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Abstract We develop and analyse a deterministic population-based ordinary dif-

ferential equation of malaria transmission to consider the impact of three common

assumptions of malaria models: (1) malaria infection does not change the attractive-

ness of humans to mosquitoes; (2) exposed mosquitoes (infected with malaria but not

yet infectious to humans) have the same biting rate as susceptible mosquitoes; and (3)

mosquitoes infectious to humans have the same biting rate as susceptible mosquitoes.

We calculate the basic reproductive number, R0, for this model and show the existence

of a transcritical bifurcation at R0 = 1, in common with most epidemiological models.

We further show that for some sets of parameter values, this bifurcation can be back-

ward (subcritical). We show with numerical simulations that increasing the relative

attractiveness of infectious humans, increases R0 but reduces the equilibrium preva-

lence of infectious humans; decreasing the biting rate of exposed mosquitoes increases

R0 and the equilibrium prevalence of infectious humans and mosquitoes; and increas-

ing the biting rate of infectious mosquitoes has no impact on R0 or the equilibrium

prevalence of infectious humans, but decreases the infectious prevalence of infectious

mosquitoes. These analyses of a simple malaria model show that common assump-

tions around the relative attractiveness of infectious humans and the relative biting
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rates of exposed and infectious mosquitoes can have substantial and counter-intuitive

effects on malaria transmission dynamics.

Keywords Mathematical model · Malaria · Bifurcation analysis · Mosquito biting

Mathematics Subject Classification 92D30 · 34C23

1 Introduction

Malaria is an infectious disease of humans, usually transmitted through the bites of

Anopheline mosquitoes. Female mosquitoes bite humans (and other warm-blooded

animals) for blood meals to provide protein for egg development. During each feed,

the mosquito injects some saliva into the host to prevent clotting before sucking the

blood into its stomach. After ingesting the blood, the mosquito rests for two to three

days (depending on the ambient temperature) while it digests the blood. The mosquito

then searches for a water body where it lays the eggs and then seeks another host to

repeat its feeding cycle [23].

Mosquitoes experience different levels of mortality risk during the different phases

of the feeding cycle. Host-seeking and attempting to feed on hosts is the most dangerous

part of the cycle, where mosquitoes are most likely to die. The resting phase is usually

the safest where mosquitoes are stationary. However, the mortality risks of the different

stages can be altered by malaria control interventions. For example, insecticide-treated

nets increase the mortality of host-seeking mosquitoes and indoor residual spraying

with insecticides increases the mortality of resting mosquitoes [12].

Infectious mosquitoes contain malaria sporozoites in their salivary glands and infect

humans when they inject saliva into them. In humans, the sporozoites pass through

liver and asexual blood stages before transforming into infective sexual stages (called

gametocytes). The incubation period in humans is relatively short (about 20 days) but

the infectious period can last for multiple months. Humans infect mosquitoes when

a mosquito sucks up a male and a female gametocyte during her blood meal. The

gametocytes then fuse in the mosquito’s stomach to eventually form an oocyst that

releases sporozoites (that then travel to the mosquito’s salivary glands to complete the

malaria life cycle). The incubation period in the mosquito is about 10–12 days long,

which is on the same order as the mosquito’s life span so it has a substantial effect on

malaria epidemiology and control [16].

Recent evidence has shown that malaria parasites can affect the mosquito’s host-

seeking behaviour to increase their probability of transmission [1,19,20]. Mosquitoes

with oocysts (who are infected but not yet infectious) tend to be less mobile and spend

more time resting. They therefore have longer feeding cycles and experience a lower

mortality rate than uninfected mosquitoes. Mosquitoes with sporozoites tend to be

more restless and are likely to take multiple blood meals in a single feeding cycle

(that is, they bite multiple hosts before resting). Therefore, although they experience

a higher mortality rate than uninfected mosquitoes, they also feed more frequently

and thereby infect humans more often than they would if their feeding rate was

unchanged.
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Additionally, there is evidence that humans with a high density of gametocytes are

more attractive to mosquitoes than humans without gametocytes [21], thereby making

it easier for infectious humans to transmit to mosquitoes.

There is a long history of mathematical models of malaria starting with Ronald

Ross’ first ordinary differential equation (ODE) model for the proportion of infectious

humans and mosquitoes [26]. Most models developed since then have been similar

deterministic population-based models [2,3,10,24,25] although recently stochastic

individual-based simulation models have increased in prominence [17,28]. However,

these models have rarely considered the impact of malaria infection in mosquitoes

on their feeding frequency or the impact of malaria infection in humans on their

attractiveness to mosquitoes.

Here we develop a simple deterministic population-based model that extends exist-

ing models to include these effects. We first describe the model and perform a

qualitative analysis to show the existence of disease-free and endemic equilibrium

points, and the possibility of a backward transcritical bifurcation that is common to

many such malaria models. We finally perform some numerical simulations that illus-

trate the effects of varying the infection-state dependent mosquito biting frequency

and the relative attractiveness of infectious humans.

2 The model

We assume that the mosquito population is divided into three disjoint compartments:

susceptible, exposed (mosquitoes carrying oocysts), and infectious (mosquitoes car-

rying malaria sporozoites). We denote the three populations at time t as Sv(t), Ev(t)

and Iv(t), respectively. In order to account for the effects of malaria parasites on the

mosquito’s host-seeking behaviour [1,19,20], we introduce two positive constants,

ϕE , and ϕI , to represent the biting rate of exposed and infectious mosquitoes relative

to susceptible mosquitoes, with ϕE < 1 and ϕI > 1.

Furthermore, by using the modelling approach employed first in [9] and later in

[4–6,29], we divide humans into two compartments: susceptible, Sh(t), who are not

infected with malaria, and infectious, Ih(t), who carry gametocytes. We denote the

increased relative attractiveness of infectious humans as compared to susceptible

humans (vector-bias parameter) by p. For simplicity, we assume that humans infected

with malaria are always infectious; thus ignoring the incubation period and any vari-

ations in gametocyte density over time.

The balance equations lead to the following system of nonlinear ODES,

Ṡh = �h − λh(t)Sh − μSh + δ Ih, (1a)

İh = λh(t)Sh − (α + μ + δ)Ih, (1b)

Ṡv = �v − λv(t)Sv − ηSv, (1c)

Ėv = λv(t)Sv − (ϕEη + γ )Ev, (1d)

İv = γ Ev − ϕI ηIv, (1e)
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Table 1 Description and baseline values/range of parameters of model (1)

Description Baseline value/range Source

�h Human birth rate (1000/65) humans/year –

μ Human death rate 1/65 years−1 [11]

α Human malaria death rate 9 × 10−5 days−1 [11]

δ Human recovery rate 1/211.6 days−1 [27]

�v Mosquito emergence rate (104/9) mosquitoes/day –

η Base mosquito death rate 1/9 days−1 [22]

ω Base mosquito biting rate 1/2 days−1 [11]

γ Mosquito progression rate to infectious class 0.091 days−1 [11]

πh Prob. of malaria transmission to humans 0.022 [11]

πm Prob. of malaria transmission to mosquitoes 0.48 [11]

ϕE Relative biting rate of exposed mosquitoes to

susceptible mosquitoes

[0, 1] [8]

ϕI Relative biting rate of infectious mosquitoes

to susceptible mosquitoes

[1, 5] [8]

p Relative attractiveness of infectious humans

as compared to susceptible humans

2 [21]

We fix the human birth rate so that the stable human population size in the absence of disease is 1000 people.

We fix the mosquito emergence rate so that the stable mosquito population size is 10,000 mosquitoes, leading

to a density of 10 mosquitoes per person. Note that we only consider female mosquitoes in this model. All

parameters are assumed to be positive except ϕE , which is assumed to be non-negative

where the upper dots denote the time derivative. The terms λh(t) and λv(t) denote

the forces of infection on humans and vectors, respectively. The infection rate per

susceptible human and per susceptible vector are given, respectively, by,

λh(t) = ϕI ωπh

Iv

pIh + Sh

, (2a)

λv(t) = ωπm

pIh

pIh + Sh

. (2b)

The description and the baseline values of the parameters in (1) and (2) are given in

Table 1.

Denoting by Nh the total human population and by Nv the total vector population,

i.e., Nh = Sh + Ih , and Nv = Sv + Ev + Iv , it easily follows that the feasible region

for model (1) is

D =
{

(Sh, Ih, Sv, Ev, Iv) ∈ R̄
5
+ : Nh ≤

�h

μ
, Nv ≤

�v

ϕEη

}

,

where R̄
n
+ denotes the non-negative orthant of R

n .
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3 Local stability analysis of the disease-free equilibrium point

It is easy to check that model (1) admits the disease-free equilibrium (DFE) given by

E0 ≡
(

S0
h , 0, 0, S0

v , 0
)

=
(

�h

μ
, 0, 0,

�v

η
, 0

)

. (3)

We use the next generation matrix method [13,14] to derive the basic reproduction

number R0. The ‘infected’ compartments of model (1) are Ih , Ev and Iv . The ‘new

infection’ matrix F and the ‘transition’ matrix V defined in [14] are given, respectively,

by

F =

⎛

⎜

⎜

⎝

0 0 πhωϕI

πm ω p S0
v

S0
h

0 0

0 0 0

⎞

⎟

⎟

⎠

and V =

⎛

⎝

μ + α + δ 0 0

0 ϕEη + γ 0

0 −γ η ϕI

⎞

⎠ .

The the basic reproduction number is the dominant eigenvalue of the next generation

matrix FV −1,

R0 = ρ(FV −1) =

√

ω2πhπm pγμ�v

(μ + α + δ)(ϕEη + γ )η2�h

. (4)

Theorem 1 The disease-free equilibrium E0, given by (3), is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1, where R0 is given by (4).

This theorem follows from a straightforward application of Theorem 2 in [14] and

showing that the model equations satisfy the five assumptions (A1)–(A5) in [14]. We

note that the basic reproduction number may be written as R0 =
√

Kh Kv , where:

Kh = (ω)

(

μ�v

η�h

)

(p)(πm)

(

1

μ + α + δ

)

,

and

Kv = (ϕI ω)(πh)

(

1

ϕI η

)(

γ

ϕEη + γ

)

.

The quantity Kh is the number of mosquitoes infected by one human during his/her

infectious life time. It is the product of the biting rate of a susceptible mosquito, the

ratio of mosquitoes to humans at the disease-free equilibrium, the vector-bias para-

meter, the probability of disease transmission from infectious humans to susceptible

mosquito per bite, and the average infectious period in humans. The quantity Kv is the

number of humans infected by one mosquito during her infectious life time. It is the

product of the biting rate of infectious mosquitoes, the probability of disease trans-

mission from infectious mosquito to susceptible human per bite, the average duration
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of the infectious period in mosquitoes, and the probability that a mosquito survives

the exposed period. The basic reproduction number R0 is the geometric mean of Kh

and Kv since the infection from human to human goes through one generation of

mosquitoes. We note that the increased frequency of biting of infectious, ϕI , cancels

out in Kv so it does not influence R0.

4 Endemic equilibrium points

By endemic, we mean an equilibrium of system (1) where all components are positive.

The components are solutions of the following system,

�h − λh Sh − μSh + δ Ih = 0, (5a)

λh Sh − (α + μ + δ)Ih = 0, (5b)

�v − λv Sv − ηSv = 0, (5c)

λv Sv − (ϕEη + γ )Ev = 0, (5d)

γ Ev − ϕI ηIv = 0. (5e)

We let E =
(

S∗
h , I ∗

h , S∗
v , E∗

v , I ∗
v

)

represent any generic endemic equilibrium point of

(1) and let

λ∗
h = ϕI ωπh

I ∗
v

pI ∗
h + S∗

h

and λ∗
v = ωπm p

I ∗
h

pI ∗
h + S∗

h

, (6)

be the forces of infection of humans and vectors at steady state, respectively. Solving

equations (5) for the state variables provides

S∗
h =

k1�h

k3λ
∗
h + k1μ

, I ∗
h =

λ∗
h

k1
S∗

h , S∗
v =

�v

λ∗
v + η

, E∗
v =

λ∗
v

k2
S∗
v , I ∗

v =
γ λ∗

v

k2ηϕI

S∗
v ,

(7)

where we have used the notation,

k1 = μ + α + δ, k2 = ϕEη + γ, and k3 = μ + α. (8)

Substituting (7) in (6) we get

λ∗
h = ϕI ωπh

γ λ∗
v(k1μ + k3λ

∗
h)

k2ηϕI �h(k1 + pλ∗
h)

�v

(η + λ∗
v)

, (9)

and

λ∗
v = ωπm p

λ∗
h

k1 + pλ∗
h

. (10)

By substituting (10) in (9), it can be shown that equilibria components satisfy the

following equation,

λ∗
h

[

a0(λ
∗
h)2 + b0λ

∗
h + c0

]

= 0, (11)
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where the coefficients are given by,

a0 = ( πm ω + η) k2 η �h p2, (12a)

b0 = (πmω + 2η) k1k2η�h p − k3πhπmω2 p�vγ, (12b)

c0 = k2
1k2η

2�h

(

1 − R2
0

)

, (12c)

where R0 is the basic reproduction number, given by (4). Equation (11) admits a trivial

solution λ∗
h = 0 which corresponds to the disease-free equilibrium E0 (3). Now, we

assume λ∗
h �= 0. The existence of endemic equilibria is regulated by the quadratic

equation a0(λ
∗
h)2 + b0λ

∗
h + c0 = 0. Note that the coefficient a0 is always positive, and

c0 is positive (resp. negative) if R0 is less than (resp. greater than) unity, respectively.

The coefficient b0 may be rearranged as:

b0 =
k1k2k3η

2�h

μ

(

R2
c − R2

0

)

,

where

Rc =

√

μp(πmω + 2η)

k3η
. (13)

It follows that the number of endemic equilibria of model (1) depends on the coeffi-

cients a0, b0 and c0 as follows:

(1) There is a unique endemic equilibrium if c0 < 0 (i.e., R0 > 1);

(2) There is a unique endemic equilibrium if

(b0 < 0 and c0 = 0) or (b0 < 0, c0 > 0 and b2
0 − 4a0c0 = 0); (14)

(3) There are two endemic equilibria if

b0 < 0, c0 > 0 and b2
0 − 4a0c0 > 0; (15)

(4) There are no endemic equilibria otherwise.

The results of this section may be summarized in the following:

Theorem 2 If R0 < 1, there exists an endemic equilibrium if conditions (14) are

satisfied; two endemic equilibria if conditions (15) are satisfied; and no endemic

equilibria otherwise. If R0 > 1, then there exists a unique endemic equilibrium.

A relevant aspect of this result is that conditions (15) indicate the occurrence of

multiple endemic equilibria for R0 < 1. Specifically, the disease-free equilibrium may

co-exist with one or two endemic equilibria. From an epidemiological perspective, this

means that the elimination of the disease in the population is no longer guaranteed

by the classical threshold condition R0 < 1. A new, smaller, threshold for R0 must

be determined. To this aim, we now express condition (15) in terms of the basic

reproduction number R0 as follows. Note that coefficient b0 < 0 is equivalent to
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R0 > Rc, and c0 > 0 is equivalent to R0 < 1. Note also that b2
0 − 4a0c0 > 0 is

equivalent to

a1 R4
0 + b1 R2

0 + c1 > 0, (16)

where,

a1 =
k2

1 k2
2 k2

3 η4 �2
h

μ2
> 0,

b1 =
2 k2

1 k2
2 η3 �2

h p (2(πmμωp + ημp − k3η) − k3 πm ω)

μ
,

c1 = k2
1 k2

2 η2 �2
h π2

m ω2 p2 > 0.

Equation (16) admits positive real roots if and only if b1 < 0 and � = b2
1 −4a1c1 ≥ 0.

We can write

� =
16k4

1k4
2η6�4

h (πmω + η) p2 (μp − k3) ψ

μ2
,

where

ψ = (πmμωp + ημp − k3η) . (17)

Choosing ψ < 0 ensures that μp − k3 < 0, which implies � > 0 and b1 < 0.

Setting

R± =
√

−b1±
√

�
2a1

=
√

μp

ηk2
3

∣

∣

√
−ψ ±

√
−(μp − k3)(πmω + η)

∣

∣ , (18)

it follows that condition (15) is equivalent to

Rc < R0 < min(1, R−) or max(Rc, R+) < R0 < 1. (19)

Remark 1 Condition (19) can be also expressed in terms of ω. Setting,

ω̄ =
k1 k2 η �h πm + η

√
k1 k2 �h πm (8 k3 πh �v γ + k1 k2 �h πm)

2 k3 πh πm�v γ
, (20)

and using the expression of R0, we obtain,

ω̄ < ω < min(ω∗, ω−) or max(ω̄, ω+) < ω < ω∗, (21)

where,

ω± =
1

k3

√

k1k2η�h

πhπmγ�v

∣

∣

∣

√

−ψ ±
√

−(μp − k3)(πmω + η)

∣

∣

∣ . (22)
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5 Bifurcation analysis

In this section we show that the sub-threshold occurrence of multiple endemic equi-

libria, as stated in Theorem 2, is the result of a transcritical backward (subcritical)

bifurcation at R0 = 1. This will also provide insight on the local stability properties

of the endemic equilibria emerging from the bifurcation.

We study the centre manifold near the criticality by using the approach developed

in [7,14,15], based on general centre manifold theory [18]. In summary, this approach

establishes that the normal form representing the dynamics of the system on the centre

manifold is given by u̇ = au2 + bξu, where,

a =
v

2
· Dxxf(x0, 0)w2 ≡

1

2

n
∑

k,i, j=1

vkwiw j

∂2 fk

∂xi∂x j

(x0, 0), (23)

and

b = v · Dxξ f(x0, 0)w ≡
n

∑

k,i=1

vkwi

∂2 fk

∂xi∂ξ
(x0, 0). (24)

Here, the symbol ξ denotes a bifurcation parameter to be chosen, fi s denote the right

hand side of system (1), x denotes the state vector, x0 the disease-free equilibrium E0,

Dx denotes the differential operator with respect to x, Dξ denotes the differential oper-

ator with respect to ξ , and v and w denote the left and right eigenvectors, respectively,

corresponding to the null eigenvalue of the Jacobian matrix of system (1) evaluated at

x0 for ξ = 0.

We choose the mosquito biting rate, ω, as the bifurcation parameter. We observe

that R0 = 1 is equivalent to:

ω = ω∗ :=

√

k1k2η2�h

pπhπmμ�vγ
, (25)

so that the disease-free equilibrium E0 is locally asymptotically stable when ω < ω∗,

and unstable when ω > ω∗ . Hence, ω = ω∗ is a bifurcation value.

The Jacobian matrix of system (1), evaluated at E0 for ω = ω∗ is given by

J (E0, ω
∗) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−μ δ 0 0 −ϕI ω
∗πh

0 −k1 0 0 ϕI ω
∗πh

0 −ω∗πm p
S0
v

S0
h

−η 0 0

0 ω∗πm p
S0
v

S0
h

0 −k2 0

0 0 0 γ −ϕI η

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where k1 and k2 are defined in (8). The eigenvalues are given by λ1 = −μ, λ2 = −η,

and λ3, λ4, λ5 eigenvalues of the submatrix,
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J̄ =

⎛

⎜

⎝

−k1 0 ϕI ω
∗πh

ωπm p
S0
v

S0
h

−k2 0

0 γ −ϕI η

⎞

⎟

⎠
.

The characteristic equation of J̄ is given by

x3 + A1x2 + A2x + A3 = 0, (26)

where

A1 = ηϕI + k2 + k1, A2 = (k2 + k1) ηϕI + k1k2, A3 = k1k2ηϕI

(

1 − R2
0

)

,

and R0 is given by (4). Since R0 = 1 at the criticality, equation (26) becomes

x
(

x2 + A1x + A2

)

= 0. (27)

Thus, the Jacobian J ∗ of the linearised system has a simple zero eigenvalue and the

other eigenvalues have negative real part. Therefore the disease-free equilibrium E0

is a nonhyperbolic equilibrium. In order to determine the coefficients (23) and (24),

we look for the right and left eigenvectors corresponding to the zero eigenvalue. The

components wi , for i = 1, . . . , 5, of the right eigenvector w are given by:

−μw1 + δw2 − ϕI ω
∗πhw5 = 0,

−k1w2 + ϕI ω
∗πhw5 = 0,

−ω∗ pπm

S0
v

S0
h

w2 − ηw3 = 0,

ω∗ pπm

S0
v

S0
h

w2 − k2w4 = 0,

γw4 − ϕI ηw5 = 0.

Analogously, the components vi , for i = 1, . . . , 5, of the left eigenvector v are given

by,

−μv1 = 0,

δv1 − k1v2 − ω∗ pπm

S0
v

S0
h

(v3 − v4) = 0,

−ηv3 = 0,

−k2v4 + γ v5 = 0,

−ϕI ω
∗πh(v1 − v2) − ϕI ηv5 = 0.
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Therefore for w5 > 0, v5 > 0, we have,

w1 = −
ϕI ω

∗πhk3

k1μ
w5,

w2 =
ϕI ω

∗πh

k1
w5,

w3 = −
(ω∗)2 pπhπmϕI S0

v

S0
hηk1

w5,

w4 =
ϕI η

γ
w5,

and,

v1 = 0, v2 =
η

ω∗πh

v5, v3 = 0, v4 =
γ

k2
v5.

Considering only the nonzero components of the left eigenvector, v, it follows that:

a =
1

2

(

2v2w2w5
∂2 f2

∂ Ih∂ Iv
(x0, 0) + 2v4w1w2

∂2 f4

∂Sh∂ Ih

(x0, 0) + v4w2w2
∂2 f4

∂ I 2
h

(x0, 0)

+ 2v4w2w3
∂2 f4

∂ Ih∂Sv

(x0, 0)

)

,

where,

∂2 f2

∂ Ih∂ Iv
(x0, 0) = −ϕI ω

∗ pπh

1

S0
h

,

∂2 f4

∂Sh∂ Ih

(x0, 0) = −ω∗ pπm

S0
v

(

S0
h

)2
,

∂2 f4

∂ I 2
h

(x0, 0) = −2ω∗ p2πm

S0
v

(

S0
h

)2
,

∂2 f4

∂ Ih∂Sv

(x0, 0) = ω∗ pπm

1

S0
h

,

so that,

a = −
πhμω∗ pϕ2

I

k2
1k2η2�2

h

v5w
2
5 A0,

where,

A0 =
(

πhπ2
mμ(ω∗)3 p�vγ + ηπhπmμ(ω∗)2 p�vγ

− k3ηπhπm(ω∗)2�vγ + k1k2η
3�h

)

.
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The analysis performed in this sections may be summarized in the following

theorem:

Theorem 3 If A0 < 0, then the malaria model (1) exhibits a backward bifurcation at

R0 = 1. If A0 > 0, then the bifurcation is forward.

Remark 2 The change of stability of E0, from being stable to unstable, as R0 crosses

the critical value R0 = 1, implies that b > 0 (see [14]). In our case, direct calculations

shows that

b = ϕI πhv2w5 + pπm(S0
v/S0

h)v4w2 > 0.

In the special case where there is no disease-induced death, i.e, α = 0, we have

A0 =
1

p

(

η3πhπ2
mμp2�vγ�

3
2 + η3�h (μ + δ) (2p − 1) (γ + ηϕE )

)

,

where

� =
(

�h (μ + δ) γ + η�h (μ + δ) ϕE

πhπmμp�vγ

)

.

Since, by definition, p > 1 	⇒ 2p − 1 > 0, it follows that in absence of disease

induced death, the bifurcation is forward. Indeed, α = 0 	⇒ A0 > 0 	⇒ a < 0.

Finally, note also that when α = 0, the coefficients of equation (11) become,

a0 = (πmω + η) p3 > 0,

b0 = (μ + δ)

(

πmωp + η(2p − R2
0)

)

p > 0,

c0 = ηp (μ + δ)2 (1 − R2
0).

We see that a0 is always positive. Additionally, since p > 1, it follows that b0 and c0

are always nonnegative whenever R0 < 1. Therefore, there are no endemic equilibria

bifurcating from the disease-free equilibrium when R0 < 1.

6 Numerical simulations

We illustrate the backward bifurcation with numerical simulations in Figure 1 using the

set of parameter values listed in Table 1, except with �h = 4, μ = 1/(30 ·365), �v =
108/14, α = 10−3, δ = 1/100, η = 1/14, πh = 0.75, πm = 0.8, ϕE = 1, ϕI = 2,

p = 4, and varying ω. In the particular case ω = 4.802×10−4, the conditions required

by Theorem 2, case (15), are satisfied, as well as A0 = −0.0000020 < 0 (so that a =
0.00000020 > 0) in Theorem 3. In particular, for this set of parameter values, Rc =
0.8193476 < 1, R0 = 0.9452627 < 1, ψ = −5.1714 × 10−5, R+ = 0.9444190,

R− = 0.0020 (so that max(Rc, R+) < R0 < 1). Furthermore, a0 = 0.0533 > 0,

b0 = −0.0000977 < 0 and c0 = 4.342 × 10−8 > 0, so that b2
0 − 4a0c0 = 2.750 ×
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Fig. 1 Bifurcation diagrams for model (1) in the (R0, I∗
v ) and (R0, I∗

h
) planes. The parameter ω is varied

in the range (0, 0.000534] to allow R0 to vary in the range (0, 1.05]. Two endemic equilibrium points coexist

for values of ω in the range (4.798 × 10−4, 5.080 × 10−4) (corresponding to the range (0.9444, 1) of R0).

Solid lines represent stable equilibria and dashed lines represent unstable equilibria.

Fig. 2 One dimensional sensitivity analysis of R0 to p with all other parameter values as specified in

Table 1 except for ϕI = 2 and ϕE = 1

10−10 > 0. The resulting two endemic equilibria E = (S∗
h , I ∗

h , S∗
v , E∗

v , I ∗
v ), are given

by: E∗ = (20333, 1964, 99850354, 65808, 41919), which is locally asymptotically

stable and E∗∗ = (24079, 1650, 99884413, 50830, 32379), which is unstable.

Figure 2 shows that increasing the relative attractiveness of infectious humans,

p, increases R0. Figure 3 shows numerical simulations of the malaria model (1) for

different values of p. The curve for p = 1 shows the result for the assumption used in

most malaria models: that malaria infection makes no difference to the attractiveness
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Fig. 3 Numerical simulations of the malaria model (1) for parameter values as specified in Table 1 except

for ϕI = 2, ϕE = 1, and p varied as shown in the legend

Fig. 4 One dimensional sensitivity analysis of R0 to ϕE with all other parameter values as specified in

Table 1 except for ϕI = 2

of humans. We see here that increasing p decreases the equilibrium prevalence of

infectious humans, contrary to the effect of p on R0, but does not affect the equilibrium

prevalence of infectious mosquitoes.

Figure 4 shows that increasing the relative biting frequency of exposed mosquitoes,

ϕE , decreases R0. Figure 5 shows numerical simulations of (1) for different values of

ϕE . Consistent with the effect on R0, increasing ϕE decreases the equilibrium preva-

lence of infectious humans and mosquitoes (with a stronger impact on the prevalence

of mosquitoes).

The relative biting frequency of infectious mosquitoes does not appear in the expres-

sion for R0 so changing this parameter has no effect on R0. Figure 6 shows numerical

simulations of (1) for different values of ϕI . Increasing ϕI makes no difference to

the equilibrium prevalence of infectious humans, but leads to a large decrease in the

equilibrium prevalence of infectious mosquitoes.

Figure 7 shows that the effects of simultaneously increasing p and ϕE on R0 are

consistent with the one-dimensional sensitivity analyses shown in Figures 2 and 4.

Additionally, as p increases, the dependence of R0 on ϕE increases.
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Fig. 5 Numerical simulations of the malaria model (1) for parameter values as specified in Table 1 except

for ϕI = 1 and ϕE varied as shown in the legend

Fig. 6 Numerical simulations of the malaria model (1) for parameter values as specified in Table 1 except

for ϕE = 1 and ϕI varied as shown in the legend

Fig. 7 Two dimensional sensitivity analysis of R0 to p and ϕE with all other parameter values as specified

in Table 1 except for ϕI = 2
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7 Discussion and conclusions

We developed and analysed a simple malaria model to investigate the impact of relaxing

three assumptions that mathematical models of malaria commonly make. We allowed

the relative attractiveness of infectious humans (as compared to susceptible humans)

to mosquitoes to increase; the feeding frequency of exposed mosquitoes (as com-

pared to susceptible mosquitoes) to decrease; and the feeding frequency of infectious

mosquitoes (as compared to susceptible mosquitoes) to increase.

We derived the basic reproductive number, R0, that provides a threshold condition

for when the disease-free equilibrium loses stability. We showed that in common with

many similar models of malaria, there is a transcritical bifurcation at R0 = 1, that can

be forward or backward depending on the parameter values, and is always forward

if there is no disease-induced death rate. We provided threshold conditions for the

direction of the bifurcation and the existence of zero, one or two endemic equilibrium

points.

As may be expected, we showed that as the relative attractiveness of infectious

humans, p, increases, R0 increases. However, we also showed the surprising result

that as p increases, the equilibrium proportion of infectious humans decreases, even

as R0 increases. This is because mosquitoes repeatedly bite infectious humans so they

are less likely to pass the infection to susceptible humans, and therefore the same

proportion of infectious mosquitoes leads to a lower proportion of infectious humans

for higher values of p.

We showed that as the relative biting rate of exposed mosquitoes, ϕE , increases,

R0 and the equilibrium proportion of infectious humans and mosquitoes decreases.

This is reasonable because as the biting rate of exposed mosquitoes increases, their

mortality increases so fewer exposed mosquitoes are likely to survive to become

infectious.

We finally showed that varying the relative biting rate of infectious mosquitoes,

ϕI , has no impact on R0 because the increased biting rate is cancelled by the shorter

life span of the infectious mosquitoes. Correspondingly, varying ϕI has no impact on

the equilibrium proportion of infectious humans. However, increasing ϕI leads to a

substantial decrease in the equilibrium proportion of infectious mosquitoes because

of their higher death rate. Importantly for malaria transmission, these fewer infectious

mosquitoes are able to maintain transmission to humans at a higher level than if their

biting rate was lower. These analyses of a simple malaria model show that common

assumptions around the relative attractiveness of infectious humans and the relative

biting rates of exposed and infectious mosquitoes can have substantial and counter-

intuitive effects on malaria transmission dynamics.
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