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Modelling terrain erosion susceptibility of
logged and regenerated forested region in
northern Borneo through the Analytical
Hierarchy Process (AHP) and GIS
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Abstract

This research examines the susceptibility of logged and regenerated forest region to erosion through the
application of the analytical hierarchy process (AHP) and geographical information systems (GIS). In order to
estimate terrain erosion susceptibility, ten geo-environmental variables were taken into account as possible factors
relevant to terrain erosion. They are slope, aspect, relative relief, slope length and steepness (LS) factor, curvature,
landforms, topographic wetness index (TWI), stream power index (SPI), stream head density, and land use/land
cover. Pairwise comparison matrixes were generated to derive the weightages and ratings of each variable and
their classes. These were integrated to generate the terrain erosion susceptibility index (TESI) map. Among the
variables used in the analysis the land use/land cover, slope, SPI, stream head density, and LS factor were shown to
have high contribution towards terrain erosion susceptibility. The areas with a concave slopes > 25° and high
relative relief, LS factor, TWI, and stream head densities were found to be more susceptible to erosion such as
gullying or landslides. The conversion of TESI into terrain erosion susceptibility zonation (TESZ) map shown that
25% of the total area is highly susceptible to erosion. Among this, 10% of the area possesses a very high
vulnerability to landslides and gullying or soil slips and these areas coincide with logging roads and skidder trails.
Linear regression analysis between TESI and TESZ with spatial distribution of mean annual rainfall in the region
does not show any significant relationships (p > 0.10). However, high rainfall triggers rapid downstream movement
of unsupported slopes in the region. The terrain erosion susceptibility zonation map expresses the realistic
condition of logged terrain matching with field observations in the area in terms of erosion. The results can serve
as basic data for future development programs in the region, in any projects where the terrain susceptibility is
critical by planning infrastructure to avoid high risk zones.
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Introduction
Erosion, either as soil loss or landslides, is the natural

denudation process or a stage of geomorphic evolution

of terrain which is responsible for generating different

topographical features (Thornbury 1969). The natural

erosional or denudational process will take place at given

rate and any recent changes in the normal rate of ero-

sion may reflect changes in the equilibrium condition of

the terrain due to anthropogenic causes. Erosion and

allied mass wasting problems are common in hilly areas,

but their severity will vary depending on the geo-

environmental factors involved. Steep sloping, highly

elevated rugged terrain may be fragile in terms of geo-

logical, vegetation, and climatic factors making it more

vulnerable to erosion, which may be aggravated by

human induced developmental activities (Fadul et al.

1999). The fragility of such terrains can be termed as

susceptibility to erosion. Assessment of the susceptibility

of the terrain to erosion and classification into different

susceptibility zones is an important step to understand-

ing an area’s vulnerability to erosion for development of

proper management plans and mitigation strategies (Dai

and Lee 2002; Ayalew et al. 2004; Bijukchhen et al. 2013;

Erener et al. 2016; Pham et al. 2017). Susceptibility map-

ping is generally used in landslide and gully erosion

modelling, the goal of which is to identify potentially

vulnerable areas which are those with several critical

variables. To understand the susceptibility of a region to

erosion, either as landslides or gullying, different

methods which use expert opinion (qualitative), statis-

tical prediction (quantitative), or both may be applied

using geographical information systems (GIS).

In order to assess the susceptibility, a number of geo-

environmental variables such as geomorphology, slope,

land use, lithology, etc., as well as palaeo locations of the

phenomena have been used (Kheir et al. 2007; Akgün

and Türk 2011; Dewitte et al. 2015; Kavzoglu et al. 2014;

Gómez-Gutiérrez et al. 2015; Chen et al. 2016a; Garosi

et al. 2018). Among these, most of the parameters con-

sidered as natural parameters and the land use/land

cover existed in the area is only man made i.e. it was

mainly controlled human activity. Expert opinion

method relies on the field knowledge and expertise of

the analyst to determine the influence and weights of

each parameter and parameter classes, whereas statis-

tical techniques use well defined bivariate or multivariate

analysis techniques through dependent and independent

variables to determine the relative importance of each

variable (Bourenane et al. 2015; Rahmati et al. 2016).

The suitability and selection of methods to produce sus-

ceptibility map is often heavily depend on the availability

of data sets of independent geo-environmental variables

particularly information on previous incidents of land-

slides or gullies (Lucà et al. 2011; Conoscenti et al. 2013;

Park et al. 2013; Shit et al. 2015; Althuwaynee et al.

2016; Rahmati et al. 2017; Torri et al. 2018; Othman et

al. 2018). Although the output of susceptibility analysis

may vary in name such as landslide susceptibility zon-

ation (LSZ) map or gully erosion susceptibility map, the

analysis techniques and geo-environmental variables

used in the modelling are generally similar. Further

details of different techniques used to analyse terrain

erosion susceptibility can be found in Aleotti and

Chowdhury (1999), Guzzetti et al. (1999), van Westen

(2000), Brenning (2005), Huabin et al. (2005), and van

Westen et al. (2006).

In the present study, an attempt has been made to

model and classify the upper catchment regions of the

Baram River (Sarawak, Malaysia) in terms of susceptibil-

ity of the terrain to erosion due to gullying, soil slip, and

landslides. The region considered possesses very weak

geological formations (tightly folded sedimentary rocks

of various lithologies) covered by dense forest. During

the last few decades, the study area has undergone in-

tense terrain modification and forest clearing through

timber harvesting and logging road construction which

increased the vulnerability of the terrain to erosion

(Fig. 1). As a result of episodes of heavy rainfall, areas

with high vulnerability to erosion will flow or slide

downhill to valley streams and may deposit large quan-

tities of sediment in the rivers downstream. Very few

studies have reported on terrain susceptibility to erosion

in Sarawak and the reported studies deal with the soil

erosion assessment using soil loss equations (USLE

/RUSLE) (Besler 1987; de Neergaard et al. 2008; Vijith et

al. 2018a, 2018b; Vijith and Dodge-Wan 2018). Prior to

2018, no studies were reported from the selected upper

catchment region of the Baram River.

The present study is an initial attempt to assess terrain

erosion susceptibility and can be used as a basic and

valuable information while planning for roads and other

infrastructure developments. The study area lacks a

database of previous information related to erosion

(gullying and landslides in particular) and due to the

relatively inaccessible nature of the terrain, it is difficult

to map the locations of slides or gullies by direct obser-

vation in the field. To overcome these limitations, a

well-defined and tested predictive analysis model, i.e. the

analytical hierarchy process (AHP) which uses a combin-

ation of expert opinion and statistical measurements,

was applied in this research. Numerous researchers have

used the analytical hierarchy process to estimate the sus-

ceptibility to landslide or soil erosion in other parts of

the world and found it to be successful in predicting the

vulnerability of the region based on the parameters used

(Komac 2006; Neaupane and Piantanakulchai 2006;

Yoshimatsu and Abe 2006; Yalcin 2008; Nekhay et al.

2009; Svoray et al. 2012; Reis et al. 2012; Kayastha et al.
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2013; Pourghasemi et al. 2012, 2013a; Youssef 2015;

Althuwaynee et al. 2016; Sangchini et al. 2016; Rahaman

and Aruchamy 2017; Arabameri et al. 2018b). The find-

ings of the present research will facilitate the identifica-

tion of areas critically vulnerable to erosion and

landslides and thus provides an opportunity to avoid risk

associated with terrain susceptibility while implementing

the developmental schemes in the region.

Study area

A forested region in the interior Sarawak, which has

undergone vegetation changes and terrain alteration due

to logging activities was selected for the present analysis.

The study area covers a total area of 2105 km2 and con-

tains two major subwatersheds of the Baram River

namely Sungai Patah and Sungai Akah which are located

between north latitudes 3° 13′ 15″ to 3° 41′ 50″ and

east longitudes 114° 35′ 42″ to 115° 13′ 20″ (Fig. 2).

Though the subwatersheds differ in shape, both have

similar terrain and geological characteristics. The area is

highly undulating with elevations between 37 m to 1578

m asl. The bed rock consists of sedimentary rocks of

Paleocene, Oligocene, and Miocene ages. Most of the

study area consists of Oligocene shale and sandstone,

with areas of Paleocene deep water sediments composed

of shale and sandstone with occasional conglomerate

and limestone, and Miocene shale and sandstone. Nu-

merous anticlines, synclines, and local fractures are

present in the area showing tight folds with a common

northeast (NE) - southwest (SW) to north northeast

(NNE) - south southwest (SSW) trend. The drainage

pattern is predominantly dendritic but the presence of

trellis and parallel pattern in the region indicates the

influence of lithology and structural features on the

development of drainage networks. Geomorphological

features vary from highly elevated steep sloping escarp-

ments to low lying flat regions of fluvial floodplains.

Hills and mounds show highly complex shapes with a

sharp crests to rounded tops. The area receives an an-

nual average rainfall of approximately 4600mm from the

two dominant monsoon seasons viz., southwest and

northeast monsoons. Rainfall shows high spatial and

temporal variations (Vijith and Dodge-Wan 2018) Vege-

tation cover varies from dense primary forest to open

spaces of barren land. The majority of the study area is

covered with forests of different types and density,

followed by mixed agricultural land (mainly hill paddy

cultivation) and then the open spaces with no vegetation

related to road development, villages, and logging. Initial

field observations indicated that the development of log-

ging roads and log trail (skidding and pulling trails) have

rendered the terrain more susceptible to erosion by

changing the continuity of the hills through toe cutting

and removal of the protective vegetation cover.

Materials and methods
The Sungai Akah and Sungai Patah catchments of the

Baram River were selected for the present research as

Fig. 1 Slope failures observed in the study area
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this is a data poor region. Mapping of terrain erosion

susceptibility is considered as the preliminary step to

understand the risks of soil erosion and landslide. An

erosion susceptibility map was generated using several

geo-environmental variables derived from various re-

mote sensing data sources such as digital elevation

model (DEM) and satellite images. The digital elevation

model, downloaded from the earth explorer (http://

earthexplorer.usgs.gov) website of U. S Geological Sur-

vey. Shuttle Radar Topographic Mission (SRTM) data of

30 m was used after it had been clipped to the study area

boundary and the voids filled by the Fill DEM module

available in the spatial analyst extension of ArcGIS soft-

ware. The filled elevation dataset was then used to derive

variables such as slope, aspect, relative relief, slope

length and steepness (LS) factor, curvature, landforms,

topographic wetness index (TWI), and stream power

index (SPI). Stream networks were produced from the

digital elevation model and stream head points were ex-

tracted to calculate the stream head density map. The

parameters are natural features of the region and terrain

and not affected by anthropogenic activities. Landsat 8

OLI images of the area acquired on 28th March 2015,

which reflect the current land use pattern were used to

produce the land use/land cover map through supervised

classification with field verification. Land use/land cover is

the most significant factor under the influence of an-

thropogenic activities which modify the protective vegeta-

tion cover. Different software used for the generation of

variables and final analysis are ArcGIS version 9.3 and

SAGA version 2.1, which operates in the raster GIS envir-

onment and the cell size for this analysis was fixed as

30 × 30m. The significance and methodology applied to

obtain each variable is described in text, as well as the

weightages attributed to each class of each variable.

In order to generate the terrain susceptibility map of

the study area by analyzing the contribution of each

variable which makes the terrain susceptible to erosion,

the analytical hierarchy process (AHP) technique devel-

oped by Saaty (1980) was used. This methods has the

capability of integrating expert knowledge, field informa-

tion, and relative statistics together. AHP is a semi-

quantitative, multi-criteria decision support technique

which is used to generate high quality and precise

decisions through the application of the matrix based

pairwise comparison of the contributing factors which

determine the results of the phenomenon or the process

(Saaty 1990; Saaty 1994; Saaty and Vargas 2001). The

pairwise comparison will be carried out based on the

different ratings of each variable or feature classes on

Fig. 2 Study area location map
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the basis of relative importance varying from 1 to 9.

Each value in the relative importance can be assigned to

variable or variable classes based on the subjective

judgement of relative importance. Relative weight of the

variables used in the matrices can be determined by

generations of eigenvectors and the consistency of the

variable can be assessed by calculating the consistency

index (CI) as given below (Saaty 1990) (Eq. 1):

CI ¼
λmax‐nð Þ

n‐1ð Þ
ð1Þ

where, λmax is the largest or principal eigenvalue of the

analysed matrix and n is the order of the square matrix.

This inconsistency index can also be expressed as

consistency ratio (CR) which determine the suitability of

individual parameters and their classes to be included in

the analysis and was given by the Eq. (2):

CR ¼
CI

RI
ð2Þ

where, RI is the random index i.e. consistency index for

a random square matrix of the same size proposed by

Saaty (1980). The cut-off of the CR was fixed as less than

or equal to 0.1 so that if CR of the analyzed variable is

found to be higher than the cut-off, the variable will be

omitted from the analysis.

Preparation of terrain Erosion susceptibility zonation

(TESZ) map

In order to map the areas susceptible to terrain erosion

and classify them based on the severity and criticality of

risk, a number of distinct geo-environmental variables

were considered. The combined effects of multiple vari-

ables in terrain susceptibility were characterised through

the application of analytical hierarchy process (AHP)

based influence measuring technique, which is consid-

ered a powerful and supportive multiple criteria decision

making tool (Malczewski 1999; Yasser et al. 2013; Chen

et al. 2016b). Ten individual factors were used. They are:

slope, aspect, relative relief, LS factor, curvature, land-

forms, TWI, SPI, stream head density, and land use/land

cover (Fig. 3a-j). The contribution of each parameter in

the terrain susceptibility as a single unit and individual

feature classes in the parameters were determined by the

cross comparison matrices analysed through the AHP

and output rating was considered as the weight of each

parameter and their class. Table 1 shows the pairwise

comparison matrix, consistency ratio, and the weightings

of individual parameters, and their classes considered in

the analysis.

In all analysis which deals with terrain susceptibility,

the primary factor considered is the terrain slope, which

represents the inclination of the topography with

reference to horizontal. Nature of the slope varies from

gentle to steep and this controls different geomorphic

processes such as erosion, transportation, and deposition

in relation to the rainfall-runoff characteristics of the re-

gion (Foumelis et al. 2004; Gómez-Gutiérrez et al. 2015;

Sangchini et al. 2016; Arabameri et al. 2018a). Gentle

slopes are expected to induce less terrain slips due to

low shear stresses (Lee et al. 2004). High slope values

show the highest susceptibility to erosion although verti-

cal terrain surfaces, and very high slopes having exposed

bedrock show less susceptibility to terrain erosion due

to less or nil soil cover (Dewitte et al. 2015; Rahmati et

al. 2017; Torri et al. 2018). In order to generate the

slope, hydrologically corrected (void filled) SRTM DEM

were used and the slope map generated shown a range

varies from 0 to 75°. Then the slope was reclassified into

the following gentle to very critical seven classes 0–5°,

5°-10°, 10°-15°, 15°-25°, 25°-35°, 35°-45°, and > 45° and

the relative percentage of area covered by individual

slope class shown high spatial variation. Among the

slope classes, a large percentage of the study area falls

within the slope class 15°-25° (31%), followed by 10°-15°

(20%), and 25°-35° (17%). It was also observed that, the

higher slope classes in the range of 35–45° and > 45° oc-

cupied comparatively reduced areas of 9% and 1% only

respectively. Seven slope classes were ranked by attribut-

ing factor scores from 1 to 9 to generate the pairwise

matrix. The attribution was based on the assumption

that there is a regular increase in risk across all the slope

classes. Considering the influence of the slope over the

terrain stability, relative weightages were then calculated

and these vary from 0.0274 to 0.2432 (Table 1). Higher

ratings are noted in areas having a slope higher than 350

in the study area.

Slope aspect indicates the direction of the terrain slope

with respect to north and varies from − 1 to 359°, in

which the negative value represents flat surface (Prasan-

nakumar et al. 2011). Aspect of the terrain have direct

and indirect control over terrain processes and condi-

tions such as soil moisture, vegetation cover, and soil

thickness by exposing the surface to sunlight and or

heavy rain (Clerici et al. 2006; Meten et al. 2015). In

most of the landslide and gully erosion modelling stud-

ies, slope aspects is taken as an important variable (Reis

et al. 2012; Pourghasemi et al. 2013b; Rahmati et al.

2016; Sangchini et al. 2016; Menggenang and Samanta

2017; Othman et al. 2018). In the present research, a

slope aspect map was generated from the elevation

surface and classified into nine classes which are: flat, N,

NE, E, SE, S, SW, W, and NW based on the orientation

i.e. which way the terrain is facing. Considering the area

distribution of the individual aspect class in the study

area, most of the slope aspects classes cover similar

areas (13%) except flat terrain which is very rare (0.30%).
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Fig. 3 Geo-environmental variables used in the analysis a Slope b Aspect c Relative relief d Slope length and steepness (LS) e Curvature f

Landforms g topographic wetness index (TWI) h Stream power index (SPI) i Stream head density j Land use/land cover
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Table 1 Pair-wise comparison matrix, ratings, and consistency ratio of the variables classes and individual variables used in the
present study

Variables Classes 1 2 3 4 5 6 7 8 9 10 Rating / weights

Slope 0–5 1 1/3 1/4 1/5 1/7 1/8 1/9 0.0270

5–10 1 3/4 3/5 3/7 3/8 3/9 0.0810

10–15 1 4/5 4/7 4/8 4/9 0.1081

15–25 1 5/7 5/8 5/9 0.1351

25–35 1 7/8 7/9 0.1891

35–45 1 8/9 0.2162

> 45 1 0.2432

Aspect Flat 1 1/2 1/2 1/3 1/4 1/5 1/7 1/9 1/6 0.0256

N 1 1 2/3 2/4 2/5 2/7 2/9 2/6 0.0512

NE 1 2/3 2/4 2/5 2/7 2/9 2/6 0.0512

E 1 3/4 3/5 3/7 3/9 3/6 0.0769

SE 1 4/5 4/7 4/9 4/6 0.1025

S 1 5/7 5/9 5/6 0.1282

SW 1 7/9 7/6 0.1794

W 1 9/6 0.2307

NW 1 0.1538

Relative relief < 100 1 1/3 1/5 1/7 1/9 0.04

100–200 1 3/5 3/7 3/9 0.12

200–300 1 5/7 5/9 0.2

300–400 1 7/9 0.28

> 400 1 0.36

Slope length and Steepness (LS) 5 1 1/3 1/7 1/9 0.05

10 1 3/7 3/9 0.15

15 1 7/9 0.35

> 15 1 0.45

Curvature Concave 1 9 9/7 0.5294

Flat 1 1/7 0.0588

Convex 1 0.4117

Landforms Deeply incised stream 1 2/4 2/9 2/1 2/6 2/3 2/5 2/2 2/3 2/7 0.0476

Midslope drainages 1 4/9 4/1 4/6 4/3 4/5 4/2 4/3 4/7 0.0952

Upland drainages 1 9 9/6 9/3 9/5 9/2 9/3 9/7 0.2142

U shaped valleys 1 1/6 1/3 1/5 1/2 1/3 1/7 0.0238

Plains 1 6/3 6/5 6/2 6/3 6/7 0.1428

Open slopes 1 3/5 3/2 3/3 3/7 0.0714

Upper slopes 1 5/2 5/3 5/7 0.1190

Local ridges 1 2/3 2/7 0.0476

Midslope ridges 1 3/7 0.0714

Mountain tops 1 0.1666

Topographic wetness index (TWI) Low (< 5) 1 1/4 1/9 0.0714

Moderate(5–10) 1 4/9 0.2857

High (> 10) 1 0.6428

Stream power index (SPI) < 0 1 1/2 1/3 1/4 1/6 1/8 1/9 0.0303

0–1 1 2/3 2/4 2/6 2/8 2/9 0.0606
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NE facing slopes were also below average (10.70%). Before

applying the relative weightages to individual aspect class,

slope instability observed during the field visit was consid-

ered. During the field visit, it was noted that, west facing

slopes in general as well as southwest and northwest show

more incidence of slope failure and gully erosion than any

others. Therefore, while attributing the factor scores to

generate the pairwise matrix, higher scores were given to

slopes facing west, southwest, and northwest directions

and relative weightages or ratings were calculated which

vary in the range of 0.0256 to 0.2307.

Another important parameter which controls the ter-

rain stability is the change in elevation in the unit area

which is termed as relative relief. Terrains with higher

relative relief indicates higher runoff and less infiltration

and shows higher susceptibility to erosion (Raja et al.

2017). The relative relief of the study area was generated

from the digital elevation model using the neighborhood

range function available in the spatial analyst extension of

ArcGIS software by keeping the unit size of the area as 1

km2. The relative relief calculated for the study area ranges

from 46m/km2 to 692m/km2 and was then divided into

five classes which are: < 100m/km2, 100–200m/km2, 200–

300m/km2, 300–400m/km2 and, > 400m/km2. Consider-

ing the area distribution of individual classes of relative re-

lief in the selected study area, the majority (95%) falls

within the three classes from 100 to 400m/km2. Within

this 95%, more than 43% of the total area has relative relief

in the range of 200–300m/km2 followed by 30% of the

total area with relative relief in the range of 100–200m/

km2 and 22% of the area in the range of 300–400m/km2. It

was noted that very low and very high relative relief zones

Table 1 Pair-wise comparison matrix, ratings, and consistency ratio of the variables classes and individual variables used in the
present study (Continued)

Variables Classes 1 2 3 4 5 6 7 8 9 10 Rating / weights

1–2 1 3/4 3/6 3/8 3/9 0.0909

2–3 1 4/6 3/8 4/9 0.1212

3–4 1 6/8 6/9 0.1818

4–5 1 8/9 0.2424

> 5 1 0.2727

Stream head density Low (< 15) 1 1/4 1/9 0.0714

Medium (15–20) 1 4/9 0.2857

High > 20 1 0.6428

Land use/land cover (LULC) Water 1 1/1 1/8 1/2 1/1 1/2 1/9 1/9 1/1 0.0294

Upper montane forest 1 1/8 1/2 1/1 1/2 1/9 1/9 1/1 0.0294

Secondary forest 1 8/2 8/1 8/2 8/9 8/9 8/1 0.2359

Primary forest 1 2/1 2/2 2/9 2/9 2/1 0.0588

Pebble cobble 1 1/2 1/9 1/9 1/1 0.0294

Paddy 1 2/6 2/9 2/1 0.0588

Mixed agriculture 1 9/9 9/1 0.2647

Exposed soil (barren) 1 9/1 0.2647

Artificial surface 1 0.0294

Consistency ratio (CR): < 0.0001

Variables(as single unit) Slope 1 8/1 8/4 8/5 8/3 8/2 8/4 8/7 8/6 8/9 0.1633

Aspect 1 1/4 1/5 1/3 1/2 1/4 1/7 1/6 1/9 0.0204

Relative Relief 1 4/5 4/3 4/2 4/4 4/7 4/6 4/9 0.0816

Slope length and steepness 1 5/3 5/2 5/4 5/7 5/6 5/9 0.1020

Curvature 1 3/2 3/4 3/7 3/6 3/9 0.0612

Landform 1 2/4 2/7 2/6 2/9 0.0408

TWI 1 4/7 4/6 4/9 0.0816

SPI 1 7/6 7/9 0.1429

Stream head density 1 6/9 0.1224

LULC 1 0.1837

Consistency ratio (CR): < 0.00003
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(< 100m/km2 and > 400m/km2) cover significantly less

areas of 1% and 4% respectively only. Review of previous

works carried out in landslide and gully erosion modelling

which used the theme relative relief as a parameter indi-

cates higher potentiality of areas with high relative relief in

conditioning for erosion (Foumelis et al. 2004; Zhu et al.

2014; Pourghasemi et al. 2013a; Sangchini et al. 2016).

Based on this prior and proven information, in the present

research while attributing the factor scores to generate the

pairwise matrix, higher scores were given to relative relief

class having higher values and lower scores were assigned

to low relative relief class. The relative weightages thus

calculated varied from 0.040 to 0.36.

LS factor corresponds to the combined effect of slope

length and its steepness, which have direct bearing on

the erosion and the transportation potential of an area

(Pourghasemi et al. 2013b; Vijith and Dodge-Wan 2018).

An area with high slope and elongated nature has high

potential for generating runoff and this directly influ-

ences the development of rills in the terrain in response

to heavy rainfall (Haan et al. 1994; Panagos et al. 2015;

Correa-Muñoz and Higidio-Castro 2017). Therefore, in

the present analysis the LS factor was considered and

generated from the digital elevation model through the

methodology proposed by Moore and Burch (1986a,

1986b) using SAGA 2.1. The generated LS factor value

varies from 0 to 25 and was divided into four classes

which are: < 5, 5–10, 10–15, and > 15 considering its

contribution to erosion susceptibility. Within the study

area of Sungai Patah and Sungai Akah watersheds, 50%

of the terrain has low LS values (< 5) and 41% has LS

value between 5 and 10. Only 9% of the area has LS

value of 10–15 and only 1% has LS value over 15. Soil

and gully erosion modelling conducted by researchers in

various locations identified the role of higher LS factor

in initiating erosion and transportation of material from

a region downstream (Nekhay et al. 2009; Pourghasemi

et al. 2012; Shit et al. 2015; Arabameri et al. 2018a).

Based on this in the present research also, while assign-

ing the factor scores, more importance were given to

classes showing high LS factor values and relative

weightages were calculated which vary in the range of

0.05 to 0.45.

The topographic curvature used in the analysis repre-

sents the shape of the slope or topography which has

direct bearing on the erosion by either concentrating

runoff or dispersing it (Lee and Sambath 2006; Fischer

et al. 2012). Topographic curvature may show an up-

ward convex surface (positive curvature) or upwardly

concave surface (negative curvature), or it may be flat

(zero curvature) (Alkhasawneh et al. 2013). In order to

understand the influence of the shape of the surface

slope over terrain susceptibility, curvature was generated

from the DEM. Topographic curvature in the study area

ranges from − 30 to + 32, i.e. from concave surfaces to

flat and convex surfaces. In the study area, the topog-

raphy consists of both concave and convex curvature

surfaces which together cover 94% of total area whereas

flat areas only cover 6%. This is due to the complex and

highly undulating nature of folded sedimentary rocks

within the study area. Considering the shape of the land

surface, both concave and convex surfaces possess sus-

ceptibility to erosion. But in the study area, during the

field visits, it was noted that compared to convex surface

the more gullies are observed in a concave surfaces. Fur-

ther, while considering the previous studies reported

from other parts of the world, most studies marked con-

cave surfaces as more vulnerable to gullying and erosion

(Pourghasemi et al. 2012; Meten et al. 2015; Youssef

2015; Raja et al. 2017). Therefore, while assigning the

factor scores, more importance was given to concave

curvature than convex by attributing higher scores and

the calculated ratings are 0.0588 (flat), 0.4117 (convex),

and 0.5294 (concave).

In order to produce a reliable terrain erosion suscepti-

bility map, the specific landforms present in the study

area needs to be included in the analysis. Landforms

controls many spatial topographic erosional and deposi-

tional processes and was an integral part of geomorpho-

metry (Seif 2014). Surface runoff, soil moisture

distribution, vegetation characteristic, and even the

water quality are influenced by the specific landforms

(Mokarram et al. 2015). Therefore in the present re-

search, the topographic position index based landform

classification proposed by Weiss (2001) was selected to

generate the landforms using digital elevation model.

Topographic position index analysis identified ten land-

forms in the Sungai Akah and Patah area. They are

deeply incised streams, midslope drainages, upland

drainages, U-shaped valleys, plains, open slopes, upper

slopes, local ridges, midslope ridges, and mountain tops.

Within the study area, 39% of the total area is covered by

deeply incised streams whereas mountain tops cover 30%.

Besides these, local ridges (12%), upland drainages (10%),

U-shaped valleys (4%), and upper slopes (3%) are also

present. The remaining three landform classes (midslope

drainages, open slopes, midslope ridges, and plains) cover

less 1% of the total area only. Later, by considering the

relative importance of individual landforms over the ter-

rain susceptibility to erosion as explained in the previous

studies conducted to model the landside susceptibility in

various regions (Costanzo et al. 2012; Tien Bui et al. 2012;

Oh and Lee 2017), factor scores were fixed and ratings

were calculated. Calculated ratings vary from 0.0142

(Plain) to 0.2142 (Upland drainages).

The parameters discussed above all contribute to a

certain extent to increase the susceptibility of the terrain

to erosion. In addition, the contribution of water flow in
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the terrain to enhance the susceptibility was also consid-

ered by means of topographic wetness index (TWI), de-

rived from the digital elevation model. TWI considers

the upslope contributing area and its slope to quantify

the steady state wetness and water flow across the region

(Pourghasemi et al. 2013a). TWI generated for the study

area shows values in the range of 1 to 25 which have

been divided into three classes which are: < 5, 5–10,

and > 10. Considering the wetness potential of the area

through TWI classes, 30% of the total study area was

found to have low wetness index (TWI < 5) whereas

most of the area (62% of the total area) shown moderate

wetness index (5–10), while remaining 8% of the area

has high TWI values (> 10). To take into account differ-

ent level of contribution of TWI to terrain erosion sus-

ceptibility, landslide, and gully erosion susceptibility

studies carried out in different locations were considered

(Wang et al. 2015; Chen et al. 2017; Arabameri et al.

2018b). It was noted that, in most studies high TWI has

high impact on erosion and in the present study, the

relative scores of individual TWI classes were assigned

based on the TWI values i.e. lower score were attributed

to low TWI and vice versa. The calculated weightages

varies from 0.0714 (TWI < 5) to 0.6428 (TWI > 10).

Another parameter is stream power index (SPI), which

estimates the capacity of streams to potentially modify

the geomorphology of an area through gully erosion and

transportation. SPI is the measure of the erosive power

of flowing water by considering the relationship between

discharge and specific catchment area (Chen and Yu

2011; Pourghasemi et al. 2013b). SPI highlights areas in

which overland flow has higher erosive power in the

catchment (Wilson and Gallant 2000). This makes the

use of SPI a significant parameter of interest in erosion

and terrain susceptibility modelling. SPI was calculated

for the study area using the stream power index module

available in SAGA 2.1 software based on the digital

elevation model as input data. SPI of the Baram study

area varies from − 13 to 7 indicating the differential ero-

sive power of the streams in the region. Higher values

indicate the likely overland flow paths during storms or

severe erosive rainfall pointing to potential areas for

gullying or other areas susceptible of erosion. The SPI

map prepared was reclassified into seven classes which

are: < 0, 0–1, 1–2, 2–3, 3–4, 4–5, and > 5. Most of the

study area (63%) showed SPI value less than 0. High SPI

represent areas where high slopes and flow accumula-

tions exist which indicate enhanced with erosive poten-

tial (Gómez-Gutiérrez et al. 2015; Arabameri et al.

2018a). Considering the SPI values and their contribu-

tion towards terrain susceptibility and gullying, the

relative scores were added to each class in a simple pro-

gression and rating was calculated and the rating varies

in the range of 0.0303 to 0.2727.

Another parameter of interest is stream head density

which indicates the number of stream origin points per

the unit area. Analysis of channel head locations can

provide insight into the controls on drainage density as

well as the response of landscapes to climatic change

and indication about the rate of susceptibility of that ter-

rain (Wadge 1988; Montgomery and Dietrich 1989; Lin

and Oguchi 2004). In the present study, the stream head

density was calculated by extracting the starting points

of all 1st order streams in the study area. Using the

density function available in the spatial analyst extension

of ArcGIS, stream head density was calculated for 1 km2

and the calculated density values were found to vary

from 8 to 25 N/km2. Reclassification of stream head

density in to three classes which are: low (< 15 N/km2),

medium (15–20 N/km2), and high (> 20 N/km2) was

then used for the calculation of individual weights. It was

noted that, 21% of the total study area has low stream

head density whereas 71% of the area has moderate dens-

ity, and remaining 7% of the area only has high density.

Areas having high stream head density is more susceptible

to erosion, especially by the development of gully head

and continuous erosion downstream. Based on the density

classes and its impact on terrain erosion susceptibility, the

relative scores of the stream head density classes were

assigned. Further, ratings were calculated and it varies in

the range of 0.0714 to 0.6428 indicating varying contribu-

tion towards the terrain susceptibility.

In erosion susceptibility analysis, the existing land use/

land cover of the area under consideration also plays a

vital role by providing information about the condition

of vegetative protection against erosion and many re-

searchers found land use/land cover to be a dominant

variable in erosion susceptibly (Dai and Lee 2002; Glade

2003; Beguería 2006; Leh et al. 2013; Galve et al. 2015;

Mandal and Mandal 2018; Vuillez et al. 2018; Abdulkar-

eem et al. 2019). It is also one of the key factors under

anthropogenic influence i.e. reflective of human disturb-

ance of vegetation cover due to logging, clearing for roads,

and/or agriculture. In the present study, the land use/land

cover map of the area was derived from Landsat 8 OLI

images acquired on 28th March 2015, through the super-

vised classification with extensive ground truth points

from field observations. The segmentation of Landsat

image into classified land use/land cover map has identi-

fied and mapped the following land use/land cover classes

in the area: water, secondary forest, primary forest, mon-

tane forest, mixed agriculture, paddy, exposed soil

(barren), artificial surfaces, and pebbles, cobbles in river

beds. The supervised classification indicate that more than

56% of the total area was covered by secondary forests and

27% of the area was covered by primary forests. It was also

noted that, land use activities like mixed agricultural land

and exposed barren land, which alter the terrain condition
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in the region, cover 8.8 and 1.8% of the total area respect-

ively. The other land use/land cover classes together cover

less than 5.5% of the total area, in which upper montane

forests cover 3.35% of the area. Further, when determining

the relative influence of individual land use/land cover

classes in terrain susceptibility, previous study which detail

the influence of individual land use classes in soil erosion

vulnerability of the area was taken into account (Vijith

and Dodge-Wan 2018). For the AHP, the weight was

calculated for individual land use/land cover classes based

on the relative importance assigned to each class and

varied in the range of 0.0294 to 0.2647. Among the differ-

ent classes, the exposed barren land, mixed agriculture

acquired the highest rating of 0.2647 followed by second-

ary forest (0.2352) whereas the upper montane forest and

artificial surface showed the lowest weight (0.0294).

Higher weight shown by the exposed barren land, mixed

agriculture, and secondary forest in soil erosion study

(Vijith et al. 2018a, 2018b) indicates the strong influence

of these land use classes on terrain susceptibility.

In order to produce the terrain erosion susceptibility

zonation (TESZ) map, the ranking of individual parame-

ters was carried out to assign their relative contribution

before assigning the calculated weight to each parameter

classes. The parameter ranking indicated that land use/

land cover is the highest influencing parameter with a

rating of 0.183 followed by slope (0.163), stream power

index (0.142), and stream head density (0.122). The

other parameters such as aspect, relative relief, LS factor,

curvature, landforms, and topographic wetness index

were found to have less influence. Reliability of each par-

ameter to be included in the analysis was determined by

examining the consistency ratio (CR) and it was noted

that all the parameters shown CR below the proposed

cut-off of 0.1, so none were omitted from the analysis.

Finally, the weights calculated for individual parameter

classes were assigned to the respective parameters to

produce the weighted maps and using the raster calcula-

tor option of the spatial analyst, individual themes were

integrated to produce the terrain erosion susceptibility

index (TESI) map using the equation (Eq. 3):

Terrain erosion susceptibility index ðTESIÞ ¼

wtSlope � 0:163þ wtAspect � 0:020

þ wtRelative relie f � 0:081þ wtLS factor � 0:102

þ wtCurvature � 0:061þ wtLand forms � 0:040

þ wtTWI � 0:081þ wtSPI � 0:142

þ wtStream head density � 0:122

þ wtLand use=land cover � 0:183

ð3Þ

where, wt is the relative weights of classes in individual

variable.

Result and discussion
Ten geo-environmental variables which are potentially

responsible for changing the stability of the terrain ren-

dering it more susceptible to erosion were considered

quantitatively to assess the susceptibility of the forested

region of Sarawak to erosion using the AHP technique.

Among the ten variables used to generate the terrain

erosion susceptibility index (TESI) map, the variables

such as land use/land cover, slope, stream power index,

stream head density, and slope length and steepness

factors shown maximum influence (> 0.10) followed the

relative relief and topographic wetness index (0.08).

Other variables such as curvature (0.06) and landform

(0.04) shown moderate influence, whereas aspect was

found to be the lowest influencing variable with a rank

of 0.02. Even though, the variable ranks differ, the selec-

tion of the variables in the present analysis are found to

be optimum by showing the CR less than the cut-off

value (0.00003). Besides this, the weight factor calculated

for the individual variable classes indicates a varying de-

gree of influences within the parameter and between the

parameters. It was also noted that the relative weighting

of variable classes indicates the variability of influences.

Among the variables considered, the land use/land cover,

terrain with slope > 25° having west, southwest, and

northwest orientations, relative relief > 300 m/km2; high

LS factor, and concavity, having high TWI, upland drain-

ages and mountain top landforms, high stream head

density are showing high relative weights among the

classes and contributing more to the terrain susceptibil-

ity. The integration of weighted variables in the raster

calculator resulted terrain erosion susceptibility index

(TESI) map showing the susceptibility ranges from 0.07

to 0.34 indicating spatial distribution of different degree

of susceptibility to erosion (Fig. 4a). The TESI map gen-

erated shows varying distribution of higher and lower

susceptibility indexes all over the area without showing

any particular pattern, which make it difficult to identify

and differentiate the regions which showing nil or low

susceptibility and very high susceptibility.

In order to understand the spatial extent of different

severity of erosion susceptibility, the TESI map was re-

classified into five discrete classes based on the suscepti-

bility index values namely nil, low, moderate, high, and

very high zones (Fig. 4b). The reclassification of the TESI

to terrain erosion susceptibility zonation (TESZ) map

facilitated the calculation of areal extent of different sus-

ceptibility zones. The areas falling under each erosion

susceptibility class are given in Table 2 and shown in

Fig. 5. The final TESZM showed that 10.3% of the study

area is categorised as having very high susceptibility to

erosion and these areas appears to be distributed differ-

ent places in the region. In addition, high erosion sus-

ceptibility zones occupy 14.9% whereas moderate and
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low susceptibility zones covers 25.8 and 27.1% of the

area respectively. It was also noted that 17.47% of the

study area is not prone to erosion. Besides this, 4% of

the area was not included in the final analysis as there is

no data in these zones due to thick cloud and cloud

shadow on satellite image. An attempt has been made to

understand the spatial characteristics of the erosion sus-

ceptibility zones by overlying the TESZ with the exagger-

ated terrain model. It was found that the higher erosion

susceptibility zones mostly occur in the flanks of the

mountains rather than in the valleys. In addition, in

some places these zones show linear patterns which can

be linked directly with the road structure and skidder

trails. For the development of roads in the area, the con-

tinuity of hills with concave or convex slopes has been

removed by the toe cutting and this will increase the

susceptibility to erosion and lead to the development of

soil slumps triggered by the heavy rainfall. The clustered

Fig. 4 a Terrain erosion susceptibility index (TESI) maps and b Classified terrain erosion susceptibility zonation (TESZ) map
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nature of the higher erosion susceptibility indicates the

logging activity and shifting cultivation, which exposes

the terrain by removing the protective tree cover.

Rainfall distribution

Though different geo-environmental variables make the

terrain susceptible to erosion, the amount and intensity

of rainfall which falls in an area acts as the triggering

mechanism which can initiate movement of soil, debris,

and other overburden downstream. In most studies,

rainfall distribution is included as a theme to statistically

model the land susceptibility to erosion (Sangchini et al.

2016). In the present research, rainfall distribution in the

study area was considered separately and analysed to

identify the areas with high possibility of terrain erosion

susceptibility. Therefore, 5 year rainfall data were

collected from the Department of Irrigation and Drain-

age (DID) Malaysia corresponding to four rain gauges

located in the study area and six around the area. Mean

monthly rainfall distribution and 5 year mean monthly,

and annual rainfall is shown in Fig. 6. It was noted that

mean monthly rainfall varies between 238 mm (June) to

532 mm (November) with long term mean monthly and

annual rainfall of 352 mm 4227mm respectively. A

spatial distribution map was generated by considering

the mean annual rainfall calculated for each rain gauge

for use in further analysis (Fig. 7). Mean rainfall ranges

between 3654 to 4862 mm with higher rainfall generally

located in southwest part of the study area, especially

between the rain gauges Long Naha’ah and Long Akah

whereas comparatively lower rainfall is noted in north-

ern and north-eastern part of the study area.

In order to assess the contribution of rainfall to terrain

susceptibility leading to slope failure, 200 random

(unconditional and unstratified) points (pixel size 30 ×

30m) were generated within the study area boundary

and mean annual rainfall, TESI, and TESZ values corre-

sponding to each point were extracted. The extracted

values of TESI and TESZ were compared by linear re-

gression with mean annual rainfall to study the possible

Table 2 Terrain erosion susceptibility classes derived from the reclassification of TESI

Terrain erosion susceptibility classes Area (km2) Area (%) Probability of terrain erosion

Nil 367.84 17.47 No chance of erosion, mostly low lying areas.

Low 572.01 27.17 Very low probability. Mostly affected by the
run-off from the higher elevation

Moderate 544.77 25.88 Medium probability, may directly involve in
erosion or affected as part of falling from the top

High 313.22 14.88 High certainty of erosion either as slide or gullying.
Need attention in such areas crossing road sections.

Very High 217.31 10.32 Very high certainty of erosion either as slide or
gullying. To be monitored during the heavy rainy seasons.

No data 89.85 4.27 No data is available due to cloud and shadow in the
image. Not considered in the analysis

Fig. 5 Area distribution of terrain erosion susceptibility zones
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role of local rainfall amount and distribution over terrain

susceptibility (Lyra et al. 2014; Teodoro et al. 2016; Brito

et al. 2017) (Fig. 8). Linear regression plot of mean

annual rainfall and TESI indicates very low or nil correl-

ation (Fig. 8a). Similarly, the linear regression plot of the

mean annual rainfall distribution and TESZ shows

absence of correlation (Fig. 8b). P values (p > 0.10) also

indicates no or nil dependency between the dependant

(terrain susceptibility) and independent (rainfall) vari-

ables in the region. Although high rainfall in general is a

Fig. 6 Mean monthly and annual rainfall distribution in the study area

Fig. 7 Spatial distribution of mean annual rainfall in the study area
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factor in increasing terrain erosion susceptibility, at a

specific local scale (pixel size 30 × 30m area), the higher

amount of rainfall received in parts of the region does

not appear to significantly influence the local site

specific terrain susceptibility. However, other geo-

environmental variables considered play more significant

roles in rendering the terrain more susceptible to ero-

sion in specific local areas.

Conclusion

The characteristic probability of erosion proneness of a

sample catchment with regenerated and logged tropical

rain forest region in Sarawak, northern Borneo, was suc-

cessfully carried out in the present study using raster

GIS and AHP technique. Terrain variables derived from

the digital elevation model such as slope, aspect, relative

relief, LS factor, curvature, landforms, TWI, SPI, stream

head density, and the land use/land cover interpreted

from the satellite images were integrated in the raster

based GIS environment after deriving the determinant

ranking and weights for the variables and variable clas-

ses. The generation of rankings and weightages for the

variables considered in the analysis through the AHP

technique facilitated the identification of the most cru-

cial variables which render the terrain more susceptible

to erosion. Though all these variables were found to be

contributing to erosion susceptibility to various degrees,

the determination of ranks through relative ratio high-

lights that land use/land cover, slope, stream power

index, stream head density, and LS factor are the most

crucial variables. In the study area, the places which are

exposed (barren land) with concave slopes having slope

exceeding 25° and facing west, southwest, and northwest,

with relative relief higher than 300 m/km2 and high LS

factor, TWI and stream head density are found to be the

most vulnerable to erosion. These areas are identified

via the TESI and TESZ maps.

TESZ map generated by the reclassification of TESI

into five distinct groups show the spatial pattern of ero-

sion susceptibility in terms of its severity. It was found

that 10 and 14% of the total area comes under the very

high and high erosion susceptibility zones. The higher

susceptibility was found to be characteristic of high ele-

vated hills and slopes which undergo rapid changes.

Fig. 8 Linear regression plots explaining the relationship between rainfall a TESI and b TESZ
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However, areas with nil and low potential of erosion sus-

ceptibility together constitute 44% and the moderate

susceptibility zones occupy 25% of the total study area.

Considering the influence of rainfall in the region, the

entire study area receives what can be considered high

tropical rainfall. Analysis of 200 randomly distributed

pixel sized area (30 m × 30m) suggests that at local scale

rainfall is not strongly correlated with erosion suscepti-

bility. The field observations and the erosion susceptibil-

ity map indicates that the root causes of the terrain

susceptibility are modification of land use and the devel-

opment of logging roads, and skidder trails. Barren areas

reduce the stability of the terrain and particularly when

combined with other factors such as slope, LS factor.

Along with this, the high amount of rainfall recorded

throughout the region induces movement of unsup-

ported and toe-cut slopes to move downstream. The

findings of the present study give a better understanding

of the region in terms of erosional characteristics. The

findings can be used for planning of new roads, settle-

ments by developing and implementing erosion reduc-

tion and terrain protection measures.
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