m

)

p−2
2

][

1 −
1

p

(

γm

γc

)p−1
]−1

. (B11)
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Here, we can also rewrite the solution

Y =
ǫe

ǫB(3 − p)(1 + Yc)

(

γm

γc

)p−2
[

1 −
p − 2

3 − p

(

γm

γc

)3−p

+ (p − 3)

(

γe

γ̂c

)

p−2
2

][

1 −
1

p

(

γm

γc

)p−1
]−1

. (B12)

B2.3 Strong KN regime

In this regime, with γ̃e < γm, Y depends only on ν̃, which can be rewritten in terms of γ as

Y ∝ γ −4/3
e . (B13)

As in the fast-cooling case, to connect the three regimes, we approximate equation (B12) as the Thomson Y, and then choose constants for

equations (B10) and (B13) such that they agree at the boundaries. These normalized equations are used to solve for the Y given above. Much

like in the Thomson case, i.e. YT the transition between the fast- and slow-cooling regimes simplifies the electron population, resulting in

Y (γe) = YT

⎧

⎨

⎩

1 γe > γ̂∗

(

γe

γ̂∗

)−4/3

γe < γ̂∗

, (B14)

since there is no intermediate population between the two critical frequencies.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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