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Abstract. Probabilistic modelling has been an essential tool in medi-
cal image analysis, especially for analyzing brain Magnetic Resonance
Images (MRI). Recent deep learning techniques for estimating high-
dimensional distributions, in particular Variational Autoencoders (VAEs),
opened up new avenues for probabilistic modeling. Modelling of volumet-
ric data has remained a challenge, however, because constraints on avail-
able computation and training data make it difficult effectively leverage
VAEs, which are well-developed for 2D images. We propose a method to
model 3D MR brain volumes distribution by combining a 2D slice VAE
with a Gaussian model that captures the relationships between slices.
We do so by estimating the sample mean and covariance in the latent
space of the 2D model over the slice direction. This combined model lets
us sample new coherent stacks of latent variables to decode into slices
of a volume. We also introduce a novel evaluation method for generated
volumes that quantifies how well their segmentations match those of true
brain anatomy. We demonstrate that our proposed model is competitive
in generating high quality volumes at high resolutions according to both
traditional metrics and our proposed evaluation.1
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1 Introduction

Generative modeling with Bayesian models have played an important role in
medical image computing, yielding very robust systems for segmentation and
extracting morphological measurements, especially for brain MRI [4,1,12]. How-
ever, the difficulty in using these earlier Bayesian models was the difficulty in
defining prior distributions. The challenges in estimating high-dimensional prior
distributions forced researchers to use atlas-based systems through non-linear
registration, e.g. [1], which arguably limited the applications of such models
due to the challenges in registration itself. Recently, unsupervised deep learning
has yielded powerful algorithms for estimating distributions in high dimensions
and opened new avenues for modeling prior distributions for Bayesian models.

1 Code is available at https://github.com/voanna/slices-to-3d-brain-vae/
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Notably, Variational AutoEncoder models [8] provide access to probability val-
ues through the evidence lower-bound, enabling Bayesian approaches to various
problems, such as undersampled Magnetic Resonance (MR) image reconstruc-
tion [17] and outlier detection [2]. Unfortunately, methods leveraging VAEs so far
have had to constrain themselves to 2D models or coarser resolution 3D models.

Training volumetric VAE models remains difficult, due to limitations in avail-
able training data and computational resources. Compared to 2D data, 3D data
is evidently higher dimensional, posing challenges for estimating probability dis-
tributions. The number of 3D training examples is relatively low compared to
the 2D case. Even large-scale datasets only contain images on the order of thou-
sands. Adding to the problem, volumetric VAEs also have a larger number of
parameters to be trained and are difficult to fit into memory in GPU systems.

This means that existing models typically only demonstrate results for down-
sampled coarse volumetric data. Works on generating natural videos repre-
sented as “space-time cuboids” [21,9] have stopped at 3 × 64 × 64 × 32 size.
Kwon et al. [10] recently showed high quality generations of brain MR volumes
at 64 × 64 × 64 image size with their proposed 3D αWGAN method, however
the method has difficulty scaling to 256× 256× 256 in our experiments.

To move to 3D data at larger sizes with finer resolution, we propose to instead
use (relatively) easy to train 2D variational autoencoders to generate MR image
slices. We can exploit the correlation between successive slices of an MR volume
in a second modelling step that captures the relationship between slices. By
separately encoding all of the slices coming from the same volume using our
2D encoder, over many different volumes, we can estimate the sample mean
and covariance of the latent codes over the slice dimension. This gives us a
model for 3D data and lets us sample from the distribution by generating a new
stack of latent codes with the same mean and covariance as the original codes,
which, when decoded, correspond to a new consistent MR volume. We show that
this simple yet efficient approach yields generated volumes that are competitive
with other proposed generation approaches, such as the recently proposed 3D
αWGAN [10] at 128 × 128 × 128 image size, and outperforms 3D αWGAN at
256× 256× 256 image size on several metrics.

We additionally introduce a novel and interpretable evaluation measure of
the quality of the generated samples. We segment generated samples using a seg-
mentation network trained on real images and then register generated volumes
to real volumes, along with their segmentations. We then compute the Dice’s
similarity coefficient (DSC) [3] between the registered segmentations, and call
this the“Realistic Atlas Score” (RAS). This procedure allows us to evaluate (a)
how well a generated volume can “pass” as a real volume in the eyes of both a
segmentation network and a registration algorithm; as well as (b) how well the
anatomy in the generated images match real ones. Unlike other common evalua-
tion methods for generative models, such as the Inception Score [16], the Fréchet
Inception Distance [7], the RAS has a direct anatomical interpretation, which
makes it informative for generative modelling of medical images in particular.
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2 Methods

2.1 Modeling distribution of 3D images with 2D VAE

Our model has two components: (1) a variational autoencoder and (2) a sample
mean and covariance estimation in the latent space of the encoder. The encoder
maps MR slices to points in an L-dimensional latent space Y and the decoder
maps them back to the image space X . We train this model to convergence.

The second part of our model is a collection of L sample mean and covariance
estimates over the latent variables in the slice dimension (one covariance estimate
for each component of the latent space of the encoder). Using the sample means
and covariances, we can sample new sequences of the latent variables that cor-
respond to sequences of slices through an MR-volume. These samples will have
the same sample mean and covariance structure as the original latent codes.
The latent variable corresponding to each slice can be decoded individually to
an image, and the slices are combined to obtain a complete and consistent MR-
volume. The consistency of the slices is ensured because we compute the mean
and covariance the slice direction.

Fig. 1. We train a 2D autoencoder model on MR brain slices, and then model the
relationship between successive slices in a volume by separately estimating sample
means and covariances over the slice dimension for each component of the latent code.
Using these, we transform samples from a unit Gaussian into new latent codes that
can be decoded into volumes.
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Specifically, let y(t) = encoder(X(t)), where t = 1 . . . T shows the dependence
on the slice. Let yl(t) be the l-th component of the latent vector at slice t. We
assume that corresponding latent variables across different slices are statistically
related and we approximate this relation with a Gaussian model

p(yl) = N (yl|µl,Σl), yl = [yl(1), . . . , yl(t), . . . , yl(T )]

where µl and Σl are the sample mean and covariance matrices at the lth compo-
nent in the latent space. These sample statistics are computed using the latent
representations of the training samples. We encode all a set of training volumes,
slice-by-slice, and use the latent codes for estimating the sample statistics.

To sample a new yl, we can use the expression yl = Wlzl + µl, and sample

zl according to p(zl) = N (zl|0, I) , where Wl = Σ
1/2
l . To compute Wl we use

the singular value decomposition of Yl, the matrix containing yl for different
training samples as columns. If Yl = UlSlV

∗

l , then Wl = UlSl
1/2/

√
N , where

N denotes the number of training samples. For each dimension l in the latent
space, we build independent Gaussian models based on sample statistics.

Denoting all the latent variables for a volume together by the vector y, we

have p(y) = N (y|µy,Σy), where y =
[

yT
1
,yT

2
, . . . ,yT

L

]T
, the volume latent

mean is µy =
[

µ
T
1
, . . . ,µT

L

]T
, and the volume latent covariance is the block

diagonal matrix Σy =







Σ1 . . . 0
...

. . .
...

0 . . . ΣL






.

Then decoding each slice of the volume V individually gives p(V|y) =
∏

t p(Vt|yt), where yt = [y1(t), . . . , yL(t)]. Together with p(y) from above, the
probabilistic model for the entire volume in the proposed approach can be given
as p(V) =

∫

p(V|y)p(y)dy.
Modelling only slice interactions and assuming independence between latent

variables is a simplification that allowed us to have very simple sampling proce-
dure and an explicit form for p(V), as described above.

2.2 Evaluating quality of the generated samples with RAS

In addition to the method described above, we propose to use a well-established
atlas-based segmentation strategy to evaluate the generated samples by using
them as atlases in a segmentation procedure. This approach is conceptually
similar to the Reverse Classification Accuracy (RCA) method [19] that predicts
the test-time accuracy of segmentation models. Our procedure is:

1. Segment the generated samples using a CNN-based segmentation network,
which is trained using real images

2. Register the generated samples to real images and map the predicted seg-
mentation with the same transformation.

3. Evaluate the agreement between segmentations of the generated samples
predicted by the CNN, after mapping, and real images.
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4. The agreement score between the segmentations serves as the quality metric.

We evaluate the agreement using the DSC and use affine registration. Other
choices for agreement metrics and registration algorithms are also possible.

The procedure for computing RAS evaluates the generated samples in three
different ways. First, the generated samples has to yield realistic segmentations
when fed into the CNN-based segmentation network. To achieve this, they need
to be void of any domain-shifts. Second, the generated samples should be “reg-
isterable” to real images, showing similar intensity profiles across the image.
Lastly, the generated samples has to capture correct anatomical details for a
high agreement between the segmentations of the generated samples, after map-
ping, and real images.

We propose the RAS metric to complement other evaluation scores, such as
MMD and MS-SSIM used in [10]. Previously used scores are aiming to evaluate
the diversity of the generated samples more than how realistic they are. RAS
aims directly at evaluating realism with a specialized strategy for medical images.

3 Experimental Setup

3.1 Compared models

1283 3D αWGAN

1283 3D VAE

1283 Ours

2563 3D αWGAN

2563 Ours

Real

Fig. 2. Example generated volumes. Our slice-based model is able to generate realistic,
if somewhat blurry, volumes at 2563, unlike the volumetric 3D αWGAN model.

We compare the generations produced by our model against a 3D VAE and
other 3D generative network approaches from Kwon et al. [10] at 643, 1283, and
2563 sizes. In models originally for 643 inputs, we increase the number of layers
to reach the desired output size.
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We use the following shorthand for describing architectures: convolutional
layer with N filters - conv N, batch norm - BN, leaky ReLU - LR, max pooling -
MP, reversible layer [5] with 3 conv 16 - RL, fully connected layer with N units
- FC N, residual block with conv-ReLu-BatchNorm subblocks, halving size and
doubling filters - ResDown. Compared models are:

3D WGAN GP [6]

3D VAE-GAN [11]

3D α GAN [15]. For the model at 2563, we replace BatchNorm3D with In-
stanceNorm3D layers, and remove BatchNorm1D layers.

3D α WGAN model proposed by Kwon et al. [10], with 1000 latent dimensions

3D VAE our own implementation. Encoder and decoder are symmetric. Both
mean and standard deviation have a fully connected layer.

643 encoder Conv 16 - BN - LR - MP - 3×(RL - MP) - RL - FC 512

1283 encoder Conv 16 - BN - LR - MP - 4×(RL - MP) - FC 1024

Our proposed model We use a VAE with a 0.2 weight on the KL term, which
produces better quality samples. Encoder and decoder are symmetric.

643 encoder Conv 16 - BN - LR - 3×(ResDown - LR) - ResDown

1283 encoder Conv 8 - BN - LR - 4×(ResDown - LR) - ResDown

2563 encoder Conv 4 - BN - LR - 5×(ResDown - LR) - ResDown

We used N = 400 samples to estimate the sample means and covariances.

3.2 Human Connectome Project Dataset

We use T1w MR volumes from the Human Connectome Project (HCP) [20]
dataset. To preprocess each brain, we perform bias correction using the N4 al-
gorithm [18] and normalize the intensities per volume using the 1st and 99th

percentiles (clipping the values at the lower and upper bounds). Skull stripping
is performed by FreeSurfer [4]. We discard zero-filled planes to obtain a volume
of size 256 × 256 × 256 at 0.7mm×0.7mm ×0.7mm resolution, and bilinearly
resample to the needed size. We use coronal slices for training our method. 960
volumes are used for training and 40 for validation.

3.3 Training details

We used the implementation from [10] for the baseline models evaluated in their
paper. For our proposed model, we used the Adam optimizer and performed
a sweep of learning rates in 0.001, 0.0001, 0.00001. We do not perform any
augmentation during training. To compute the RAS, we use a U-Net [14] based
segmentation network that was trained on 40 volumes of coronal brain slices
using 15 labels. We used the Adam optimizer with default beta1, beta2, learning
rate 0.001, and batch size 16, with a Dice training loss [13].
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1283 3D αWGAN 1283 Ours 1283 3D VAE

2563 3D αWGAN 2563 Ours 2563 Real

Fig. 3. Segmentations of example generated volumes. At 2563 size, our model produces
samples with more realistic segmentations than 3D αWGAN.

4 Experimental Results

4.1 Example generations

Figure 2 shows example generated volumes. Our method is able to successfully
sample consistent brain volumes. Both our and the 3D VAE generated samples
are somewhat blurry, which is a well-known shortcoming of VAE-based models.
We also see that our model can generate diverse brain shapes. The 3D αWGAN
produces the visually highest quality samples at 1283, but fails to produce real-
istic samples at 2563, and suffers from blocky artefacts.

HCP 643 HCP 1283 HCP 2563

MMD MS-SSIM MMD MS-SSIM MMD MS-SSIM

3D WGAN GP 14383 0.9995
3D VAE GAN 2054 0.9292
3D α-GAN 7116 0.9848
3D α-WGAN 4488 0.8994 64446 0.9736 912627 0.7106
3D VAE 6823 0.9927 51476 0.9335
Ours 2396 0.9304 19890 0.9120 323233 0.8768
Real 0.8786 0.7966 0.7019

Table 1. MMD and MS-SSIM for compared models. Our model produces samples close
to the data distribution according to (low values of) MMD, and also generates diverse
samples as measured by low MS-SSIM.

4.2 Image diversity metrics

We follow [10] and report the Multiscale Structural Similarity (MS-SSIM) to
measure the diversity of generated samples; and a minibatch estimate of Maxi-
mumMean Discrepancy (MMD) to measure distance to the training distribution.
We use the same settings as Kwon et al. [10]. Due to computational cost, the
MMD for 2563 was computed over 10 tests using batch size 4, instead of over
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100 tests with batch size 8; and the 2563 MS-SSIM for real data is averaged over
5 tests, instead of over 20 tests. Table 1 shows the MMD and MS-SSIM of the
compared models.

We compare all baseline models from [10] at 643, and only the best-performing
model from that set, the 3D αWGAN, at larger sizes. Our 3D VAE at 2563 did
not converge.

Our proposed method generates samples closest to the data distribution in
the MMD sense at 1283 and 2563 sizes, and is second to 3D VAEGAN at 643.
Our model also has a low MS-SSIM at 643 and 1283, meaning the samples are
diverse. The MS-SSIM of the 3D αWGAN at 2563 is lower than ours because
the MS-SSIM computes the pairwise similarity of generated samples only, and
the 2563 3D αWGAN generates very diverse but low-quality samples.

While MMD and MS-SSIM evaluate the samples in the distribution sense,
they are not interpretable in terms of anatomical plausibility of the generated
images. Thus the proposed RAS metric complements MMD and MS-SSIM.

Fig. 4. Realistic Atlas Score at different image sizes. Our model is competitive with
other volumetric generation approaches at 643 and 1283 sizes, and produces more
realistic volumes than the 3D αWGAN at 2563.

4.3 RAS evaluation

Figure 4 shows RAS values. We also computed the RAS between different sets of
real volumes to produce an upper bound. Both our model and 3D αWGAN have
similar performance at 1283 size, while our model’s samples are more realistic
at 2563 size. Figure 3 shows example segmentations from the compared models.

RAS values are affected by the quality of the inter-subject registration. For
structures with high intersubject variability, the registration quality can be low
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for some pairs of real data, decreasing the average RAS. The synthetic examples
often fail to create complex patterns in such structures, producing blurred areas,
effectively simplifying the registration task and preventing RAS from dropping
very low. Notably this is a drawback of RAS and the reason why it should
be considered as a complementary score to MMD and MSSIM. However, we
note although RAS is insensitive to the diversity of generations, it effectively
quantifies the realistic nature of generations in an interpretable manner.

5 Discussion

Taken together, the MMD, MS-SSIM and RAS evaluation show that the pro-
posed model for approximating distributions of 3D volumes via 2D VAEs can
produce realistic samples on par with or better than the state of the art GAN
approaches, extending the capabilites of current VAE models. Our simple yet
efficient approach opens up new avenues for building Bayesian models using 3D
priors distributions, and provides a possible approach for modeling distributions
at 2563 image size.
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