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Abstract

Background: The COVID-19 pandemic poses a serious threat to global health, and pathogenic mutations are a
major challenge to disease control. We developed a statistical framework to explore the association between
molecular-level mutation activity of SARS-CoV-2 and population-level disease transmissibility of COVID-19.

Methods: We estimated the instantaneous transmissibility of COVID-19 by using the time-varying reproduction
number (Rt). The mutation activity in SARS-CoV-2 is quantified empirically depending on (i) the prevalence of
emerged amino acid substitutions and (ii) the frequency of these substitutions in the whole sequence. Using the
likelihood-based approach, a statistical framework is developed to examine the association between mutation
activity and Rt. We adopted the COVID-19 surveillance data in California as an example for demonstration.

Results: We found a significant positive association between population-level COVID-19 transmissibility and the
D614G substitution on the SARS-CoV-2 spike protein. We estimate that a per 0.01 increase in the prevalence of
glycine (G) on codon 614 is positively associated with a 0.49% (95% CI: 0.39 to 0.59) increase in Rt, which explains
61% of the Rt variation after accounting for the control measures. We remark that the modeling framework can be
extended to study other infectious pathogens.

Conclusions: Our findings show a link between the molecular-level mutation activity of SARS-CoV-2 and
population-level transmission of COVID-19 to provide further evidence for a positive association between the
D614G substitution and Rt. Future studies exploring the mechanism between SARS-CoV-2 mutations and COVID-19
infectivity are warranted.
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Introduction
Coronavirus disease 2019 (COVID-19) caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

was first reported in 2019 [1–5]. The COVID-19 pan-

demic poses a serious threat to global health and has

spread to over 200 countries globally in a short period of

time [6, 7]. In response to the ongoing COVID-19 pan-

demic, the World Health Organization (WHO) declared

a public health emergency of international concern on

January 30, 2020 [8]. As of September 6, 2020, over 27

million COVID-19 cases have been confirmed world-

wide, with over 0.8 million deaths associated with

COVID-19 [9].

The dynamics of the transmission of an infectious dis-

ease are largely determined by the pathogen’s infectious-

ness and the course of the transmission [10–12]. As a

contagious disease with high transmissibility, the control

of COVID-19 requires knowledge of the driving factors

that may affect disease transmission [13–16]. Pathogenic

mutations in SARS-CoV-2 are a major challenge for

controlling COVID-19 [17, 18]. Early in February 2020,

genetic variants with the D614G substitution on the

SARS-CoV-2 spike (S) protein began to spread first in

Europe [19] and globally and were suspected to poten-

tially affect viral transmission [20]. Here, ‘D614G’ de-

notes the amino acid substitution that changes aspartic

acid (D) to glycine (G) on codon 614 of the S protein of

SARS-CoV-2. However, the evident relationship between

the molecular-level mutation activity of SARS-CoV-2

and the population-level transmissibility of COVID-19

remains unrevealed.

It is biologically reasonable that mutations in viral ge-

nomes may alter the pathogenic profile in terms of viral

fitness and functionality [21, 22] and consequently

change its transmissibility. Previous literature about sea-

sonal influenza epidemics [23] suggested that a few key

amino acid substitutions may lead to remarkable chan-

ging dynamics of epidemiological outcomes at the popu-

lation scale. In this study, we adopted a statistical

framework to explore and examine the association be-

tween COVID-19 transmissibility and key mutation ac-

tivities in the S protein of SARS-CoV-2.

Data and methods
SARS-CoV-2 sequencing data and COVID-19 surveillance

data

The full-length human SARS-CoV-2 strains in California

were collected via the Global Initiative on Sharing All

Influenza Data (GISAID) [24] on May 24, 2020. A total

of 524 strains were searched with collection dates ran-

ging from January 22, 2020, to May 8, 2020. Table 1

summarizes the total number of strains in GISAID and

the sample size included in this study for different pe-

riods. Since the number of sample stains varied by

period, we set 9 successive periods and downloaded a

stable number of strains for each period. In the period

when more than 30 strains were available, we randomly

sampled 30 strains. This sampling scheme is purposely

designed to balance the weights due to different sample

sizes that may affect the sliding window framework ap-

plied in quantifying the mutation activity (details in the

next section). Sequences of all SARS-CoV-2 strains ac-

quired are provided in the Additional file 1.

Multiple sequence alignment was performed using

Clustal Omega (accessed via https://www.ebi.ac.uk/

Tools/msa/clustalo/), and the SARS-CoV-2 strain

‘China/Wuhan-Hu-1/2019|EPI_ISL_402125’ was consid-

ered as the reference sequence. The surveillance data of

the daily number of COVID-19 cases in California were

collected from the R package “nCov2019” [25] and The

New York Times, accessed via https://github.com/

nytimes/covid-19-data and https://www.nytimes.com/

interactive/2020/us/coronavirus-us-cases.html, respect-

ively. Figure 1a shows the daily number of COVID-19

cases in California in a time series.

Instantaneous reproduction number and study period

We adopted the time-varying reproduction number (Rt)

to quantify the instantaneous COVID-19 transmissibility

in California. Using the framework in [26], we estimated

the time-varying reproduction number (Rt) to quantify

the instantaneous transmissibility of COVID-19 in Cali-

fornia. Following the estimation framework developed in

previous studies [26, 27], the epidemic growth of

COVID-19 was modeled as a branching process, and

thus, Rt can be expressed by using the renewable equa-

tion as follows:

R tð Þ ¼
C tð ÞR

∞

0 w kð ÞC t − kð Þdk
;

Table 1 Number of human SARS-CoV-2 strains in GISAID and
the sample sizes included in this study for different periods

Period Number of strains

in GISAID in this study

Jan 1–31 6 6

Feb 1–29 16 16

Mar 1–10 72 30

Mar 11–20 94 30

Mar 21–31 158 30

Apr 1–10 100 30

Apr 11–20 21 21

Apr 21–30 50 30

May 1–10 7 7

Total 524 199
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where C(t) is the number of new COVID-19 cases re-

ported at the t-th date. The function w(∙) is the distribu-

tion of the generation time (GT) of COVID-19. By

averaging the GT estimates from the existing literature

[28–35], we considered w as a Gamma distribution with

a mean (±SD) value of 5.3 (±2.1) days. Slight variations

in the settings of the GT did not affect our main

findings.

For the selection of the study period, we considered

both the quality of datasets and the increasing intensity

(or effects) of local control measures. The selected study

period for the COVID-19 surveillance data in California

was from March 1, 2020, to April 30, 2020. During this

study period, local COVID-19 surveillance was already

following the governmental protocol, and the compos-

ition of disease control measures was relatively simple

and adjustable in further multivariate analyses. In par-

ticular, an official ‘stay-at-home’ order was issued on (t0

=) March 19, 2020, in California (see https://covid19.ca.

gov/stay-home-except-for-essential-needs/), which may

affect the patterns of Rt. Hence, we accounted for the ef-

fect of this local control measure in further multivariate

analyses.

Our analyses depended on both (i) the quality of

the data and (ii) the effects of the covariates, espe-

cially public health control measures that may de-

crease Rt. Thus, one of the other reasons, which

limited us to consider time outside the study period

from March 1, 2020, to April 30, 2020, is related to

the prevalence of mutation activities in SARS-CoV-2.

During this study period, D614G appears to be the

only major amino acid (AA) substitution in the S

protein. Thus, complex interactive effects of multiple

mutations on infectivity are less likely. As such, our

analysis is simplified and is restricted in examining

the effect of a single AA substitution.

Fig. 1 The number of COVID-19 cases (panel A), prevalence of the amino acids (AA) on the 614-th codon of the S protein (panel B), and time-
varying reproduction number (Rt, panel C) in California from March to April 2020. Panel A shows the daily number of COVID-19 time series. Panel
B shows the prevalence of the AAs, including Aspartic Acid (D, in cyan) and Glycine (G, in purple), on the 614-th codon of the S protein. Panel C
shows the Rt estimated (black) from the number of cases data using renewable equation and fitted (red) by using the mutation activity on the
614-th codon of the S protein in panel B. In each panel, the vertical dashed blue line represents the date, March 19, when the ‘stay-at-home’
order was officially implemented in California
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Quantifying the time-varying molecular-level mutation

activity

In previous studies [36–38], a statistical framework was

proposed to quantify genetic mutation activities associ-

ated with population-level outbreak situations by a

metric, namely, the g-measure, on a real-time basis. The

g-measure is an empirical time-varying metric calculated

from the sequencing data of the pathogen and is deter-

mined by a predefined dominance prevalence threshold,

θ, ranging from 0 to 1. The θ is the mutation prevalence

threshold above which a molecular-level mutation (or

substitution) is considered to affect the changing dynam-

ics of the outbreak situation at the population level. The

g-measure quantifies the level of key substitutions on a

real-time basis, which allows one to explore its linkage

to other time-varying variables [39].

We calculated the daily prevalence of amino acids

(AA) on each codon in the S protein of SARS-CoV-2.

We use pij(t) to denote the prevalence of the i-th type of

amino acid (AA) on the j-th codon of the S protein at

time (or date) t, for i = 1, 2, …, 20, j = 1, 2, …, 1273, and

t ranging from January 22 to May 8, 2020. Then, for

each AA (20 in total) on each codon (1273 in total) of

the S protein, we empirically calculated the prevalence

time series. A sliding window was applied to the whole

study period, from January 22, 2020, to May 8, 2020, to

address the problem of the insufficient daily sample size.

Let W denote the window size that represents a constant

period (e.g., one week or one month). Hence, for pij(t)

on date t, we accounted for the proportion of the i-th

AA out of all 20 types of AAs on the j-th codon within

the time period of t ±W/2. In this study, we set W at 7

days for convenience, and we concluded that a variation

in W did not affect our main results.

This sliding window scheme requires that the daily

sample sizes of sequencing data are close in scale

[38]. This guarantees that the prevalence series can

reveal the real-world changing patterns of the muta-

tion activity rather than bias towards a particular

period with a large number of sequencing samples.

Otherwise, as a simple example, during the periods

before or after date t, i.e., from t −W/2 to t and from

Fig. 2 Illustration diagram of the analytical procedure of g-measure calculation. The prevalence time series of 4 different AA substitutions are
denoted by p1(t), p2(t), p3(t) and p4(t), and indicated in red, green, orange and blue, respectively. Three scenarios of dominant prevalence
threshold parameter, θ, are demonstrated with θ = 0.5, 0.7, and 0.9, respectively, which is indicated by the horizontal dashed line in each panel.
The g-measure counts the segments of the prevalence series that start from 0 and increase over θ. In each panel, the prevalence series that
accounts for g-measure is not shaded in grey region. In other words, the shaded regions are those part of prevalence series excluded from the g-
measure calculation. For those prevalence series that never excess θ, they are excluded from g-measure calculation as labeled by ‘excluded’;
otherwise, ‘included’ label is indicated
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t to t +W/2, the prevalence may approach one period

with a larger sample size.

Following the calculations from previous studies [36,

37, 39], the g-measure counts the segments of the preva-

lence series that start from 0 and increase and eventually

hits the level of θ. Prevalence series that never excess θ

are excluded from the g-measure calculation. For other

prevalence series that excess θ at some time point, only

those parts start from 0 and increase and hit the level of

θ are included in the g-measure calculation. An illustra-

tion diagram of the g-measure calculation is presented

in Fig. 2. Technically, the algorithm in Table 2 is used to

find the indicator function, I(t), to identify the segments

of the prevalence series for the g-measure calculation.

Therefore, given θ, the g-measure on date t, denoted by

g-measuret(θ), can be calculated as follows:

gmeasuret θð Þ ¼
X

j

X

i

pijt ∙I ijt θð Þ ð1Þ

The g-measure quantifies genetic mutation activities

and is used to explore the association with Rt. The par-

ameter θ is estimated with the likelihood framework that

will be introduced in the remaining parts.

Figure 3 shows the g-measure time series of the S pro-

tein with different values of θ. Note that only the g-

measure time series from March 1, 2020, to April 30,

2020, were used in further regression analyses.

Regression model and estimation of dominance

prevalence threshold

We intended to explore the association between Rt and the

mutation activity (measured by the g-measure) on the S

protein. A multivariable regression model was fitted to

examine the association between Rt and the g-measure con-

sidering the effect of local control measures in California.

Since Rt may be affected by disease control measures,

we included a dummy variable with a discontinuity de-

sign to govern the effect of local control measures. In

particular, the official ‘stay-at-home’ order was issued in

California on March 19, 2020 (see https://covid19.ca.

gov/stay-home-except-for-essential-needs/#stay-home-

order). Hence, in the generalized linear regression model

with discontinuity design, we set the structural break in

the trends of Rt on March 19, 2020, which was denoted

as t0. In previous studies, Rt is commonly modeled as a

Gamma process [26, 40, 41], and thus, the regression is

formulated in Eqn (2).

E ln Rtð Þ½ � ¼ cþ agmeasuret
þ b I t > t0ð Þ t − t0ð Þ ð2Þ

Here, E[∙] is the function of the expectation. I(∙) is an

indicator function that uses the binary variable (0 or 1);if

variable t is larger than the threshold value t0, then 1;

otherwise, it is 0. c is the constant parameter, and a and

b are the slope parameters. Again, we fixed the term t0
to be March 19, 2020. The percentage change rate (η) of

Rt associated with a 0.01 increase in the g-measure can

be calculated directly from the slope parameter a. Thus,

the term η is the effect size to be estimated of mutation

activity on COVID-19 transmission, and we have η =

[exp(a × 0.01) – 1] × 100%.

Following previous studies [40, 41], we considered Rt to

follow a Gamma process with both means Rt and SDs vt
determined by the renewable equation. For a given time t,

the Gamma distribution is denoted by h(∙|Rt, vt), and we

model exp. [c + a∙gmeasuret + b∙I(t > t0)∙(t − t0)], which is

the exponential of the right-hand side of Eqn (2), follow-

ing the distribution h(∙|Rt, vt). Thus, h(∙|Rt, vt) is a function

of parameters a and θ in Eqns (1) and (2), respectively, i.e.,

h(a, θ | Rt, vt). In other words, both Rt and vt were recon-

structed directly from the number of cases in a time series

(i.e., the raw data) and then served as the known parame-

ters in the likelihood function L, which is given as follows:

L a; θð Þ ¼
Y

t
h a; θjRt ; vtð Þ:

The dominance prevalence threshold parameters θ

and a, and equivalently η, can be estimated based on this

likelihood framework and the regression model. Then,

we calculated the maximum likelihood estimation (MLE)

of θ to determine the g-measure for regression analysis.

Using the likelihood framework, we estimated the MLE

of the dominance prevalence threshold parameter θ,

which was adopted to determine the g-measure and to

examine the association with Rt. The 95% CIs of the re-

gression parameters were estimated by their point esti-

mates plus or minus Student’s t distributed quantile

multiplied by their standard errors. Since η and a are

one-to-one mappings, the 95% CI of η can also be dir-

ectly calculated from the 95% CI of a.

We employed Efron’s pseudo R-squared and likelihood-

based partial R-squared to evaluate the goodness-of-fit of

the regression model. A likelihood-ratio (LR) test on the

scenarios with (as the full model) and without (as the

baseline model) the g-measure was used to examine the

reasonability of the model structure.

Table 2 Algorithm of g-measure indicator function, I(t)

input: discretized prevalence time series, p1:T; dominance prevalence
threshold, θ (> 0).
initialization: parameter for recoding the zero-prevalence time point,
ξ = 1, parameter for recoding excess time point, σ = 0, I1:T = 0.
for t in 1:T do
If pt == 0, set ξ = t.
If (pt ≥ θ & ξ > σ), I(ξ + 1):(t − 1) = 1, σ = t.
end for
output: discretized indicator time series, I1:T.
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Sensitivity analysis

Sensitivity analysis was carried out on the robustness and

significance of the association between Rt and mutation

activity. We conducted a sensitivity check on the effect

size of mutation activity on the S protein in association

with the changing dynamics of COVID-19 transmissibility

in terms of the reconstructed Rt. We considered three al-

ternative regression formulas, which are similar to the

main model Eqn (2), as follows:

E ln Rtð Þ½ � ¼ cþ agmeasuret ð3Þ

E ln Rtð Þ½ � ¼ cþ agmeasuret þ b I t > t0ð Þ ð4Þ

E ln Rtð Þ½ � ¼ cþ agmeasuret
þ b I t > t0ð Þ t − t0ð Þ
þ d I t≤ t0ð Þ t − t0ð Þ ð5Þ

To check the robustness and significance of the esti-

mates, we examined the consistency of both the sign

(i.e., + or −) and the statistical significance (in terms of

p-value < 0.05) of the regression coefficient a in the four

models in Eq. (2)–(5).

Fig. 3 The g-measure time series of the SARS-CoV-2 spike (S) protein with different values of dominance threshold (θ) using Eqn (1)
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Results and discussion
We reconstructed the daily instantaneous reproduction

number (Rt) from the epidemic curve, as shown in Fig. 1c

(black dots). We observed that the overall trends of Rt

were relatively steady in the first half of March but grad-

ually decrease thereafter since the local ‘stay-at-home’

order was issued in California on March 19, 2020, which

was adjusted in Eqn (2). During the first half of March,

which was regarded as the early phase of the outbreak,

the reproduction number ranged from 1.5 to 3, and this

range is generally consistent with previous estimates [2,

3, 6, 12, 29, 33, 42–48].

We estimated the dominance prevalence threshold (θ)

at 0.8, as shown in Fig. 4, which was adopted to examine

the association between the g-measure and Rt. When

θ = 0.8, we found that the g-measure of the S protein ap-

peared to be solely contributed to by the D614G substi-

tution (see Fig. 1b), which also holds for all θ values >

0.75. In other words, the D614G substitution is consid-

ered a key mutation and is likely dominant in accounting

for the changes in COVID-19 transmissibility due to a

mutation at the molecular level.

Using the regression model in Eqn (2), we found a sig-

nificant positive association between the g-measure and

Rt when θ = 0.8 (as estimated). Hence, the changing dy-

namics of Rt are likely associated with the key mutations

that are solely contributed to by the D614G substitution.

We estimated that each 0.01 increase in the prevalence

of glycine (G) on codon 614 is positively associated with

a 0.49% (95% CI: 0.39 to 0.59) increase in Rt, which, in

terms of the partial R-squared, explains 61% of the Rt

variation after accounting for the control measures. Fig-

ure 1c shows the fitting results by using the regression

model in Eqn (2). By examining the patterns in Fig. 1,

we found that the prevalence of the D614G substitution

matches the trends of Rt in March 2020. However, we

noticed that since (roughly) April 15, 2020, the preva-

lence of the D614G substitution increased, but Rt

remained constant. The reasons may include that the in-

crease in transmissibility was counteracted by the effects

of local nonpharmaceutical interventions that reduced

the transmission of COVID-19. Sensitivity analysis with

alternative model structures in Eqns (3)–(5) indicates

that the positive association between the D614G substi-

tution and Rt holds robustly and significantly (data not

shown).

The significant positive association between the

D614G substitution and Rt is biologically reasonable and

consistent with findings in previous studies. The few

(but key) AA substitutions may vary the three-

dimensional structure of the protein as well as influence

the receptor binding process in which a pathogen in-

vades host cells. Previous analysis implied that the

D614G substitution may alter the conformation of the S

protein and thus may theoretically functionally enhance

receptor binding capacity [19, 20, 49, 50], leading to an

increase in SARS-CoV-2 transmissibility and pathogen-

icity [51]. Similarly, we learn from the influenza virus

that major antigenic changes can be caused by a single

AA substitution related to the receptor binding domain

(RBD) [52]. Our analytical framework is data-driven and

can be extended to study other infectious diseases.

For the limitations of this study, we have the following

remarks. First, the reconstruction of Rt relies on the set-

ting of the generation time (GT). We modeled the distri-

bution of COVID-19 GT as a fixed Gamma distribution,

which follows previous findings [28–32]. In a real-world

situation, the time interval between the transmission

generations could be variable [42, 53], which may affect

the estimation of Rt. However, the changes in Rt esti-

mates due to slight variations in GT are negligible [42].

We remark that this issue is unlikely to affect our main

conclusion, and our model can be extended to a more

complex context with the available time-varying GT

data. Second, for the Rt estimation parts, C(t) should be

the number of COVID-19 cases onset at time t. How-

ever, because the data by onset are unavailable, we

adopted the current dataset by reporting data as a proxy

for the COVID-19 incidence time series. If one considers

a constant reporting lag, the Rt estimates will be in

exactly the same trends but shifted for the reporting lag.

Considering that a similar reporting delay also occurred

for the SARS-CoV-2 sequencing data, the effects of the

two reporting lags may be counteracted. We note that

this approximation in our analysis is unlikely to affect

the conclusion in this study. In addition, with detailed

reporting lag information of each individual case, adjust-

ment for the reporting delay can surely be carried out

based on our current analytical framework. Third, as a

Fig. 4 The likelihood profile of the dominant prevalence threshold
parameter, θ, using the likelihood framework associated with
regression model in Eqn (2)
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data-driven study, the estimated association should be

interpreted with caution. With ecological settings, our

analysis provides statistical evidence about the likelihood

of causality, but the findings in this study cannot guaran-

tee causality, which needs further biomedical experi-

ments with a more sophisticated context.

Conclusions
Our findings show a link between the molecular-level

mutation activity of SARS-CoV-2 and population-level

COVID-19 transmission to provide further evidence for

a positive association between the D614G substitution

and Rt. Future studies exploring the mechanism between

SARS-CoV-2 mutations and COVID-19 infectivity are

warranted.
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