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Abstract
The need for a more formal handling of biological information processing with stochastic and

mobile process algebras is addressed. Biology can benefit this approach, yielding a better

understanding of behavioural properties of cells, and computer science can benefit this

approach, obtaining new computational models inspired by nature.

INTRODUCTION
The convergence between life sciences

and computer science is becoming rapidly

more and more evident. A triggering

event for the speed-up of the

convergence between life sciences and

computer sciences as well as the new

development in bioinformatics is the

paradigm shift in biological investigation.

The classical reductionist approach is not

enough to define a model of a whole

system starting from the knowledge of its

minimal components owing to the large

amount of information that can be made

available by high-throughput tools. For

instance it is not possible to infer the

behaviour of a cell even if all of its genes

are known.

In recent times, Leroy Hood and others

introduced the concept of systems biology

which they defined as the building of

models of biological systems and then

tuning/validating them via experiments

that provide feedback. Hence

reductionism is replaced by hypothesis-

driven investigation. Systems biology

agrees with the vision proposed by Robin

Milner in his Turing Award lecture of

computer science as an experimental

science.1 Computer systems are first

modelled (generation of hypotheses), then

implemented and tested (experiments) to

refine/validate the model (feedback loop).

Matching the two definitions and

abstracting from experiments (wet biology

on one side and in silico simulation on the

other), we could state that systems biology

is computer science in the applicative domain of

life sciences.

Systems biology is well integrated with

the new frontiers of biological research

that are looking for functions (behaviour)

of biological components and systems

(functional genomics, functional

proteomics, etc, are examples of

buzzwords). Since any gene and any

protein can be viewed as a functional unit

that operates concurrently with hundreds

of thousands of other functional units,

possibly interacting with them by

exchanging (chemical) messages,

biological systems should be considered as

information devices with their own

computational models.

The shift from structure to function in

biology imposes a similar shift in the

bioinformatics realm. Although the term

bioinformatics introduced by Hwa Lim in

the 1980s was intended for the study of the

information content and information flow in

biological processes and systems, the research

has mainly concentrated on the content

(ie the structure) rather than on the flow

(ie the behaviour). Therefore, if in the

past the computer science field mainly

addressed algorithms and static databases

under the word bioinformatics, the

behaviour challenge is now calling for

(concurrent and distributed)

programming and simulation. This view is

also supported by Peter Sorger (director

of MIT’s Computational and Systems

Biology Initiative), who states that ‘string-

based foundation of sequence-centric
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bioinformatics will not hold up as more

biologists begin studying pathways and

networks and open access to models will

be much more critical than open access to

databases’.

Systems biology is explicitly addressing

the information flow that governs the

whole behaviour of systems and assumes

that thousands of simultaneous threads of

computations are active in a system (eg

metabolic networks, gene regulatory

networks, signalling pathways). The effect

of an interaction between the

components of a system can change the

future behaviour of the whole system.

Some interactions can occur only if the

interacting components are correctly

located one to each other (eg they are

close enough or they are not divided by

membranes).

Finally, systems biology seems to be the

roadmap to study how the pieces that

biologists studied for decades fit together

to obtain the so-called big picture of life.

The challenge is here the capability of

transcending molecular biology and

understanding organisms as complex

interacting systems. The enabling

technology should be able to handle

integration of large data sets, and infer

from them dynamical models on which it

is possible to carry out analysis and

simulation to provide feedback to

biologists and drive their real experiments.

Summing up, it is becoming widely

accepted that computational models are at

the core of systems biology research and

that, quoting Leroy Hood, ‘the big

challenge in building such models is

integrating information from the different

levels of a system, such as DNA sequence

data with mRNA data, protein sequence

and structure, pathways, and networks.’

This paper moves a step ahead and

proposes concurrency theory and process

algebras (the field of computer science

developed to program and study mobile

and distributed systems) as the key

ingredient to face the challenge.

The paper is organised as follows. In

the next section the state of the art in

modelling biological systems is briefly

surveyed. The main features of process

algebras are then described, ie formalisms

that are normally used to model

distributed systems and have recently been

adopted and extended to model biological

systems. The added value that process

algebras may provide to modelling

biological entities is then commented on.

MODELLING BIOSYSTEMS:
THE STATE OF THE ART
Various computational approaches are

actively developed and used to model and

study molecular networks. They can be

roughly divided into several groups.

The main approaches are the following.

• Biochemical kinetic models that

describe different molecular systems

from a pure biochemical perspective

(examples are the models proposed by

Sauro,2 McAdams and coworkers3–5

and Voit6). These use either

continuous, mass-action differential

equations or corresponding discrete,

stochastic models to simulate and

analyse molecular pathways. While

these models are capable of handling

(predominantly quantitative) aspects of

molecular systems, their intricacies and

sensitivity to numerical parameters

often restrict their applicability to

highly specified small systems and

deter molecular biologists.

• Generalised models of regulation

that describe and simulate gene

regulatory circuits, using binary

Boolean networks, introduced by

Kauffmann7 (examples are the models

used in the works by Sanchez,

Thieffry, Mendoza and coworkers,8–11

and Akutsu et al.12,13). These

approaches allow an abstract study of

general properties of large networks

but suffer from limited predictive

power and from being bound to the

investigation of regulatory circuits.

• Functional object-oriented

databases that store information on

molecular pathways (eg EcoCyc,14

Biochemical kinetic
models

Generalised models of
regulation

Functional object-
oriented databases
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MPW,15 KEGG,16 CSNDB,17

aMAZE,18 GeNet,19 TRANSFAC,20

INTERACT,21 DIP,22 BIND,23

SPAD24 and FlyNets25). These use

sophisticated object-oriented schemas

that provide a biologically appealing

hierarchical view of molecular entities.

Most are equipped with graph-based

visualisation tools and querying tools

of variable levels of sophistication,

from simple queries to pathway

reconstruction tools. Functional

databases provide an excellent solution

for organising, manipulating and

(sometimes) visualising pathway data.

However, they provide little, if any,

dynamic capabilities (eg simulation)

and their analytical querying tools are

thus seriously limited.

• Exchange languages have recently

been developed to promote the

integration of models and tools from

various sources (examples are the

languages proposed by Kazic26 and

Finney et al.27). Most, but not all, are

XML-based mark-up languages (eg

CellML and SBML). While these

languages could prove highly useful

for the integration of various tools for

pathway informatics, they currently

often lack in expressivity (which varies

from basic chemical reactions to more

complex hierarchical models). They

are not easily readable (and not

intended for direct use by biologists)

and do not incorporate specific tools

for analysis or simulation.

• Approaches based on formal

methods have gained increasing

importance during the past few years.

Notable examples use existing

formalisms from concurrent

computation, often with a strong

graphical component. The most

comprehensive works used Petri nets

(examples are the works by Goss,

Matsuno, Kuffner, Hofestadt and

coworkers28–32) for representation,

simulation and analysis of metabolic

pathways. In another work a ‘Pathway

Logic’ was developed based on the

Maude platform, and used for

rudimentary qualitative analysis.33

Recent studies used Statecharts to

build qualitative graphical models for

various signalling pathways.34–36

Unlike the typical simplistic graph-

based representation used for pathway

visualisation, Statecharts provide a rich

and expressive language with clear

semantics. The recent control theory

literature contains several relevant

works on, for example, the general

problem of constructing an automaton

from a differential equation models,37

and hybrid systems models for

biochemical reactions.38 These recent

attempts highlight the promise in

using formal methods for pathway

informatics. However, the specific

models and tools described above are

limited in their ability either to handle

quantitative data for building and

analysing the model (eg Statecharts) or

to represent complex systems as

composition of the specifications of a

set of simpler subsystems (eg Petri

nets).

• Integrated frameworks with GUI.

Several initiatives are underway to

promote more comprehensive

solutions. Some of these efforts, such

as the Systems Biology Workbench,39

are aimed at providing the

infrastructure to promote exchange

and integration of independent,

separate solutions rather than develop

the tools and models themselves.

Other projects use well-established

models to develop simulation

environments (eg E-Cell40) or

extensive databases (eg EcoCyc or

aMAZE) equipped with sophisticated

tools for visualisation and querying.

An issue here is hiding formal details

from biologists through meta-

modelling tools.

In conclusion, each of these approaches

captures some of the information

regarding pathways and their

Exchange languages

Integrated frameworks
with GUI

Approaches based on
formal methods
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components, and provides certain

capabilities for their analysis. However,

none provides both a comprehensive,

quantitative, dynamic and biologist-

friendly language and serious tools for

analysis and simulation. With the notable

exception of Statecharts (above), the

visualisation is limited to simple and

directed graphs and does not capture the

richness of biological information.

Importantly, some of the tools have

hardly been tested with real biological

data and have not been actively used to

derive new knowledge by biologists.

Furthermore, certain key questions,

mostly in static analysis and pathway

comparison, are hardly addressed or not

addressed at all by any of the existing

tools.

It is suggested that process algebras for

mobility (see next section) may

encompass most of the limitations

mentioned above. Process algebras

provide the basis to study in a more

systematic way hypotheses on properties

of complex systems of biochemical

reactions. Some research work by Bhalla

and Iyengar,41 for example, aims at

proving that a sort of ‘learned behaviour’

of biological systems is in fact stored

within the mechanisms regulating

intracellular biochemical reactions

constituting signalling pathways. For this

kind of study both qualitative and

quantitative features of the system under

study should be taken into account.42

THE PROCESS ALGEBRA
APPROACH
The abstract characteristics of biological

systems are the same as those of

distributed and mobile systems. Many

processes are active simultaneously over a

set of physical resources for which they

compete while cooperating to accomplish

a common goal. Acquisition of a resource

from a process or reception of a message

upon which choices have to be taken can

surely affect the future behaviour of the

whole system and even change the logical

interconnection structure among

processes. Trust barriers and

administrative domains work as

membranes that can be passed only by

those processes that possess the right keys

– hence the concept of localisation of

processes is an important one.

Mimicking the description of mobile

and distributed systems in a biological

domain, it can be stated that processes are

the biological components. Sharing of

channels establishes the interconnection

topology of the system and represents the

interaction potentials of components

together with their affinity. Scopes of

channels or explicit binders represent the

boundaries within which interactions

through such channels may occur. Since

channel names can be sent as data along

channels, the interconnection topology

varies dynamically, so modelling the

impact of an interaction on the future

behaviour of the whole system. The

above interpretation immediately

provides a dynamic description of the

temporal as well as causal evolution of the

system in hand: we only need to run the

program.

The features above can be handled by

mobile process algebras, the first of which

(�-calculus) was introduced by Milner,

Parrow and Walker in the 1980s to model

rigorously mobile systems.43 They are

made up of few operators to compose

elementary actions (say Æ) over

distributed channels (denoted hereafter by

their names, given in lower-case letters).

These operators are: sequentialisation

(Æ.P), parallel composition (P|Q), name

declaration (� x), and recursion (rec x.P).

The intuitive meaning of

sequentialisation is that the atomic action

Æ is the first that the process Æ.P can

execute. Atomic actions can be the

output of a name b over a channel a (a!b),

the reception of a datum on a channel a

that will replace the placeholder x in the

prefixed process (a?x), or an internal

action of the system (�). Reception a?x

binds the free occurrences of the variable

x within P. The � operator in (�x)P

declares x to be private to P. The parallel

composition P|Q allows the processes P

and Q to be executed independently of

Process algebras and
molecular networks

Mobile process algebras
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one another and they can communicate if

they share a communication channel. For

instance a!b.P|a?y.Q can perform a

communication by sending b over the

channel a from the left hand process to

the right hand one, yielding P|Q{b/y},

with {b/y} being the substitution of b for

the free occurrences of y in Q.

Eventually, recx.P stands for the possible

unfolding of process P as many times as

needed. Sometimes iteration is

represented through the bang operator (!P)

that is interpreted as many copies of P as

needed.

The formal semantics of process

algebras is usually given in terms of the

logics based Plotkin’s structural

operational semantics.44 The dynamic

behaviour of systems is then expressed in

terms of transition systems, ie oriented

and labelled graphs where the nodes are

the states of the system and the arcs

represent, via their labels, the actions that

make the system change from one state to

the other.

For instance the process (program)

P ¼ (�p)[(p!a.nil) | (p?x.x!b.nil)], where

nil represents deadlock, ie complete

inability to perform any action, generates

the transition graph reported in Figure 1.

The intuition is as follows. Since p is a

private name (as shown by the top-level

occurrence of (�p)), P cannot offer it to its

external environment, namely the

execution of both the output action p!a

and the input action p?x is forbidden. The

single possible move of P corresponds to

the internal communication of its parallel

subcomponents, which gives rise to the

synchronisation action � and transforms

the system in the new state

P9 ¼ (�p)(nil|(a!b.nil)). The top-level

output action a!b can now be executed,

leading P9 to the process (�p)(nil|nil ).
This latest process, being deadlocked,

cannot move further.

Process algebras have been extensively

used in the computer science community

for the specification and verification of

concurrent and mobile systems. Also, a

number of techniques have been studied

and developed to check the specified

systems against the mathematical

representation of desirable properties such

as for a system expressing a mobile phone

setting, ‘the phone call will eventually be

delivered through the base station’.

Although the field is quite young (and

computer science as a whole is a young

discipline indeed), the results obtained are

very promising. Recently, also enterprises

of various sizes are developing

commercial languages and environments

which are based on the formal ground of

process algebras.

An important property of mobile

process algebras is compositionality. The

meaning or the behaviour of a complex

system is expressed in terms of the

meaning of its components. This allows

one to concentrate on the basic operations

that a system can perform and to obtain

the whole behaviour through

composition of these basic building

blocks. Compositionality is surely the key

issue needed by systems biology to

become effective. Indeed the huge

amount of data available, and the

complexity of the interacting networks

analysed, make it impossible to define

formally the behaviour of biological

systems when they are considered as a

whole.

Notice that ordinary differential

equations (ODEs), although being the

most accepted models for representing

dynamical biological systems,45 cannot

deal with compositionality. In the ODE-

based approach, a biomolecular system is

abstracted in terms of quantifiable

properties of its components. The

Structural operational
semantics

Transition systems

Compositionality

(vp) ((p!a. nil ) | (p?x. x!b. nil ))

(vp) (nil | (a!b. nil ))

(vp) (nil | nil ))

a!b

τ

Figure 1: Transition
system associated with
(�p)[(p!a.nil) |
(p?x.x!b.nil)]
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formalism allows the representation of the

time-dependent concentration of

components as functions of the

concentrations of the other components.

In tuning the above functions one needs

to know both the kinetics of the modelled

reaction and a number of parameters (eg

production and degradation constants)

coming from in vivo or in vitro

measurements. Once the underlying

kinetics and parameters are clear, the

whole physical phenomenon is described

by a system of ODEs. As an example,

imagine that System 1 and System 2 in

Figure 2 are separately modelled by the

set of ODEs E1 and E2, respectively.

Then it is not necessarily true that the

system of ODEs obtained by joining

together the equations in E1 and E2

represents the kinetics of the system made

of both System 1 and System 2. For

instance, it might well be the case that

some biochemical components of System

2 are missing in System 1 and hence the

equations in E1 do not take care of them.

The compositionality of mobile process

algebras allows us to separately specify the

two systems and then obtain the whole

behaviour simply by putting them in

parallel (System1 | System2).

The abstraction provided by process

algebras was shown to be successful in

modelling several scenarios from life

sciences, including transcriptional circuits,

metabolic pathways and signal

transduction networks.46-49 Nonetheless

the calculi used to achieve those results

are (or enhance) formal models originally

designed to specify distributed interacting

systems. For this reason, they generally do

not possess either graphical/linguistic

support for the peculiarities of biological

interactions, or operators specifically

thought of for representing that sort of

cooperation. Think, for example, of

membranes, enclosing surfaces, shapes,

energy, bidirectional communication,

reversibility of reactions, and affinity.

Some promising efforts in this direction

have recently been made in the computer

science research community (see, for

instance, works by Regev, Danos, Priami

and coworkers50–53). Most of them

provide, besides the usual process algebra

interpretation of interaction as

communication, some means to model

‘borders’ of entities. Some of the above

formalisms also set the mathematical bases

for well-founded reasoning about

reversibility and available energy. In

particular, some recent works by Cardelli

on modelling membrane interactions are

good examples of the flexibility of the

approach.54 These works show that, even

if to date most of the successful

applications of process algebras to the

description of biological phenomena

focuses on the molecular level, the input/

output coordination model provided by

the process algebra approach is (at least

potentially) amenable to the description of

higher-level interactions.

Finally, biological models are driven by

a lot of quantitative information

concerning for instance energy, time,

affinity, distance, electrostatic charge,

number of components. Therefore on the

computer science side we must resort to

stochastic variants of mobile process

algebras (examples are works by

Priami55,56) thus having the formal tools

to include numbers in system

specifications. The basic idea is to replace

actions Æ with pairs (Æ, f ), where f is a

probabilistic distribution function driving

the selection of the action to fire among

all the ones enabled. The mechanism is a

race condition: all the activities enabled

attempt to proceed, but only the fastest

one succeeds. Relying on continuous

time distributions we ensure that two

ODE vs process algebras

Stochastic process
algebras

System 1

System 2

Figure 2: Example of
biological entities
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activities cannot end simultaneously, thus

ruling out any non-determinism from our

models.

We now have the computer science

counterpart of systems biology: models

are specified by using stochastic process

algebras, experiments are carried out in

silico (rather than wet biology) relying on

analysis, verification and simulation

techniques developed in the last decades

in the field of concurrency theory and

refined for the new applicative domain.

The neat result is that we can try

hundreds of experiments without using

reactants or animals – of course we must

tune the techniques adopted by

comparing the in silico results with real

wet experiments. Once the framework is

tuned we can use it in a predictive

fashion. In silico experiments can help

biologists selecting real experiment

strategies among a plethora of possible

ones. For instance it is possible to

investigate how a new drug can break a

signalling pathway leading to a disease by

leaving unaffected as many functionalities

of a complete signalling network as

possible (reduction of side effects of

drugs), or even how transduction

mechanisms leading to DNA damage are

activated.

ANALYSIS AND
SIMULATION
The added value of modelling biosystems

with process algebras for mobility is given

by the already available techniques for

analysis and simulation.

Useful tools have been defined during

the last years to extract causality, locality,

concurrency information from the

specification of systems (some examples

are reported in works by Degano,

Boreale, Castellani and coworkers57–59).

The notion of compartments (or location

where reactions occur) is essential in

biology. There are tools that handle this

localisation of actions and that were

developed to take care of the location of

mobile appliances or to take care of

administrative domains barrier for security

reasons. The very same problems, and also

the need to better understand the

behaviour of complex concurrent systems,

posed the challenge of defining and

automatically computing a relation of

causality between events. This notion

could help also in systems biology as it

introduces a notion of distributed flow of

time. Any set of reactions has its own

clock that must be synchronised with the

clock of another set only when there is a

flow of information between the two.

The set of clock synchronisations provides

an implicit notion of causality between

different flows of information.

Furthermore, causality can be used to

track the activation factors of diseases.

Methods and tools that compare the

behaviour of different systems by

abstracting from their precise structure

and based on the notion of bisimulation

have been developed.60–62 Indeed it turns

out that systems with different structure

may share the same behaviour with

respect to some observational property. It

could be the same for biological systems

and this sharing could be investigated

with a fine tuning of the same

bisimulation checker used in the process

algebra field. Furthermore, behavioural

equivalences can be used to inspect

whether a complex specification in a

process algebra exposes a desirable high-

level biological behaviour. The idea is to

specify the high-level behaviour using the

same process algebra and abstracting from

implementation details. If the two

specifications are equivalent with respect

to the observable property, we can state

that the complex specification actually

encodes the high-level biological

behaviour.

All the tools and methods described

above can be used both qualitatively and

quantitatively. The quantitative measures

can be available only for some pieces of

the models and for the others they can be

left unspecified so that the tools can do

inferences (always notifying the user) or

can ask the user for values. This facility

can be used for parameter checking or for

parameter discovery. One can run many

analyses simply changing some parameters

Computer science and
systems biology

Equivalences

Concurrency, causality,
locality
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to see how the outcome changes, and

then infer which could be a suitable

experiment to discover the actual value of

the parameters.

The integration of quantitative

measures in analysis and verification tools

is also useful to check consistency of

quantitative data available in the literature.

Different sets of data may not be

compatible with each other or may not be

consistent with the qualitative description

of the phenomenon. An immediate

application of literature mining will help

this validation of experimental data.

Equipping mathematical description

languages with quantitative parameters

permits the implementation of stochastic

(or deterministic) simulators of the

behaviour of the systems. Therefore the

user can study the variation of

concentration of substances as time passes.

Again this feature is strongly integrated

with the analysis tools so that the user can

also compare the outputs of different tools

on the same phenomenon. The first

relevant example of this approach is the

BioSpi system.63 The majority of tools

developed for the analysis of process

algebra specifications are implemented in

C, C++ or some functional language (see

the website64 for details). Differently from

them, the current implementation of

BioSpi is based on Flat Concurrent Prolog

which is usually considered to be

computationally less efficient than the

aforementioned languages. The BioSpi

prototype, however, has been shown to

run huge systems (order of hundreds of

parallel processes) relatively fast (order of

seconds). Furthermore, the main positive

aspect of the tool is the evidence of the

feasibility of the approach, and this is a

mandatory step towards efficiency.

CONCLUSIONS
The main added value for systems biology

in joining the process algebra approach is

given by the abstraction mechanisms that

computer scientists have been developing

for concurrent systems over the last 30

years,65 so that a considerable speed-up in

life science research could be possible

especially on the fields of predictive,

preventive and personalised medicine,

drug design and gene therapy,

toxicological research and environmental

research. Besides abstraction, the main

feature to be exploited in systems biology

is compositionality. It allows us to fix the

building blocks of systems and to enlarge

models by composition without changing

the description of the subsystems already

available as it would be the case for ODE,

Petri nets or Statecharts. There is a

general understanding in the scientific

community that computer science will be

as indispensable for biology as

mathematics has been for physics.

On the other hand it should be made

clear that computer science cannot be

only a service for biology otherwise the

model cannot work, owing to the

different expectations of the two research

communities. The best way to proceed is

to create a new interdisciplinary

community in which all the components

have the same weight. A new definition

of bioinformatics by NCBI and available

at the website66 catches exactly this point:

bioinformatics is the science in which biology

and computer science join together to ease new

biological discovery and to define new

computational paradigms inspired by living

systems.

The added value for computer science

in joining systems biology is well

expressed in the last part of the definition

above. It is hoped that the identification

of abstraction mechanisms to model living

systems may provide us with new

computational and information processing

paradigms that could successfully be

applied in programming the net at various

level of coordination: from grid

computing to global computing. Another

obvious application of reusing biological

information in the computer science

domain concerns security: once there is a

complete model of the immune systems

the same conditions can be recreated in

artificial systems such as the net (also this

strategy begins to be investigated, see, for

example, recent research by Chao and

Forrest67).

Linguistic features of
modelling languages

Computer science
added value

Systems biology added
value
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A first step towards the definition of

new computational models is the

understanding of the living systems that

can be accomplished if we provide

biologists with integrated environments in

which they can model and simulate

systems. This poses two technological

challenges. First, we should provide them

with environments that hide from the

user as many technical details as possible.

Second, we should be able to fully

integrate the new tools with the ones that

are already in use, such as databases and

data/literature mining frameworks.
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