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Modelling the Earth’s core magnetic eld under ow constraints

V. Lesur1, I. Wardinski1, S. Asari1, B. Minchev2∗, and M. Mandea1†

1Helmholtz Centre Potsdam, GFZ German Research centre for Geosciences, Telegrafenberg, 14473, Germany
2Departement of Mathematics, Potsdam University, Potsdam, Germany

(Received July 22, 2009; Revised December 16, 2009; Accepted February 23, 2010; Online published August 6, 2010)

Two recent magnetic eld models, GRIMM and xCHAOS, describe core eld accelerations with similar
behavior up to Spherical Harmonic (SH) degree 5, but which differ signi cantly for higher degrees. These
discrepancies, due to different approaches in smoothing rapid time variations of the core eld, have strong
implications for the interpretation of the secular variation. Furthermore, the amount of smoothing applied to the
highest SH degrees is essentially the modeler’s choice. We therefore investigate new ways of regularizing core
magnetic eld models. Here we propose to constrain eld models to be consistent with the frozen ux induction
equation by co-estimating a core magnetic eld model and a ow model at the top of the outer core. The ow
model is required to have smooth spatial and temporal behavior. The implementation of such constraints and their
effects on a magnetic eld model built from one year of CHAMP satellite and observatory data, are presented.
In particular, it is shown that the chosen constraints are ef cient and can be used to build reliable core magnetic

eld secular variation and acceleration model components.
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1. Introduction
Following the launch of the magnetic survey satellites

Oersted in 1999, and CHAMP in 2000, a global set of high

quality magnetic vector data is now available. Currently,

this set spans nearly ten years and has led to time varying

models of the core magnetic eld of unprecedented accu-

racy. One of the major achievements is the modeling of

the magnetic eld Secular Acceleration (SA) i.e. the time

evolution of the magnetic eld Secular Variation (SV). In-

deed, it is crucial to model as accurately as possible the sec-

ular acceleration because it has a profound effect on the SV

which in turn affects estimates of the liquid outer core ow,

just below the Core-Mantle Boundary (CMB). Properly de-

scribing the ow at the top of the liquid outer core is essen-

tial as it is one key piece of information to understand the

dynamics of the core, with implications for other physical

process such as long timescale changes in the length of the

day.

The secular acceleration is modeled in the available core

magnetic eld models with time variations described by cu-

bic (or higher order) B-splines. For example this is the

case for the CM4 (Sabaka et al., 2004), GUFM (Jackson

et al., 2000) or CALS7K (Korte and Constable, 2004) mod-

els. However, these models, that are needed to describe rel-

atively long term variations of the Earth’s core magnetic
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eld, have been built with relatively few data per year, and

therefore have been strongly smoothed in time.

Extracting the acceleration information from geomag-

netic observatory and satellite data is a challenging task.

Only recently has it become clear that this is possible for

magnetic eld models spanning only a few years. First at-

tempts have been made by Lesur et al. (2005), Maus et al.

(2005), and Olsen et al. (2005), but their SA models do not

agree. The CHAOS model (Olsen et al., 2006) presents a

more realistic SA but the use of cubic B-splines to param-

eterize in time the core magnetic eld precludes its con-

tinuous mapping. This problem has been addressed in the

GRIMM model (Lesur et al., 2008) where order ve B-

splines have been used, leading to the rst continuous time

dependent model of the SA that is believed to be reason-

ably accurate up to Spherical Harmonic (SH) degree 5 or 6.

A recent extension of the CHAOS model, named xCHAOS

(Olsen and Mandea, 2008, version 03c-08, personal com-

munication), although built using completely different data

selection techniques, has SA agreeing with the very long

spatial wavelengths of that computed from GRIMM. Typ-

ically, the two models present strong similarities in SA up

to SH degrees 4 or 5. For higher SH degrees however, the

two SA models are radically different (see Fig. 1). The data

set and the applied processing do not resolve the accelera-

tion signal well and there is not even agreement as to what

the shape of the SA power spectrum should be. Usually,

during the modeling process, the SA is controlled through

a rather simple regularization imposing smooth behavior in

space and time. Indeed, it is rather dif cult to estimate what

smoothness or magnitude the SA should have. Therefore, it

is necessary to seek for alternative ways of regularizing the

magnetic eld models in order to improve our understand-
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Fig. 1. Comparison of power spectra between the GRIMM and xCHAOS
static core field (CF), secular variation (SV) and acceleration (SA). The
spectra are all calculated at the Earth’s reference radius and for the year
2005.4.

ing of the SA at SH degrees higher than 5.

In this manuscript we present our approach to model both

the core magnetic field and the flow on the core surface

simultaneously. More specifically, a core magnetic field

model, built to fit a magnetic data set, is co-estimated to-

gether with a flow model using the radial diffusionless in-

duction equation (hereafter the FF-equation). Constraints

are applied exclusively on the flow model in order to ob-

tain the best possible core field model. At a glance, it is not

obvious why smoothing the flow is preferable to smooth-

ing the field. Both regularization techniques are, however,

likely to single out a possible mechanism (i.e. diffusion or

advection) for the SV generation in the core. Here, by

using the FF-equation we favor an advective process, and

show that smoothing in time the field is likely to favor dif-

fusion. Indeed, it is well-known that some diffusion must

exist, and therefore an advective process, even if dominant,

cannot be the exclusive source of the SV. To avoid this pit-

fall, we impose the diffusionless hypothesis (hereafter the

FF-hypothesis) in a weak form, such that the data set can

always be properly fitted.

The idea of imposing the FF-hypothesis on a core field

model has already been used for example by Bloxham and

Gubbins (1986) and Jackson et al. (2007). These authors

require the magnetic flux to be constant in time over areas

on the CMB defined by null flux curves at different epochs.

Our approach is different because we co-estimate the flow

and the field and therefore impose some constraints on the

flow. Furthermore, the FF-hypothesis is applied continu-

ously in time. Closer to our approach is that of Waddington

et al. (1995) where observatory data are fit by parameteriz-

ing the flow on the core surface. Their work is sometimes

seen as an early attempt of a data assimilation technique

where the physical model for the flow evolution is replaced

by an hypothesis of steady flow. Beggan and Whaler (2009)

also used a steady flow model, combined with Kalman fil-

tering, to forecast change of the magnetic core field. In our

case the flow is allowed to vary in time and the difference

with assimilation techniques is that evolution equations for

the flow are not introduced. On the other hand, the new as-

similation techniques recently developed for the magnetic

field modeling are not yet based on real data but only on

models (Fournier et al., 2007; Liu et al., 2007). We also

note that the approach we follow in this study has been in-

dependently suggested, in their conclusion, by Whaler and

Holme (2007).

Here, our main goal is to investigate how well one can

control a core field model by applying constraints on the

co-estimated flow model. The methodology is tested on a

vector CHAMP satellite and observatory data set spanning

only one year. By using such a short time span, we make

sure that the constraints applied on the flow have an obvious

effect on the field model. On the other hand, the resulting

core field model cannot be of the same quality as models

recently derived from the full set of available satellite and

observatory data, such as GRIMM (Lesur et al., 2008) and

xCHAOS (Olsen and Mandea, 2008). In particular, as for

other models built from short time span data sets (see for ex-

ample Olsen, 2002), the acceleration cannot be accurately

modeled. We also impose some strong restrictions on the

flow by first truncating the flow model to a relatively low

SH degree, and second, choosing the same temporal repre-

sentation for the flow coefficients and for the Gauss coef-

ficients. As for the field models, the obtained flow model

cannot be of the same quality of recently published models,

nevertheless, it is of sufficient quality for the purpose of this

study.

The manuscript is organized as follow. The necessary as-

sumptions of the problem and the implementation details

are presented in the next section. In the third section the

application to the CHAMP satellite and observatory vector

data is presented. The fourth section is dedicated to eval-

uating the effect of the regularization on the field and flow

models. Finally, in the fifth section, the obtained magnetic

field, the fit to the data, and the flow models are discussed

and compared with the GRIMM magnetic field model.

2. Theoretical Background
Let us first consider a (column) vector d made of N vec-

tor magnetic field measurements di at (ti , θi , φi , ri ) where t ,

θ , φ and r are the time, co-latitude, longitude and radius re-

spectively and i = 1, 2, · · · , N . For simplicity, we assume

in this section that only the core field contributes to these

measurements. These measurements are made above the

Earth’s surface and are contaminated by some noise. The

Earth’s surface is away from the core magnetic field sources

and therefore the observations can be well approximated by

a field model B(t, θ, φ, r) that is the negative gradient of a

potential, itself solution of the Laplace’s equation:

B(t, θ, φ, r) = −∇V (t, θ, φ, r), (1)

∇2V (t, θ, φ, r) = 0. (2)

To derive a flow model at the core surface, we neglect

the effect of mantle conductivity on a temporal variation

of the core field, and therefore assume that the core field

model determined at the observation radius can be directly

downward continued to the CMB. Further it is assumed that

the contributions to the temporal variations of the core field
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∂t B are rst the advection of the magnetic eld line of force

by the liquid outer core ow and second the diffusion of the

eld. Following Roberts and Scott (1965) (see also Holme,

2007) we write:

∂t B = ∇ × (U × B) + η∇2 B (3)

where U is the ow in the liquid outer core. In this equa-

tion the parameter η = 1
σμ

is proportional to the inverse of

the core conductivity and is therefore very small. As a con-

sequence, for SV on decadal time scales and processes on

large spatial scales (>103 km) the second term on the right

hand side of Eq. (3) can be neglected. This approximation

is called the Frozen-Flux hypothesis (i.e. FF-hypothesis, see

Roberts and Scott, 1965 for the original justi cation of this

approximation). Under this approximation, and assuming

that the CMB is a spherical surface, the radial component

of Eq. (3) becomes the radial diffusionless induction equa-

tion (i.e. the FF-equation):

∂t Br = −∇h · (Uh Br ), (4)

where Uh is the vector ow tangential to the spherical sur-

face on the top of the core (the radial ow component nec-

essarily vanishes at the core surface), Br and ∂t Br are the

radial component of the core eld model and its SV at the

CMB and ∇h = ∇ − r̂∂r is the tangential gradient on the

sphere. The tangential components of the magnetic eld are

discontinuous across the CMB and therefore are not used

here to derive the core ow (Jault and Le Mouël, 1991).

2.1 The discrete problem
At the CMB, the magnetic eld model solution of

Eqs. (1) and (2) can be parameterized using SHs:

B(t, θ, φ, r)=−∇

{
c

L B∑

l=1

∑

m

(c

r

)(l+1)

gm
l (t) Y m

l (θ, φ)

}
(5)

gm
l (t) =

Nt∑

i=1

gm
li ψi (t) (6)

where c = 4385 km is the Earth’s core reference radius,

Y m
l (θ, φ) are the Schmidt semi-normalized SHs. We use the

convention that negative orders, m < 0, are associated with

sin(|m|φ) terms whereas null or positive orders, m ≥ 0,

are associated with cos(mφ) terms. The Nt basis functions

in time ψi (t) are polynomials of maximum degree Nt − 1.

The sum in the right hand side of Eq. (5) goes up to de-

gree L B and therefore the magnetic eld model is de ned

by (L B(L B + 2)Nt ) Gauss coef cients gm
li . These Gauss

coef cients can be estimated by solving the linear system:

d = A · g + ed (7)

where the elements of the N × (L B(L B + 2)Nt ) matrix A
are derived from Eqs. (5) and (6) and g =

[
gm

li

]
{l,m,i}

is the

vector of Gauss coef cients. The vector ed is introduced to

account for the noise in the data. We recall that N is the

number of data values. In the present study L B = 14 and

Nt = 5.

In order to re-write Eq. (4) as a set of linear equations,

the usual parameterization of the ow at the core surface is

used (see for example Whaler, 1986; Bloxham, 1988). The

ow at the core surface is described as the sum of poloidal

and toroidal ows, each of these ows being parameterized

using SHs:

Uh(t, θ, φ, r) = ∇h × (�rT ) + ∇h(r S) (8)

T =
L F∑

l=1

∑

m

tm
l (t) Y m

l (θ, φ)

S =
L F∑

l=1

∑

m

sm
l (t) Y m

l (θ, φ)

(9)

tm
l (t) =

Nt∑

i=1

tm
li ψi (t)

sm
l (t) =

Nt∑

i=1

sm
li ψi (t).

(10)

Here we note that the same basis functions are used to

expand the magnetic eld model and the ow model in time.

The radial component of the core magnetic eld model is

given by:

Br (t, θ, φ, r) =
∑

l,m

(l + 1)gm
l (t)

(c

r

)(l+2)

Y m
l (θ, φ). (11)

Inserting Eqs. (8) and (11) into Eq. (4), then multiply-

ing both sides by Y m
l (θ, φ) and nally integrating over the

sphere leads to:

∂t g
m
l (t) =

(2l + 1)

4πc(l + 1)

∑

l ′,m ′,l ′′,m ′′

(
l ′ + 1

)
gm ′

l ′ (t)

·

{
sm ′′

l ′′ (t)
l(l + 1) + l ′′(l ′′ + 1) − l ′(l ′ + 1)

2
G

l,m
l ′′l ′,m ′′m ′

+ tm ′′

l ′′ (t) S
l,m
l ′′l ′,m ′′m ′

}

(12)

where G
l,m
l ′′l ′,m ′′m ′ and S

l,m
l ′′l ′,m ′′m ′ are the Gaunt and Elsasser’s

integrals respectively.

G
l,m
l ′′l ′,m ′′m ′ =

∫

	

Y m ′′

l ′′ (θ, φ) Y m ′

l ′ (θ, φ) Y m
l (θ, φ) dω

S
l,m
l ′′l ′,m ′′m ′ =

∫

	

{
∂θ Y m ′′

l ′′ (θ, φ) ∂φY m ′

l ′ (θ, φ)

−∂φY m ′′

l ′′ (θ, φ) ∂θ Y m ′

l ′ (θ, φ)
} Y m

l (θ, φ)

sin θ
dω.

(13)

We de ne the matrix �̇�������(t) made of the ∂tψi (t) and padded

with zeros such that:

�̇�������(t) · g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂t g
0
1(t)
...

∂t g
L B

L B
(t)

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The number of elements of this vector is (L F + L B)(L F +
L B +2) where L B and L F are the upper-bounds of the sum-

mations in Eqs. (5) and (9). This number corresponds to the
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Gaunt and Elsasser’s integral exclusion rule (see for exam-

ple Moon, 1979), and the matrix formulation for Eq. (12)

becomes:

�̇�������(t) · g = Ag(t) · u + et where u =

[
tm
li

sm
li

]

{l,m,i}

. (15)

The elements of the time-dependent matrice Ag(t) are de-

rived from Eq. (12) and the truncation error et is introduced

because ∂t g
m
l (t) is known only up to SH degree L B lead-

ing to only L B(L B + 2) non-zero elements in the vector

�̇�������(t) · g. The dimension of vector u is 2L F (L F + 2)Nt .

This is also the number of columns of Ag(t). In this work

we set L B = L F = 14.

An alternative way of presenting Eqs. (12) and (15) is to

de ne the matrix Au(t) such that Ag(t) · u = Au(t) · g and

then Eqs. (12) and (15) become:

0 =
(
Au(t) − �̇�������(t)

)
· g + et . (16)

As for Ag(t), the Au(t) matrix elements are derived from

Eq. (12). The matrix Au(t) has only L B(L B +2)Nt columns

but the same number of rows as Ag(t). We have veri ed that

for non-vanishing ow the matrix (Au(t)−�̇�������(t)) is not sin-

gular, therefore if et = 0, the only solution of Eq. (16) is

the trivial solution g = 0. This is clearly in contradiction

with the solution of Eq. (7) and comes from the fact that

the parameterization (5), (6), (9) and (10), for the core eld

and for the ow respectively, are not compatible with the

FF-equation (4). This inconsistency has also been pointed

out by Bloxham (1988). Elements of the proof are given in

the appendix, and we simply note here that a small “repre-

sentation” error er should be considered for both Eqs. (15)

and (16). The relative importance of et and er is discussed

in Subsection 2.3.

2.2 Solving for the Gauss coef cients
To model the core magnetic eld alone from a data set,

the Gauss coef cients de ned in Eq. (5) have to be esti-

mated from the discrete linear system (7). This linear sys-

tem is usually over-determined and therefore solved by least

squares i.e. the vector g is estimated such that it minimizes

the functional �0 de ned by:

�0 = (d − A · g)T · Wd · (d − A · g) (17)

where the superscript T denotes the transpose and the matrix

Wd is a matrix of weights that is described in the next sub-

section (2.3).

In order to co-estimate the core eld and ow models, the

linear systems (7) and (15) are solved simultaneously. The

set of Gauss and ow coef cients solutions of Eqs. (7) and

(15) are obtained by least squares i.e. the Gauss and ow

coef cients
[
gm

li , sm
li , tm

li

]
{l,m,i}

are estimated such that they

minimize the functional � de ned by:

� = �0 + λ1�1

�1 =
∑

ti

wt
i

(
Ag(ti ) · u − �̇�������(ti ) · g

)T

·Wġ ·
(
Ag(ti ) · u − �̇�������(ti ) · g

)

(18)

where λ1 is a scalar parameter that has to be adjusted and

�0 is de ned in Eq. (17). If the elements of the diagonal

weight matrix Wġ are de ned by w
ġ
l = 4π(l+1)2

(2l+1)
, then the

functional �1 is the discrete equivalent of the integral:

∫

T

∫

	

∣∣Ḃr (ti ) + ∇h · (Uh Br )
∣∣2

dω dt. (19)

However, in this work, the elements of Wġ have a more

complex dependence on the SH degree. Their derivation is

described in the next sub-section 2.3. In Eq. (18), the sum-

mation in �1 is the integration over time. The sampling

points ti and the associated weights wt
i are those of Gaus-

sian integration rules and are such that the products of the

different time-dependent terms are integrated exactly over

the time span of the core eld model T .

Because Ag(ti ) in the functional �1 depends on the

Gauss coef cients gm
li and is multiplied by u, this optimiza-

tion problem is clearly non-linear. We therefore re-write

Eq. (18) explicitly as an iterative process. Consider uk and

gk , the k th estimates of the solution u and g respectively.

Let us call Auk(t) and Agk(t) their corresponding matrices.

We want to estimate δu and δg that minimize:

�̃ = �̃0 + λ1�̃1

�̃0 = (δd − A · δg)T · Wd · (δd − A · δg)

�̃1 =
∑

ti
wt

i (δ�̇�������(ti )+(Auk(ti )−�̇�������(ti ))·δg+Agk(ti )·δu)T

·Wġ · (δ�̇�������(ti )+(Auk(ti )−�̇�������(ti ))·δg + Agk(ti )·δu)

(20)

where δd = d − A · gk , δ�̇�������(t) = (Auk(t) − �̇�������(t)) · gk ,

uk+1 = uk + δu and gk+1 = gk + δg. This optimization

problem, that is now linear in δu and δg, can be solved

but the iterative process is unlikely to converge unless some

constraints are applied on the ow model. Indeed, it is well

known that the problem is ill-posed for the ow (Holme,

2007). For example, if L F ≥ L B , it is always possible to

de ne an average toroidal ow following the iso-contours

of the average radial component of the core eld model.

Such a ow does not generate any SV by advection. In

order to obtain the best possible magnetic eld model tting

the data and simultaneously reducing the null space for the

ow, two types of constraints are considered:

- First, the ow model can be forced to have a conver-

gent spectrum. The ow is then required to minimize

Bloxham’s “strong norm” (Bloxham, 1988; Jackson,

1997),

λ2B

∫

T

∫

	

|∇h (∇h · Uh)|
2 +

∣∣∇h(r̂ ×∇h · Uh)
∣∣2

dω dt.

(21)

Another option is to minimize a weaker norm (Gillet

et al., 2009),

λ2W

∫

T

∫

	

|∇h · Uh |
2 +

∣∣r̂ × ∇h · Uh

∣∣2
dω dt. (22)

The rst and second terms in the integral (22) mea-

sure the amount of up/downwelling and the radial vor-

ticity respectively. The damping parameters λ2B and

λ2W controls to what extent the ow follows these con-

straints.
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- Second the ow model is chosen such that it varies

smoothly in time, namely:

λ3

∫

T

∫

	

∣∣U̇h

∣∣2
dω dt (23)

where λ3 is the associated damping parameter and U̇h

denotes the ow time derivative. We expect such a

constraint to ef ciently regularize the inverse problem

as in the limit of a constant ow there is a unique ow

solution of the FF-equation (Voorhies and Backus,

1985). We also expect that minimizing Eq. (23) con-

strains ef ciently the secular acceleration.

2.3 Errors and weight matrices
In the inverse problem (17), that consists of estimating

a core eld model from a data set, the weight matrix W d

depends, at rst, on the estimated data accuracy and also

on the data density. The matrix is then updated during the

iterative least squares inversion process used to derive the

model. The data errors are assumed to be uncorrelated so

the weight matrix is diagonal.

When the eld and the ow are co-estimated, the func-

tional �1 and the diagonal weight matrix Wġ are introduced

(Eq. (18)). The Wġ matrix elements result from three differ-

ent contributions, namely: the surface integration weights

in Eq. (19), the representation errors er and the truncation

errors et (see Subsection 2.1 for these error de nitions).

At a given instant ti , the integral over the CMB of the

squared radial component of the SV is given by:

∫

	

∣∣Ḃr (ti )
∣∣2

dω =
∑

l,m

4π(l + 1)2

(2l + 1)

(
ġm

l (ti )
)2

, (24)

where the Gauss’ coef cients are de ned at the CMB (see

Eqs. (5) and (6)). Accordingly, integration weights for a

given SH degree l are:

(l + 1)2

(2l + 1)
. (25)

For SH degrees less than or equal to L B , we assume that

the representation error er dominates the truncation error

et . This latter error is simply ignored (but see the remark

at the end of the sub-section). We set the variance at SH

degree l of the representation errors proportional to:

Vl(er ) ∝
Ṙl

(l + 1)(2l + 1)
(26)

where Ṙl = (l + 1)
∑

m(ġm
l )2 is the estimated power spec-

trum of a SV model de ned at the CMB. This corresponds

to the idea that the representation errors at CMB are simply

proportional to the SV Gauss coef cients.

For SH degrees larger than L B , the SV model is unde-

ned giving rise to the truncation errors et . The represen-

tation error er is then ignored. At the observational radius

a = 6371.2 km, the power spectrum of the SV at SH de-

grees larger than L B is smaller than 0.5 (nT/y)2. We use this

upper-bound as an estimate of the truncation error variance

at SH degree l:

Vl(et ) ∝
0.5

(l + 1)(2l + 1)

(a

c

)2l+4

. (27)

This variance is clearly over-estimated which, in the inverse

problem de ned by Eq. (18), is nearly equivalent to neglect-

ing all equations above SH degrees L B in the linear systems

(15) and (16).

The elements of the diagonal weight matrix Wġ that cor-

respond to the Gauss coef cients of SH degree l ≤ L B , are

therefore given by:

w
ġ
l ∝

(l + 1)2

(2l + 1)

(l + 1)(2l + 1)

Ṙl

, (28)

for a SH degree l > L B the weights are given by:

w
ġ
l ∝

(l + 1)2

(2l + 1)

(l + 1)(2l + 1)

0.5

( c

a

)2l+4

. (29)

Usually, when a ow model is derived from a given core

eld model, two other types of errors are considered:

- Observational errors that account for the errors in the

Gauss coef cients estimated through the optimization

process de ned by Eq. (17).

- A second type of truncation error to account for the

fact that short wavelengths of the magnetic eld can

interact with the short wavelengths of the ow to gen-

erate long wavelength secular variation (Eymin and

Hulot, 2005).

In the present work, observational errors are not considered

because the eld and the ow are co-estimated. The second

type of truncation errors is also omitted but, in return, we

have to impose a rapidly converging spectrum onto the ow.

This is not ideal, but it is necessary at this stage, as the eld

model cannot be ef ciently constrained if the ow model

has too many degrees of freedom.

3. Application to CHAMP and Observatory Data
The methodology described in the previous section has

been implemented and applied to a vector data set provided

by the CHAMP satellite and 137 observatories. The data set

spans approximately one year from 2004.87 to 2005.94 and

has been selected using exactly the same selection criteria

as for the GRIMM eld model (Lesur et al., 2008). These

can be summarized as:

- Only vector data are used.

- The data are selected for quiet magnetic conditions.

- High-latitude three component vector data are selected

at all local times.

- Mid- and low-latitude data are selected along the X and

Y Solar Magnetic (SM) directions during night times.

With such a selection process the data set combines

35975 X and Y (SM) satellite data at mid and low latitudes,

65147 satellite vector data over polar regions, 38954 X and

Y (SM) observatory data at mid and low latitudes, and -

nally 13974 observatory vector data at high latitudes. Gaps

in the satellite data distribution are seen at high latitudes

due to the blinding of one of the CHAMP star cameras by

the sun, whereas at mid and low latitudes they are due to

the local time selection applied to minimize the contribu-

tion of the ionospheric eld in vector data. Observatory

data present no gaps over the time period.
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The magnetic eld contributions modeled are similar to

those in GRIMM. The core eld model (see Eqs. (5) and

(6)) is parameterized using SH up to degree 14 and an

order 4 polynomial in time (i.e. this is equivalent to order

5 B-splines in between two spline knots). A static internal

eld is modeled up to SH degree 20, which is enough to

avoid aliasing effects in the core eld model. The large

scale external eld is modeled only at SH degree 1, but

the modeling is robust only in the X and Y SM directions

due to the data selection at mid and low latitudes. As in

GRIMM, the time variations of this large scale external

eld are parameterized using a piecewise linear polynomial

in time with a node every three months. The rapid time

variations are parameterized using the VMD (time series

of the estimated disturbances due to large scale external

elds (Thomson and Lesur, 2007)). Crustal offsets are

co-estimated for observatory data in order to account for

the unknown contributions from the lithosphere. The high

latitude ionosphere eld or the toroidal eld generated by

Field Aligned Currents (FAC) are not considered in the

modeling. Again further details can be found in Lesur et al.

(2008).

The model parameters are estimated by tting the data

set, either in the least squares sense (i.e. using an L2 mea-

sure of the mis t to the data), or using a reweighted least

squares algorithm and an L1 measure of the mis t to the

data (Farquharson and Oldenburgh, 1998). With the data

set spanning only one year, the model parameterization de-

scribed above is much too complex to be derived without

regularization, but it is well suited to test how the con-

straints applied to the ow affect the eld model. Several

types of constraints are introduced:

- A model is built (hereafter the USN-model) using the

usual approach that consists of minimizing simultane-

ously the data mis t and a measure of the model rough-

ness in time at the CMB. Here we use:

λ1U

∫

T

∫

	

|∂t Br |
2 dω dt + λ2U

∫

T

∫

	

∣∣∂2
t Br

∣∣2
dω dt

(30)

where λ1U and λ2U have to be adjusted in order to build

a realistic model.

- Two further series of models are built using the ap-

proach described in the previous section. They differ

by the measure used to minimize the ow complexity

in space: either Eq. (21) (hereafter the BSN-model se-

ries) or Eq. (22) (hereafter the WSN-model series). In

both models, Eq. (23) is minimized to guarantee tem-

poral smoothness of the ow.

4. Effect of the Regularization on the Co-
estimated Field and Flow Models

In this section we compare and discuss the choice of reg-

ularization for the co-estimation of the core magnetic eld

and ow models. All results presented in this section are

for the BSN models and are obtained using an L2 measure

of the data mis t. This measure does not lead to the best

solutions but is suf cient to understand the response of the

model solutions to the constraints applied to the inversion

process. The results obtained using an L1 measure of the

mis t require much longer computation time, and are there-

fore derived only for a limited small set of damping param-

eters. Such results are presented in the next section.

As noted before, even if the data set consists only of mag-

netic vector components, the inverse problem for the BSN

models is non-linear due to the co-estimation of the core and

ow models. An initial guess is therefore required. This

initial guess is built from the USN-model and an associated

ow model derived through a standard ow inversion using

Eq. (15). The solution of the iterative process is accepted

when two successive models of the ow are not signi -

cantly different. Such a stable solution is obtained in less

than twenty iterations and the nal solution is close enough

to the starting models for no local-minima to be observed.

When started too far from the nal solution, we observe that

the iterative process simply diverges. In this work we expect

the core eld model to be a solution of the FF-equation, i.e.

the damping parameter λ1 in Eq. (20) is set to a relatively

large value λ1 = 10−3. To estimate quantitatively how well

the derived model respects the FF-hypothesis we de ne the

dimensionless ratio ̺ by:

̺ =
�1∑

ti

wt
i

(
�̇�������(ti ) · g

)T
· Wġ ·

(
�̇�������(ti ) · g

) (31)

where �1 is de ned in Eq. (18) and the denominator is just

the same quantity �1 derived for a null ow vector u. By

testing different models, we observed that for models pa-

rameterized with order 4 polynomials in time and spanning

only one year, any value of ̺ smaller than 10−9 correspond

to models in good agreement with the FF-hypothesis

We consider rst the effect of minimizing the complexity

of the ow at relatively high spherical harmonic degrees.

This is achieved by setting the λ2B value in Eq. (21), suc-

cessively to 10−3.5, 10−3, 10−2.5, 10−2.25, 10−2 and 10−1.5.

The value of λ3 in Eq. (23) is set to the ad hoc value 104.25.

The resulting power spectra of the SV at the CMB for year

2005.4 are plotted in Fig. 2 for all these λ2B values. As the

data set spans only one year, and because only the L2 norm

solution is calculated, the SV is resolved robustly only up

to the SH degree 9. However, it is clear that the variation of

λ2B affects all the higher SH degrees of the spectra. This is

in contrast with the static core eld that is not signi cantly

affected by the smoothing constraint. Therefore, as a conse-

quence of imposing the FF-approximation, constraining the

ow to get a convergent spectrum directly affects the SV

as long as the static part of the core eld model is robustly

estimated.

Figure 3 presents the evolution of the power spectrum of

the toroidal and poloidal ows as a function of the λ2B val-

ues. The chosen value has to be larger than or equal to 10−3

for the ow to present a clearly converging spectrum. The

value λ2B = 10−1.5 is too large and leads to a signi cant

increase in the mis t to the data. Discriminating between

the three remaining acceptable λ2B values is rather dif cult.

We choose here the value λ2B = 10−2.25. For this value,

the spectra of the toroidal and poloidal ows are conver-

gent and the model is compatible with the FF-hypothesis

(̺ = 0.4 10−15). The convergence of the spectrum is fast

enough for the possible contributions to the large scale SV
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Fig. 2. Left: Evolution of the SV-BSN spectrum at the core-mantle boundary depending on the damping parameter value: λ2B = 10d . Right: Trade-off
curve between a measure of the SV energy and a measure of the misfit to the data. The labels on the points give the corresponding values of the
damping parameter: λ2B = 10d .

Fig. 3. Evolution of the toroidal (left) and poloidal (right) flow power spectra depending on the damping parameter λ2B = 10d .

of the magnetic field advected by the small scale flow to be

very small. This value is also close to the knee of the trade-

off curve of SV energy versus data misfit (Fig. 2, right). On

a data set spanning several years, the SV can be more ro-

bustly defined and it is then expected that the regularization

affects only the SV for the first and last six months of the

model time span.

We now keep the damping parameter λ2B in Eq. (21)

at the value 10−2.25 and control the changes of the flow

in time by varying the parameter λ3 between 103.5 to 106.

We note that the time variations of the flow are of much

smaller amplitude than the flow itself. Therefore, adjusting

the damping parameter λ3 does not affect significantly the

flow nor the SV estimates, and the damping parameter λ2B

needs no further modifications. Figure 4 gives the power

spectra of the static part of the core magnetic field (CF), its

SV and its acceleration (SA), for year 2005.4. The spectra

are calculated at the Earth’s reference radius a = 6371.2 km

and for several values of the damping parameter λ3 = 10d .

The curves for the static core field and its SV are given for

d = 4.25 only, as the power spectra are nearly the same for

all the other damping parameter values. The acceleration

however changes significantly with λ3.

In order to understand the behavior of the SA, one has

to differentiate in time the radial diffusionless induction

Eq. (4). This leads to:

∂2
t Br = −∇h · (∂tUh Br ) − ∇h · (Uh ∂t Br ) . (32)

In the two terms on the Right Hand Side (RHS) of Eq. (32),

we observe that the first strongly dominates the second at

the Earth’s reference radius. Although the flow amplitude is

much larger than its variation in time, this does not balance

the difference in amplitude between the magnetic field and

its SV. In other words, it is the flow time variations that

control most of the magnetic field acceleration. The SV in

the second term on the RHS of Eq. (32) can be replaced by

its expression (4), leading to:

∂2
t Br = −∇h · (∂tUh Br )+∇h · (Uh (∇h · (Uh Br ))) . (33)

Obviously, this second term depends only on the field and

the flow. Therefore by defining the flow model and impos-

ing the FF-hypothesis, a “background” SA is defined by the

second term on the RHS of Eq. (33), that does not directly

depend on the flow temporal variations. A question arises

regarding how well this background SA is estimated by the
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Fig. 4. Left: Evolution of the power spectra of the static part of the core magnetic field (CF), its SV and its acceleration (SA) for different values of the
damping parameter: λ3 = 10d . The estimated power spectrum of the background acceleration (BSA) is shown by the solid line. The power spectra
are calculated for year 2005.4 at the Earth’s reference radius. Right: Trade-off curve between the SA energy and a measure of the misfit to the data.
The labels on the points give the corresponding values of the damping parameter: λ3 = 10d .

Fig. 5. Evolution of the toroidal (left) and poloidal (right) flow time variation power spectra as a function of the damping parameter λ3 = 10d for year
2005.4. In both plots, the top solid curve is the static flow spectrum.

truncated models of the field and the flow derived through

the inversion process. To discuss this, two possible effects

should be considered:

1) The unknown short wavelengths of the flow and SV

can interact to contribute to the large wavelength of the

SA. The spectrum of the modeled SV is not convergent

at the CMB and therefore this truncation error for the

background SA is likely to be significant. However, as

for the advection of the short wavelengths of the field

by the short wavelengths of the flow, we do not expect

this effect to be dominant at small SH degrees. Again,

this holds because our flow is essentially large scale

and has a convergent spectrum.

2) The flow resolved by the inversion process is only

part of the true flow because when advecting the field

lines, part of the flow does not contribute to the SV.

This hidden flow can nevertheless contribute to the

background SA. If we accept the common consensus

that the strength of this hidden flow is at most of the

same order of magnitude as the modeled flow (see for

example Rau et al. (2000) or Asari et al. (2009)), then

we can assume that the interaction of the SV with the

hidden flow is not larger than the interaction with the

modeled flow.

Overall, our estimated background SA may not be accurate,

but the order of magnitude is acceptable. The power spec-

trum of the estimated background SA is shown in Fig. 4.

It is unlikely that the flow temporal variations are orga-

nized such that their associated SA systematically cancels

the background SA. Furthermore, the rapidity of the SA

evolution, as estimated in core field models like GRIMM

and xCHAOS from the energy in their third time derivative,

suggests that the flow and its time variations have very dif-

ferent time scales. Therefore, the first and second terms

on the RHS of Eq. (32) are likely to be decoupled. We

therefore suggest that, in Fig. 4, the power spectrum as-

sociated with the background SA defines a lower limit of

the SA spectrum for a core field compatible with the FF-

hypothesis. This is important because it gives us a criterium

to test the compatibility of a model with the FF-hypothesis:

A core field model with a very steeply decreasing SA spec-

trum is unlikely to be compatible with the FF-hypothesis.
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Table 1. Mean (M) and root mean-squares (SD) misfit values for all data types and core field models, in nT. (SM) stands for Solar-Magnetic and H. lat
for High-Latitudes.

Data types Number of data USN BSN WSN GRIMM

M SD M SD M SD M SD

Sat. X (SM) 35975 −0.50 3.49 −0.51 3.50 −0.51 3.50 −0.68 3.60

Sat. Y (SM) 35975 −0.68 3.71 −0.69 3.71 −0.69 3.71 −0.75 3.75

Sat. X H. lat 65147 1.36 47.08 1.37 47.08 1.37 47.08 0.30 46.97

Sat. Y H. lat 65147 −2.68 51.48 −2.67 51.49 −2.67 51.49 −2.71 51.53

Sat. Z H. lat 65147 −0.95 20.54 −0.93 20.57 −0.94 20.56 −0.74 20.95

Obs. X (SM) 38954 −0.06 3.25 −0.06 3.25 −0.06 3.24 — —

Obs. Y (SM) 38954 −0.08 3.24 −0.10 3.23 −0.10 3.23 — —

Obs. X H. lat 13974 −3.72 27.78 −3.91 27.85 −3.89 27.84 — —

Obs. Y H. lat 13974 −0.15 13.53 0.17 13.57 0.17 13.56 — —

Obs. Z H. lat 13974 −0.59 20.88 0.63 20.94 0.62 20.94 — —

Fig. 6. Power spectra at a = 6371.2 km for the static core field (CF), SV and acceleration (SA) for the four models: GRIMM, BSN, USN, WSN.
Spectra are computed for year 2005.4.

By strongly damping the flow time variations one may try

to reach the limit where only the background SA is signifi-

cant. This limit was not reached at low SH degrees even for

our largest damping value λ3 = 106 (not shown). At higher

SH degrees (i.e. from degree 10 and above) the spectra do

not change significantly with the damping value and obvi-

ously the solutions get closer to this limit. This difference

in behavior depending on the SH degree is simply due to

the fact that the data set used does not resolve well the ac-

celeration at high SH degrees.

The plots in Fig. 5 show the evolution of the flow time

variation spectra as a function of the applied damping.

Again, because only one year of data are used, it is rela-

tively difficult to estimate what the best damping parameter

value is as the RMS misfit is little affected by a variation of

λ3. We choose here λ3 = 104.25 for the SA energy at small

SH degrees to be of the same order as those of the GRIMM

and xCHAOS models. This corresponds in Fig. 4 right, to a

value fairly close to the knee of the damping curve. For the

largest damping parameter values (λ3 > 105), the misfit to

data starts to increase significantly. This confirms that some

time variations of the flow are needed to fit the SV data.

5. Results and Discussions
In this section we present and compare the results ob-

tained using different regularization techniques. All these

results were obtained using a L1 measure of the misfit. The

number of iterations before reaching a stable solution is rel-

atively large for such models and data sets: 20 iterations

for the USN model and up to 60 iterations for the BSN or

WSN models (for the definition of these models refer to

Section 3).

The USN-model is derived using the regularization pa-

rameter λ1U = 10−4.5 and λ2U = 10−0.25 in Eq. (30). It

is relatively difficult to set these damping parameter values

by examining the trade-off between the fit to the data and

the roughness of the solution. We therefore simply set these

values such that the power spectra of the model solution,

secular variation and acceleration stay reasonably close to

those of the GRIMM model. The BSN and WSN models

are derived as described in Section 4 and the chosen damp-

ing parameter values are λ1 = 10−3, λ3 = 104.25 for both

models and λ2B = 10−2.25, λ2W = 10−0.5 for BSN and

WSN respectively (see Eqs. (21), (22), and (23)). The data

misfits for these three models are given in Table 1 together

with the number of data. For all three models, the fit to the

data is good at mid and low latitudes but degrades closer to

the poles. This is to be expected, because of the chosen data

selection criteria. For comparison Table 1 also gives the fit

to the same satellite data set for the GRIMM model with

its lithospheric component truncated at SH degree 20. Not

surprisingly, at mid and low latitudes the fit for the GRIMM
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Fig. 7. Maps of the vertical down component of SV at the core-mantle boundary from the BSN-model up to SH degree 14 (upper) and GRIMM up to
SH degree 12 (lower). Maps are calculated for year 2005.4.

model is slightly worse than for the other three models, be-

cause it was built on much larger time span data set.

In Fig. 6, the power spectra of the static core field (CF),

SV and SA for the four models GRIMM, BSN, USN, WSN,

are compared. All these power spectra are calculated at

the Earth’s reference radius a = 6371.2 km and for year

2005.4. All four models have a static part (CF) with very

similar power spectra. These cannot be distinguished and

only the GRIMM model is displayed.

The GRIMM model presents a SV with slightly less

power from SH degrees 6 to 8, explained by the fact that

GRIMM is built on a different data set and is smoothed

in time. SV-BSN and SV-WSN models are essentially the

same. They have very similar power spectra and the power

spectrum of their differences never exceeds 0.08 (nT/yr)2.

Similarly, the power spectrum of the differences between

the SV-BSN (or SV-WSN) model and the associated SV es-

timated through the FF-equation (i.e. the SV generated ex-

clusively from the advection of the field lines by the flow)

never exceeds 5.0 10−10 (nT/yr)2 in 2005.4. The ratio ̺,

defined in Eq. (31), is 0.9 19−15 for the BSN model and

0.2 19−14 for the WSN model. Therefore, the models built

follow (not exactly but very closely) the FF-hypothesis. As

expected, due to the regularization technique employed,
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Fig. 8. Power spectra of the flows at the core-mantle boundary (c = 3485 km) for year 2005.4 computed from the BSN flow model (left), and the WSN
flow model (right).

these two SV models can be downward continued to the

CMB without further regularization. The SV-USN model

is clearly dominated by the regularization above SH degree

10. Its power drops excessively rapidly from SH degrees 11

to 14.

Figure 7 displays the vertical down component of the

SV at the CMB (c = 3485 km) for both the GRIMM and

BSN models. The GRIMM model is truncated at SH de-

gree 12 because, for higher degrees, it contains signal that

cannot be attributed to the core. BSN presents stronger SV

in some areas. By experimenting with different truncation

degrees, we observed that under Asia and Indian ocean, this

is due to the SH truncation degree, whereas under Africa

and Antarctica it may be attributed to the slightly better fit

to the data set. Under western Atlantic at mid latitudes, the

SV power in GRIMM has slightly shifted to higher degrees

in BSN. Around the Northern Pole, the GRIMM charac-

teristic alternating positive and negative SV patches along

longitudes are slightly more pronounced in BSN. This is

partially due to the higher truncation SH degree, but is also

enhanced by the regularization process. Because of the core

static field shape in these area, such patterns can be easily

explained by a flow circulating around the pole that advects

the field lines. It is remarkable that the SV for BSN (and

WSN) does not present obvious spurious patterns. In par-

ticular East-West oscillations near the dip equator, similar to

the well known Backus effect, are not present as is generally

the case for high spherical harmonic SV models (Wardinski

et al., 2008).

The SA models power spectra, in Fig. 6, are significantly

different. As described above, the damping parameter val-

ues of the BSN, USN, WSN models have been adjusted

such that all SA power spectra match around SH degree 1.

From there, the SA-BSN and SA-WSN power spectra stay

more or less constant up to SH degree 3 and then drop regu-

larly down. As discussed in Section 4, the SA-BSN and SA-

WSN power spectra presented here for SH degree higher

than 8, are the lowest possible for the models to be compat-

ible with the FF-hypothesis. The behavior of the SA-USN

model is clearly anomalous and it shows that the selected

data set over a single year does not resolve well the accel-

eration. It is also clear that the integrals defined in Eq. (30)

impose constraints on the high SH degree of the SA-USN

model that are too strong, leading to an unrealistic decrease

in the spectrum. Such a model is not compatible with the

FF-hypothesis (see discussion in Section 4). We see imme-

diately the effect of using the new approach for regulariz-

ing the magnetic field inversion process: the time behavior

of the field model is consistent with the underlying physi-

cal process described by the FF-equation and advection is

favored as a possible source of the SV. The spectrum of

the SA for GRIMM is above the others for degrees 3 to

9. This does not necessarily mean that this spectrum is too

high. As stated above, one year of data is not enough to

resolve well the SA and by accumulating data over several

years, the spectra from both the BSN and WSN model ac-

celerations would possibly rise. However, above SH degree

9 the GRIMM SA is controlled by the applied regulariza-

tion and probably drops too rapidly to be consistent with

the FF-hypothesis.

The SA obtained through our inversion process is only

valid for the first two or three SH degrees. Most of the

SA patterns observed in the GRIMM model correspond to

the SH degree 4 or 5. These SH degrees are not resolved

here. We observe however, that the BSN and WSN SA

models can be downward continued to the CMB without

further regularization. There, they are dominated by their

short wavelengths, and the patterns, mainly controlled by

the FF-equation, are associated with strong gradients of the

SV model (maps of the SA are not shown here).

Figure 8 shows the power spectra of the toroidal and

poloidal flows from the BSN and WSN models and also the

power spectra of the flow temporal variations. The BSN and

WSN flow model spectra differ mainly in their high SH de-

grees. As expected the BSN has less power than WSN there,

whereas, for SH degrees around 4, it is the power spectrum

of the WSN model that is the lowest. Although the WSN

and BSN flow models are different, the SV corresponding

to these models are nearly the same. Indeed one could im-

pose constraints in order to build a flow model with spe-

cific and more realistic properties (e.g. tangential geostro-

phy, pure toroidal flow) leading to similar SV models, but
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Fig. 9. Maps of the toroidal ow (upper) and poloidal ow (lower) obtained from the BSN ow model for year 2005.4. Note that the scale is three
times larger for the poloidal ow.

that is not our goal here. The two ows obtained here

have similar statistics: The BSN (resp. WSN) has a Kinetic

Energy (KE) of 175.13 (km/yr)2 (resp. 128.26 (km/yr)2).

Its toroidal component represent 82.88% (resp. 84.25%) of

the KE and the geostrophic component represents 78.55%

(resp. 77.58%) of the KE.

The BSN ow model is plotted in Fig. 9. The toroidal

ow that dominates the general ow is remarkably smooth,

but suf ciently complex to advect a core eld model leading

to a realistic SV model. Some attempts have been made to

minimize further the poloidal component of the ow, but,

these led to a degraded t to the data set. The visual aspect

of the WSN ow is similar to that of the BSN ow.

6. Conclusions
We derived a core magnetic eld model spanning the

2004.87–2005.94 period from CHAMP satellite and obser-

vatory data. The eld model is co-estimated together with

a model of the ow at the top of the core and we impose

the constraint that the eld model closely follows the FF-

hypothesis continuously in time. Despite the shortness of

the data time span, the SV model is surprisingly accurate

around 2005.4. Similarly the SA model can be resolved

for the rst SH degrees. However, our main point in this

work has been to investigate how well a core eld model

inversion process can be regularized by constraints applied

on the co-estimated ow model. In this respect, the results

are very encouraging. First, we have shown that imposing

a convergent spectrum on the ow immediately constrains

the secular variation such that it can be downward contin-

ued without further regularization to the CMB. Second, we

have shown that smoothing temporal variations of the ow

affects the magnetic eld acceleration magnitude.

In addition, we have seen that at the Earth’s surface the

observed SA is mainly controlled by the temporal ow vari-

ations. We suggest that the background SA, that does not

depend directly on the ow variations, de nes a lower limit

of the acceleration power spectrum for the core eld com-

patible with the FF-hypothesis. Then, if the spectrum of

a core magnetic eld model acceleration falls below this

limit, the time behavior of this eld model is inconsistent

with the FF-hypothesis. Deriving ow time variation infor-

mation from such an anomalous model would be unlikely

to lead to acceptable results. It would be interesting to test

these hypotheses in a dynamo simulation where the induc-

tion equation is solved in a self-consistent manner.

In the approach used, the core ow model is truncated

at relatively small SH degrees and, even if the ow has

a rapidly converging spectrum, the interactions between

the small scales of the eld and the ow could be better

accounted for. However, it is not straightforward in the

presented framework. This will have to be investigated in a

forthcoming study.

Diffusion necessarily exists and one could argue that im-
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posing the FF-hypothesis constraint is not a valid approach

at these timescales. We think nevertheless, that to impose

the constraint is de nitively an approach worth studying.

Further, we observe that even under the ow constraints pre-

sented above, the error in Eq. (15) stays very small. There-

fore, it is fairly easy to build a model respecting the FF-

hypothesis, although that is not a suf cient condition to

make the hypothesis valid. Some preliminary work has

been done to apply the technique on data sets covering

longer time span. There are no apparent serious further dif-

culties. However, this has to be investigated in detail in

future work.

Acknowledgments. We would like to acknowledge the work of
CHAMP satellite processing team and of the scientists working in
magnetic observatories. We would like also to thanks the review-
ers for their constructive comments that certainly help in improv-
ing this manuscript. I. W. was supported by the European comis-
sion under contract No. 026670 (EC research project MAGFLO-
TOM). IPGP contribution 2611.

Appendix A. The Field-Flow Time Parametrisa-
tion Inconsistency

In this appendix it is shown that the system of Eq. (15),

derived from the diffusion-less induction equation does not

have an exact solution if the basis functions ψi (t) are alge-

braic polynomials in time. Indeed, we know that there is no

exact solution to Eq. (15) because the exclusion rules of the

Gaunt and Elsasser integrals are such that the linear system

is overdetermined; a solution can be obtained only by least

squares. In practice, this solution is non-unique because

some of the equations are severely under-weighted (some-

times simply ignored) as the SV is unknown at high SH

degrees. However, we want to make clear that also in time,

using truncated algebraic polynomial series as basis func-

tions leads to solutions that can be only approximations of

the exact solution. Rather than using Eq. (15), we start from

the system (16) and re-write in a more general case:

∂t P(t) = (Q0+Q1t+Q2t2+· · ·+Qm tm)P(t), P(0) = I

(A.1)

where the function P(t) corresponds to the magnetic eld

coef cients and the series (Q0 + Q1t + Q2t2 +· · ·+ Qm tm)

stands for the Au(t) matrix that we expand as an algebraic

polynomial in time in order to describe the ow time varia-

tions. The full proof for the general case is outside the scope

of this manuscript∗1. We rather address here the simple case

where only a dependence in t j−1 is considered.

We look for polynomial solutions of the following equa-

tion

∂t P(t) = Q j−1t j−1 P(t). (A.2)

where Q j−1 is a n ×n dimensional matrix. If λ and η are an

eigenvalue and the corresponding eigenvector of the matrix

Q j−1, then the vector:

P(t) = e
λ t j

j η, (A.3)

satis es the Eq. (A.2). If all real or complex eigenvalues of

Q j−1 are distinct (with multiplicity 1), then the fundamental

∗1The full proof for the general case can be obtained from the authors.

solution of (A.2) is a linear combination of vectors of the

form (A.3). In order to obtain a polynomial solution of

Eq. (A.2), we must consider the case where λ = 0 is the

only eigenvalue of Q j−1 and therefore has multiplicity n.

If λ is an eigenvalue of Q j−1 with multiplicity n, we need

to nd n linearly independent solutions of (A.2). In this case

the following result holds.

Theorem 1 If λ is an eigenvalue of Q j−1 with multiplicity

n, then every solution P(t) of Eq. (A.2) has the form

P(t) = C1 P1(t) + C2 P2(t) + · · · + Cn Pn(t),

where

P1(t) = e
λ t j

j η1, (Q j−1 − λI )η1 = 0,

P2(t) =
t j

j
e
λ t j

j η1 + e
λ t j

j η2, (Q j−1 − λI )η2 = η1,

· · · · · ·

Pn(t) =
t j (n−1)

j (n − 1)
e
λ t j

j η1 +
t j (n−2)

j (n − 2)
e
λ t j

j η2

+ · · · + e
λ t j

j ηn, (Q j−1 − λI )ηn = ηn−1.

It is easy to check by direct substitution that the vectors

[P1(t), P2(t), . . . , Pn(t)] satisfy Eq. (A.2). They are also

linearly independent and therefore form a fundamental set

of solutions.

Since we are interested in polynomial solutions of

Eq. (A.2), it is clear that they can be obtained only if λ = 0.

Having all eigenvalues equal to zero is a very restrictive re-

quirement that is not relevant for the problem we are con-

sidering here. We therefore conclude that an algebraic poly-

nomial expansion for the time representation should not be

used for both the magnetic eld and ow models in order to

obtain exact solutions to the system of Eq. (15).
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