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Summary

Activity-based models of transport demand are increasingly used by govern-

ments, engineering firms and consultants to predict the impact of various

design and planning decisions on travel and consequently on noise emissions,

energy consumption, accessibility and other performance indicators.

In this context, non-discretionary activities, such as work and school, can

be relatively easily explained by the traveller’s sociodemographic character-

istics and generalised travel costs. However, participation in, and scheduling

of, discretionary and joint activities are not so easily predicted. Understand-

ing the social network that lies on top of the spatial network could lead to

better prediction of social activity schedules and better forecasts of travel

patterns for joint activities.

Existing models of activity-travel behaviour do not consider joint activi-

ties in detail, except within households to a limited extent. A recent attempt

developed at ETH Zürich to incorporate social networks in a single-day op-

timisation scheduling model did not model joint activities as such, rather

rewarding individuals for scheduling activities at the same location and at

the same time as their friends. Realistic social networks were also not in-

corporated.

The aim of this thesis is to contribute to this rapidly expanding field

by developing a simulation of activity and travel behaviour incorporating

social processes and joint activities to investigate the effects on activity and

travel behaviour over a simulated period of weeks. The model developed is

intended as a proof-of-concept.

In order to achieve this aim, an agent-based simulation was designed,

implemented in Java, and calibrated and partly verified with real-world data.

The model generates activities on a daily basis, including the time of day

and duration of the activity. An interaction protocol has been developed to

vii



viii SUMMARY

model the activity decision process. Data collected in Eindhoven on social

and joint activities and social networks has been used for calibration and

verification.

Alongside the model development, several issues are addressed, such as

exploring which parameters are useful and their effects, the data required

for the validation of agent-based travel behaviour models, and whether the

addition of social networks to models of this type makes a difference.

Sensitivity testing was undertaken to explore the effects of parameters,

which was applied to increasingly more complex versions of the model (start-

ing from one day of outputs with no interactions between individuals and

finishing with full interactions over many days). This showed that the model

performed as expected when certain parameters were altered.

Due to the components included in the model, scenarios of interest to

policy makers (such as changes in population, land-use changes, and changes

in institutional contexts) can be explored. Altering the structure of the in-

put social networks and the interaction protocols showed that these inputs

do have a difference on the outputs of the model. As a result, these ele-

ments of the model require data collection on the social network structure

and the decision processes for each local instantiation. Two more “tradi-

tional” transport planning policy scenarios, an increase in free time and an

increase in travel cost, showed that the model performs as expected for these

scenarios.

It is shown that the use of agent-based modelling is useful in permitting

the incorporation of social networks. The social network can have a signifi-

cant impact on model results and therefore the decisions made by planners

and stakeholders. The model can be extended further in several different

directions as new theories are developed and data sets are collected.
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Chapter 1

Introduction

Recent travel forecasting models have focussed strongly upon the fact that

the demand for travel in a spatial network is derived from the activities

in which people participate, such as work, school, shopping, sport, leisure,

and social events. Non-discretionary activities such as work and school can

be partly explained by the traveller’s sociodemographic characteristics and

generalised travel costs (Hackney and Marchal, 2007). Participation in, and

scheduling of, other activities is not as easily predicted.

Participation in social activities is determined by friends and also the

groups that one is a member of, i.e., household, workplace/school, sporting

groups, voluntary organisations and clubs. These groups form part of an

individual’s social network. This network is a representation of the people

one interacts with, and sometimes also contains an indication of how people

are connected and how strongly. People in your network will change over

time as you leave jobs, move house etc. and they might also influence where

and/or how you travel, by telling you about new locations and travel modes

etc.

Understanding the social network that lies on top of the spatial network

can lead to better prediction of social activity schedules and therefore better

forecasts of travel patterns, in particular for social and leisure activities.

The interest in the area of social activities has evolved from activity-

based methods, where the focus is on “how individuals select, plan, execute

and adapt their activities over time, space and across individuals” (Doherty

and Ettema, 2006). This interest covers investigating the formation of social

capital and social network geography (Axhausen, 2008), the impact of infor-

1
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mation and communication technologies (ICT) on leisure activities, in par-

ticular the amount of substitution and complementarity and other changes

(Mokhtarian et al., 2006), the collection of social network data and activi-

ties (Carrasco and Miller, 2009), the generation of social networks (Arentze

et al., 2009; Illenberger et al., 2009), and modelling influence (Sunitiyoso and

Matsumoto, 2009) and activity generation (Hackney and Axhausen, 2006).

As a result of ICT, the nature of social and leisure activities is chang-

ing, and therefore requires more thought and analysis. Mokhtarian et al.

(2006) also note that it looks like the demand for discretionary activities

will increase in the future. ECMT (European Conference of Ministers of

Transport) report 111 states that “in the case of the gainfully employed,

the amount of leisure time has considerably increased in the course of time,

through shorter daily, weekly and yearly working hours and a shorter work-

ing life.” (European Conference of Ministers of Transport (ECMT), 2000,

p63)

Doherty and Ettema (2006) describe this change in focus as trying to

understand what “drives participation in certain activities”. They describe

three aspects of how networks can influence activity participation:

• our roles in our networks;

• the locations of others in our networks;

• the information contained in the network about activities and loca-

tions.

Social activities constitute 25-40% of all trips (based on data from Euro-

pean countries noted in Axhausen (2006)), however are not systematically

and consistently considered in activity models. Currently social activities

are predicted in an individual manner, with random location choice and

only for a single day with no consideration of history. Being able to better

predict these activities could lead to improved predictions of activity-travel

patterns for urban and transport planners to use when exploring scenarios.

1.1 Aim and scope

The aim of this thesis is to develop an agent-based simulation model of activ-

ity and travel behaviour incorporating social processes and joint activities.
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An agent-based simulation is a computational model of individuals inter-

acting within an environment. The model will then be used to investigate

the effect of social processes on activity and travel behaviour, and will be a

proof-of-concept that is extensible. A point of difference to many existing

transport models is that activities will be modelled over many days, so that

activity history can be taken into account.

The model focuses on the activity and travel generation that emerges

from the network: predicting the participants in, frequencies of, and lo-

cations of social activities. This project is mainly interested in day-to-

day/short-term social activities that do have a travel component. While

the model is empirically realistic, the focus is not on the replication of a

given environment.

This approach is very different to existing models of travel demand,

which tend to use statistical approaches on activity-travel data collections

and also tend to focus on one aspect of demand, e.g., the group size, the

time of day, the activity duration etc. The model developed in this thesis

covers a larger range of issues, however a trade-off is that they are covered in

restricted detail. This is in part due to complexity, and in part due to a lack

of data or specific theory for the transport domain. We are aware of data

collection and analysis efforts regarding several aspects of the model which

are currently underway. Once those results are established, this model could

be extended. As the effects of different aspects can be explored together,

the model can cater for a wider range of scenarios and policies of interest

to planners. An advantage of agent-based modelling is that behaviour can

more closely model the real world and the model is more flexible when new

or different behaviours are identified.

In the long-term, the processes developed can be used in large-scale sim-

ulation models of travel demand, in particular assisting in the formulation

of daily activity patterns.

1.2 Research questions

This thesis makes two major contributions: how these sorts of models can be

built (taking into account the expectations and theories of both the trans-

port modelling community and the agent-based modelling/simulation com-

munity), and whether the inclusion of social networks into transport models
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makes a significant difference to the model outcomes.

The following questions will be covered in this thesis:

• How can social behaviours be modelled in the context of travel be-

haviour?

• How can these models be calibrated and validated?

• Can the separate effects of parameters be identified?

• Does the incorporation of social networks have an effect on the model

outcomes in the context of activity-travel modelling?

• How can the concepts behind this model be incorporated into existing

models?

1.3 Overview

In chapter 2, an overview of transport modelling is presented, focussing on

activities, activity-based models and joint activity models.

However, the focus of this thesis is joint activities outside households,

therefore chapter 3 describes social network models and data collection ef-

forts for social activities.

Following on from existing work, the conceptual model is described in

chapter 4. This casts a broader net across many aspects that are relevant

to a model of social activities and makes connections with research in other

domains. This chapter also describes the overall modelling process, from

problem definition through to experimentation, that will form the backbone

of the following chapters.

In chapter 5, the conceptual model is refined and a design and imple-

mentation is demonstrated. This chapter is based around a basic software

engineering process and shows how these sorts of models can be developed.

Methods for validation are discussed in chapter 6. Although this is a

theoretical chapter, it provides background for the remainder of the thesis

and discusses some of the issues behind the validation of transport and

agent-based models. As we will see in chapter 4, validation is an ongoing

part of the process and should not be left to the end, however it is placed

here to provide some continuity with the final chapters.
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Chapter 7 describes the data used and the calibration process. The gen-

eration of the input social networks is discussed, along with a demonstration

of model verification, in particular looking at the internal consistency and a

model walkthrough.

The outcomes of a sensitivity analysis are reported in chapter 8. This

provides an indication of the effects of changing different parameters. In

order to investigate the performance of the model, the model is tested in

several steps with increasing complexity, beginning with one day and no

interactions between agents, then expanding to many days, and then adding

in interactions.

An illustration of the model is described in chapter 9, in order to demon-

strate the effect of changing the social networks and decision processes. The

effects of changing the interaction protocol (how people decide to partici-

pate in an activity with someone else) and the input network (how people

are connected to each other in the population) are explored, as well as two

scenarios of current interest to transport planners (an increase in free time

and an increase in travel cost).

Chapter 10 brings the thesis to a conclusion with suggestions for future

work. In particular, ongoing research regarding several aspects of the model

is discussed, as well as recommendations for how the outcomes of this model

can be disseminated into existing models.
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Chapter 2

The activity-travel aspect

Modelling plays a key role in transport and urban planning. It is rare to be

able to experiment with changes to the transportation and urban framework

of a city in-situ1. As a result, being able to create an artificial representation

to explore potential effects of changes can be of great assistance to planners,

stakeholders, and decision makers.

This chapter describes how transport modelling has developed from early

trip-based models to activity-based models, which are currently being used

in practice. The notion of an activity is defined and current activity-based

models are reviewed. These models can be divided into different categories,

depending on the approach used. Finally, models which focus on joint ac-

tivities in households are described.

2.1 The planning process

With respect to transport planning, modelling forms part of a larger decision-

making process. According to Ortúzar and Willumsen (2001, p25):

Transport planning models on their own do not solve transport

problems. To be useful they must be utilised with a decision

process adapted to the chosen decision-making style.

The process consists of the steps outlined in figure 2.1. Firstly, the prob-

lem must be defined, which is specified as a “mismatch between expectations

1Some smaller changes can be trialled, such as temporary barriers in a residential
area, or the timetable changes (trialling a every-10-minutes departure rather than a set
timetable) undertaken by Nederlandse Spoorwegen (Dutch Railways) in 2010.

9
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and perceived reality”. Data is collected about the present state, and the

model is constructed. The process then splits in two: on one hand a set of

potential solutions or schemes must be generated, usually with assistance

from stakeholders, and then the planning variables must also be forecast,

e.g., the expected population growth in the area, changes in car ownership.

The model is then tested in two ways: by testing different scenarios to

confirm that the model is reasonable, and by testing solutions to estimate

how well the model performs. Finally, the solutions are evaluated, a recom-

mendation is made, and the preferred solution is implemented.

Figure 2.1: The planning process.

This process is reasonably simple, as noted by Ortúzar and Willumsen

(2001), and is useful for smaller transportation problems which are “well-

defined and constrained”. However, most transportation problems tend not

to be simple. In those cases, a monitoring step can be added and continuous
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planning can be implemented, where the model is frequently updated with

new data and behaviours.

2.2 Transport modelling

An established approach for transport modelling is the “four-step” model

(McNally, 2002), which was developed in the 1950s for looking at travel

behaviour at an aggregate level. The area to be modelled consists of zones,

which can be based on defined zones, such as postcodes or local government

areas, or custom defined by the modeller. The model contains the following

steps:

• trip generation, in which the origin and destination zones of trips are

calculated, taking into account trip purposes and sociodemographics;

• trip distribution, which determines trips made between two zones;

• mode choice, in which the mode of travel (e.g., car, public transport,

etc.) is determined for each trip;

• route assignment, which allocates trips to a particular route.

A strength of the four step model is the logical process (Banister, 2002),

however, many aspects of the model have been criticised. According to Ban-

ister (2002), the process is too rigid and the model is more concerned with

reducing travel time instead of other travel measurements. It cannot take

into account individual choice (Golledge and Gärling, 2004) and cannot rep-

resent “the decisions that consumers make when confronted with alternative

choices” (Domencich and McFadden, 1975). Although it was created to be

simple, it fails to recognise that transport is complex (Boyce, 2002).

In the early years of the 2000s, the four-step model was still being de-

scribed as state-of-the-art as it was seen to be the only approach available

(McNally, 2002). However, research into disaggregate modelling started be-

coming popular in the 1980s, especially with the development of more power-

ful computing technology and increased confidence in computational models

(Ortúzar and Willumsen, 1994).
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2.3 Activities

Another drawback of the four-step model is that it is based on trips, rather

than activities (McNally, 2002), which is contradictory to current belief

about travel behaviour.

Axhausen (2008) states that an activity is “a continuous interaction with

the physical environment, a service or person, within the same socio-spatial

environment, which is of importance to the person.”

Activities are generated due to “physiological, psychological and eco-

nomical needs” (Wen and Koppelman, 2000). The different activities are

commonly categorised as subsistence (work-related), maintenance (keeping

the household running), and leisure. Leisure activities are difficult to define:

for example, what may be considered maintenance for one person could be

leisure for another (Mokhtarian et al., 2006). However, these categories are

inherently individualistic, whereas we are concerned with social activities.

Following Arentze and Timmermans, we define social activities to be those

activities that involve commitments to meet other persons at certain loca-

tions and times. Furthermore, these commitments may impose constraints

upon the times and locations of other activities (Arentze and Timmermans,

2008).

There exist two schools of thought on activity generation for travel be-

haviour purposes. The first is that activities stem from desires, as proposed

by Chapin (1974) who considered the propensity to participate in an activity

along with the available opportunities. The other approach is that the activ-

ity set is constrained in various ways. Hiägerstrand’s (Hägerstrand, 1970)

constraints included capability (need to sleep and eat), coupling (need to

coordinate with other people or comply with opening hours of institutions),

and authority (need to conform to societal laws and customs) constraints.

The former, more needs-based school is relevant for our work; in particu-

lar Chapin (1974) noted that discretionary activities are generated more by

choice than by constraints. More specific theories of determining duration

and frequency are reviewed by Arentze and Timmermans (2000).
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2.4 Activity-based models

Activity-based models “aim at predicting which activities are conducted

where, when, for how long, with whom, the transport modes involved and

ideally also the implied route decisions.” (Arentze and Timmermans, 2000)

This is different to the traditional trip-based models that focus on single

trips, rather than trip chains. It also emphasises why the travel is being

undertaken. Certain activity-based models also model the choice process,

as opposed to choice models where only the outcome is modelled.

Hägerstrand (1970) is often cited in articles on activity-based approaches

as one of the first to recognise that the focus should be more on people rather

than locations. In the late 1980s, Kitamura (1988) discussed the current

state of activity-based analysis and looks at the contribution to the science

of travel behaviour and as a planning tool. Algers et al. (2005) presented

a more recent analysis of models focussing on their use in urban transport

analysis. They claim that four step models are better for evaluating con-

struction of new infrastructure rather than for managing existing demand.

They also claim that activity-based models are not a well-defined family of

models. Some systems use utility maximisation, some focus on scheduling

fixed/flexible activities, modelled by logic rules or decision tables, and some

predict how patterns will change in response to policy.

Several articles (Axhausen, 2000; Jovicic, 2001; Kitamura, 1988; Mc-

Nally, 2000; Wang, 1998) list elements of the activity-based approach. Some

lists overlap with others, however the main points are:

• The key element is that travel is derived from activity participation.

• Activities are influenced, planned, and executed in coordination with

one’s household and social networks.

• The focus is on sequences of activities rather than single trips or single

activities.

• There are various constraints on activities.

Several models of activity-based travel demand modelling have been cre-

ated and fall into several categories according to Timmermans et al. (2002b).
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2.4.1 Constraint-based models

Models can be based on constraints, where all possible activity sequences are

generated and then checked for feasibility. Some of the attributes that are

checked for include whether there is enough time between activities, whether

activities can start after the start time and end before closing time, and that

the activity sequence is not violated (e.g., leaving work before work starts).

Choice or preferences are not taken into account.

As a result of the lack of choice modelling, a drawback of these models is

that if the space-time environment is changed, the modelled behaviour does

not change in a reasonable manner, leading to unrealistic results.

2.4.2 Choice models

Another type of models are those based on utility maximisation and other

choice heuristics. Choice and constraint models can be combined. Activity-

based models currently in development use several linked choice models,

either in a nested (e.g., Bowman and Ben-Akiva) or sequential (e.g., CEM-

DAP, FAMOS) fashion.

Travel demand is the result of decisions made by an individual (Bierlaire,

1998), therefore choice models appeared to be a suitable approach. These

decisions could be about activity, destination, departure time, mode and

itinerary. The “unit” is still single trips, like the trip-based models.

The elements of choice models are:

• the decision maker;

• the alternative options to choose from;

• the attributes of each alternative;

• the decision rules.

The decision maker represents individual entities whose decision making

behaviour is being modelled. The entities could be either an individual

person or a household. Attributes of the decision maker that will affect the

decision outcome need to be included in the model. For transport models,

these include income, car ownership, etc.

In a choice model, each decision maker has a discrete set of alternatives to

choose from. This is usually a reduced set of the universal set of alternatives,
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as the decision maker may not be aware of all the alternatives that exist in

the environment.

Each alternative in the choice model has attributes associated with it.

As with the attributes of the decision maker, information is required on the

properties that are likely to influence the decision maker.

The decision rule determines the calculations used to choose an unique

alternative (Ben-Akiva and Lerman, 1985). This could be based on a domi-

nance calculation, where the alternative that is better than all others based

on its attributes is chosen, however there may not be a single alternative

that satisfies this criteria. Another method is satisfaction, where the at-

tributes of the chosen alternative exceed a certain threshold. A common

rule makes use of utility theory, where the “value” of a particular alterna-

tive is calculated and the most “valuable” alternative is chosen. The actual

utility value is unimportant, rather how it compares to the utilities of the

other alternatives.

The utility can be calculated using different models. All models are

based on a combination of a deterministic part and a stochastic part. The

deterministic part is calculated from the attributes of both the decision

maker and the alternative. The stochastic part allows for unobserved factors.

The stochastic terms are either uniformly distributed, normally distributed

(probit) or IID Gumbel distributed (logit). Logit models are most commonly

used as linear models are not useful at extreme values and probit models

lack a closed analytical form.

The simplest model is a binary choice model with two alternatives to

choose between, which can then be generalised to a multinomial choice

model, usually a multinomial logit model. This model can only be used

if the alternatives are independent (the Independence from Irrelevant Al-

ternatives property). This property is defined as follows: “the ratio of the

probabilities of any two alternatives is independent from the choice set”

(Bierlaire, 1998).

An often-cited example of this is the red/blue bus paradox: imagine a

traveller has two mode choices – a car and a red bus – and both are equally

attractive and have a probability of 0.5. If another option is added to the

choice set, then if the alternatives are independent, then the probabilities

become 0.33 for each option. However, if this new option is a blue bus, that

is, identical to the red bus except for the colour (which, for our rational



16 CHAPTER 2. THE ACTIVITY-TRAVEL ASPECT

traveller, does not affect their preferences) and therefore the probability for

the car should remain 0.5 and the probabilities of the two buses should sum

to 0.5. If alternatives are correlated, then a nested logit model is used, in

which correlated alternatives are grouped together.

The current state-of-the-art choice model is the mixed logit model. This

improves on the logit model by permitting “random taste variation, unre-

stricted substitution patterns, and correlation in unobserved factors over

time” (Train, 2009).

The main drawback to the choice model approach to transport models is

that the processes that result from policy or societal changes cannot be fully

represented in a choice model. The relationship between activities across a

day is also not an important consideration (Doherty and Ettema, 2006).

(Marchal and Nagel, 2005) claim that the use of utility models for large

transport models is infeasible, as the number of choices is too great. They

also note that the actual decision process is not modelled, just the outcome.

An example of a choice model is CEMDAP (Comprehensive Econometric

Micro-Simulator for Daily Activity-Travel Patterns) This is a continuous-

time activity-travel modelling system, consisting of a suite of econometric

models (Pinjari et al., 2007). It is developed by the Center for Transporta-

tion Research (CTR) at the University of Texas at Austin. The system is

implemented in Visual C++ using a PostgreSQL database backend.

There are two parts to the system. Generation-allocation models handle

the decision-making process and determines the activities to be undertaken

and their constraints. Scheduling models determine how activities are sched-

uled to form activity-travel patterns. It also uses space-time constraints in

pattern choices and claims to be applicable at any spatial/temporal resolu-

tion.

FAMOS (Florida Activity Mobility Simulator) is another activity-based

system used for forecasting and policy analysis (Pendyala et al., 2004). It

was developed for the Florida Department of Transportation at University of

South Florida. It takes advantage of the data already collected for four step

models and therefore the data requirements include zonal socio-economic

data, zonal network level-of-service data and household travel survey data.

The output of the model is a series of activity-travel records for all peo-

ple, that can then be aggregated spatially and temporally. Activity-travel

patterns are simulated at an individual level. The system consists of two
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modules: the Household Attributes Generator System, which generates the

household/individual attributes and their fixed activities agenda, and the

Prism-Constrained Activity Travel Simulator, which determines the indi-

vidual schedules.

Cirillo and Axhausen (2010) used a six-week diary to create a multi-day

mixed multinomial model of activity choice and timing. They found that the

sociodemographic variables were not as dominant as the history. Although

this approach was promising, there were issues with the history and also

some of the activities, in particular shopping tours on the weekend.

2.4.3 Computational process models

Computation process models are essentially rule-based systems. The model

contains a series of rules that can be triggered to (re)schedule activities.

They are seen to be more realistic than pure utility-based models as the

particular rules can be fired in particular contexts.

ALBATROSS is a multiagent rule-based model that attempts to predict

travel demand by predicting activity schedule choice. The schedule is based

on the activity agenda, cognitive environment, and available modes and

land-use patterns (Arentze et al., 2000). The decision rules in ALBATROSS

are derived from empirical data. The model is based around households.

2.4.4 Microsimulation

Instead of looking for the theory behind the data, microsimulations use

probability distributions from the data to simulate activity patterns at an

individual level. As a result it is considered to be more data-driven.

TRANSIMS (TMIP, 2011) is one of the better known applications of

microsimulation of transport. It simulates the movement of people and

individuals second-by-second in a regional area (it has been tested in Dallas,

Texas and Portland, Oregon). The network is made up of a grid with cells

of 7.5m: vehicles can be single cell or multiple cell (for example, in the case

of buses).

The four components of the model make use of local surveys and other

data sources. The population synthesiser uses census data to generate house-

holds and their locations. Activity and demographic surveys are used to

create an individual activity plan for each individual. Route plans are then
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generated from the activity plans, and finally the traffic simulator generates

the actual traffic.

The final outputs can be analysed by looking at individuals or aggregate

results, both spatially (e.g., for a link) and temporally (e.g., for a specific

time period). Although the model does not take into account detailed driver

behaviour or detailed intersection processes, it is useful for analysing conges-

tion, fuel usage, emissions and safety in more detail than previous models.

2.4.5 More recent approaches

Moving forward from Timmermans et al. (2002b) are two newer approaches

to modelling activities. For example, newer versions of TRANSIMS are

more agent-based, in that “the travelers are maintained as individual entities

with individual attributes, and make individual decisions based on these

attributes” (Balmer, 2007).

Another modelling toolkit, developed parallel to TRANSIMS is MAT-

SIM (matsim.org, 2007). MATSIM consists of a database with the input

data for a scenario, a data preparation tool, an agent initialisation module,

results analysis, and a module to handle the demand optimisation process.

Each agent is given an activity schedule or plan, including locations and

routes. Each plan is evaluated, plans are randomly modified, and plans are

deleted if better plans are found (Hackney, 2009). MATSIM has been used

for large-scale simulations of Switzerland, among other applications.

Both TRANSIMS and MATSIM are open source, meaning that modules

can be added and changes can be made by researchers and users outside the

core development/research groups.

These toolkits are used for modelling activity-based demand in general.

More detailed agent-based models, in particular those dealing with some

form of social behaviour, will be covered in chapter 3.

An approach currently being explored for generating discretionary ac-

tivities is based on needs. Activities both satisfy and generate needs and

needs grow over time (Arentze and Timmermans, 2009). Maslow’s hierar-

chy of needs has been proposed as a starting point (Miller, 2005), however

it is difficult to collect data for model validation. A separate set of needs

was proposed by Arentze and Timmermans (2006) which could be identified

through empirical research.

More recently, Nijland et al. (2010) undertook a combination of face-to-
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face interviews and internet questionnaires to identify six basic needs: social

contact, physical exercise, relaxation, fresh air/outdoors, new experiences,

and entertainment. A further survey including an activity diary showed that

these needs were intuitively related to activity choice, e.g., those with high

social contact needs were more likely to visit friends and cafés.

2.5 Joint-activity modelling

Activity-based travel demand modelling has centred around individual plans

and scheduling, however the presence of joint activities can influence indi-

vidual plans (Gliebe and Koppelman, 2002). As a result of this, research

into joint scheduling within households has grown in importance.

The types of interactions and influences can be categorised as (Timmer-

mans and Zhang, 2009; Zhang and Daly, 2009):

• joint trip-making and activity participation, such as travelling together

to work/school or going out for dinner;

• influence from other family members, which could also include task

allocation, such as one person undertaking shopping for the whole

household;

• household resource allocation, such as sharing a car;

• time allocation.

Kitamura (1988) pointed out that the household structure “significantly

influences” individual patterns, but whether this structure was useful for

prediction was unclear. Bowman and Ben-Akiva (1997) summarise the re-

search regarding how households affect activity demand:

• “households influence activity decisions;

• the effects differ by household type, size, member relationships, ages

and genders;

• children, in particular, impose significant demands and constraints on

others in the household.”
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However, these appear to be more about influence on individual decisions

and not specifically about joint decisions or activities. For example, I may

go shopping more often if I need to purchase groceries for a four-person

household instead of a two-person household, but I could undertake that

activity alone and schedule that by myself. As noted by Zhang and Daly

(2009):

In the context of transportation policies, ignoring such interper-

sonal interactions could overestimate the effects of policies and

might lead to inappropriate investments. However, the dom-

inating travel behaviour models have mainly built upon indi-

vidual decision-making theories, which assume that an individ-

ual can decide his/her behaviour based on his/her own prefer-

ence.(Zhang and Daly, 2009)

Activity-travel schedules need to be synchronised in time and space. This

is a more complicated task than it may seem. As Gliebe and Koppelman

(2002) recognise, sometimes household members may stay longer or arrive

earlier at a particular location.

In addition to these analytical studies, several models of joint activity

participation have been developed over the years. Examples include Scott

and Kanaroglou (2002) who developed a trivariate ordered probit model,

Meka et al. (2002) who adopted the structural equations approach, Srini-

vasan and Bhat (2006) who used a combination of different models and

Angrainni et al. (2010) who applied decision trees.

Rindt et al. (2003) reports on the development of a simulation kernel

for agent-based activity microsimulation based on the re-characterisation of

human activity as interaction between autonomous entities. They started

from the idea that “human activity is the negotiated interaction of socially

and physically situated individuals and settings” and as a result their kernel

assumes that behaviour is adaptive. People, groups and resources (such as

buildings) were represented as agents and used a variant of the contract net

protocol to organise activities. The framework described was flexible and

did not impose many restrictions on negotiations, but was not a complete

model in itself.
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2.6 Discussion

Activity-based modelling has taken the field from looking at only where and

when, with the four-step model, to what with the development of activity-

based models. These latter models are reaching a level of maturity and are

being used outside academia by planners to assist in decision making.

Transport models have evolved in the past fifty years, starting from

aggregate models and moving to more disaggregate models looking at the

reasons for travel and focussing on activities. Several activity-based models,

such as ALBATROSS, CEMDAP, FAMOS, and Ben-Akiva and Bowman-

style nested-logit models, are being used outside academia. Microsimulation

models permit the simulation of large populations. However, most models

are still single-day models, meaning the effects of history cannot be realisti-

cally seen.

The disadvantage of pure choice and constraint modelling is that they

may not cater well with a change in policy, the environment or activity choice

set. This is an important consideration for planners. The development

and addition of agent-based techniques to these models permits individual

decision-making to be undertaken and therefore the effects can be explored

by planners.

However, most research has continued the individual focus from trip-

based models, which means that interpersonal relationships cannot be real-

istically modelled. We know that not all trips and activities are undertaken

alone, and hence a level of precision is missing. In order to counteract this,

some studies have looked at joint activities. All these studies took into ac-

count the heads of households only. Obviously, the problem of joint activity-

participation involving people outside the household is equally important for

improving transport demand models.
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Chapter 3

The social aspect

Transport modellers have recognised the need for models to reflect real-

world activities better by including activities involving more than one per-

son. Within household activities have been studied, however many activities

are undertaken in groups which are not connected by living at the same res-

idence.

Social networks are a technique for describing how individuals are con-

nected to each other, be it in terms of friendship, offering help, sharing

knowledge etc. The approach is based on network analysis, which has been

used for several domains (such as technological networks (e.g., the Internet)

or biological networks (e.g., food webs)), but it has been recognised that

social networks differ in their structure (Newman and Park, 2003).

This chapter begins with a discussion of the theory behind social activ-

ities, before defining social networks. Modelling social networks, focussing

on those incorporating a spatial component, is discussed. Following this, we

return to transport applications by reviewing current research in the area

of social networks and transport, in particular looking at the collection of

data, the generation of networks, and modelling approaches.

3.1 Why do we interact and participate in social

activities?

Much of the literature appears to accept the need for human interaction as

a given, not dissimilar to the acceptance of travel as a derived demand. But

why do we want to interact with other people?

23
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Maslow (1943) developed a theory of motivation based around a hierar-

chy of needs. At the very bottom level are the physiological needs, such as

sleep, maternal behaviour, and food. These are considered to be the basic

needs for a human.

In the second level, safety, lies a preference for the familiar and a “safe,

orderly, predictable, organized world”. This encompasses a routine, a stable

job, and access to insurance (e.g., health, disability, old age) to help with

unforeseen circumstances.

Once the physiological and safety needs have been fulfilled, humans will

then look for love, affection and belongingness:

He will hunger for affectionate relations with people in general,

namely, for a place in his group, and he will strive with great

intensity to achieve this goal.(Maslow, 1943, p381)

Once one has a group of friends, the next step is to develop self-esteem:

These are, first, the desire for strength, for achievement, for ad-

equacy, for confidence in the face of the world, and for indepen-

dence and freedom. Secondly, we have what we may call the

desire for reputation or prestige (defining it as respect or esteem

from other people), recognition, attention, importance or appre-

ciation.(Maslow, 1943, pp381-382)

Given these needs, it appears that regular interaction with others for

different purposes is a technique for meeting this need. For example, a way

of achieving respect and esteem from others is by sharing information, or

becoming a “powerful” node in one of your networks.

This is a step further from previous transport models that have focussed

on the more basic needs, such as sleep and eating/grocery shopping (which

can be roughly classed as physiological needs by Maslow) and attending

work and school (which can be classed as safety needs by Maslow).

3.2 Social networks

Social networks are defined by a set of nodes and links connecting the nodes.

Many applications have been investigated, ranging from networks found in

biology to which researchers are working together (Strogatz, 2001). From
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our point of view, the nodes are people, located in space, who are connected

to other people. Both the nodes and links can have attributes. For example,

a person node could contain age, gender, and other sociodemographic infor-

mation, while the link between two people could contain when they met,

when they last saw each other, and the nature of their connection (e.g.,

friends, family, work colleagues etc.).

There are two ways of looking at social networks. Global properties of

a network can be measured using a whole or complete network, where all

of the nodes and links in the study area are known. For transport applica-

tions, however, it is not possible to survey an entire town and find out who

knows who in order to create a complete network. As a result, egocentric or

personal networks are more useful for open systems. These focus on a single

person (an ego) and their links to other people (known as alters) (Carring-

ton et al., 2005). The individuals can be sampled from a larger population

and links between alters can also be investigated.

Social network analysis methods for complete networks are well-developed,

however egocentric networks require some adaptation. These methods help

describe the properties of the network and expose patterns, allowing compar-

ison between networks. Hanneman and Riddle (2005) define several popular

methods: for example, the centrality (or power) of a node can be measured

by counting the number of connections (or the degree) of a node.

3.3 Collecting data for egocentric networks

In order to investigate real-life social networks, data must be collected. The

main methods for gathering information for an egocentric network are name

generators and name interpreters.

Name generators are used to identify the alters of the ego. Subjects

are asked to provide the names of their contacts. They may be provided

with some guidance on the alters sought after, such as your family, your

neighbours, your colleagues, people you are close to, or people you interact

with frequently. Spatial or temporal restrictions may also be placed on the

alters required. In some case, subjects may be given a list and asked who

they know (possibly in a closed-network situation) or they may just be asked

to freely name people (Carrington et al., 2005).

Name interpreters are used to obtain information about alters and their
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relationship to the subject and to other alters. This provides most of the

data for describing the network (Carrington et al., 2005).

Another approach is the use of a contact diary to record the names

and details of people interacted with, as well as details of the interaction if

required. Fu (2005) illustrates two extreme approaches to collecting data

about daily interactions. The first consists of a single question:

On an average, about how many people do you have contact

with in a typical day, including all those who you say hello, chat,

talk or discuss matters with, whether you do it face-to-face, by

telephone, by mail, or on the internet and whether you personally

know the person or not? Please give your estimate and select one

from the following categories that best matches your estimate:

(1) 0-4 persons; (2) 5-9 persons; (3) 10-19 persons; (4) 20-49

persons; (5) 50-99 persons; (6) over 100 persons.

This approach is easy to administer, however only provides an estimate

of daily contact.

The second approach involved three people keeping a detailed contact

diary, in which the following was recorded for every interaction:

• demographics/socio-economic status of every contact

• contact characteristics: form, content, duration

• location

• audience

• who initiated the contact

• whether ego expected the contact

• whether it was pleasant/meaningful

• relationship between ego/contact, how long known, how frequently in

contact, how close/important contact is

This approach collected a lot of useful data, but is extremely time-

consuming on the participant’s part. It is not stated why there were only

three participants, however the length of the study (3-4 months) may have
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been a factor. The participants spent more than 30 minutes every day com-

pleting the diaries, and at completion the diaries contained 2685 unique

individuals, 1320 of which were acquaintances, and 8001 interactions.

Kadushin (2005) states the use of publicly-available data to collect data

for networks may not be ethical, as people may be named as part of a network

who don’t know and/or haven’t consented to being named. Analysis of

public data to reveal underlying patterns is not entirely permissible either.

Privacy is a also a major concern for dedicated surveys as names need to be

collected in order to construct the network, however names are not necessary

for egocentric data collection.

3.4 Social network modelling

Social simulation is an active field, which developed as an experimental

method for testing theories in social sciences. These models revolve around

the interactions between social entities. In this section, we look at social

network models, and in particular those which incorporate some spatial

context.

As Newman (2002) recognised, research has been slow in understand-

ing the actual workings of networked systems and the focus has been on

structural form and analysis. As a result, there are many methods for

generating (e.g., the small world model (Watts and Strogatz, 1998) and

the scale-free network (Barabasi and Albert, 1999)) and measurements for

comparing static, complete (and not necessarily social) networks (e.g., Han-

neman and Riddle (2005)). However, it has been recognised that social

networks have certain properties, in particular with respect to the similar-

ity between people, their spatial proximity, the overall clustering coefficient

(i.e., how tightly-knit the network is) and the variation in size of personal

networks (e.g., how many friends do people have; also known as the degree).

Progress has been made with incorporating spatial considerations into net-

work generation (Barthélemy, 2003; Hamill and Gilbert, 2009; Wong et al.,

2006). These models claim to model social networks more accurately than

previously proposed models that do not consider distance between network

nodes. Hamill and Gilbert (2009) presented a model known as social circles,

where two people are connected depending on the distance between them.

This distance could be social (e.g., based on whether two people are simi-
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lar in terms of age, gender, occupation, religion, or shared values etc.) or

spatial.

Hackney and Axhausen (2006) claim that social networks can be gen-

erated using behavioural tendencies from sociology, including homophily,

bridging social capital (where people are similar in one way but different

in another), and putting limits on the number of relationships. The latter

property is one of the principles used by Jin et al. (2001) in their investiga-

tion into growing networks. Other principles included increased chances of

meeting another person if you and them have a mutual friend, and decaying

tie strengths decay over time.

In their review of homophily, McPherson et al. (2001) define homophily

as the “principle that contact between similar people occurs at a higher rate

than among dissimilar people”. Some of the attributes that are used as

similarity measures include gender, age, education, occupation, social class,

behaviour, attitudes, abilities, beliefs, and aspirations.

Distance is also a key factor in the maintenance of relationships. McPher-

son et al. (2001) claim that the most basic source of homophily is space as

we “are more likely to have contact with those who are closer to us in ge-

ographic distance than those who are distant.” Wong et al. (2006) concur,

although they specifically state it is a baseline homophily.

3.5 Modelling social interactions in transportation

We now turn to the opposite approach of adding social context to existing

spatial models. As a example, one of the first urban planning models was

Schelling’s model of segregation, in which individuals were modelled in a

cellular automata environment and changed their location in order to satisfy

their needs for living among similar people. There is both a spatial and social

component to this model. Edmonds (2003) extended this model to include a

social network, which individuals used to align themselves with their friends.

As this research area is still developing, most of the work undertaken

deals with the early steps of modelling: collection of real-world data, the

generation of input populations, and the development of toy models.
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3.5.1 Data collection

As part of the Connected Lives study, Carrasco and Miller (2009) collected

data on individuals’ personal networks and interactions and used multi-level

modelling to look for influences on frequencies of activities. The results

showed that the number of components (i.e., subgroups), density, and de-

gree of centrality of the personal network influences the frequency of social

interactions, and are a better indication of frequency than the size of the

network or isolates. Younger people tend to have a higher frequency of ac-

tivities, as well as egos and alters with similar ages. The latter is an example

of homophily, which is based on the idea that individuals interact with oth-

ers who are similar to them (McPherson et al., 2001). Homophilies can be

separated into two groups: those based on status, both ascribed (e.g., age,

gender, etc.) and acquired (e.g., occupation, religion, etc.), and those based

on values, such as attitudes and beliefs.

A data set was collected in 2008 in the Eindhoven region (van den Berg

et al., 2008). The idea behind this data collection was to examine the rela-

tionship between the built environment, ICT use, and social networks and

travel. As such, the survey asked questions about all social interactions over

a two day period, including those via phone, email and SMS, but excluding

those with a household member or about work-related issues. A follow-up

survey elicited more details about individual’s social networks. Respondents

were asked to name people who they felt very close to and people they felt

somewhat close to. Name interpreters were then used to obtain details re-

garding the relationship of the alter to the ego, the distance between the

ego’s and alter’s residences, and the frequency of contact using different

media (van den Berg et al., 2009).

Kowald et al. (2009) used a snowball survey in Switzerland, in which

respondents provide details of the members of their social network, and those

members are then approached to complete the survey, which leads to an

expanding connected network. The first part of the survey collects the ego’s

characteristics (including a mobility biography), a name generator (focussing

on leisure contacts and people of high emotional importance), details of the

alters names, and a sociogram to collect cliques. An activity diary for eight

days collects data on activities, including ”the location/destination, joining

persons and the planning background”.

Carrasco (2009) describes a new data collection in Chile in 2008. The sur-
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vey focuses on four different urban areas with high/low income and high/low

access to services and transport facilities in order to be able to compare

the effect of the socio-urban context. Information about emotionally close

and/or frequently contacted alters was collected, as well as “their frequency

and duration of face-to-face and virtual (ICTs) interactions”. The survey

collects ”ego-alter frequencies of interaction” so as to get a wide range of

activities over a longer period of time, and gets an idea of regular/irregular

activities. A two-day activity diary is also collected, and asks about ”four

of the most usual social activities” as well as the last time they occurred.

Kowald et al. (2009) noted that the response burden with these sorts

of surveys can be high, as a lot of details are being collected, in particular

personal details about friends. They note that a level of trust needs to be

established with respondents, by providing incentives and an explanation of

how the data will be used. van den Berg et al. (2008) noted that their per-

sonal approach, in which potential participants were approached in person,

not via email or postcard, also worked well.

3.5.2 Network generation

Given the data collected for activity-travel modelling purposes, at least two

network generation algorithms have been developed. Illenberger et al. (2009)

presented a model based on spatial distance, while Arentze et al. (2009)

developed an algorithm based on spatial and social distance. The latter can

also be extended to include the influence of common friends, following the

theory that if person 1 is friends with person 2 and person 3, then persons

2 and 3 have a good chance of also being friends.

3.5.3 Modelling

Research into integrating the effects of social networks and interactions with

activity patterns is very recent; as Axhausen (2006) notes, “transport re-

search, but also sociological research has in the past not looked at the link

between social networks, locational choices and travel”. Currently, no model

thoroughly incorporates all three concepts – selection, influence, and activ-

ity generation – we have identified in the introduction to this thesis. Most

models focus on one or two concepts and in most cases at a very basic level.

For example, initial social networks usually follow a generic random graph
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model, which is not realistic. However, most of these models are described

as preliminary or proof-of-concept.

We have chosen to discuss only agent-based models here, however some

research has also been undertaken into integrating social networks and in-

fluence into choice models. Dugundji and Gulyas (2005) developed a model

in which each agent’s choice is influenced by numbers of neighbours/socio-

economic peers making each choice. They state that as discrete choice theory

is based on individual choice, the challenge is to include interdependence in

decision maker’s choices. They found that the heterogeneity in the model

(individual characteristics, individual attributes or choice alternatives, al-

ternative availability) generated different dynamics and therefore cannot be

ignored. Paez et al. (2008) describes a multinomial discrete choice approach

for investigating decision making in social situations, in particular residential

choice, and found that the degree distribution in the social network affected

both the macro- and micro-level outcomes, whereas the clustering coefficient

had no effect. It was noted by Dugundji et al. (2011) that these approaches

require further development, including developing the social network for-

mation and dynamics and improved integration with both social network

analysis and agent-based modelling fields.

Social activities have not been fully incorporated in activity-based travel

models (Arentze and Timmermans, 2008). These activities, however, place

constraints on other non-social activities, which signals their importance in

activity scheduling.

Sunitiyoso et al. (2006) have investigated mostly influence, by exploring

the spread of soft (or psychological) policy measures, such as environmental

awareness and encouraging car-sharing, and in particular the influence of a

minority influence group. The model also included meeting and communi-

cating with other agents. Their experiments showed that diffusion did occur

and that club membership was more effective at spreading information than

neighbours. Sunitiyoso and Matsumoto (2009) also investigated the spread-

ing of mode choice behaviour. The model has two layers: a traveller model

that models the decision making process, and a transport model that mod-

els the transport system and provides generalised costs as feedback. Agents

have a parameter representing their belief of how their actions influence oth-

ers and how others influence them. They can change their mode using two

rules: those using the payoff rule find the neighbour with the best payoff
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from the last round and changes to their behaviour, and the conformists

change their behaviour to match the majority of their neighbours.

Hackney and Axhausen (Hackney, 2005; Hackney and Axhausen, 2006)

also developed a simple model looking at how activities are generated. The

agents are located on a grid and are provided with an amount of travel bud-

get. At each time step each agent decides which of its neighbours (those

that can be reached within budget) it would like to visit in order to in-

crease its social status. All trips are home-based, so the agent needs to have

enough budget for a return trip. The social status indicator is (normalised)

betweenness centrality: the number of shortest paths that pass through the

agent. As expected, those with better access to others had the higher social

statuses at the end of the simulation.

Hackney and Marchal (2009), building on previous work, developed a

microsimulation which incorporated a social network on top of a daily ac-

tivity scheduler. The individuals in the system exchange information with

each other, either about locations or about friends. Currently the system

does not include collaborative scheduling.

Focussing on both influence and selection, the model created by Mar-

chal and Nagel investigates where “individuals perform activities such as

shopping and leisure” (Marchal and Nagel, 2005). Agents in the model

have limited information about the environment and are connected to sev-

eral other agents through a social network. Agents are provided with plans

and travel around a network carrying out activities individually. Links with

other agents are created or reinforced when agents travel to the same loca-

tion and decay over time if a meeting has not occurred for a while. Each

agent has some knowledge of the area around their homes and workplaces,

as well as two buffers of “useful” locations and not so useful locations. Ev-

ery timestep each agent randomly selects a cell that they are aware of and

informs their friends of this cell. The friends evaluate the cell and if the

inclusion of that cell into their travel plans leads to an improvement, then

the cell is added into their useful buffer of cells. If not, then it randomly

replaces a not-so-useful cell in their memory. This leads to some cooperative

behaviour as the agents are storing and possibly sharing information that is

not useful for themselves.

The essence of this model has been used as a basis for a recent exten-

sion for MATSim (matsim.org, 2007) that allows for the inclusion of social
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network data into a large-scale model (Hackney and Marchal, 2007). In this

model, individuals make visits to locations, alter the strength and existence

of ties, exchange information with each other, and modify their plans by

updating the location of secondary activities during each run. At the mo-

ment, the selection and influence strategies are simple, but more realistic

behaviours could be incorporated. Agents repeat the same day, updating

their plans after each day, until equilibrium is reached.

With respect to simulation properties of existing models, both Marchal

and Nagel (2005) and Hackney and Marchal (2007) report on the compu-

tational aspects of their models and make estimates of the computational

complexity. Comments are also made on the usefulness and practicality

of exploring social aspects and their effects (Ettema et al., 2007; Hackney

and Axhausen, 2006). Collection of more data will be required and it may

be that simulations with more data input and more detail do not provide

an improvement in forecasting. As a large amount of travel is now for so-

cial/leisure purposes, it seems reasonable that we attempt to understand

the reasons behind it. Ideally, the enhancements will lead to a better un-

derstanding of activity scheduling processes (Ettema et al., 2007).

3.6 Discussion

Participation in social activities can be shown to be based on human needs.

However, previous transport models have understandably concentrated on

the more basic physiological and safety needs ahead of belongingness needs,

following Maslow’s categorisation.

Having said that, the research field of social networks can be used to

assist in analysing and understanding the interactions that can and do oc-

cur in a population. Small populations can be represented as a complete

network, in that all population members and links are included, which can

then be analysed with standard social network analysis methods to look for

patterns and similarities with other networks.

In some cases, such as for transport models of cities, it is infeasible to

collect a complete social network containing all city inhabitants and visitors

as nodes and their interactions as links. Therefore egocentric networks must

be used, and some adaptation of the network analysis methods may be

needed.
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Network data can be collected in several ways, however care must be

taken with the privacy of the alters named by respondents and the response

burden placed on respondents. This has implications for the quantity and

quality of data collected, and therefore the quality and usefulness of the

models developed using this data.

Several models of generic friendship selection and influence have been

proposed. These have formed a basis for existing models in the transport

field. However, these latter models have focussed on only one of selection,

influence or activity generation, meaning they are limited in their applica-

tion. In the following chapters, we move into the model development phase

and demonstrate how flexible and extensible social activity-travel models

can be developed.



Part II

Model development
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Chapter 4

Conceptual model

The creation of a transport model (at the implementation level) follows an

expanding set of processes. In chapter 2, the planning process was described,

which works through from defining the transportation problem, collecting

data, constructing a model, generating solutions and future values of input

variables, testing the model, making a final recommendation for a solution

and the implementation thereof. Suffice to say, this process is not the focus

of this thesis, as we are not solving a transportation problem as such. This

thesis is more concerned with improving the outcomes and recommenda-

tions from a model by incorporating social networks, reviewed in chapter

3. However, the planning process needs to be kept in mind throughout the

model development process, as it provides an idea of how the model will be

used in practice.

Zooming in on the model construction step, it is possible to define a

process for the development of a generic model. This has some overlap with

the testing and experimentation phases of the planning process.

This chapter starts the modelling process portion of this thesis. Firstly,

the overall modelling process is described. The conceptual model is then dis-

sected in more detail, looking at the model units, the types of links between

two people, network dynamics, interactions, activities, and how relationships

can be maintained.
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4.1 The modelling process

Figure 4.1 gives an overview of a possible modelling process, adapted from

Law and Kelton (2000). Like the planning process, it begins with a problem

definition and collection of data. However, in this case, the collection of

information or potential theories is also included. The validation of the

conceptual model is defined by Sargent (2005) as “determining that (1)

the theories and assumptions underlying the conceptual model are correct

and (2) the model’s representation of the problem entity and the model’s

structure, logic, and mathematical and causal relationships are “reasonable”

for the intended purpose of the model.” The model is then implemented and

verified, validation and experimentation are carried out, and the results are

reported.

Figure 4.1: The modelling process as described by Law and Kelton (2000).

Keep in mind that the process in figure 4.1 was developed with discrete-
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event simulation in mind, and is more industrial than research-oriented.

However, like the planning process, it provides an overview of what is ex-

pected from a simulation study. The remainder of this thesis will work

through the steps of conceptual model, model development, validation, and

experimentation.

This chapter describes the conceptual model. It provides a broad overview

over how travel and activities can be influenced by social networks; not all

of it will be implemented in the final model, however is included so as to

provide directions for future work.

Note that other sources, such as Banks (1998), move the conceptual

model validation step to after the model development. Although this step

should be considered early in the model development process, in this the-

sis the validation of the conceptual model will be discussed in chapter 6

alongside the other validation steps.

4.2 The conceptual model

The conceptual model contains descriptions of the subsystems and their in-

teraction, any assumptions, and information about the data that is available

(Law and Kelton, 2000).

In this chapter, the following subsystems will be described:

• Model units: the main elements in the model;

• Typology of links/relationships: the types of links between people and

their nature, i.e., how they are initially determined;

• Dynamics: how the network changes over time (selection) and how

people are influenced in the model (influence);

• Interactions: how people interact with each other on an instantaneous

level, i.e., sending invitations and sharing info;

• Activities: how people participate in more substantial activities;

• Relationships: techniques for maintaining relationships.

As this is a broader view of the model, data does not exist or is in

preliminary stages of collection for some of the subsystems. The available

data will be described in chapter 7.
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4.3 Model units

There are two main layers to the model: the transport layer and the social

layer. The transport layer contains a representation of the environment,

i.e., locations and the travel options between them (see section 4.3.4 for

more details). The social layer contains information about social connections

(section 4.3.2).

The main units in the model will be individuals (section 4.3.1) and links

(section 4.3.3). Groups (section 4.3.6) are also an important part of the

model.

4.3.1 Individuals

The people in the system are modelled as individual entities. Each individ-

ual:

1. has a home location and a possible work/school location, and knows

about a number of locations in their environment;

2. knows a certain number of other people, or acquaintances;

3. interacts with and responds to others;

4. moves around the environment, both in the short-term and long-term;

5. maintains an agenda, consisting of activities with properties such as

location and start time;

6. is interested in creating and maintaining relationships, by interacting

and engaging in activities with others.

Individuals are situated in, and move about, an environment. They

also update their beliefs and attributes, based on their experiences in the

environment and also interacting with others.

Each individual will have their own viewpoint of the two layers: an

egocentric network containing their contacts, and a set of locations they are

familiar with. These will change over time, and both layer viewpoints will

influence the other, by discovering new locations and meeting new people,

and learning about and utilising new locations from one’s contacts.

Each person will also have their own opinions on the attributes of loca-

tions, and these can change over time, possibly due to influence from others.
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They will also have their own expectations of travel time (split by mode)

between locations. This will be initialised from the global network, but will

be altered slightly for each person for variability.

Each person has an agenda, which lists their activities for a given day.

It is envisaged that a portion of the day will be blocked out for work/school

activities and physiological requirements, and the leftover can be used for

social activities. The scheduling process will not be overly complex, as that

is not the point of this version of the model, however this can be altered in

future versions.

Network capital is also relevant, although we do not incorporate all of

these concepts. Larsen et al. (2005) define network capital as the various

networking tools used by individuals, specifically:

• movement competencies: walk, carry baggage, read timetables, use

mobiles etc.

• location-free information and contact points: websites, diaries etc.

• communication devices, so that arrangements can be made or altered,

in particular whilst in transit

• appropriate, safe, and secure meeting places

• physical/financial access: email, internet, phone, car, fuel, planes,

buses etc.

• time/money/resources for the above, in particular to cover the need

for a change of plan due to system failure

Network tools are relational: if one individual has email, then it is worth-

less unless their friends also use email. However, the higher network capital

a person has, the more connected and less isolated they are likely to be.

4.3.2 Social network

As covered in chapter 3, Scott (1991) defines social networks of consist-

ing of relations (or links) and attributes (or properties). Attributes are the

attitudes, opinions and behaviours as properties of agents and groups. Rela-

tional data are the connections, ties, and contacts between the agents. In our
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network, the individuals are the agents with attributes, who are connected

to each other.

This network can be dynamic in the sense that the properties of the

individuals and the properties (and possibly presence) of links change over

time.

4.3.3 Links

Granovetter (1973) states that the link strength is “a (probably linear) com-

bination of the amount of time, the emotional intensity, the intimacy (mu-

tual confiding), and the reciprocal services which characterize the tie”.

Individuals are linked to each other. Each of these pairs is represented by

a connection containing information (properties) about their relationship.

Individuals interact with each other, with the frequencies/purposes etc.

dependent on the attributes of the connection (e.g., the type, strength of

connection).

During these interactions, people may influence each other in some way.

The main type of influence we are interested in is sharing information

about the environment. Influence such as sharing network tools (for exam-

ple, working through the Technology Adoption Lifecycle (innovators, early

adopters, early/late majority, laggards)) is too long-term for our model.

The type of our links cover all the types listed in Borgatti et al. (2009):

similarity (group membership), social relations (family, friend, or other role),

interactions (talked to/helped etc.), and flows (information).

The properties of the links may be directed/asymmetric or symmetric.

The properties can also change over time, and the links themselves may

appear or disappear (possibly reappearing) over time.

4.3.4 Environment

The environment will be a simulated environment, that may be a representa-

tion of a real-world environment. Different locations need to be defined and

possibly their attractiveness and/or their usefulness to the different groups,

e.g., membership “headquarters”.

The environment can either be grid- (cells with locations on particular

cells) or vector-based (streets linking locations). This depends upon how

detailed movement is to be modelled and also the requirements of the model.
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For this version, a vector-based representation is used, as the environment is

not uniform and we are not interested in small-scale movement, but rather

larger-scale movement within and between cities.

Within the environment there are locations of interest. People travel to

these locations for activities. These locations require some data about, for

example, opening times. Individuals will store their own quality attributes

for locations they are aware of.

4.3.5 Households

Individuals are members of a household, which consists of a small group of

people living together. It does not function in the same way as a group,

therefore it should be distinct. Individuals in the same household may share

mobility (e.g., cars) and ICT tools (e.g., computers).

Some activities may be organised by one person on behalf of a partner

or family, therefore the roles people play in a household (e.g., partner, child)

also need to be defined.

4.3.6 Groups

A group is a number of people who are connected in some formal way, such

as working together or participating in reasonably formal activities together

as members of a club.

When people belong to a group, they are connected to all other members.

If they leave the group, then the group connection is lost. It may be that they

still stay in contact with some people from the group, but this relationship

will be of a different type.

Group properties, such as membership requirements and common meet-

ing places, need to be defined. For example, there is the notion of casual

groups, i.e., a group of people who go to the pub together. For more formal

groups, a prospective member could request to join a group or be invited.

Group formation is described further in section 4.5.4.

4.4 Typology of relationship/links

Reasons for creating links include:

1. Birth and marriage/partnership (family)
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2. A job, a new residence, a new school for a child, etc.

3. Becoming a member of a group such as family, work, union/club, etc.:

automatically linked to everyone in the group, may not extend past

the membership period

4. Chance meetings may become connections: “the probability of an inci-

dental interaction between two persons is a function of the probability

that the two persons meet and the probability that either one of the

two initiates a social interaction when they meet. The first probability

is a function of the degree of overlap of the activities in space and time

and the nature of the activities. The second probability is a function of

the current size of the person’s social and information needs” (Arentze

and Timmermans, 2006)

For this model, we are looking at short-term time periods only (i.e., a few

months), so we are not planning to model these events explicitly. If required,

these longer-term changes could be approximated with adding and deleting

links in the social network. However, this information is useful for defining

relationship categories as shown in table 4.1. Depending on the category,

the link can be determined from data (i.e., household member data), link

types (e.g., family), common group membership, or from the environment

(e.g., two people with residences on the same street are neighbours).

Social category Always present? Decision/source

Household Yes Data
Relatives Yes Links
Work/school No Membership
Union/clubs No Membership
Friends Yes Links
Neighbourhood Yes Environment

Table 4.1: Suggested relationship categories.

4.5 Dynamics

In chapter 3, we defined social networks as a set of nodes and links connecting

the nodes. However, the set of links is not constant forever: we meet new
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people and lose contact with people over time. The investigation of networks

over time, or longitudinally, is known as social network dynamics. The

formation of personal networks and groups, as well as selection and influence

between people, are of interest.

4.5.1 Selection

Connections need to be created and destroyed over time. Connections are

made based on some form of utility or payoff – there should be a benefit to

forming a connection. There are several theories on how connections can be

created:

• Higher chance of becoming friends with people with more friends

• Meeting people at the same location (i.e., by chance, at work, joining

a club etc.)

• There is an upper limit of one’s number of friendships (Jin et al.,

2001; Roberts et al., 2009) or aims to have a certain number of friends

(Zeggelink, 1997)

• There is a higher chance of meeting another person if you and them

have a mutual friend (Burt, 2000; Jin et al., 2001)

• Higher chance of meeting “similar” people (Burt, 2000; McPherson

et al., 2001; Zeggelink, 1994)

The factors we are interested in then are homophily/similarity, physi-

cal distance, and common friends. These factors can be used with minor

adjustments for each social category. Strengths of ties are also symmet-

ric/reciprocal, however for groups this is debatable.

As an example, Arentze and Timmermans (2008) described a similarity

equation for use in determining the maximum potential of needs satisfaction,

i.e., the more similar the person the more likely that the interaction will

satisfy needs.

Qkij =
∏

R

(1 − (
xi

s − xj
s

rs
)λsk)

∏

¬R

(1 − (ǫsl(i)l(j))
λsk) (4.1)

where
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• R is the set of continuous variables

• ¬R is the set of categorical variables

• xs is a value for a particular variable s and rs is the range

• λsk are weights

• ǫ is the difference between two levels

Zhang et al. (2008) put forward a model architecture based on groups

(social connections), neighbourhoods (spatial connections), and networks

(both social and spatial connections). In that model, however, the neigh-

bourhood network changes as a person moves around the environment. In

our model, it will be related to the person’s home location.

Reasons for dissolving ties are that interests, values and opinions are not

shared and that maintenance costs may be too high (e.g., distance) (van de

Bunt et al., 1999).

The main method for modelling the destruction of connections is to

have the strength decay over time (Burt, 2000; Jin et al., 2001; Marchal

and Nagel, 2005). If the two individuals do not meet again, the strength

should eventually decay to 0. If they do meet, then the strength is reset

to 1. Unfortunately we have no specific longitudinal data to test this on,

however some estimates exist for other data sets (for example, for a financial

organisation described in Burt (2000)).

4.5.2 Personal networks

In terms of a limit on the number of acquaintances in a personal network,

Roberts et al. (2009) consider networks to have layers. The innermost layer

is support (around five individuals who provide advice and help in times

of need), the middle layer sympathy (around 12-15 individuals whom the

ego is in contact with at least monthly), and the outer active (individuals

whom the ego has contacted in the past two years and/or feels like they

have a personal relationship with). The authors were interested in whether

the inner two layers could explain the variation in the active layer. Two

types of constraints were discussed: cognitive (e.g., can only maintain so

many relationships simultaneously) and time budgeting (e.g., it takes time

to build/maintain a relationship). Using a questionnaire, it was found that
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there was an upper limit of 24 alters for the support and sympathy layers,

and 136-150 for the entire personal network. These findings are important

for incorporating dynamic personal networks, as the network size cannot

increase indefinitely.

4.5.3 Influence

Influence is the effect on the character or behaviour of something or someone.

We are interested in observing the influences that arise from interactions

between people.

Modelling spread can be divided into two different objectives: where the

property being spread is undesirable and needs to be controlled or eradicated

(epidemics etc.), and where the property being spread is desirable and should

be spread quickly (rumours, new innovations etc.) (Boccaletti et al., 2006)

Valente (1995) covers a range of different aspects of diffusion models. He

reviews both positional (influenced by neighbours only) and structural (in-

fluenced by the wider network) models. Threshold models are also described,

where a certain number of neighbours or the groups must activate before

a particular individual does. Two such models are described by Kempe

et al. (2003). The Linear Threshold Model starts with a random number

of “activated” nodes and each node has a threshold. Once the sum of their

neighbours’ influences is above the threshold, the node is activated. The

Independent Cascade Model also starts with a random number of activated

nodes, however each node gets a once-only chance to activate its neighbour

nodes with probability p. Kempe et al. (2003) then explores which nodes to

target for maximum influence, which leans more towards affecting change

rather than observation.

On the other hand, Eubank et al. (2004) present a method for generating

the network for determining the spread of disease. They use TRIPS to

generate people’s travel activity for a day. From that data, a bipartite graph

linking people and locations is created and an indication of colocations and

possibilities for spread is found.

The influence of mobility tools can also be explored, i.e., if so many of

your friends have phones, you will eventually get one too. Mode choice has

also been explored by Sunitiyoso and Matsumoto (2009), as mentioned in

chapter 3. In their model, the agents used both payoff (where the individual

changes their behaviour to the behaviour of the neighbour with the highest
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payoff) and conformist (in which the individual changes their behaviour to

that of the majority of their neighbours) to model behaviour change. Other

concepts that could be “influenced” from person to person are locations

(e.g., knowledge of new locations and attributes thereof) and mobility, for

example of modes (e.g., someone could recommend the bus between A and

B).

4.5.4 Group formation

The operation of formal, existing groups is not that well studied. Most work

focusses on identifying clusters of similar people, which could signify an

informal group. However, Backstrom et al. (2006) looked at people joining

a blogging site and also “joining” an academic community (in this case, a

conference or a journal). They also noted that similar work was lacking.

The three concepts identified by Backstrom et al. (2006) were member-

ship, growth and change. Membership was found to be influenced by the

number of friends already in the group, therefore incomplete triads (i.e.,

where person A is linked to persons B and C, but person B and C are not

linked) were of interest. However, if there were a lot of closed triads inside

the group already, then group growth was likely to be minimal.

Some earlier work by McPherson et al. (1992) also found something

similar. The member/non-member ties are critical, as they can produce

new members, as well as take members away from the group. Their group

concepts included variation, selection, and retention.

Zhang et al. (2008) measure group membership as individuals having

a similar strategy to a group, so it is along the lines of clustering. If the

strategy of the individual falls out of line with the group, then they are

deemed to have left. In their simulation, individuals, once in a group, are

assigned a rank that determines how influential and influenced they are by

the group.

These theories do not apply as much to workplaces, where you may or

may not know anyone before joining. For our model, workplace membership

can be determined automatically from the individual’s workplace as defined

in the input. Community groups can use a combination of the above tech-

niques: people could invite others to join and people could align themselves

with groups they feel an affinity with.
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4.6 Interactions

Individuals interact with each other. They can make appointments with each

other, share information about locations and plans, and possibly influence

each other’s thresholds for certain actions.

There are different methods of interaction:

• in person (synchronous);

• phone (synchronous);

• email (usually asynchronous);

• mail (asynchronous);

• SMS (either, but usually asynchronous);

• IM (either, but usually synchronous).

There is also a difference in nature of these methods. For example, by

calling a landline, you are calling a location, whereas by calling a mobile,

you are calling the person irrespective of location (Kwan, 2007).

Interaction purposes can include informal chatting, information exchange,

joint activity, or making an appointment. These purposes are independent

of the specific activity purposes generally used in models, such as shopping,

social, leisure etc.

4.7 Activities

We differentiate between activities and interactions. Activities run for sub-

stantial periods of time and are usually undertaken in a group. Extended or

pre-arranged phone or IM conversations could be seen as activities, but as

face-to-face encounters are more common, we intend to focus on face-to-face

activities.

Urry (2004) lists reasons for being somewhere as:

• legal, economic, and familial obligations, either specific (bride to groom)

or generic (funeral)

• social obligations:“essential for developing extended relations of trust”
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• time obligations: to be with specific “significant others”

• object obligations: to see something, sign contract

• obligations to place: “need to sense a place”

• event obligations: “need to experience a particular ‘live’ event”

Of these, our interest is in social, time, place, and event obligations.

Tinsley and Eldredge (1995) looked into the psychological benefits of

leisure participation, and categorised a list of activities based on people’s

perceptions of which needs the activities satisfied. The eleven groups they

found in a clustering analysis of a large leisure activity data set are:

• agency: vigorous physical activity

• novelty: physical, new things

• belongingness: receive attention, coordinate

• service: assist/influence

• sensual enjoyment: intellectual, with others

• cognitive stimulation: intellectual, solitary

• self-expression: self-improvement

• creativity: more challenging self-improvement

• competition: no obligation

• vicarious competition: watching sport

• relaxation: routine, no challenge

• residual: left over activities that don’t fit elsewhere

This is a useful classification for thinking about why people participate

in activities. It also ties in with the needs-based theory proposed by Ar-

entze and Timmermans (2009). This is a new framework for activity-based

modelling which takes into account individual needs. Activities both satisfy

and induce needs.
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4.7.1 Activity properties

Activities can be thought of in different ways.

There can be many different sorts of activity nature: to visit someone

at home, someone comes to visit your home, or a group outing to another

location.

Several activity purposes are possible (possibly following Urry’s list): to

meet up with someone, to visit a place, to visit an event, or to spend time

with someone.

The group with which the activity is shared is also important. This refers

back to section 4.4.

In terms of the activity details and trips associated with the activity,

there are several attributes: date/time, duration, location, mode of trans-

port for both parties etc. During the interaction, these properties could

be fixed or open for negotiation. For example, an invitation could be is-

sued, where the time and location of the activity cannot be altered, such as

attending a concert. Invitees could suggest other invitees however.

The properties in the context of this model are discussed further in

section 7.2.1.

4.7.2 Scheduling

The scheduling in the model can be simple, as we are more interested in the

interaction and dynamics. However, it is useful to take opportunity costs

into consideration when scheduling.

The opportunity cost for a particular resource, such as time and money,

is the next highest valued alternative use of that resource. For example, this

could be a different activity, or possibly doing nothing.

4.8 Relationships

van de Bunt et al. (1999) describes a friendship “lifecycle” as moving from

unknown, to neutral, then to either friendly or troubled. From friendly the

relationship can also become friend and possibly best friend.

Ideally, we should have some concept of history in each relationship. The

notion of credit is helpful, to determine who should compromise when in a
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disagreement situation. Ettema et al. (2007) describe this for two people g

and h as:

... each time h satisfies personal needs of g the existing credit

h has regarding g increases with the amount of needs of g sat-

isfied. ... Perhaps more importantly, this logic also implies that

receiving help decreases one’s credit: receiving help from g de-

creases h’s credit with the amount of need satisfaction of h (by

the help).

So for each help activity between two people, their credit with regard to

each other is increased (for the helper) or decreased (for the helpee) by the

amount of need satisfaction of the helpee (so therefore equal and opposite –

if g ’s credit wrt h is x, then h’s credit wrt g is -x). This could be represented

by two personal variables or a single link variable, however we assume the

notion of power (also discussed in Ettema et al. (2007)) means that the

credit will not be equal and opposite, so the latter idea will be invalid.

This is also discussed in Schröter et al. (2005). They describe a con-

ceptual model in which agents exchange objects. Credit can be based on

experiences, relations, or debts; the latter is proposed for their model. Credit

is also assumed to be symmetric.

Another notion that could be useful is that of trust networks. This is of

interest to social network researchers, especially in explicit online networks

such as LinkedIn. The ratings can be used to determine how trusted a

new contact is. However, a requirement for the developed algorithms is that

everyone has rated their contacts in some way, and those ratings can be used

to generate a trust rating between two unconnected people. In some cases,

the fact that a link exists is an indication of trust. This sort of reputation

ranking is more useful in one-shot networks, rather then in networks with

repeated interactions.

Reciprocity, which underlies the idea of credit, is more relevant. Nowak

and Sigmund (2005) state:

Direct reciprocity is captured in the principle: “You scratch my

back, and I’ll scratch your’s”.

However, more interest is shown towards indirect reciprocity, where the

giver of something does not necessarily expect something back from the
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recipient, but from anyone. This ties in with the trust network theory and

is more suited to a business-like environment with few repeated interactions

between pairs.

Another idea presented by Ettema et al. (2007) is the notion of power.

This is defined by Cook (1977) as:

In any exchange relation Ax;By, the power of A over B (PAB)

is the ability of A to decrease the ratio x/y (where A and B

represent the actors, and x and y the resources involved in the

exchange and x/y the exchange ratio.)

For a model of activity generation and scheduling, this implies that some

sort of time is being exchanged.

4.9 Discussion

Taking into account the type of model we want to build and the existing

literature, a conceptual model for a model of activity-travel behaviour incor-

porating social networks has been presented. The model units, relationship

types, potential dynamics and interactions, and types of activities have been

identified.

It is clear that there are many possible aspects that can be included in

a model of this type. The personal network can be formed in many ways, in-

cluding family members, club colleagues, and work/school colleagues. House-

holds can share tools, such as cars and computers, which places constraints

on activities. The relationships between people can also be defined in great

detail in terms of whether one has more influence or power or whether one

“owes” the other.

As in previous transport models, it is wise to narrow these aspects down

in order to build a model that is implementable and understandable. After-

wards, more aspects can be added or alternative models constructed.

As a result, we will ignore dynamic networks and large group activities

for the time being. These aspects are currently being researched by others

and can be incorporated at a later stage. We will also concentrate on face-

to-face activities, i.e., where people need to be in the same location at the

same time. However, keeping in mind that the other functionalities might

be added in the near future is useful knowledge for the design phase.
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A key element of the conceptual model is the interaction or exchange

involved in scheduling activities. This implies that we require a modelling

approach that can handle communication and interaction between individu-

als. Another key point is the multiple day structure of the model, requiring

that history and time need to be tracked. If I did something for you, then

next time you do something for me. How long has it been since I saw a cer-

tain person? In the next chapter, we describe a design and implementation

that can cater for these elements.



Chapter 5

Model design and

implementation

Once a conceptual model is in place, the design process can begin. This step

involves ensuring that the requirements and the “imaginary” model that has

been specified can be developed in a way that it is maintainable and can be

checked against the specification as a form of guarantee.

Given our assumption that history plays a strong role in planning social

activities, and the nature of joint activities requiring some form of interac-

tion between individuals, this makes it difficult to use pure mathematical

and statistical models. Agent-based modelling, in which individuals are

modelled to interact with each other and their environment, is slowly be-

coming more popular in transport and land-use modelling, as it permits

individual behaviours to be modelled with less abstraction and more flexi-

bility.

Klügl (2009) notes that agent-based simulation differs to agent-based

software engineering (AOSE), which focusses on the specification and devel-

opment of more open systems. Some of the concepts from AOSE can still be

used, especially in the absence of a fully-usable meta-model for agent-based

simulation.

As a strict definition of agent-based modelling is non-existent, we begin

with our position on agent-based modelling and how it is appropriate for the

model we want to build. We then describe several methods for designing

agent-oriented systems and the design process we have chosen. The design

of the agents and the interactions between them is explained in detail. The

55
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implementation is then outlined. The chapter follows the software engi-

neering process, as shown in figure 5.1, by covering design, implementation,

and testing but omitting the requirements and maintenance phases. The

requirements of the model were covered in the conceptual design, however

it is noted that some aspects, such as dynamic networks and large group

activities, are not included in this version of the model to permit easier

investigation of the influence of basic social networks on individuals.

Figure 5.1: A basic software engineering process: the waterfall.

5.1 Agent-based modelling

The individuals will be represented as agents. A definition of an intelli-

gent agent is the following from Padgham and Winikoff (2004, p3): “An

Intelligent Agent is a piece of software that is

• Situated - exists in an environment
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• Autonomous - independent, not controlled externally

• Reactive - responds (in a timely manner!) to changes in its environ-

ment

• Proactive - persistently pursues goals

• Flexible - has multiple ways of achieving goals

• Robust - recovers from failure

• Social - interacts with other agents”

Given the range of definitions of agents and agent-based modelling, a

thesis should announce its stance. In the early 2000s, several definitions were

available, ranging from Davidsson (2000)’s “simulated entities modelled and

implemented in terms of agents” to Edmonds (2000)’s “attempt to model

a multi actor system with a multi agent system”. Some ignored the real

world, while some implied that no simplification occurred.

Recently, and from a spatial point of view, Batty (2008) offered “systems

composed of individuals who act purposely in making locational/spatial de-

cisions”. Although this is suitable for our domain, no mention is made of

whether the decisions are made individually or jointly.

Gilbert (2008) defines agent-based modelling as:

Formally, agent-based modelling is a computational method that

enables a researcher to create, analyze, and experiment with

models composed of agents that interact within an environment.

(Gilbert, 2008)

This is sufficiently broad, even mentioning the steps involved, and, unlike

the other definitions, includes interactions. This definition will be assumed

for the remainder of this thesis.

However, agent-based modelling is a relatively new approach for trans-

port and land-use models. Sanford Bernhardt (2007) notes that common

applications of agent-based modelling in transport are traffic and pedestrian

simulations and demand modelling. The former tend to be undertaken at a

microscopic level, while the latter can be more strategic.

In this field, individual models are traditionally based on microsimulation

methods. For models with a strong focus on the spatial element, cellular
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automata are often used. For example, if a planner would like to know

the effect of a particular seating configuration in a pedestrianised street,

then a cell-based environment (where particular cells can be blocked out

to represent seating) will be more informative than a link-based environ-

ment. As the International Microsimulation Association (2010) notes, these

approaches exist in pure forms as well as combined forms:

In a pure [cellular automata] all entities are spatially located

within a grid of cells, and all entities have only one attribute

(alive or dead), with behaviours deterministically dependent upon

the state of neighbouring cells. In a pure [agent-based model] the

emphasis is on the interaction between individuals, with the main

attribute of each individual being their operating characteristics

(behavioural rules), which evolve stochastically over time in re-

sponse to the success or failure of interactions with other indi-

viduals. In a pure [microsimulation] transition probabilities lack

evolutionary and spatial dimensions. As microsimulation models

add more behavioural and spatial interaction between individual

units, as CAs add a growing range of individual attributes and

start to incorporate aspatial behaviours, and as ABMs add both

space and fiscal/demographic characteristics to their agents, the

three approaches move towards a common ground. (Interna-

tional Microsimulation Association, 2010)

In our model, we require the attributes generally found in microsim-

ulations, as well as the interactions between individuals, which are not

neighbourhood-based as in cellular automata. As a result, our model falls

in the space between microsimulation and agent-based modelling.

5.1.1 Appropriateness

Agent-based modelling is frequently used for applications where the be-

haviour and intentions of heterogeneous individuals and interaction between

individuals is required. As presented in chapter 2, transport models have

evolved from aggregate models to individual-based models that focus on

behaviour. The latter appears to fit with the agent paradigm.

Both Bonabeau (2002) and Macal and North (2006) present sets of sys-

tem attributes that are ideal for selecting agent-based modelling for that
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system, including amongst others:

• agents have dynamic relationships with other agents;

• relationships form and dissolve;

• agents have a spatial component to their behaviours and interactions;

• the topology of the interactions is heterogeneous and complex.

Our system consists of different people, their relationships and interac-

tions with each other, and their movement around the transport system.

The topology is not homogeneous and clusters may form. Therefore agent-

based modelling appears to be appropriate for our model, due to the com-

plex relationships and interactions between individuals and the individuals’

situatedness in an urban environment.

5.1.2 Types of models

Having decided on an agent-based approach, we still need to determine what

sort of model we are building.

Gilbert (2004) discusses several dimensions of simulation models. These

are listed in table 5.1 with notes on our stance.

Gilbert (2008) goes into more detail with respect to the detail of the

model:

• Abstract: basic social processes are modelled

• Middle-range: characteristic social processes, but results can be gen-

eralised

• Facsimile: exact reproduction of target phenomena

Many agent-based models fall into the abstract category, as they start

out as an exploration of a theory and/or the evolution of simple rules, usually

without real-word data. Ours is more of a middle-range model, as we are not

targetting a specific system, however are incorporating theoretical concepts

and data from a real-world scenario.
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Dimension Description Our model

Abstract vs
Descriptive

How detailed the model is
with respect to the units
modelled.

We are building a de-
scriptive model, as we are
attempting to realistically
describe human behaviour.

Artificial vs
Realistic

Whether we are modelling
real social problems or not.

Our model is realistic.

Positive vs
Normative

Also known as explanatory
vs predictive.

Aiming for normative (i.e.,
being able to be used
for policy recommenda-
tions) but more positive
(i.e., aiding understand-
ing) in its current form.

Spatial vs Net-
work

Whether the action takes
place in a spatial setting,
or in a networked environ-
ment where space is not
taken into account.

Our model sits in the mid-
dle, as we want to incorpo-
rate networks into what is
currently a spatial model.

Complex vs
Simple agents

The cognitive abilities of
the agents. This could
range from simple rule-
based agents to those using
cognitive architectures.

Again, we are in the mid-
dle, as the utility set-up is
not complex, however we
want some more detail at
the individual level. The
simplest of agents are re-
ally only useful for overall
aggregate prediction.

Table 5.1: The dimensions of our model.

5.2 Design

Several design methodologies have been developed for agent-oriented appli-

cations. Many elements are similar across methodologies. Most method-

ologies are developed for the engineering of “physical” (problem-solving or

decision-making) applications, which are characterised by open dynamic en-

vironments, heterogenous participants and common goals. An example is

the control of a manufacturing system, where a software agent could replace

a human controlling a machine, or an open auction system, where agents

make offers on behalf of a human.

The Gaia methodology (Wooldridge, 2000) is divided into analysis (the
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identification of roles, specifying interactions between agents) and design

(defining agents, services, and acquaintances). This was noted to be insuf-

ficient for open systems, and was soon extended by Juan et al. (2002) (as

ROADMAP) for this purpose. One of the shortcomings of Gaia for mod-

elling purposes is the lack of separate environment model: this information

can be found in the role definitions (Juan et al., 2002).

ROADMAP kept the analysis and design phases of Gaia, but added

more models to the analysis phase. Analysis now consists of use-case, envi-

ronment, knowledge, role, protocol and interaction models.

Gaia purposely did not include a requirements phase, assuming it was

independent of the analysis and design. However, ROADMAP does include

specific requirements models. Another methodology, Prometheus (Padgham

and Winikoff, 2004), which was developed for a particular architecture of

agents, provides some useful generic requirements models, such as system

goals and scenarios.

The previous methodologies impose some form of process. INGENIAS

(Pavón and Gómez-Sanz, 2003) does not, however it provides views of the

world, including models of agents, interactions, tasks/goals, organisations,

and the environment.

Some of the traditional AOSE methodologies have properties that make

them more suitable for MABS, for example, an emphasis on cooperation

and emergence. Bernon et al. (2005a) describe ADELFE, which was de-

veloped for adaptive multi-agent systems. The agents are considered to be

cooperative, and the emphasis is on how local interactions lead to a global

system. However, these methodologies still lack or have limited components

for culture, social-cognitive reasoning, values and norms, which are required

for fully-fledged MABS.

An effort has been made to create a compilation of several meta-models

currently in use that can be used as a reference point to achieve some form of

standardisation and maturity (Bernon et al., 2005b). The common models

were found to be agent (as defined in section 5.1), role (“an abstraction of

a portion of a social behaviour of an agent”), tasks (“a (set of) activity(ies)

that generates some effects”), and communication (based on messages and

following a protocol). Other important elements were environment, organi-

sation and social structure, cooperation, mental attitudes, and services.

Taking into account the different methodologies, we now move into the
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detailed design phase of the process. The key elements we will discuss include

the system goals, environment, acquaintances and social structure, roles, and

services and tasks. The internals of the agents are specified, including which

roles they play in the system, the services that they offer, and the tasks they

undertake. The acquaintances between the different agents are also defined.

5.2.1 System goals

The goals of the agents in the system are derived from the social needs of

humans. These include interacting with, and gaining the respect and esteem

of others. The system goals are therefore:

• establishing and maintaining (longterm) relationships with other peo-

ple;

• sharing experiences with other people, in the form of joint activity

participation, possibly within a group/club setting;

• sharing (giving and gaining) information with other people;

• learning individually about their local environment.

Levels of achievement are measured individually, e.g., everyone will have

some level of satisfaction. If they are not satisfied with their current situ-

ation, then they will try to change it. The same applies to how involved

people will be in the community: it is dependent upon their needs.

5.2.2 Environment

The environment has a link- or graph-based representation. The links

contain the distance between nodes. The nodes exist at a point in two-

dimensional space, and most (if not all) nodes contain a location, which is

a facility where (joint) activities can be undertaken. There is also the po-

tential ability to store available travel modes and associated travel times for

links.

There are several different types of location, and each type has a set

of attributes. The major distinction is between a private residence (home)

and a public location (out of home). As an example, the latter will have
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restricted opening hours. Categories of public locations include restau-

rants/cafés, cultural locations (e.g., museums, theatres), green space, and

sport centres/gyms.

5.2.3 Acquaintances and social structures

The population is divided into two groups: core and non-core. The individ-

uals in the core partition are located in the study area, i.e., output will be

generated for these individuals. However, not all of the acquaintances of the

core individuals live in the study area, but they still need to be present in the

model. They form the non-core population, who do not start interactions,

but do respond to them.

Each person has a set of acquaintances, which is defined by their social

network. Each social link between two people stores information that is

specific to that link: how long it has been since they last saw each other

and a similarity measure, which follows from the notion of homophily. Links

are undirected, meaning that friendships are mutual. Social links can also

contain the type of the relationship (e.g., family, work, friend).

The key concepts in a measure of similarity would be distance between

the two and the type of relationship. Age and gender could also be used, as

well as the time the pair have known each other and the relationship type.

The social structure of our model is similar to the CASE model proposed

by Zhang et al. (2008), however a difference is that our neighbourhood is

static.

Our acquaintance selection model is based on the similarity between two

people, the geographic distance between them, and their friends in common.

When considering proposing or participating in an activity, the agent’s time

availability, the opportunity costs, and the time since they last saw the

other agent are taken into account. Other concepts, such as the social credit

balance between the two agents and their satisfaction from their previous

encounter could also be included in future versions of the model.

5.2.4 Roles

Role models are used to define the roles present in the system, along with

their permissions and responsibilities. In this model, individuals play roles

only within interactions. Each activity has a host, who is responsible for
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starting a conversation and making a final decision, and one or more re-

spondents, who are invited to participate in an event by a host.

5.2.5 Services and tasks

The main task of an individual is to meet its goals discussed in section

5.2.1. They will do this by initiating and participating in discussions about

activities, as well as participating in the activity itself. Utility maximisation

is used to determine the preferred activity choices.

The key service is the evaluation of activities, which incorporates a num-

ber of subservices: deciding who to invite for an activity, evaluating propos-

als, undertaking activities, updating properties, and keeping a schedule. The

individuals in our model each have an agenda, and will interact and negoti-

ate with others to schedule social activities, in particular negotiating about

participants, time, and location. After participating in an activity, individ-

uals update their state depending on their satisfaction with the activity.

Individuals will also meet new people as a result of activity participation,

so another important service is the maintenance of a personal network. Just

as their activities are influenced by their social network, their network is

influenced by their activity participation.

As people participate in or discuss activities, they may visit or learn

about new locations. The individuals will also keep track of the locations

they are familiar with. They may share them with others, which is a form

of influence.

5.3 Implementation

Many packages for creating agent-based models currently exist. Some are

based on particular agent types and some are more flexible, in that the

modeller is allowed more freedom to create their own behaviours whilst

taking advantage of a general framework handling time management and

other aspects of the simulation. Many models are implemented without the

assistance of a modelling package (i.e., implemented directly in Java or C#)

as “many ABS tools and platforms make limiting assumptions regarding the

way that entities are modelled” (Davidsson et al., 2007).

NetLogo is a multi-agent programmable modelling environment1. Due

1http://ccl.northwestern.edu/netlogo/
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to its simplistic language, it has gained much popularity amongst non-

programmers and social scientists. The environment consists of agents,

which can be turtles (individuals or units), patches (cells in the environ-

ment), links (connections between turtles), and the observer (which oversees

all happenings in the world). Code can be written in NetLogo’s own lan-

guage to update turtles, patches and links. Although it is reasonably rich,

caters for social and spatial elements, is well documented, and is easy to

learn, the functionality is limited and as a result would be more suited to

an abstract model.

Repast (Repast Organization for Architecture and Development, 2008) is

an open-source agent-modelling toolkit. Models can be developed in Python,

Java or C#. A new version of the Repast toolkit, Simphony, was released

in November 2007. This release contains integration with R, a statistical

computing environment, and other programs, as well as a point-and-click

interface for model building, and the flexibility to create custom behaviours

in either Java or Groovy, a dynamic, script-like language that compiles to

Java bytecode. Visualisation tools are also included. Repast projects con-

sists of a number of agents with a catalogue of actions which are scheduled

for moments in time. The agents are located in space, which could be a

network or a grid.

Crooks (2007) provides a good overview of using an older version of

Repast for geospatial simulation. While Repast has advantages in the non-

content-specific parts of the simulation (e.g., providing a graphical user in-

terface (GUI) for users to interact with the model, providing graphing and

visualisation tools, permitting import and export of certain file formats),

there are also disadvantages in the overhead of having to learn the partic-

ular programming tool/language, it is difficult to reuse models (especially

those developed by someone else), and the required functionality may not

be present.

Although it is functionally richer than NetLogo, the high learning over-

head and lack of a local user community (at the time of development) was

a strong argument against using Repast. It was also unclear how to run

the different actions required in a timestep. The deciding factor was that

Repast had no built-in communication facility, meaning that we would have

to develop our own communication module in any case.

From the transport world, MATSim was an option, however was too
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large-scale and focussed more on trip generation and routing than what we

required. UrbanSim2 was similar:

UrbanSim was designed based on a micro-simulation approach

to modeling household choices of residential location, business

location choices, and real estate development and prices, and

the use of a dynamic, annual simulation of the evolution of cities

over time. (Borning et al., 2007)

Both these models are based more on the microsimulation side of the

scale, which could also limit our ability to incorporate more agent-oriented

behaviour.

As a result, the implementation was undertaken in Java. Python was

used for prototyping and to get an idea of how the model would operate,

however the runtime performance was reasonably slow.

In terms of “helper” applications, R, an open-source statistical program-

ming environment3, is useful for output analysis, and the JUNG library

(Java Universal Network/Graph Framework4, provides a lot of support for

networks, including structures, algorithms for analysis, and visualisation.

We now describe the model in detail, from the individual units to the

whole, concentrating on the agents, the interactions, and the overall model.

5.3.1 Agent

Utility-based agents are used as this allows the agents to evaluate the out-

comes of participating in different activities. This has advantages and disad-

vantages: from the point of view of the agent community, utility functions

are difficult to develop and tend to oversimplify the real-world processes

(Wooldridge, 2009), however as the aim is to create a model of a sample

population for a city, i.e., thousands of agents, the agent model needs to be

simple in order to be scalable. We will return to the agent architecture at

the end of this section after describing the utility function.

As mentioned in chapter 2, utility-based models are often used in the

transport community, therefore to be consistent with other travel demand

models a utility-based approach is required. However, transport models

2http://www.urbansim.org/
3http://www.r-project.org/
4http://jung.sourceforge.net/
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incorporating multiple days and activity history are few in number. The

most notable is Aurora (Joh et al., 2001), which assumed that the utility

functions are S-shaped. That is, monotonically increasing, meaning that

the need increases as time passes from the previous day the activity was

undertaken, and with a small gain at the beginning and end. Extending

from this work, Nijland et al. (2011) showed that an S-shaped function can

be used for certain activities, amongst them social visits.

A utility function (Equation 5.1) has been developed to take into account

the required issues – the host of the activity (i), type (a) of the activity,

location (l), day (d), time (y), the other person involved (j), duration (r),

whether it is a work day or not (wid), the work status of the host (wi) –,

essentially, what, where, when and who. On top of this, whether it is a work

day or not (wid) and the work status of the host (wi) are also taken into

account.

The utility function is as follows:

Ui(a, l, d, y, j) > r × u∗(d, wi, wid) (5.1)

Ui(a, l, d, y, j) = V ady
i + V al

i + V j
i − cost(l) + ǫst

i (5.2)

V ady
i = ft(α

ady
i , d − tai ) + ǫa

i + ǫy
i (5.3)

V al
i = ft(α

al′

i , d − tli) + ǫl
i (5.4)

V j
i = ft(sij , d − tji ) + ǫj

i (5.5)

ft(x, t) = (
2

1 + e−xt
) − 1 (5.6)

sij = Qg + Qa (5.7)

cost(l) = a + b × ln(tti(l)) (5.8)

Activities can have a type (a), chosen from sharing experiences, sharing

information, informal chatting, visiting each other, and other. The different

types can be used to determine who is suitable for a given activity. Activities

also have a location (l) with a type (home or out-of-home), which determine

the duration of the activity (r).

The threshold for the function (u∗) is based on duration and whether

the individual is working on the proposed day or not (Equation 5.1).

The components of the utility function Ui consider when an individual

last undertook an activity (Equation 5.3), visited a location (Equation 5.4),
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or saw someone (Equation 5.5). These values (tl, ta, tj) are combined with

the date of the proposed activity d to find the last time the particular event

happened. The utility increases over time (Equation 5.6), so that an ac-

tivity/location/person that an individual hasn’t seen/visited for a while is

more attractive than one seen/visited the previous day. The time of day (y)

is used only as a constraint, e.g., if an activity has already been scheduled

or if the individual is working.

The preferences for an activity with a particular type, day, and time

(αady
i ) and for a particular location (αl

i) are also inputs to the model. In

this instance of the model, we consider preferences to be unidimensional as a

simplification. It could be that preferences are dependent on the composition

of the group, for example, in terms of gender, cultural background, size of

the group etc.

For each pair of individuals i and j, a similarity measure (sij) was cal-

culated (Equation 5.7, taking into account age (Qa) and gender (Qg). The

travel time to the location (tti) is also taken into account (Equation 5.8),

based on the individual perception of the environment and distance, which

contributes to a travel cost (cost(l)). All travel is assumed to start and end

at the individuals’ home location.

The errors (ǫ) are normally distributed and are drawn at initialisation.

As a simplification, the relationship type is not currently used. This can

be easily added in the future, however more investigation is required into

the nature of activities between people with particular relationships.

This function forms part of the agent as a whole; the architecture is

shown in figure 5.2. The agent has percepts (e.g., invites) and actions (e.g.,

update own properties, participate in an activity). Percepts are processed,

potential actions are generated and evaluated, and an action occurs. The

agent also has a database containing information about their schedule, travel

and activity history, the social and spatial networks, and their preferences.

The utility function at this stage is the same for all agents and is known to

all agents.

5.3.2 Interaction

Interactions between agents are an important component of agent-based ap-

plications. The individuals in our model each have an agenda, and interact

and negotiate with others to schedule social activities, in particular negoti-
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Figure 5.2: The architecture of the agent.

ating about the nature of the activity, participants, time, and location.

This means that current methods of modelling decision processes in an

individual manner will need to be revised to take into account that many

decisions are made jointly. In some cases, joint activity decision making

within households has been investigated, however existing models do not

capture the actual mechanisms behind the decision making. Moreover, these

models focus on interactions within households and have not considered

personal social networks at large.

However, according to Mokhtarian et al. (2006), there are two triggers

for beginning an interaction:

“When one goes to a ball game with friends, is the activity so-

cial, or entertainment? The answer probably affects the activity

choice process, including the choice set of perceived alternatives:

if the primary motivation is social, one may first decide to get

together with friends, and then choose an activity around which

to organize the gathering, whereas if the primary motivation is

entertainment, one may first decide to attend the ball game and

then see who else is able to join.” (Mokhtarian et al., 2006)
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Therefore, both activities and acquaintances need to be evaluated to see

whether there is a need to be satisfied. In chapter 9, we explore different

protocols that cover both these cases, however for the remainder of this

chapter we discuss the protocol used as the base case, which is based on

choosing the person first.

Agent interactions have several components: the negotiation set (the

possible proposals), a protocol, strategies, and a rule to determine that the

interaction is complete (Wooldridge, 2002). Note that this is more encom-

passing than the choice model components described in chapter 2. The

alternatives and their attributes fall into the negotiation set. The inter-

action makes no mention of the decision maker, however their preferences

could fall into strategies, along with the decision rules.

For the negotiation set, we have developed a list of activity patterns,

including the activity purpose and location, as well as an indication of which

acquaintances are likely to be involved and when (e.g., interacting socially

with work colleagues is likely to be during the week, whereas visiting family

is mostly a weekend activity).

As mentioned earlier, Rindt et al. (2003) reports on the development

of a simulation kernel for agent-based activity microsimulation, in which

agents used a variant of the contract net protocol (Davis and Smith, 1981)

to organise activities. While the contract net protocol makes sense for task

allocation, it is not as suitable for activity generation and scheduling. Ac-

tivities do not necessarily have to be carried out once proposed: they can

be withdrawn or cancelled. Even when an activity has been generated, it

is not a case of allocating it to one person: it might be that two or more

people would be good companions for an activity. Unlike the dispatch centre

example, there is no requirement for the global optimisation of travel costs.

As a result, it does not appear to be a good starting point for developing

our negotiation protocol.

The protocols we use are based on those developed by Wainer et al.

(2007) for agreeing on a meeting time. As these protocols are concerned

with only one issue (time), elements from multi-issue negotiation need to be

incorporated. Fatima et al. (2006) explains three methods for dealing with

issues in multi-issue negotiation: all issues are discussed together (pack-

age deal), issues are discussed separately and independently of each other

(simultaneous), or issues are discussed one after the other (sequential). Al-
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though it has been shown that proposing complete deals at each step is

computationally more complex, it has advantages such as Pareto optimality

(Fatima et al., 2006). In our model, it is too difficult to decide issues inde-

pendently (for example, the activity may determine the time and location

or vice versa) and also determine in which order they should be discussed

(should we decide on the activity first? or who we want to see? or when we

are free?), therefore we use the package deal method.

Two individuals are involved in each interaction: a host, who starts the

interaction and makes the final decision, and a respondent. The host begins

by creating a list of people and a default activity (visiting at home, evening,

minimum duration). The host evaluates this same activity option but with

different people, and the person who forms part of the activity with the

highest utility that exceeds the threshold is selected as the respondent. If

no options exceed the threshold, the host does not start an interaction.

The protocol proceeds as follows:

1. Host proposes an activity.

2. The respondent then creates a list of the possible day/time combina-

tions and sends them to the host.

3. The host collates the day/times and creates a list of the intersection

of the suggestions.

4. The respondent determines what type of locations are appropriate

from the patterns provided. They then look up which locations they

know of that match those location types.

5. The host collates the locations and creates a list of the union of the

suggestions.

6. The host then creates a list of possible activities, taking into account

when agents are available and the locations they have suggested. The

list is returned to the respondent.

7. The respondent evaluates this list using a utility function and returns

the list with their preferences.

8. Using the Borda ranking method, the host determines the chosen op-

tion and notifies the respondent, who adds the activity to their sched-

ule. The host also adds the activity to their schedule.
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Torroni (2002) describes a process for determining termination of di-

alogues, however he focusses on open dialogues, whereas our dialogue is

predetermined. One useful technique is to create a state transition diagram

and show that the dialogue proceeds towards final states.

Looking at the properties proposed by Jennings et al. (2001):

• guaranteed success (agreement will be reached): yes, or an agreement

to disagree

• maximises social welfare

• Pareto efficient (no other outcome that will make someone happier

without reducing someone else’s happiness): depends on the ranking

algorithm used

• individual rationality (best interests to play by the rules)

• stability (e.g., Nash equilibrium)

• simplicity

• distribution (no single point of failure)

Quenum et al. (2006) proposes the following:

• Liveness: “For every role of a protocol, events will always occur and

fire some transition until the concerned role enters a terminal state.”

• Safety: messages are received and handled by one or more roles; each

action is triggered by an unambiguous set of events

• Termination of each role

The protocol satisfies a number of basic properties, such as termination,

liveness, and safety. The protocol contains no loops and is completed in a

constant number of rounds. All messages are sent from one role to another

(either from host to respondent or vice versa) and the messages are unam-

biguous regarding the next step. Both roles proceed towards termination

states, either when an activity has been scheduled, when a respondent can-

not suggest any suitable days or does not approve of the activities suggested,

or all parties cannot agree on options to negotiate about.
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We further assume that interactions and activities are undertaken be-

tween two agents, who are connected to each other in the social network.

This means that the social and location networks do not change (as new

connections are not being made), therefore the centrality calculations do

not change. However, the protocol can be used for larger groups of people.

5.3.3 Model overview

Finally, we turn to the model as a whole. The model consists of seven

modules: input, simulation, environment, population, schedule, output, and

util. Within the population module, a communication module is located.

The package structure and the flow of control is shown in figure 5.3.

Figure 5.3: An overview of the packages.

Input

Several input files are required for the model to run:

• The synthesis file simply lists the names of all the input files for a

particular scenario.

• The similarity file contains the values for λa and λg.

• The alpha location file contains the values for αl.

• The alpha day/time file contains the values for αdy.
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• The duration file contains the durations for each location type.

• The threshold file contains the threshold values for each work day and

type.

• The error file contains the error values.

• The travel file contains the travel cost values.

• The beta file contains the values of the beta parameters.

• The node file contains a list of postcodes with x- and y-coordinates.

• The link file contains a list of node IDs signifying a link between two

nodes.

• The location file contains a list of locations, including their name, type,

node location, and opening hours. A second file with the same format

provides the list of home locations.

• The people file contains a list of individuals and their socio-demographic

values. Although several values are included, only age, gender, and

work status are actively used. Two files of this type are input: one

containing the core population and one containing the non-core pop-

ulation.

• The alts file contains a list of the links between two people.

• The “my locations” file contains a list of the locations each individual

knows of at the beginning of a run.

These files are produced in CSV format for ease of generation. At this

current stage, it is easier to separate the different elements of a scenario into

different files for the extensive sensitivity testing, meaning only a small file

has to be changed for each run. However in the future it will be easier to

generate a larger file, most probably in XML format, with all the details for

a particular scenario. The detailed column lists are provided in appendix A.

Simulation

The simulation runs as follows:
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1. Initialise:

(a) Read parameters from file

(b) Initialise environment

(c) Initialise population and social network

2. For each day:

(a) For each person:

i. Determine if they want to start an interaction on that day

ii. If so, start interaction

iii. If interaction completes successfully, possibly schedule activ-

ity

(b) For each time of day

i. Find activities to execute in the global schedule

ii. For each activity:

A. Each participant updates self: visited location today, un-

dertaken activity today, travel

B. Each link updates self: last seen today, travel

3. Print outputs

The order of execution of the people in step 2(a) is randomised.

Environment

The global network shall be stored as a network, with location details for

some of the nodes.

The level of detail of the environment is intended to be at city level,

i.e., it should contain main streets and locations for a particular city, as

well as include links to neighbouring towns to take into account day trips.

Each link will have a distance and possibly certain modes associated with

it. Each mode will have an associated cost per kilometre, which will be used

to calculate travel costs, and an indication of speed per kilometre plus an

error term, which will be used to calculate the length of trips.

The locations will contain some properties that are global to the system,

such as opening times and name. Individuals will have a separate object
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which stores their personal information about a location that they know

about, such as the distance from their home, their preferred mode, and

their error value for that location. Preferences and quality attributes can

also be included here in future development iterations.

Population

The population module stores the agents, the social network and the com-

munication module. Figure 5.4 shows an overview of the Population module.

The population is divided into core and non-core individuals, who are con-

nected by links (shown as arrows).

Figure 5.4: The architecture of the social network and interactions.

The population and social network objects are initialised from input

files. These files contain details for each individual and alter. Individual

attributes, such as age, gender and work status, are stored within each
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individual.

A social network stores all the relationships between modelled individ-

uals. Attributes that are common to both individuals, such as when they

last saw each other and their similarity, are stored in this network. Like

with locations, individuals also keep a record of their alters with personal

information, such as error values.

In this version of the model, the social network is not dynamic, meaning

that links between people do not change over time.

Communication

The population subsystem also handles the communication between agents.

Each agent has a message queue, which they process in a first-in, first-out

manner.

Messages have a sender and a receiver. In this implementation they are

one-to-one only, however one-to-many messages are possible. Each message

belongs to a conversation, which has a unique ID. When a message is sent,

it is placed in the queue of the receiving agent.

One conversation will be executed at a time to avoid time clashes. Within

each simulation time step t, there will be an interaction n, which consists

of steps S. At each step s, the agents in the conversation will check their

message queues. This may not be 100% realistic (as in reality two conversa-

tions with completely distinct groups of people can occur at once), however

it is feasible to imagine that one would not have two conversations at once.

There is no concept of real time or deadlines.

An interaction protocol consists of a Protocol object, which specifies the

possible messages, and a Behaviour object, which specifies the behaviours on

receipt of messages. At this stage, all individuals have the same behaviour,

however this can be altered in future versions. Another future extension is

the inclusion of influence between people, such as sharing information about

good locations (e.g., the café on the main street is good) and transport

options (e.g., parking at the local shopping centre is limited).

Schedule

The schedule stores the activities for each person, as well as all the activities

in the system.
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Each day is divided into four parts: morning, afternoon, evening and

night. No activities take place at night. Initial prototypes ignored time

altogether, however dividing the day into hours is too detailed.

An assumption was made that people working full time would be occu-

pied during both the morning and afternoon, and those working part time

would be occupied during one (or both) of these time periods. This hard

constraint was relaxed after calibration, as it is not entirely certain that

someone working full time would work 9 to 5. Each person is designated as

being in full- or part-time work or not working at all from the input files.

Output

At this stage, five outputs files are produced:

• The personal output file contains data relating to each individual, such

as their sociodemograpic details, values for the β parameters, the to-

tal number of activities as well as by type and location, their social

network measurements (centrality and clustering), and how many lo-

cations they know of.

• The pair output file contains data relating to each link or pair of in-

dividuals, such as their ages and genders, their similarity value, the

distance between their two home locations, the total amount of activi-

ties undertaken together and the amount of travel undertaken by each

for those joint activities.

• The conversation output file contains details for each conversation,

including the host agent, the number of messages exchanged, and the

outcome of the conversation.

• The schedule output file contains a list of each activity undertaken by

each individual, including details of the activity itself (day, time, loca-

tion, type), the distance from home, and the times since the location

and location type were visited, the activity type was undertaken, and

the participant was last seen.

• The activity output file contains details for each activity, including the

day, day type, time, time type, duration, type, location, location type,

host, and participants.
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These files are produced in CSV format for ease of analysis in R and

Excel. The detailed column lists are provided in appendix A.

Util

The util module contains objects that do not fit anywhere else, such as

sorting objects.

5.4 Testing

The code was tested using unit tests. This involves testing the individual

code components, such as objects and methods, by providing input and

ensuring that the unit works as expected on its own. In Java, this can be

undertaken with JUnit5.

For example, the input objects were tested using a sample input file.

The resulting object, which should contain the same parameters as in the

input file, was then examined to ensure that this indeed was the case.

However, testing becomes more complicated when the agent behaviour

needs to be tested. This is covered in the next chapter.

5.5 Discussion

In this chapter, a design has been presented for the conceptual model. Al-

though there is no specific mature design methodology for agent-based mod-

els, AOSE methodologies can be used to design and describe the system.

In order to summarise the agentness of the model, we refer to Gilbert

(2008)’s classification of agent-based models: perception, performance, pol-

icy, and memory.

• Perception: the individuals can detect incoming requests and has some

knowledge of the sender;

• Performance: the individuals are capable of evaluating requests;

• Policy: the individuals attempt to select activities that suit them, by

using an utility function to evaluate activities;

5http://www.junit.org/.
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• Memory: the individuals are aware of the environment and also how

long ago it is that they saw someone, visited a location, undertook a

particular activity and so on.

As mentioned in chapter 2, decision making in transport models has been

predominantly individual. With the addition of an interaction protocol, a

feature of agent-based models, it is possible to model interpersonal influ-

ences. The proposed protocol is not wholly cooperative, in that there is one

agent (the host) who “runs” the negotiation and makes the final decision,

however it is clear that the preferences of the participants are taken into

account when making the final decision.

Given our assumption that history plays a strong role in planning social

activities, and the nature of joint activities requiring some form of interaction

between individuals, agent-based modelling is an appropriate methodology.

One area of agent-based modelling that has not been explored thoroughly

is validation. However, in order for a model to be used in the real world,

calibration and validation is necessary, and is expected from a model of a

transport system. Our next step is to demonstrate how this model can be

verified, calibrated and validated.
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Chapter 6

Validation

Models of travel demand are becoming more disaggregate and behaviour-

driven. As a result, agent-based modelling is gaining popularity and has

been used for, amongst other applications, modelling pedestrian behaviour

(Haklay et al., 2001) and route choice behaviour (Bush, 2001; matsim.org,

2007). This shift from single-facet aggregate models to multi-faceted disag-

gregate models involves a substantial increase in complexity, which in turn

has major implications for the estimation and validation of these models.

The problem of estimation and validation of multi-agent models tends to be

more complicated. A model such as Feathers (Bellemans et al., 2010), for

example, assumes that individuals have context-dependent aspiration levels

and learn.

The aim of validation is to describe what the model is capable of do-

ing, and then the user can determine whether it is suitable for its purpose

(Amblard et al., 2007). Empirical validation has traditionally been dom-

inant in transport modelling, where model outputs are compared to data

collected from real systems. However, these statistical techniques are not

always applicable to agent-based models due to lack of data and possible

chaotic/non-linear behaviour in the system (Klügl, 2008). Despite this, sev-

eral methodologies have been proposed, which include a combination of face

and empirical validation tests. The processes within the model are also

inspected as well as the model outputs.

This chapter focusses on the theory behind verification, calibration and

validation that is useful for agent-based models of travel behaviour and

social networks. Verification is discussed only briefly, and as calibration is

83



84 CHAPTER 6. VALIDATION

the focus of the following chapter, this chapter is mainly concerned with

validation. Firstly, the different terms are defined, following by a review of

validation in agent-based modelling and activity-travel modelling. Secondly,

a suggested validation process is presented, which then forms the backbone

for the following chapters.

6.1 Definition of terms

Modellers often plunge into the difficulty of setting up a set of

rules and building a model. Yet the process of validation requires

a clear view of what the model is attempting to explain and for

what purpose. What are the key facts that the model needs to

explain and how well must it do it? (Ormerod and Rosewell,

2006)

Validation is an important part of the modelling process and cannot be

ignored until after the model has been developed. It differs from model ver-

ification in that verification is about checking that the model has been built

correctly following a specification, whereas validation deals with whether

the right model has been built.

There is a difference between calibration and estimation following Ortúzar

and Willumsen (1994). Calibration is the selection of parameters with non-

null values to optimise a goodness-of-fit measure, which is a function of the

observed data. Estimation is determining which values make the observed

data more likely, and therefore which parameters are necessary.

Crooks et al. (2008) defines validation as the extent of the goodness of fit

to data collected from the real world. Calibration is where the model is “fine-

tuned” to a particular context, which involves determining the parameter

values.

Gilbert (2004) explains that validation is often considered to be only

about comparing outputs to observed data at the expense of being able to

use the model to increase understanding of a system or, as is generally seen in

the transport field, to experiment with policy changes. This latter criterion

is just as important. Validation is not concerned with showing whether the

model is useful, but how (Louie and Carley, 2008).

Carley (1996) states that “the level of validation chosen depends on the

model’s purpose”, therefore the purpose of the model will often lead to
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the amount of validation possible. From the other point of view, the data

available could also determine the possible validity.

6.2 Validation issues and concepts in agent-based

modelling

Agent-based models “consist of a system of agents and the relationships be-

tween them” (Bonabeau, 2002). The agents perceive their environment and

other agents, make decisions following some rules, and act, possibly changing

the environment in the process. Agents can also evolve over time, learning

about their past experiences. Modelling at such a low level is sometimes

more natural than attempting to, for example, create flow equations.

These components mean that the model can become very complex very

quickly and as a result, validation of agent-based models is not a simple

task. Making small changes at the micro-level, for example to the decision

rules or interactions between agents, could produce very different results at

the aggregate level. As a result, it becomes necessary to validate at both

the macro/aggregate and micro/disaggregate level and both are difficult, if

not impossible (Gilbert, 2004). Batty et al. (2004) note that as we move

to richer and more detailed model structures, that they cannot be wholly

validated.

Klügl (2008) lists several problems with agent-based models that may

hinder validation:

• it is not as easy to collect descriptive values at the individual level for

comparison to data as it is at the aggregate level;

• nor is it easy to collect the real-world data for comparison at the

individual level;

• methods for validating the dynamics of an agent-based model are un-

derdeveloped;

• models may exhibit chaotic behaviour as a result of feedback and non-

linearity in the system, which is difficult to validate;

• the time and other resources required to obtain the necessary model

outputs should not be underestimated; and
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Types of valid-
ity

Behavioral v. Structural v. Both

Face v. illustration Understanding training

Statistical v. regression-like
forecast

Prediction what-if fore-
cast

Both more reliable
forecast

more reliable
prediction

strategic ad-
vice

Table 6.1: Relation between type of validity and simulation objective (Klügl,
2008)

• too many parameters used with an automated optimising calibration

should be able to fit the data in some way, so it is not possible to reject

the model.

6.2.1 Types of validation

Troitzsch (2004) defines three types of validity following Zeigler:

• replicative: matches data already collected;

• predictive: matches data before they are collected;

• structural: matches data and the processes of the real system.

This was further elaborated by Klügl (2008), who proposed the following

categories in two dimensions:

• the approach: face (human-observable tests) vs. empirical (statistical

tests);

• the observed element: behavioural (studying the input and output of

the model; encompasses replicative and predictive validity) vs. struc-

tural (the relations and reasoning in the model)

Returning to the idea of how a model is useful, she notes that both

informal and formal validation techniques are required, and that different

tests are needed for different purposes (see Table 1).
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6.2.2 Validation processes

Klügl (2008) describes a process for validating agent-based models, begin-

ning with face validation, in particular animations, assessing output, and

tracking single agents. Once this is satisfactory, sensitivity analysis should

be undertaken. Parameters should then be calibrated, and after this stage,

statistical validation can be completed. In the final step, all data should be

used to thoroughly test the model.

Barlas (1996) presents process validation, which is focussed on structural

validity. There are several types of tests described:

• direct structure tests: the structure of the model is compared with

knowledge about the real system structure. Tests include compar-

ing with information gathered from the system being modelled (qual-

itative and quantitative) and from theory, comparing equations with

knowledge, and extreme value testing on individual equations with a

comparison with the real world.

• structure-oriented behaviour tests: the structure is indirectly tested

by looking at behaviour. Tests include extreme condition testing (is

the real world also sensitive to the same parameters?), relationships

between variables (phases), and modified testing (if a real system can

be modified in some way and data collected, does the model change in

the same way?).

• behaviour pattern tests: moving on from the structure, are the outputs

sensible? In particular, patterns (periods, frequencies, trends etc.)

are more important than replicating data points. This can be done

statistically (means, variances etc.) or visually.

Both processes comply with Gilbert’s recommendation to validate at

several levels.

6.3 Validation of activity-based models

Activity-based models differ from previous transport modelling approaches

by “modelling relationships between individuals, households, and cities”

(Buliung and Kanaroglou, 2007), which is not dissimilar to our definition
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of an agent-based model. Instead of only modelling the trips or trip-chains

(tours), the activities of individuals are modelled and the travel derived from

the activity-chain. This implies that a disaggregate approach is required in

order to model individual behaviour and the associated spatial and temporal

constraints.

Several models have been developed and are at various levels of maturity.

The structure of models varies: some are based on utility maximisation and

optimisation of daily schedules (e.g., PCATS), while some are rule-based

(e.g., ALBATROSS).

These models are built for predictive purposes. In comparison to earlier

transport modelling approaches, activity-based models are considered to be

more behavioural and are therefore more transferable to different regions

(Pendyala et al., 2004), however the focus has been on predictive valid-

ity and empirical comparison to data. Kurth et al. (2006) recognise that

the separate components of an activity-based model (e.g., tour-level mode

choice, tour-level mode choice, tour-level time-of-day choice, trip-level time-

of-day choice) require testing. Sensitivity is also considered as important,

however is more of a reasonableness test. Two overall sensitivity tests have

been proposed in Kurth et al. (2006): comparing temporal outputs to a

calibrated four-step model, and policy-oriented tests. Kurth et al. (2006)

propose changes to the spatial environment only (e.g., different development

densities, urban spread), whereas (Pendyala and Bhat, 2006) also mention

that socio-demographic changes and pricing policies should be explored.

Buliung and Kanaroglou (2007) state that validation of activity-travel

models is usually aggregate and consists of residual analyses. They point

out that PCATS takes an average result over several runs and compares

predicted and observed means for several activity-travel indicators, which is

an accepted practice for validation of agent-based models.

Pendyala et al. (2004) used data from the 1999 Southeast Florida House-

hold Travel Survey to validate the PCATS model. They presented mean

comparisons of model outputs and observed data for the following variables:

• average daily trip rates (worker, student, other);

• average daily fixed and flexible activities (worker, student, other);

• first home departure time and final home arrival time (worker, student,

other);
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• modal split (single occupancy vehicle (SOV), HOV driver, HOV pas-

senger, transit, other) to fixed and flexible activities.

Pinjari et al. (2007) describe the validation techniques used for CEM-

DAP, an activity-based model based on discrete choice. Activity diaries

containing information about the type of activity, location, start time, end

time, and transport mode were used. The measurements used were percent-

age shares (for discrete choices) and distributions (for continuous choices).

Pattern-, tour- and trip-level characteristics are investigated. Comparison

with the four-step model is also undertaken.

A type of sensitivity analysis was also carried out, in that several scenar-

ios were tested: an increase in in-vehicle travel time, increase in costs, and

increase in population. The outputs discussed (at pattern level) were the

number of worker tours and stops, work start and end times, trip chaining,

and average daily duration of activities.

The first round of validation for ALBATROSS used data from an activity-

travel survey carried out in the Rotterdam region in 1997. The data in-

cluded, for each activity, the purpose, the start and end time, the location,

the mode used and travel time, and if others were involved in the activity.

The outputs of the model that were compared were the mode for work, ac-

tivity with whom, activity duration, start time, trip-chaining, and activity

locations.

The re-estimation of ALBATROSS looks at the model components sep-

arately. At the tree-level, goodness-of-fit, chi-square (discrete) and F-stat

(continuous) tests are undertaken. Predicted activity-travel patterns are

compared with observed using string alignment techniques at the disaggre-

gate level. At the aggregate level, several model outputs, such as number

of work/secondary fixed/flexible activities, tours, activities in tour mode,

activity type, mode of first link, activity duration, travel party, trip chain-

ing, distance, and work duration are compared to observed data using chi-

square/frequency differences and t-test/mean differences.

The calibration and validation of TRANSIMS for a small corridor net-

work in an urban area was demonstrated in Park and Kwak (2011). The

outputs to be evaluated were the travel times for two road sections and

the vehicle count. A Latin Hypercube Design sampling approach was used

to generate 200 parameter sets for testing, which were each run with five

different seeds. The “best” set was chosen and is evaluated for stochastic
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variance. Finally, an alternative origin-destination matrix is used to test if

the parameters perform adequately with unseen data.

This brief summary of validation attempts of activity-based model shows

that although the model are more complex than trip and tour-based models,

the principles of validation have not fundamentally changed. The reason is

that the activity-based models described in this section restrict themselves

to modelling variables based on observed data. They do not include more

abstract behavioural concepts or principles and they are not dynamic and

except for ALBATROSS, they are founded on full behavioural outcomes as

opposed to an assumed underlying process that leads to emerging aggregate

patterns. In that sense, validation of the majority of activity-based model

implies a test of goodness-of-fit, and not a validation of the underlying be-

havioural process. However, the latest generation of dynamic activity-based

models focus on social networks, aspiration, dynamic choice sets and similar

concepts. For the reasons discussed, existing validation protocols may not

be sufficient and not be applicable to these kinds of models.

6.4 Related verification/validation work

Looking back at the existing models of social and travel behaviour reviewed

in chapter 3, very few have described how their model was verified or vali-

dated. As shown in Hackney and Marchal (2009), sensitivity analysis can be

undertaken. Four types of inputs were varied: the starting social network

(none, a random graph, and a random graph with addition and deletion

of links), social interactions (none or sharing one location with a friend per

time step), utility function, and replanning (varying proportions of changing

route, changing activity time, changing locations based on agent knowledge

or the whole environment). The outputs described in detail are:

• the number of people travelling at a particular time of day;

• the degree distribution of the social network; and

• the distance between home locations of connected pairs.

They also collect overall values for average trip distances, average trip

duration, and the number of clusters and components in the social network.

This shows an overlap between the outputs generated for activity-travel
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and transport models and social network models. By generating aggregate

characteristics of social networks about which data are available as part of

a sensitivity analysis, the changes induced by changing parameters can be

checked to see if they are consistent with behavioural assumptions, which

can be derived from theory, statistical analyses or even qualitative research.

6.5 Process

In case of complex agent-based model, process validation is arguably just as

critical as outcome validation and sensitivity analysis. The following set of

approaches may be used for that purpose.

6.5.1 Conceptual model validation

Recall from chapter 4 that the validation of the conceptual model is defined

as “determining that (1) the theories and assumptions underlying the con-

ceptual model are correct and (2) the model’s representation of the problem

entity and the model’s structure, logic, and mathematical and causal rela-

tionships are “reasonable” for the intended purpose of the model” (Sargent,

2005).

This can be undertaken in the form of formal reviews by colleagues

and stakeholders, and, in academic circles, informal feedback from other

researchers. Tracing through the model specification on paper is also useful.

6.5.2 Direct structure tests

Structural validity is required if we want to say anything about the explana-

tory nature of the model, as output-only validity is only useful for prediction.

We should be looking for “agent reasoning” and “causal relationships be-

tween variables” (Klügl, 2008).

If the structure of the model more closely reflects the real system, then

if the real system changes then the model should be able to adapt. McNally

(2000) noted a limitation of the four-step model in that it had “inadequate

specification of interrelationships between travel and activity participation

and scheduling” and therefore could not handle changes in, e.g., work hours,

peak hours.
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The equations and processes can be checked against the literature (theo-

retical structure). The equations can also be checked individually to ensure

they perform as intended. For example, does the utility function capture

time-of-day preferences? Processes, such as interaction protocols developed

to make agreements, can also be tested individually. Again, in simple mod-

els, the behaviour of the model can be proven analytically. However, in com-

plex model, emerging patterns and system response cannot be analytically

derived. This is the very reason that in the agent-based research community

often numerical simulation is used not only to illustrate the workings of the

model, but also to examine alternative trajectories.

6.5.3 Face validation

The three techniques advised for face validation by Klügl (2008) are in-

specting animations of the model, looking at the output of the model, and

looking through the eyes of one agent in the model (immersion). (Gilbert,

2004) notes that face validity may be the only option available to micro-level

validation in the absence of data on how individuals make decisions.

We can observe the dynamics of the social network over time, looking at

the links created and deleted. However, social network dynamics are difficult

to validate as the data collected is only a snapshot and also the time range

of our model is too short-term to require explicit modelling of events that

could change a social network such as marriage, children, and commencing

a new job or at a new university.

The best approach for the social network is to check that it looks like

a social network based on the theory regarding social network properties.

As an example, Hamill and Gilbert (2009) mention properties such as low

whole network density, personal networks with limited size and different

sizes, fat-tailed distribution of connectivity, assortativity on degree (i.e.,

many links connect to others with many links), high clustering/homophily,

communities, and short path lengths.

Another possibility is to use the methods described in the exponential

random graph (e.g., Robins et al. (2007)) and dynamic network literature

(e.g., Snijders et al. (2010)). This uses statistical methods to look for pat-

terns in networks, such as the number of triads in the network, in order to

compare to real-world networks. However, both of these may need to be

adapted to work with personal or non-complete networks.
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We are interested in the change and correlation in location knowledge

and whether this is affected in some way, however we have no data regarding

this. Theory on influence and rumour-spreading can be used to check if the

information exchange is reasonable.

6.5.4 Structure-oriented behaviour

The main technique used in structure-oriented behavioural testing is sensi-

tivity analysis, by which we want to determine the effects of different pa-

rameter values and inputs. It can be undertaken before calibration, in order

to determine if any parameters are insignificant enough to be removed, or

afterwards, in order to explore the effects of policy changes.

A first step is to test the seed variability by varying the seeds. A number

of runs will be undertaken (around 50) with the same parameters. This will

work best with the outputs that provide a single value for a run, such as

total/average activities and total/average travel.

Sensitivity analysis can take the form of either altering parameters given

a “base scenario” (i.e., changing single inputs) or providing different scenar-

ios (e.g., increase in car ownership). For our model, different parameters,

such as thresholds for utility functions and input matrices, can be altered

to see the effects. Extreme values or bounds are also of interest.

Kleijnen (1995) notes that Design of Experiments, in which the inputs

to the experiment (or in this case, model) are methodically varied and the

outputs investigated, is commonly used for sensitivity testing, but often

in an inferior manner: only one parameter is changed at a time. Ideally

interactions between parameters are also required, however this is time-

consuming. We are looking for the influences of parameters on outputs, for

example in the form of elasticity coefficients (e.g., a change of x% is observed

for a particular output when an input is changed by y%) (Chattoe et al.,

2000).

The latter option of changing scenarios can also be used. As with other

transport models, the environment can be altered. For models that include

a social network component, the initial network can also be altered, along

with the strategies for individuals in terms of decision making.
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6.5.5 Behavioural pattern tests

For this stage, we are looking to match patterns found in the observed data.

This is a form of statistical analysis as defined by Klügl (2008).

Calibration

Calibration involves finding the parameter values that produce appropriate

outputs. One method of doing this is to create a model population based on

the surveyed population and taking a two-day sample from the model of their

behaviour. The modelled aggregate behaviour can then be measured against

the actual aggregate behaviour. We will need to use statistical measures that

are parameter-sensitive.

Traditional forms of calibration used in transport modelling (e.g., log-

likelihood) may not be as appropriate for agent-based models because of

the non-linearity in the system and the need to investigate several levels of

complexity. In addition to this, Fagiolo et al. (2006) note that the struc-

tural content of agent-based models, particularly in the context of economic

modelling, require a different approach to analysis, and therefore a different

approach to empirical validation.

One approach to calibration can be undertaken with various samples

(train-and-test). A possibility is to use the technique of k-fold cross vali-

dation, where k is generally 10 (Kohavi, 1995). The dataset is split into

ten parts, and then trained on nine parts and tested on the remaining part.

This is repeated ten times.

Patterns

For the two-day sample, we can also match against frequencies of activities

on particular days. A possible list of outputs could include:

• number of activities (per person, per location, per day of week)

• frequency/interval of activities (per person, per location, per type)

• distribution of activity group sizes/types of groups

• amount of travel

• social network properties: network density, size of personal networks,

clustering, path lengths



CHAPTER 6. VALIDATION 95

An indication of frequencies for particular activities could be useful in

place of a detailed activity diary. In this manner, the activity generation for

locations types could be validated, however the distances travelled could be

modelled incorrectly.

External validation

In order to test the model more thoroughly on previously unseen data, a

general activity data set can be used, especially if it contains group size and

the type of group (e.g., household, non-household).

6.6 Discussion

Transport modellers are building models that are more concerned with mod-

elling individual and dynamic behaviours than previously. This necessitates

a shift in the modelling approach to individual- and agent-based models,

which has implications for estimation and validation, due to both the com-

plexity of the model and the data available.

This chapter has investigated validation methods for agent-based mod-

els in the activity-travel context, in particular focussing on models incor-

porating joint social activities. The principles of validation are similar for

traditional, agent-based, and transport-specific simulations, however the vo-

cabulary differs slightly.

A suggested validation process was presented. Although our process

is tailored to our model, the steps may be appropriate for other individual-

based activity-travel models. It covers several different validation techniques

which will provide more insight into the usefulness and appropriateness of

the model. Readers will note that many elements of the approaches are not

very different from validation of simple non-agent-based models. However,

as only particular empirical validation is possible the approach also includes

some non-conventional elements.

As also noted by Gilbert, it is important to validate agent-based models

at different levels, both individual level and aggregate level. However, this

may be difficult, especially at the disaggregate level either because no data

are available or because the model uses abstract behavioural concepts. In

our case, we have data from the real world at an individual level, but we

do not have information about how people made a particular decision to
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meet with a certain group of people or undertake a particular activity, nor

do we have information about individuals long-term plans. Different data

collections are necessary to provide adequate data for validation of both

the activities and social processes. On the other hand, the fact that agent-

based models tend to generate emerging aggregate patterns from individual

behavioural principles as opposed to using aggregate input offers validation

potential.

In general, the type and amount of validation required depends on the

aims of the model, the model setup, the data available, and the level of

confidence/validation/accuracy desired, which should be determined before

model development begins. In the following chapters, the data available is

discussed along with calibration and a demonstration of some of the valida-

tion techniques mentioned.



Chapter 7

Data and calibration

A model that is intended to be applied to the real world requires some sort

of estimation or calibration as part of the validation process.

Most models in transport are data-driven, meaning that a lot of data

is to be collected for testing and demonstrating that the model is working

as expected and that only items and attributes for which data can be col-

lected are included in the model. However, this means calibration limits

and influences the model development (Windrum et al., 2007). Working

with data that is not as specific means the model is not tied to a particular

data collection tool or questionnaire and could be more easily adapted.

In this chapter, the data available for our model is explained, and the

generation of input networks is demonstrated. The calibration process is

discussed, along with a demonstration of model verification, in particular

looking at the internal consistency and a model walkthrough.

7.1 Data

Various datasets were used in determining parameters and expected outputs

for the model. As mentioned, the model is not data-driven. This means it

is more theoretically valid than empirically valid, but is also not tied to one

particular data collection.

7.1.1 Social interactions

For the social interactions, a data set was used that was collected in 2008 in

the Eindhoven region (van den Berg et al., 2008). The idea behind this data

97



98 CHAPTER 7. DATA AND CALIBRATION

collection was to examine the relationship between the built environment,

ICT use, and social networks and travel. As such, the survey asked questions

about all social interactions over a two day period, including those via phone,

email and SMS, but excluding those with a household member or about

work-related issues.

747 respondents completed the initial activity diary-style survey, which

contained three parts:

• an interaction diary, asking about the purpose of the interaction, the

location, the start and end time, whether it was prearranged, routine,

or coincidental;

• details about each person interacted with, such as age, gender, the

type of relationship, and how far they live from each other; and

• details about the respondent, such as age, gender, work status, and

their use of travel modes and ICT tools.

For our purposes, the whole survey could not be used, as we were inter-

ested in face-to-face activities only. The data was filtered to include only

those living in the Eindhoven area (postcodes 5600 AA - 5659 ZZ), only

those interactions with people of a certain social category (see section 7.2.1

for details), and interactions that were prearranged or routine. This left

521 valid respondents who undertook 530 valid activities (with 4732 valid

alters).

This dataset provided the output targets or expected values. The alpha

parameters (the preferences for an activity with a particular type, day, and

time (αady
i ) and for a particular location (αl

i)) were initially set based on

data collected from this survey, but were adjusted to reflect the outputs.

The categories in the data were reassigned as shown in tables 7.1 and

7.2. Note we originally had categories for shop and cafe, however due to the

low number of activities at these locations in the data, those activities were

transferred to the “other” category. These categories still exist in the model

implementation.

7.1.2 Activity types

As a starting point for developing a classification of activity types, existing

classifications were investigated. Most had a specific purpose in mind, and
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Code English description Our category

1 doing an activity together experience

2 visit someone visiting

3 receive a visit visiting

4 talking chatting

5 quick question info

6 make an appointment info

7 give information/advice info

8 receive information/advice info

9 discussion info

10 other other

Table 7.1: The activity type recoding.

Code English description Our category

1 home home

2 someone else’s home home

3 work other

4 school other

5 shop shop/other

6 cafe/restaurant cafe/other

7 on the way other

8 other other

Table 7.2: The location type recoding.

only considered a subset of the activities we are interested in (sometimes

along with other activities outside our scope). We needed to consider a

combination of these lists.

Kemperman and Timmermans (2008) provided a list of social/leisure

activities for looking at the connection between activity participation and

urban environment. Their list was the starting point for our list, as it in-

cluded social visits (hosting friends, relatives), time-out activities, commu-

nity/club activities, cultural activities (cinema, museum, concert), visiting

restaurant/cafe, disco, recreational activities outside and inside and tour-

ing. They also differentiated between in-home and out-of-home activities.

However, this list is not focussed on joint activities and omits some of the

activities we are interested in.
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Tinsley and Eldredge (1995) created a clustering of leisure activities

based on which psychological needs they satisfied. This is useful as it goes

back to why people do activities in the first place. Their clustering has been

used as a check to ensure no cluster is completely ignored in our classifica-

tion.

Mokhtarian et al. (2006) were interested in the effect of ICT on activ-

ities. They found it difficult to categorise activities, however looked at a

time/location dependent/independent split. Activities that are location-

independent could possibly be replaced by an activity using ICT, whereas

location-dependent activities are less likely to be replaced.

Ettema et al. (2007) suggested a purpose that is not covered by the other

literature: help and support. These are activities that “involve a physical

activity implying that a person spends time for the benefit of someone else.”

(Ettema et al., 2007).

Bhat and Lockwood (2004) looked at physically active and passive modes

and activities. This is an interesting distinction not picked up by others, and

is another way of looking at activities.

From these classifications it is clear that there are many ways of looking

at activities. Some rely more on locational attributes, i.e., where the activity

is taking place, to determine the type, while others rely more on the pur-

pose or needs fulfilled by the activity. The former is easier to deduce from

existing data collections, whilst the latter requires respondents to consider

and communicate why they are undertaking a particular activity. In moving

on from a solely “where” approach, the purpose of the activity will become

important. Having said that, it adds more complexity to the data collection

and more recall of whether an activity was undertaken for, e.g., social or

experiential purposes.

In this project, both location and activity types were used, in order to

provide flexibility with classification. However, the counts for some combi-

nations differed greatly (e.g., visiting activities tended to take place at home

locations, experience activities at out-of-home locations). This means that

a combined activity-location type could reduce the number of parameter

values needed in the model.

7.1.3 Social networks

Arentze et al. (2009) developed an algorithm using the data from van den
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Berg et al. (2008) to synthesise social networks. This was based on three

components: the similarity between two people, the distance between them,

and the amount of common friends they share. The initial illustration did

not include the third component.

This algorithm was coded in Python and used to generate a large social

network based on a population synthesised from Dutch MON data. In order

to test our model with smaller populations, a subset of the network was

extracted. This process is described further in section 7.2.1.

The illustration only made use of certain relationship types, as shown in

table 7.3. As a result, our data also only used these relationship types.

Code English description Included?

1 Partner No

2 Father/mother No

3 Child No

4 Brother/sister No

5 Other relative No

6 Household member No

7 Neighbourhood member Yes

8 Colleague Yes

9 Fellow student Yes

10 Union member Yes

11 Other friend Yes

12 Other acquaintance Yes

13 Other No

Table 7.3: The relationship type categories included in our analysis.

7.1.4 Durations

Our utility function calls for durations of activities. These were implemented

in a discrete manner, so that each activity type had a minimum, mean, and

maximum duration. However, the AMADEUS data (Timmermans et al.,

2002a), which was used, aligned more with our proposed location types

rather than our activity types. Therefore the duration values are associated

with location types, rather than activity types.
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7.1.5 Intervals

In the social interaction data collection (van den Berg et al., 2008), some idea

of how often activities were undertaken was provided for certain activities,

such as visiting friends, going to the cinema, and going out to eat. However,

apart from visiting friends, which occurred around every 13 days on average,

the other activities had averages of more than 100 days, which was outside

the time scale of our model.

Data on intervals between activities was collected as part of a project on

needs-based modelling (Nijland et al., 2009). One of the surveys adminis-

tered asked, for a list of 37 activities, how long ago each activity had been

undertaken (in the past six months), and if it was planned for the future,

and if so, for when.

The data set consisted of 290 respondents in the Eindhoven region. Look-

ing at the intervals for certain activities provided an indication of the in-

tervals between them. Visiting activities averaged around 12 days, which

corresponded to the social interaction survey.

In the end, these values were used to provide a rough indication for the

beta values. As with durations, however, the data were skewed more towards

our concept of locations, rather than our activity types, as the data did not

distinguish between individual and group activities.

7.1.6 Locations in Eindhoven

The data on locations in Eindhoven was collected, again, for another project

on how people move around a city1. In this case, a list of cafes, restaurants,

sports centres, museums, and other public locations was collated. For our

purposes, locations outside the Eindhoven area were removed. Due to the

lack of interest in eating out from the social interaction data, the restaurants

were also reduced to 25% of the original list.

7.2 Synthesis of input networks

Three different types of networks – realistic, with both distance and simi-

larity weighting, random with distance weighting, and purely random – are

1I am grateful to Anastasia Moiseeva and other members of the Urban Planning Group
at TU Eindhoven for collating this data.
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generated to be used for model testing, along with a base case in which there

is no persistent network. Before they are used as model inputs, however,

the three types of networks will be evaluated for their appropriateness as a

representation of a social network.

The populations used were taken from a synthesised population based

on MON data. This synthesised population consisted of 218,203 individuals

in 136,753 households. For each person, the data contains their age, gender,

work status, and whether they have a driver’s licence. For each household,

the data contains the postcode, the household composition, the age of the

youngest child, and the number of cars and bicycles in the household.

Note that the population is divided into two: those who we are evalu-

ating, based in Eindhoven (the core population), and those who are friends

with someone in that group, not necessarily based in Eindhoven (the non-

core population).

For all experimentation, the core population was kept constant. How-

ever, the different methods used for deriving the social networks meant that

the non-core population differed.

7.2.1 Realistic

Given the data collected for activity-travel modelling purposes, at least two

network generation algorithms have been developed. Illenberger et al. (2009)

presented a model based on spatial distance, while Arentze et al. (2009)

developed an algorithm based on spatial and social distance. The latter can

also be extended to include the influence of common friends, following the

theory that if person 1 is friends with person 2 and person 3, then persons

2 and 3 have a good chance of also being friends.

The algorithm developed by Arentze et al. (2009) was used for the input

network for this model, as it made use of relevant data for our case study,

in particular homophily. Given the following utility function:

Uij = V Q
ijk + V D

ijk + V C
ijk + ǫij (7.1)

V Q
ijk =

∑

s

βksQs(Xis, Xjs) (7.2)

V D
ijk = δk lnD(Li, Lj) (7.3)

V C
ijk = χkC(Ni, Nj) (7.4)
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we estimate the probability of a link between person i and person j to

be

P (i ↔ j) =
exp(Vij − max(µi, µj))

1 + exp(Vij − max(µi, µj))
(7.5)

where V Q
ijk, V D

ijk, and V C
ijk are the utilities for similarity, distance, and

common friends respectively, k is a social category, s is an attribute, Xps

is the value person p has for attribute s, Qs is a measure of similarity for

attribute s, L is the base location of a person, D is the distance between

two locations, N is the existing personal social networks of a person, µp is

the threshold value for person p, and βks, δk and χk are weights. In the

estimation, k and V C
ijk were ignored, leaving only similarity (on age and

gender attributes) and distance components.

Based on the estimation procedure, δ = -1.606, βage = 0.888, βgender

= 0.713, threshold base value = 6.835, threshold effect (male) = 0.512,

threshold effect (age<40) = 0.177, threshold effect (60<age<70) = -0.608,

and threshold effect (age>70) = -0.228. The distance between two people is

divided into seven buckets (0-1km, 1-5km, 5-15km, 15-30km, 30-60km, 60-

100km, 100+km) and D(Li, Lj) is set to be a middle point of the associated

range (1km, 3km, 10km, 22.5km, 45km, 80km, 140km). The similarity was

calculated as Qgender = 1 if the genders of i and j are the same, and 0

otherwise. Age similarity was calculated as 4 − n, where n is the difference

in levels between the ages of i and j. In order to achieve a reasonable average

number of friends, a threshold scale factor is used, which is dependent on

the size of the synthetic population.

The procedure was coded in Python and proceeded as follows:

1. The individuals in the household sample file are read in along with

their attributes. Those living in Eindhoven are marked as being in the

core population.

2. Each individual i is assigned a threshold µi based on their sociodemo-

graphic attributes, the threshold base value and the threshold effects.

For example, a male in their 70s has a threshold of 6.835 + 0.512 -

0.228 = 7.128.

3. For each potential pair i and j:
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(a) The maximum threshold, max(µi, µj)× the threshold scale fac-

tor, the similarity,
∑

s βsQs(Xis, Xjs), and the distance between

the two people, δ lnD(Li, Lj), are calculated.

(b) The probability of a connection is calculated, using Equation 7.5.

(c) A random number is drawn and is used to determine whether a

connection is made or not.

Once this is calculated for the entire sample population, smaller samples

of different core population sizes are extracted.

Two alterations were made to the parameters:

• In order to achieve the correct number of links, the threshold requires

factoring. For this scenario, the factor was 1.17.

• As the distance distribution was quite different to the data when δ

= -1.606, it was also altered to create a better distribution. The δ

parameter used in this scenarion was -1.35.

The average network size was 12.5 and the average distance between

alters was 21.69km.

7.2.2 Random, but distance weighted

This is identical to the realistic network, however the probability of links

occurring is based on distance only. Similarity is not taken into account.

The threshold is chosen so that the average network size is similar to the

realistic network.

The utility equation was based on the actual distance, which was log-

transformed and multiplied by -1.4. The threshold was 4.8.

For this network, the average network size was 12.8 and the average

distance between alters was 24.36km.

7.2.3 Random

The random network is persistent over the duration of the model run. These

are created by taking a population and an “‘equivalent” realistic network,

and taking the average number of connections in the realistic network as a

target. Based on the population size n and the target average degree dav, a
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uniform probability is calculated (dav / (n−1)) and Monte Carlo simulation

is used to determine whether each link exists or not.

As there is sometimes overlap in the networks, the network size was

a little lower than expected. The average network size was 12.0 and the

average distance between alters was 95.98km.

7.2.4 Random choice

In the random choice “network”, there is no persistence between model steps

and is therefore not a network as such. At each step in the model, 12 people

are chosen from the entire population. This corresponds roughly with our

calculation that people have 12 alters on average.

The non-core population consisted of 10% of the total synthesised pop-

ulation, or around 21522 people.

7.2.5 Evaluation and comparison

As mentioned in chapter 3, there are many metrics for social networks.

Hamill and Gilbert (2009) points out that social networks tend to have the

following attributes:

• low whole network density

• limit to the size of personal networks

• differences in size of personal networks

• fat-tailed distribution of connectivity (more power-law like)

• assortativity on degree (many links connect to others with many links)

• high clustering/homophily

• communities

• short path lengths between alters

The additional properties in comparison to Wong et al. (2006) are variation

in network sizes and assortativity.

Looking at the sizes of personal networks and the distances between

individuals, we can see that the realistic networks (figure 7.1) generated
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are suitable. Compared to the distance-weighted network (figure 7.2), the

distribution of the network sizes looks like a social network with the “ fat

tails” and flat peak, whereas the distance weighted network tends to follow

the distribution. Comparing the distribution of distances in the model,

plotted on a log scale, the networks with a distance weight have a power-law

distribution, whereas the random network (figure 7.3) does not.
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Figure 7.1: Properties of the realistic network.
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Figure 7.2: Properties of the distance-weighted network.

Therefore, we are satisfied that the generated realistic network is rep-

resentative of a social network in terms of personal networks and personal

distances. While the distance-weighted network suffices in terms of dis-

tances, the sizes of the personal networks do not reflect what is expected of
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Figure 7.3: Properties of the random network.

a social network.

7.3 Calibration

Calibration of agent-based models is slightly more difficult than usual for

two reasons: dealing with parameter structures and avoiding the tuning trap

(Klügl, 2008).

For our model, the calibration was undertaken manually. Expected val-

ues from the social visit dataset were collected by expanding the data from

two days to a full week. The model was then run for a week, following a

warmup period, and the model outputs compared to the expected outputs

as a chi-square test, sum of squared differences and percentage differences.

This was undertaken in an aggregate manner for activities by day, work

status, work day, gender, age, location type and activity type. In addition

to this, location type, activity type, and day were disaggregated by age and

gender.

As an example, the expected values for day (and disaggregated by day)

were extracted in the following manner:

1. The data is filtered as described in section 2.1 and a crosstab of day

vs. age is extracted. (table 7.4)

2. The number of people who responded for each day of the week is

tallied, as well as the number of people in each age category, and a
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crosstab of the number of people by age and day. (table 7.5)

3. The number of activities is divided by the number of people per day

(table 7.6), and per age and day (table 7.7). Per age is the sum of

the daily averages for the week (table 7.8; note this is the sum of the

columns in table 7.7). In some cases this will need to be divided by

2 (the number of days in the sample) and multiplied by 7 to get to

seven days.

Day/Age 1 2 3 4 5 Total

1 27 39 11 8 0 85

2 20 40 24 10 1 95

3 30 43 13 8 2 96

4 24 62 9 2 2 99

5 23 40 8 4 0 75

6 18 16 6 2 1 43

7 11 13 7 1 0 32

Total 153 253 78 35 6 525

Table 7.4: The number of valid activities by day and age.

Day/Age 1 2 3 4 5 Total

1 35 57 26 11 4 133

2 41 54 31 22 4 152

3 57 64 27 20 5 173

4 48 76 24 10 5 163

5 38 65 21 11 2 137

6 40 79 24 11 5 159

7 35 63 17 7 3 125

Total 294 458 170 92 28 1042

Table 7.5: The number of survey respondents by day and age.

7.3.1 Increasing population size

In order to quickly find a parameter set, the model was run with a population

of 198 individuals. It is therefore important to test whether the parameters

are also suitable for larger populations.
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Day Activities

1 0.639

2 0.625

3 0.555

4 0.607

5 0.547

6 0.270

7 0.256

Table 7.6: The number of activities per person per day.

Day/Age 1 2 3 4 5

1 0.771 0.684 0.423 0.727 0

2 0.488 0.741 0.774 0.455 0.25

3 0.526 0.672 0.481 0.4 0.4

4 0.5 0.816 0.375 0.2 0.4

5 0.605 0.615 0.381 0.364 0

6 0.45 0.203 0.25 0.182 0.2

7 0.314 0.206 0.412 0.143 0

Table 7.7: The number of activities per person per age per day.

Three larger populations were created, of 497, 745, and 994 people. In

order to match the data, the thresholds needed to be increased slightly. The

magnitude of the increase appeared to be dependent on the number of links

and the size of the entire population. The percentage of double edges – that

is, the edges that appear twice in the model due to person i having an alter

j who is also in the core population, and therefore person j also has a link to

person i – was calculated as (#edges−popsize)/#edges, and the factor was

taken to be the difference in the value between the base case (in the case,

the network with a core population of 198) and the network in question.

Table 7.9 shows the threshold factors for each network.

This calculation does not give an identical result to the network used

for calibration, but provides reasonable output. Table 7.10 shows whether

there is a difference between the modelled and expected outputs for each net-

work as chi-square values (with p-values in parentheses) for time, workdays,

locations, types, and weekday/weekend outputs.

From these results, it is clear that it is difficult to calibrate for all aspects.
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Age Activities

1 3.655

2 3.937

3 3.096

4 2.470

5 1.25

Table 7.8: The number of activities per person per age.

Core
size

Edges Population size % double edges Threshold factor

198 2504 2467 0.0148 1.0000

497 6258 5958 0.0479 1.0332

745 9293 8627 0.0717 1.0569

994 12675 11431 0.0981 1.0834

Table 7.9: The threshold factors for each network.

The day of the week, in particular, fluctuates wildly between network sizes,

and an abstraction to weekend/weekdays or workdays is recommended. As

shown in table 7.11, the percentage difference between the modelled and

expected outputs for weekday and weekend activities are more stable and fall

within 12%. Weekend activities are slightly overpredicted, whilst weekday

activities are underpredicted.

7.3.2 Increasing run duration

The calibration was undertaken with a warmup of 28 days. In this sec-

tion, the effects of extending the warmup time (in increments of 7 days) is

presented. This test was underaken with core population sizes of 198 and

745.

In both cases, the overall number of activities is stable (table 7.12) and

is within 3% of the expected value.

Although the smaller population shows minimal change in terms of the

percentage difference to the expected number of activities of particular types

or on particular days, there are changes when the larger population is used.

In terms of the activity location types, the out-of-home activities increase

significantly from -0.23% difference with a 28 day warmup to 9.64% with a
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Core size Workdays Weekday Time Location Type

198 0.269 (0.87) 18.78 (0.005) 0.096 (0.95) 0.064 (0.80) 0.500 (0.97)

497 0.656 (0.72) 0.926 (0.34) 2.266 (0.32) 0.851 (0.36) 2.543 (0.64)

745 0.409 (0.82) 1.830 (0.18) 4.021 (0.13) 3.332 (0.07) 9.184 (0.06)

994 0.571 (0.75) 99.11 (0.0001) 6.505 (0.04) 6.141 (0.013) 16.844 (0.002)

Table 7.10: Chi-square results for calibration of network size.

Core size Weekdays Weekends

198 -4.21 11.83

495 -5.56 3.87

745 -5.03 5.67

994 -5.99 5.47

Table 7.11: Percentage differences between modelled and expected outputs
for weekday/weekend activities per network size.

56 day warmup. A similar effect occurs with information activities (7.34%

to 23.96%) and weekend activities (5.67% to 12.47%). Checking the change

in proportion of activities shows a small increase for out-of-home activities

(55.3% to 58.6%) and a greater increase for information activities (31.8% to

35.3%). As weekday activities are more numerous than weekend activities,

the proportion change is negligible (16.5% to 16.9%).

This could be due to the larger parameter value assigned to information

activities outside the home, which is 1.4 times greater than the other location

parameter values. It could also be an effect of the interval parameter values,

which were set very coarsely. It shows that while a reasonable parameter set

can be found by adjusting parameter values, there are extra effects on the

substitution of activities that also need to be checked. We are also making

an assumption that the weeks are similar; having a longer-term data set

would assist in being able to calibrate longer periods of time.

7.4 Initial verification and validation

In this section, two tests are described. The first, internal consistency, is a

form of structured-oriented testing and verification: does the model perform

adequately with respect to variation? The second involves a walkthrough
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Core size Expected 28 days 35 days 42 days 49 days 56 days

198 693.05 680.6 678.03 687.9 685.4 687.17

745 2607.69 2518.57 2525.43 2559.07 2561.47 2614.8

Table 7.12: Total activity counts for varying warmup periods.

and is a form of face validation using immersion: by following one agent,

are the results acceptable?

The same sample input network that was used for the calibration was

used. All activity history is set to -7 (i.e., a week previously), so agents last

saw everyone, did all activities, and visited all out-of-home locations 7 days

previously.

7.4.1 Seeds/internal consistency

An initial verification test is to look at the internal consistency of the model.

One way of carrying this out is sometimes referred to as “internal validation”

and involves running the model with different seeds to look at the stochastic

variability over many runs. Sargent (2005) states that a lack of consistency

could be an indication of a questionable model.

The test works best with single aggregate values from the model, such

as the total number of activities or the total amount of travel. In our case,

we focus on the number of activities generated in the model.

For 60 runs, the running mean and standard deviation is calculated for

all runs up to that point. The standard deviation is divided by the overall

mean to find the coeffiecient of variance.

The distribution of the number of activities is reasonably normally dis-

tributed with mean 2523.6 and standard deviation 46.23 (using a Kolmgorov-

Smirnov test and comparing with a random normal distribution of 60 data

points with the afore-mentioned mean and standard deviation). For both

the mean (figure 7.4) and the coefficient of variance (figure 7.5), the model

appears to reach a stable state after 30 runs. The coefficient of variance

levels out at around 2%. This could vary if the error values were altered.

However, the variability is not excessive and does not indicate further issues

with the model.
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Figure 7.4: Mean of total activities across runs.

7.4.2 Individual walkthrough

A method proposed by Klügl (2008) was looking at the agents individually

to see if they are performing as expected. This can be complicated, as

we are dealing with schedules which cannot be easily aggregated. On a

pattern basis (e.g., every N days the individual visits a certain location), it

is possible, but on a point basis (e.g., using one seed the individual stays at

home on Monday, but with another seed they visit a friend, and so on for

many runs) it is difficult. In this section, we will make use of the outputs

from a single run with a single seed for a single person over a 10 week period.

Note that the same population was used as for the calibration, however only

the outcomes for one person were extracted.

The person under investigation is female, aged under 35, does not work,

and has 11 acquaintances in the network. These acquaintances are spread

out in the Netherlands as shown in figure 7.6, however most are local to the

Eindhoven area. This person was chosen as their network size was typical

of the individuals in the model.

From the locations visited by this individual over 10 weeks (figure 7.7),

we can see that they are not traversing their entire spatial network. It is
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Figure 7.5: Coefficient of variance for total activities across runs.

reasonable to expect that people will not see all their friends in their friends’

home locations in a 10-week period.

A sample week for the same individual, shown in table 7.13, shows va-

riety in both the activity type (visiting, information, experience, chatting)

and location type (home, other). We also see some evidence of activities

occurring on the same day. As this was seen in the data, it seems plausi-

ble, especially as activities of all durations were included in the calibration

dataset, so it could be that these are shorter activities. Updating the influ-

ence of time pressure during the process of scheduling for a day, instead of

once at the start of the day, could assist.

For this run, the two people whom the individual saw the most are two

friends with the highest similarity. These two individuals were also seen

reasonably regularly: one every 9.7 days (with a range of 6 to 13 days) and

the other every 6.2 days (with a range of 4 to 8 days). Another acquaintance

who lived close by but did not have the highest similarity was seen every 7.4

days (4 to 11 day range). It appears that the model can generate reasonably

“regular” activities, however this might not be realistic. More longer term

data would be required regarding the actual activities and participants to

compare the ranges.
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Figure 7.6: An individual’s social network

7.5 Discussion

The chapter has described the data used and the calibration process for

the model. Several different data sets were required to obtain all the data

required for creating a realistic scenario for illustration.

Several social networks were generated for experimentation. Although

the simplest method is to use a random network, the realistic network based

on actual data aligned more with the accepted properties of a social network.

The main problem with not having one single data collection or access to

a set of coherent data collections, like the FEATHERS project (Bellemans

et al., 2010), is trying to find the relevant data across several disparate sets

which use different activity and other concept types. The duration data

is not just for joint activities, nor is the interval data. As a result, these

parameters were estimated and modelled very coarsely.

In terms of missing data, more detail is required for the interaction and

decision making process. This could be undertaken in the form of a stated

preference survey.
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Figure 7.7: The locations to which an individual travels.

The calibration process was difficult and time-consuming. An alternative

approach to fully manual calibration could be to generate sets of parameters

and search for some sort of “optimal” set. Given the amount of parameters

that could be set for this model, this is also difficult, and the approach

is better suited to models with fewer parameters and a smaller range of

possible values. Calibrating a multi-day model with only two days of sample

data is also fraught with difficulties, as it is assumed those two days are

representative. A longer-term data set would be preferable for future work

in calibration.

The long-term stability was also explored, as well as the individual be-

haviour. Both showed that the model performs as expected. The variability

is low, and shows that around 30 seeds are required before the model reaches

a steady state. The immersion experiment showed that agents are able to

generate activities with a variety of people at a variety of locations, however

more long-term data is required for full validation.

However, as a reasonably suitable set of parameter values has been found,

we can now experiment with the outcomes of the model.



118 CHAPTER 7. DATA AND CALIBRATION

Day Morning Afternoon Evening

Mon visit@home

Tue

Wed

Thu

Fri info@other chat@other

Sat exp@home info@other

Sun

Table 7.13: An individual’s schedule for a week (activity type @ location
type).



Chapter 8

Sensitivity analysis

A sensitivity analysis is undertaken to determine the effects of different pa-

rameter values and inputs. It can be undertaken before or after calibration.

In this chapter, we add complexity step-by-step to the model setup and

analyse the behaviour of the model. This demonstrates how the model works

at more detailed level, and provides examples of how a model’s operation can

be shown for validation purposes. The process covers both direct structure

testing and structure-oriented testing.

A series of sensitivity tests are carried out, varying a range of parameters

and exploring the effects. The model process is altered between each step,

beginning with one day and no interactions between agents, expanding to

many days, and then adding in interactions. At each step, the variation of

the outputs is demonstrated by varying the input parameters. It is expected

that the aggregate outputs will increase if certain parameters are increased

(e.g., by increasing the attractiveness of undertaking activities at home) and

will decrease for other parameters (e.g., increasing the threshold parameters

should lead to fewer activities being undertaken).

8.1 Setup

The same sample input network that was used for the calibration was used.

All activity history is set to -7 (i.e., a week previously), so agents last saw

everyone, did all activities, and visited all out-of-home locations 7 days

previously. Home locations were visited on day 0. Each configuration was

run with ten seeds.

119
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The results were analysed in a number of ways:

• By visually inspecting results;

• By using correlation tests (Pearson) on the total number of activities or

the proportion of activities (where different activities or locations were

involved) compared to the parameter inputs, providing a correlation

value denoted as r;

• By using Fisher’s r-to-z transformation to compare correlations;

• By using Kolmgorov-Smirnov tests to investigate the difference be-

tween distributions, providing a measurement denoted as D;

• By using chi-square tests to see if the total number of activities differs

with respect to the parameter, both for each type separately and by

combining the types that the parameter doesn’t affect;

• By calculating the importance of parameters, following (Hamby, 1994).

The equation used is:

I =
s2
X

s2
Y

(8.1)

where s2
X is the variance of the parameter outputs and s2

Y is the vari-

ance of the parameter inputs. This enables the effect of the size of the

change in the parameter to be seen.

The values of the parameters are shown in table 8.1. Those marked with

an asterisk are averages across all the values of that parameter that match

the fixed value. For example, the given value for the threshold parame-

ter (fwd) is an average across the three parameters that apply to full-time

workers.
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Parameter Base value Other values

λgender (gender) 0.713 0.357, 0.535, 0.891, 1.070, 1.426

λage (age) 0.888 0.444, 0.666, 1.110, 1.332, 1.776

fwd(fulltime,∀d) (thresf)* 2.047 1.126, 1.433, 1.740, 2.354, 2.661

αl
∀a,other (home)* 5.482 4.385, 4.934, 6.030, 6.578, 7.1260

αl
chatting,∀l′ (lchat)* 5.902 4.722, 5.312, 6.492, 7.083, 7.673

αd
∀a,monday,∀y (mon)* 2.361 1.652, 2.007, 2.715, 3.069, 3.423

αd
∀a,∀d,afternoon (midday)* 3.591 2.514, 3.052, 4.130, 4.668, 5.207

αd
chatting,∀d,∀y (dchat)* 2.889 2.023, 2.456, 3.323, 3.756, 4.190

βp
0 (betap) 0.025 0.01, 0.04, 0.055, 0.07, 0.085

βl
other (betal) 0.025 0.01, 0.02,0.03, 0.04, 0.05

βa
visiting (betaa) 0.045 0.015, 0.025, 0.035, 0.055, 0.065

αtt (travel) -0.5 0.0, -0.25, -0.75, -1.25, -1.75

Table 8.1: Parameter values used in the sensitivity testing.
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8.2 Individual, one day

The idea behind this step is to test the sensitivity of the utility function

for one day with no interactions. This means that each individual will

select their ideal activity without collaborating with others. It is a form of

structure testing, in that only the utility function is being tested.

In order to clearly see the outcomes of the utility function, no simulation

warmup is used, so the results presented are for day 1 of the simulation.

The expectation is that different parameters affect the different proper-

ties of activities being carried out in the following ways:

1. An increase in parameter values should lead to an increase in activities,

except for increasing the threshold and travel cost which should lead

to a decrease;

2. Changing λgender and λage should affect the similarity of people chosen

for activities;

3. Increasing αl
∀a,other should increase the number/proportion of activi-

ties carried out out-of-home;

4. Increasing αl
chatting,∀l′ should increase the number/proportion of ac-

tivity of type ”chatting”;

5. Increasing αd
∀a,∀d,afternoon should increase the number/proportion of

activities carried out in the afternoon;

6. Increasing αd
chatting,∀d,∀y should increase the number/proportion of ac-

tivity of type ”chatting”;

7. Increasing αtt should decrease the amount of travel undertaken.

Table 8.2 shows the correlation between the different values of the param-

eters and the total number of activities. All parameters have a significant

relationship. As expected, the threshold has an inverse relationship. The

most important parameters, as seen in the third column, are threshold, age,

and the day of the week, which means that these parameters have the largest

impact on the outputs.

In terms of activities disaggregated by age and gender, adjusting age or

gender values leads to a change in the activities undertaken with someone of
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Parameter p Importance

λage 0.96 0.00 3478.26
αd

chatting,∀d,∀y 0.29 0.03 41.71

αl
∀a,other 0.86 0.00 94.31

αl
chatting,∀l′ 0.26 0.04 22.94

αd
∀a,∀d,afternoon 0.96 0.00 271.26

αd
∀a,monday,∀y 0.97 0.00 1908.42

λgender 0.71 0.00 374.50
fwd(fulltime,∀d) -0.99 0.00 26849.47

αtt -0.77 0.00 1847.20

Table 8.2: Correlations for total activities (individual, one day).

the same age or gender. The number of activities between people with the

same age (keeping in mind that age is represented on a scale of 1 to 5) has

a correlation of 0.876 (p < 0.00001) with an increase in the age parameter.

A similar effect can be seen between the gender value and the number of

activities between people of the same gender (r = 0.652, p < 0.00001).

Looking at the types of activities, both chatting parameters (set via

day and via location) have a strong effect on the number and proportion

of chatting activities. Via location, the chi-square result of each parameter

value vs chatting/non-chatting activities returns a value of 315.66 (df = 5,

p < 0.00001), and via day, 266.02 (df = 5, p < 0.00001). Figure 8.1 shows

that the type of activities is sensitive to small changes in the parameter.

In terms of home/out-of-home activities, a strong relationship can be

seen from the home parameter. The chi-square result is 34.9 (df = 5, p <

0.00001). Figure 8.2 shows that this parameters does influence the propor-

tion of out-of-home activities.

The time of day that is chosen for activities is affected by adjusting the

parameter regarding time. It is clear from figure 8.3 that this is a strong

relationship.

Finally, the average distance that individuals travel is affected by chang-

ing the cost of travel. The correlation between the cost and travel per person

is -0.694 (p < 0.00001).

From these results, it can be seen that the utility function performs

reasonably for one day. All hypotheses are supported. This, however, is not

the most realistic test, especially as some activity types and location types
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are dominant due to their high parameter values. More variation is expected

when many days are introduced, where the frequency of activities will come

into play and a simulation warmup is also used.
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Figure 8.1: The effects of changing type parameters on the proportion of
chatting activities.
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Figure 8.2: The effects of changing location parameters on the proportion
of out-of-home activities.
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Figure 8.3: The effects of changing time parameters on the proportion of
afternoon activities.
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8.3 Individual, many days

In this case, the individuals in the model select activities over a number of

days, again with no collaboration with others. As this is closer to the in-

tended functionality of the model, in that the model will run for more than

one day, this is moving more towards the structure-oriented testing compo-

nent of process validation. The same hypotheses in the previous section are

tested, along with some additions:

• Increasing αd
∀a,monday,∀y should increase the number/proportion of ac-

tivities carried out on a Monday;

• Changing βp should affect how often people are seen;

• Changing βl
other should affect how often home locations are seen;

• Changing βa
visiting should affect how often visiting activities are under-

taken.

Table 8.3 shows the correlation between the different values of the param-

eters and the total number of activities. All parameters have a significant

relationship, except for altering the gender value and the activity type part

of the location parameter: note that these parameters resulted in lower cor-

relations than the other parameters in the one-day scenario. As expected,

the threshold has an inverse relationship. The most important parameters

are now the beta parameters, as they are reasonably small and therefore

small alterations to their values have a large effect on the results. The re-

duction in influence of the age and gender parameters corresponds to the

findings in Cirillo and Axhausen (2010), where socio-demographic variables

were found to not be as dominant as expected for multi-day models.

The number of activities between people with the same age (keeping in

mind that age is represented on a scale of 1 to 5) has a correlation of 0.672

(p < 0.00001) with an increase in the age parameter. A similar effect can be

seen between the gender value and the number of activities between people

of the same gender (r = 0.376, p < 0.005). These relationships are weaker

than for the one-day case.

For chatting via location, the chi-square result of each parameter value

vs chatting/non-chatting activities returns a value of 10.55 (df = 5, p =

0.06), and via day, 45.53 (df = 5, p < 0.00001). This signifies a weakening
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Parameter p Importance

λage 0.82 0.00 8306.74
αd

chatting,∀d,∀y 0.78 0.00 6272.11

αl
∀a,other 0.96 0.00 7623.24

αl
chatting,∀l′ -0.18 0.17 514.25

αd
∀a,∀d,afternoon 0.90 0.00 5260.18

αd
∀a,monday,∀y 0.69 0.00 2821.68

λgender 0.23 0.07 3147.45
fwd(fulltime,∀d) -0.99 0.00 338555.14

αtt -0.96 0.00 135615.23
βa

visiting 0.92 0.00 13076604.76

βl
other 0.99 0.00 380437634.29

βp
0 0.92 0.00 7246804.66

Table 8.3: Correlations for parameters and activities (individual, many
days).

in the influence once the model is analysed over multiple days, which is to

be expected as the agents will experience more varied activities over many

days then when compared with just one day of outputs.

In terms of home/out-of-home activities, a strong relationship can be

seen from the home parameter. The chi-square result is 43.8 (df = 5, p <

0.00001). This is similar to the one-day case.

As in the previous scenario, the time parameter affects the time of day of

activities. It is clear from figure 8.4 that increasing the afternoon parameters

leads to more activities taking place in the afternoon.

Finally, the average distance that individuals travel is affected by chang-

ing the cost of travel. The correlation between the cost and travel per person

is -0.946 (p < 0.00001). This is stronger, due to the repetition involved.

A new addition in this case is the ability to look at a day of the week

and also the days between activities. Firstly, increasing the day of the week

parameter for Monday leads to more activities on Monday as expected. The

chi-square result for activities taking place on a Monday vs. activities on

other days is 100.43 (p = 0). There is no obvious day for which Monday is

substituting.

The interval or days between activities is influenced by the beta param-

eters. Figure 8.5 shows the effect of each parameter on the intervals: for

people, for visiting activities, and for activities out-of-home. Note that the
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Figure 8.4: The effects of changing time parameters on the proportion of
afternoon activities.

timing between seeing alters is not linear, but appears to have a peak.

We can now also investigate the performance of the utility for a single

individual. The change in calculated utilities for individual b, when indi-

vidual a visiting individual b at b’s home in the evening, is also shown. As

shown in figure 8.6, the various components of the equation form patterns,

which sum to the overall utility. Note that all components do not have to be

at their peak for the activity to exceed the threshold. In this case, a visits

b at home on day 38.

With some minor exceptions, most of the hypotheses proposed were sup-

ported. As this is a stepping stone to the final version of the model, the

exceptions should be noted, however are not cause for concern at this stage.
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Figure 8.5: The effects of changing type parameters on the interval or days
between activities.
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8.4 Interactions, many days

For the final step in this sensitivity run, interactions are incorporated into

the model. The same hypotheses are explored as for the previous section.

Table 8.4 shows the correlation between the different values of the pa-

rameters and the total number of activities. All parameters have a signif-

icant relationship. As expected, the threshold has an inverse relationship.

The most important parameters are still the beta parameters, followed by

threshold and age.

Parameter p Importance

λage 1.00 0.00 952947.02
αd

chatting,∀d,∀y 0.46 0.00 10870.24

αl
∀a,other 0.79 0.00 7055.61

αl
chatting,∀l′ 0.37 0.00 2416.51

αd
∀a,∀d,afternoon -0.27 0.04 6468.60

αd
∀a,monday,∀y 0.39 0.00 9798.94

λgender 0.88 0.00 54884.18
fwd(fulltime,∀d) -0.98 0.00 980835.44

αtt -0.96 0.00 70494.35
βa

visiting 0.75 0.00 16256399.05

βl
other 0.98 0.00 247265397.55

βp
0 1.00 0.00 1023987631.32

Table 8.4: Correlations for parameters and activities.

The number of activities between people with the same age (keeping

in mind that age is represented on a scale of 1 to 5) has a correlation of

0.992 (p < 0.00001) with an increase in the age parameter. A similar effect

can be seen between the gender value and the number of activities between

people of the same gender (r = 0.955, p < 0.000001). These relationships

are stronger than for the cases without interactions, and there is noticeably

less variance in the outputs.

For chatting via day, the chi-square result of each parameter value vs

chatting/non-chatting activities returns a value of 146.7 (df = 5, p < 0.00001),

and for via day, 128.89 (df = 5, p < 0.00001).

In terms of home/out-of-home activities, a strong relationship can be

seen from the home parameter. The chi-square result is 41.52 (df = 5, p <

0.00001). This is similar to the previous cases.
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As in the previous scenarios, the time parameter affects the time of

day of activities. It is clear from figure 8.7 that increasing the afternoon

parameters leads to more activities taking place in the afternoon. Note that

the proportion is decreasing as more complexity is being added to the model.
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Figure 8.7: The effects of changing time parameters on the proportion of
afternoon activities.

Finally, the average distance that individuals travel is affected by chang-

ing the cost of travel. The correlation between the cost and travel per person

is -0.953 (p < 0.00001). This is stronger, due to the repetition involved.

Increasing the day of the week parameter for Monday leads to more ac-

tivities on Monday as expected. The chi-square result for activities taking

place on a Monday vs. activities on other days is 79.81 (df = 5, p < 0.00001).

In this case, it is more obvious that many activities are being brought for-

ward from Tuesday (figure 8.8): the gradient of the line for Tuesday is five

times steeper than for the case with no interactions.

The effects of the beta parameters are similar to the previous case.

At the final step in the overall analysis, the hypotheses are all supported.
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Figure 8.8: The effects of changing day parameters.
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8.5 Discussion

The aim of the preceding tests was to explore the behaviour of the model

under simple changes to inputs, i.e., varying a parameter. The model was

tested at three different levels: for one day only with no interactions, for

many days with no interactions, and for many days with interactions.

Stepping from a simpler model to a more complex model permits any

differences due to the number of days and the incorporation of interactions

to be seen. Being able to test the utility function for one day (a form of

direct structure testing) is useful to determine that it is performing correctly.

Once this is satisfactory, we can proceed to structure-oriented testing, where

the “full model” (many days with interactions) is tested.

After inspecting the utility function, it can be seen that it performs

reasonably well in sensitivity testing. The parameters appear to affect the

outcomes in the expected manner, which means that it should be possible

to estimate the model on data.

Sensitivity testing with parameters alone is important for understanding

the model output. In the next chapter, we explore the effects of changing

the model processes and consider several policy scenarios.
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Chapter 9

Illustration

In terms of model development, testing the details of the model by exploring

the effects of parameters is an important step. In the previous chapters, we

have seen how the parameters can be estimated and the effects of changing

the parameters.

However, for planners and other end-users, the interest lies more in ex-

ploring inputs that are more realistic, such as differing city layouts or changes

to the population. As mentioned in the literature review (chapter 2), one

aim of transport models is to explore the effects of various policies or changes

to the environment or population. These could be direct, such as the ad-

dition or removal of a road or public transport line, or indirect, such as a

shift in population demographics or habits. The latter could also include

experimenting with changes in population structures and decision-making.

In this chapter, we focus on the effects of alternative decision processes

and scenarios. The effects of changing the interaction protocol (how peo-

ple decide to participate in an activity with someone else) and the input

network (how people are connected to each other in the population) are

explored, as well as two scenarios of current interest to transport planners

(an increase in free time and an increase in travel cost). The outcomes are

discussed in terms of the effect on where, who, and what people are doing.

In all cases, the input parameters estimated in calibration are used unless

otherwise noted. It is worth noting that the model described is not repli-

cating a given environment, therefore the values of parameters and inputs

are not based on evidence and are only examples of how parameters can be

changed.

137
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9.1 Differing interaction protocols

In this section, we investigate the effects of different protocols to see if

there is a difference in the outcomes of the model. If decisions are made

differently, we can expect to see differences in who is seen, where people

are travelling, and what activities people are undertaking. The outcomes

of a data collection could be used to determine how people make decisions,

therefore this is an input to the model that the planner could expect to

change.

In an ideal world, the model should be fully recalibrated for each pro-

tocol, however as the calibration process used was reasonably basic (that

is, point-based rather than pattern-based), redoing the process will simply

serve to find a reasonable set of numbers which is not necessarily realistic.

Without a specific data collection, we are not in a position to say which pro-

tocol is more realistic. However, if the model performs the same with the

same inputs and different protocols, then we can assume that the protocol

is insignificant and that further investigation regarding decision making is

unnecessary. Some minor calibration was undertaken so that model gener-

ated approximately the same number of activities for each protocol, so that

the disaggregate activity types could be more easily compared.

9.1.1 Protocols

Three protocols were selected for exploration. In this section, the base case

is the enumeration protocol.

Enumeration

Enumeration is not a traditional protocol as such, however is a representa-

tion of what currently happens in models. Each person in the core popu-

lation evaluates all possible activities for all of their friends, that is, each

combination of activity type, location, and friend is generated and evaluated.

If both friends determine that a particular activity exceeds their thresholds,

then that activity is added to the shortlist. The activity with the maximum

joint utility across all friends is chosen.
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Negotiation, selecting person first

This is the protocol used in chapter 8 and described in section 5.3.2.

Negotiation, selecting activity first

In this variation on the previous protocol, the first step is to choose an

activity, using a random person from the host’s list of friends as a default.

Once the activity is chosen, then the host offers it to the friend who gives

the host the best utility for the activity. If that friend declines, the host

offers the activity to the next-best friend and so on, until someone accepts

or everyone declines.

9.1.2 Setup

The same sample input network that was used for the calibration was used.

All activity history is set to -7 (i.e., a week previously), so the agents last

saw everyone, did all activities, and visited all out-of-home locations 7 days

previously. Home locations were visited on day 0. Each protocol was run

with 30 seeds, with a warmup of 28 days, followed by 28 days for which

results were collected. We also assume that all agents use the same protocol

and strategy for the duration of the model run.

Some minor calibration was undertaken in terms of the total number

of activities generated. The thresholds for each scenario are adjusted so

that the total number of activities are the same as for the base protocol

case (9267.93 activities). As a result, the thresholds for the enumeration

protocol are multiplied by 2.24, which results in 9242.33 activities, and for

the activity-first protocol by 1.98, which results in 9251.13 activities. The

distribution of activities for both pairs of individuals and individuals alone

are not dissimilar.

9.1.3 Outcomes

In terms of who is seen, there is a difference in how many unique people are

seen during the simulation period. In the enumeration protocol, 9.13 people

are seen on average, compared to 9.71 in the person-first protocol and 9.62

in the activity-first protocol (both significantly different to the enumeration

protocol with p < 0.02 using a t-test). This could be because of the higher

threshold employed in the enumeration case.
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The type of people seen also differs. In all cases, there is a relationship

between the similarity of two people and how many activities they engage

in together. However, the strength of the relationship is stronger for the

person-first protocol (r = 0.245, p < 0.00001) than for the activity-first (r =

0.173, p < 0.00001) and the enumeration protocols (r = 0.177, p < 0.00001).

Although these relationships are weak, we are interested in the comparison

between scenarios: a comparison of the correlations shows that the similarity

correlation for the person-first protocol is significantly different (p < 0.0001).

As this protocol puts the emphasis on the person chosen for the activity, it

is understandable that the similarity has a larger effect.

Moving towards where people are travelling, the distance between the

home locations of two individuals has an effect on the number of activities

undertaken together. Keep in mind that in the social network, distance

plays a part in the selection of friends, so there is already some preference

for those people who live close to the ego. In the enumeration case, there is

no relationship between the distance between two agents and the number of

activities they participate in together. This could be because all activities

and person combinations are evaluated, and therefore have more chance each

day of being selected, whereas in the other protocols, the host proposes only

their preferred locations. In the two negotiation protocols, there is a weak

negative relationship as expected (person-first r = -0.052, activity-first r =

-0.054, p < 0.0001).

The locations being visited are also affected by the protocol used. Firstly,

the unique number of locations visited by each individual differs, especially

in the enumeration protocol (4.88 locations) in comparison with the person-

first (5.23 locations) and activity-first (5.36 locations) protocols (both signif-

icantly different to the enumeration protocol with p < 0.0001). Again, this

is possibly a by-product of an increased threshold, meaning less attractive

locations are cut off. As in the number of unique people seen, there is no

difference between the two negotiation protocols. The postcodes visited also

differ slightly across protocols (χ = 308.8, df = 58, p < 0.00001). Table 9.1

shows that the distribution across suburbs is very minor.

Following the who and where of activities, what is also of interest. The

different types of activities generated in each protocol is shown in table 9.2.

There is a significant difference (χ = 115.9, df = 8, p < 0.00001).

There is a more marked difference in the location types of activities (χ
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Enumerate Person Activity

Centrum 3417.83 3166.37 3790.83
Gestel 1772.27 1731.37 1743.77

Stratum 1190.13 1131.33 1225.73
Woensel-Zuid 529.80 621.60 446.97

Woensel-Noord 1581.80 1636.03 1381.70
Tongelre 442.63 499.07 363.50

Strijp 316.67 303.50 289.83

Table 9.1: Total number of activities in each suburb.

Enumerate Person Activity

Experience 1793.00 1421.40 1627.93
Visiting 1012.53 1170.60 1036.53

Chatting 2247.93 1968.63 2108.20
Info 2404.93 3046.17 2705.60

Other 1783.93 1661.13 1772.87

Table 9.2: Total number of activities for each type.

= 791.4, df = 2, p < 0.00001). From table 9.3, it can be seen that the out-

of-home locations are dominant in all cases, however they are visited more

frequently in the activity-first and enumeration protocols. The people-first

protocol appears to give home activities more precedence.

Enumerate Person Activity

Home 2211.13 4030.57 3199.20
Other 7031.20 5237.37 6051.93

Table 9.3: Total number of activities for each location type.

Finally, from a computational viewpoint, the model runs much quicker

with the negotiation protocols (person-first 36.13s, activity-first 43.5s) than

with the enumeration protocol (470.75s)1. As expected, being able to elim-

inate possibilities reduces the run time.

1These tests were undertaken with 10 runs, of which the two outliers were discarded,
and the remainder averaged. The computer used was an Intel Core2 Duo 3GHz with 2Gb
of RAM.
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9.1.4 Discussion

The interactions between agents at the micro level are expected to affect the

overall model behaviour at the macro level. If the individual decision making

does not have any effect on the overall behaviour, then it can be safely

disregarded. In this scenario, the outcomes of three protocols (enumerate,

people-first, activity-first) were presented.

The interaction protocol is not as significant as expected for where (post-

codes, suburbs, number of unique locations) and who (similarity, distance,

number of unique people seen), however the type of activities is affected.

This could be a result of the default setting in the person-first protocol,

which uses a home activity as the base case.

Being able to limit the number of activities considered affects the run

time. Exploring how choice sets are constrained, depending on the relation-

ship and prior activities, would mean that the protocol can be refined to

perform in a reasonable manner.

Naturally, only three protocols and strategies were explored, all based

on theory rather than data, and the model was not recalibrated between

runs. More attention to these details could lead to more significant results;

for example, people can have different strategies in general, and could also

change strategies over time. However, the differences demonstrated show

that this is an important part of the model and that further work is required

in understanding how people make decisions about joint activities.
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9.2 Differing network structures

Although the network is an input, it is more complex than a parameter value.

In some cases, the model process needs to be altered to accommodate the

network in question. Again, this is an aspect that a planner could expect to

change in light of the results of a data collection: it could be that people’s

social networks are formed differently in different populations.

When the network is altered, we would expect to see a change in the

type of people seen. Depending on the location of friends, a difference in

where people are travelling is also expected.

9.2.1 Network structures

For our situation, a useful parallel for comparing networks can be found in

Axelrod et al. (2002). Although it covers a different sort of cooperation (the

agents play the Prisoner’s Dilemma Game and adapt their strategy based

on their more successful neighbours), the setup and results are interesting.

One network is temporary, that is, non-persistent – the neighbours change

every timestep. The other two networks are persistent: one uses immediate

spatial neighbours, while the other uses a random network. The results

showed that there was little difference in the model outcomes between the

persistent networks, meaning that finding a realistic network in this case

was unnecessary, however there was a difference between no network and a

network.

In this section, four different network structures were used, which were

originally described in section 7.2. The network with no persistence is con-

sidered to be the base case.

No persistent network

In this “network”, there is no persistence between model steps. At each

step in the model, 12 people are chosen from the entire population. This

corresponds roughly with our calculation that people have 12 alters on av-

erage. This is considered the base case, as existing transport models do not

explicitly include a network.

Agent-based models tend to have some sort of neighbour structure, so

non-persistency can be problematic. In the case of no persistent network, we

assume that all people were last seen 15 days previously, which is the average
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from the realistic network. This means that the similarity component of

the utility function can be retained and no adjustment of the threshold is

necessary.

Random

This network is persistent and contains links that are created randomly

between people.

Random, but distance weighted

This network is identical to the realistic network, however the probability

of links occurring is based on distance only. Similarity is not taken into

account.

Realistic

This network is also persistent and contains links that are based on both

the distance between agents and their similarity. The creation of the real-

istic network was described in detail in section 7.2.1, using the algorithm

developed by Arentze et al. (2009).

9.2.2 Setup

The same sample input network that was used for the calibration was used.

All activity history is set to -7 (i.e., a week previously), so the agents last

saw everyone, did all activities, and visited all out-of-home locations 7 days

previously. Home locations were visited on day 0. Each protocol was run

with 30 seeds, with a warmup of 28 days, followed by 70 days or 10 weeks

for which results were collected.

9.2.3 Outcomes

Beginning with who, the similarity of people seen differs for each network.

The relationship between the similarity and the number of activities under-

taken ranges from 0.033 (p < 0.00001) for no network, to 0.458 and 0.471

(both p < 0.00001) for the random and random distance networks, to 0.237

(p < 0.00001) for the realistic network. As the two random networks contain
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little or no similarity, it appears that people are preferring those with more

similarity.

Looking in more detail, a distinction can also be seen in the number

of activities undertaken with people of the same age and gender. There

is a difference across networks for age (table 9.4; χ = 5276.77, df = 3, p

< 0.00001). The realistic network shows more similarity on age, while the

other networks do not. This could also be because the realistic network is

weighted in the favour of similarity, therefore more activities are going to

be undertaken with similar people. The same occurs for gender (table 9.5;

χ = 2286.68, df = 3, p < 0.00001).

non random random-dist real

Different age 12693.00 13849.87 14384.23 8915.70
Same age 10137.67 6775.30 7324.10 14864.57

Table 9.4: The number of activities with people the same age or not for each
network.

non random random-dist real

Different gender 8465.33 9019.47 9374.70 5890.10
Same gender 14365.33 11605.70 12333.63 17890.17

Table 9.5: The number of activities with people the same gender or not for
each network.

Figure 9.1 shows that the no-network scenario means a lot more distinct

people are seen. For the persistent networks, more people are seen when the

network has more weight. This could be because the egocentric networks

already contain more similar or more attractive people. In the realistic

network, most people see all of their friends at least once – the average ratio

of friends seen to network size is 0.978 – whereas this does not occur for the

random networks (ratios between 0.87-0.90).

Looking at where activities take place and the location of alters (that

is, where activities could potentially take place), there are differences in

where people are (potentially) travelling. Figure 9.2 shows an example of

one person’s travel-space in different networks. The two random networks

show a much larger spread of locations than when the network is distance-

weighted.
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Figure 9.1: The number of unique people seen for each network.

Figure 9.3 shows that those in the networks that are distance-weighted

in some way visit more locations. In particular, they visit more friends at

the friend’s home.

The amount of activities between friends over different distances is also

strikingly different. Figure 9.4 shows that when the network is distance-

weighted, more interactions take place between friends living closer to each

other, whereas the random networks generate more activities between friends

who live more than 60 kilometres apart. This is unrealistic, as it is expected

that friends who live further away would be seen much less.

An interesting way of looking at the complexity in the system is by cal-

culating the entropy of the interactions with participants in different post-

codes. If the entropy is lower, then that means the uncertainty is lower, and

therefore there is less variation in the postcodes visited. The entropy was

calculated by taking the frequencies of activities with alters in each postcode

for every individual. The frequencies were then changed to proportions, and

the entropy equation −
∑

pc∈PC p×ln(p) was used, where p is the proportion

for a particular postcode pc, summing over the set of all postcodes PC. The

entropies for individuals were then averaged across the entire population.

Measuring the entropy of one person’s interactions, by looking at the
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(a) No network (b) Random network

(c) Distance-weighted network (d) Realistic network

Figure 9.2: Travels in different networks for an agent.

postcodes of where the participants in activities live, we see that the realistic

network returns 2.178, the distance-weighted network 2.230, the random

network 2.332, and no network 6.291. This shows that using a network

with some sort of weighting ensures less variability in the people chosen to

interact with, as expected.

Finally, looking at what activities people are doing, we can see that the

type of activities (figure 9.5; χ = 354.55, df = 12, p < 0.00001) and the

location types of activities (figure 9.6; χ = 559.70, df = 3, p < 0.00001)

are also affected by the network. The activity type is reasonably ordered,

in that informational/chatting activities dominate in all network scenarios,

but location type is not as clear cut.
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Figure 9.3: Number of unique locations visited for each network.

9.2.4 Discussion

As in Axelrod et al. (2002), there is a difference between no network and

a network of some description. The entropy measurements demonstrate

that a scenario with no persistent network is extremely random in terms of

location.

However, a random network only reduces the amount of locational varia-

tion – for example, the number of activities between far-away friends is still

comparable to having no persistent network.

For comparison with varying protocols, we see more variation in the peo-

ple seen and the locations visited with different input networks. The type

and number of people undertaking activities are clearly influenced by the

network. The effect is expected, as the model was designed with this con-

straint. However, this means that the discovery of a representative network

is necessary in order to generate realistic results.
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9.3 Policy demonstration

As mentioned in the literature review (chapter 2), one aim of transport mod-

els is to explore the effects of various policies or changes to the environment

or population. These could be direct, such as the addition or removal of

a road or public transport line, or indirect, such as a shift in population

demographics or habits.

In this section, two scenarios are described. The first is an increase in

leisure time, which is reasonably indirect – the government cannot enforce

more leisure time. However, as alluded to in the motivation of this thesis,

this is an area of interest to policy makers. For this scenario, we expect

to see an increase in activities, and possibly differences in the location and

types of activities.

The second is more direct: an increase in travel cost, which has been

and will remain an important factor in transport modelling. The main

expectation in this scenario is that travel will be reduced, meaning fewer

activities are conducted.

In both cases, only one parameter is altered, meaning it resembles sen-

sitivity analysis. However, only one alternative value is explored, and the

values are examples only and are not based on a real-world value. In addi-

tion, the outcomes of the model are discussed more in the light of a policy

exploration.

9.3.1 Setup

The same sample input network that was used for the calibration was used.

All activity history is set to -7 (i.e., a week previously), so all agents last

saw everyone, did all activities, and visited all out-of-home locations 7 days

previously. Home locations were visited on day 0. Each protocol was run

with 30 seeds, with a warmup of 28 days, followed by 70 days or 10 weeks

for which results were collected.

The increase in leisure time is represented by multiplying the threshold

values by 0.8, meaning individuals have more time to undertake activities.

The increase in variable travel costs is represented by increasing the

travel cost from 0.5 to 1.5, meaning that travel is considered more expensive.
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9.3.2 Outcomes: time use

There was a marked increase in activities (from 23780.27 to 31301.87), which

already meets expectations. In terms of the activity type and location type,

the increase was evenly spread across all types.

In terms of similarity, those friends who were less similar were seen more

when individuals had more free time, however the difference to the base case

was not significant (χ = 8.5127, df = 9, p = 0.4834). Looking at friends

with the same age and gender also showed no significant difference between

cases. The distance between friends also made no difference to how often

they were seen.

Due to the increased number of activities, the amount of travel per person

increased and the distribution of travel per person was significantly different

(D = 0.1839, p < 0.00001, see figure 9.7). The average number of locations

visited also rose from 7.10 in the base scenario to 8.28 in the increased time

scenario, showing that people have more time for exploring.
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Figure 9.7: Amount of travel per person with more leisure time.
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9.3.3 Outcomes: travel cost increase

As expected, the number of activities drops when the travel cost is increased

(from 23780.27 to 20674.53).

Another noticeable difference is in the location of activities, which swings

strongly to favour home-based activities (from 40.9% to 56.6%; see figure

9.8). The types of activities also changes, as more visiting activities take

place (figure 9.9).
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Figure 9.8: Location type counts for increased travel cost.

As in the time usage scenario, no difference is seen based on similarity:

the decrease in activities is constant across all friends. The same applies for

the distance between friends. However, there is a small difference in the size

of the correlations: the correlation between similarity and the number of

activities increases from 0.237 to 0.269 (df = 8625, p < 0.05). For distance,

the correlation with the number of activities becomes slightly stronger (from

-0.054 to -0.087, df = 8625, p < 0.05). This means there is a preference

towards more similar and spatially closer friends when travel costs increase.

In terms of travel, there is a noticeable reduction. The average travel per

person decreases from 219.49 to 186.02 and the average travel per activity

per person decreases from 6.06 to 5.77. Figure 9.10 shows that people travel
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Figure 9.9: Activity type counts for increased travel cost.

less once travel costs are increased and, again, the distribution of travel per

person is significantly different (D = 0.1463, p < 0.00001).

9.3.4 Discussion

The aim of this section was to explore scenarios that are directly of interest

to transport planners and policy makers. Some interesting effects arose from

the scenario explorations.

The similarity in the personal networks had little effect in both scenarios.

Friends were equally less (in the case of increased travel cost) or more (in

the case of more leisure time) seen regardless of their similarity. In the

increased leisure time scenario, the increase in activities was reasonably

well-spread across people and activity types. It is difficult to say whether

this is representative of the entire population or not – some people might

spend more time on one particular activity or person, and others might

spread the time around more evenly – therefore more disaggregate analysis

may be required.

As expected, the increased travel cost scenario showed a decrease in

travel and also an increase in home-based activities. The latter also means
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Figure 9.10: Amount of travel per person with increased travel cost.

there is a change in the type of activities being undertaken: visiting activ-

ities, which are more likely to take place at home, increase while all other

types decrease.

The effects noted are not unsurprising, and it appears that the model

performs reasonably for these policy scenarios. Dynamic networks would

possibly lead to more effect. It would be expected that networks would

become larger or smaller with the different time and cost constraints. This

applies to both the social and spatial networks, as far-away locations could

decrease or increase depending on the scenario.
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Chapter 10

Conclusions and future work

This thesis has presented an agent-based simulation model of activity and

travel behaviour incorporating social processes and joint activities, which

has then been used to investigate the effect on activity and travel behaviour.

A conceptual model was developed, from which a prototype model was de-

signed and implemented. Experimentation in the form of sensitivity tests,

input variation, and scenario testing demonstrated how the model worked.

Although the model was not tied to a particular data set, the model was

set up for the city of Eindhoven in the Netherlands and used data on social

networks and activities in that area to estimate parameters.

This chapter will discuss the questions raised in the introduction, as well

as collating ideas for future directions.

10.1 Summary

Participation in and scheduling of social and joint activities is not as eas-

ily predicted as non-discretionary activities such as work and school. It

appears that demand for discretionary activities will increase in the future

and that ICT is already having an influence on when and where activities

are undertaken.

Understanding the social network that lies on top of the spatial network

could lead to better prediction of social activity schedules and therefore bet-

ter forecasts of travel patterns, in particular for social and leisure activities.

Activity-based travel demand modelling has centred around individual

plans and scheduling, and, using definitions from Maslow’s hierarchy of
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needs, on the more basic physiological and safety needs ahead of belong-

ingness needs. Participation in social activities can be shown to be based

on human needs, and the presence of joint activities can influence individual

plans. Previous research has focussed on joint activities within households,

however this omits activities undertaken with people outside the household.

Several projects have been undertaken on data collection, input network

generation, and the effects of friend selection or friend influence on activity

generation.

In designing such a model, many concepts are relevant: the units in the

model, the relationships and interactions between individuals, the dynamics

of the social network, and the types of activities generated by the model.

These elements are frequently studied separately, however all could have an

influence on how people travel.

Agent-based modelling and simulation permits the simulation of the be-

haviour of individuals and their interactions. Many methodologies for de-

signing agent-based systems have been proposed that can be adapted for the

design of simulations. The model designed allows us to specify attributes

and behaviours at the individual level, as well as an egocentric network for

each individual. The interaction protocol (i.e., how individuals suggest and

come to an agreement on an activity) can also be specified.

However, the additional detail inherent in an agent-based model means

that validation needs to be closely investigated. Both the transport mod-

elling community and the agent community have reasonably mature pro-

cesses for validation. A process is suggested that incorporates process valida-

tion, starting with exploring the structure of the model and then proceeding

to behaviour.

Many data sources were used, based in the Eindhoven area, for the cal-

ibration of the model. This gives an idea of the amount of data required

and the potential difficulty in creating a coherent dataset. The calibration

process was based on point replication. Verification and walkthrough tests

were also carried out to check that the model provided sensible outputs.

Sensitivity testing was undertaken to explore the effects of parameters,

which was applied to increasingly more complex versions of the model (start-

ing from one day of outputs with no interactions between individuals and

finishing with full interactions over many days). This showed that the model

performed as expected when certain parameters were altered.
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Finally, several examples of policy scenarios were demonstrated. Alter-

ing the structure of the input social networks and the interaction protocols

showed that these inputs do have a difference on the outputs of the model.

As a result, these elements of the model require data collection on the social

network structure and the decision processes for each local instantiation.

Two more “traditional” transport planning policy scenarios, an increase in

free time and an increase in travel cost, showed that the model performs as

expected for these scenarios.

10.2 How can we model and validate social be-

haviours?

The advantage of using an agent-based simulation model is the flexibility

in the individual settings and the inherent sociality. Using existing theory

from agent-based negotiation, it could be shown how agents can reach an

agreement, so the process is also modelled, not just the outcome.

A mix of different validation approaches is required, such as the face

validation vs. empirical validation and behavioural vs. structural validation

proposed by Klügl (2008), in order to explore the different facets of the

model.

Calibration and validation was shown to be difficult, in particular in

light of the expected standards/approaches from the transport community.

One drawback is the integration of aggregate data: if N activities of one

type are needed and M of another type, then the parameter values are not

immediately obvious. Much experimentation is needed to find parameter

values that approach the required output.

Although this thesis has not provided concrete solutions to the validation

issue, we hope that it will generate further discussion. In the activity-

demand context, it may be that a shift in expectations is required, from

both end-users and modellers, regarding what can be validated and how.

Future work involves testing and refining the process on our model, and

providing a set of recommendations/lessons learned for similar models.
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10.3 Can the separate effects of parameters be

identified?

Using sensitivity analysis, the effects of changing input parameters on the

results can be seen. As expected, by increasing the value of preferences for

different types, locations, days and times of activities, the overall number

of activities with those types increases. In the case of increasing threshold

values, the overall number of activities decreases. This shows that it should

be possible to estimate the model on data.

10.4 Do social networks make a difference?

In running the model with several different social network configurations,

it can be seen that the social network does have an effect on the model

outputs when compared to using a non-persistent network. In particular, the

locations and people visited differ significantly. This shows that a realistic

social network is required as input in order to obtain useful outputs for

policy makers.

On top of this, it can also be seen that the decision processes within the

network also make a difference and require further investigation.

As a cautionary note, even though the input networks and decision pro-

cesses showed differences with this model initialised with data in Eindhoven,

it may not be the case with other models or models based in different lo-

cations. However, it would be wise to add similar tests to the verifica-

tion/validation suite for these sorts of models in order to be sure of the

effects.

10.5 How can it be integrated?

An abstract or middle-range model is a good place to start with the mod-

elling of processes, however this model is not immediately of use to planners

outside academia. Integration with existing mature models or further de-

velopment is required before it can be of practical use.

With TRANSIMS, the model development started with a prototype for

one area (Dallas/Fort Worth) and was then expanded and generalised (Law-

son (2006) describes the experimental history of TRANSIMS up to the mid
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2000s). This process is long-term and involves a large number of people-

hours in designing, developing, testing, and refining the model, as well as

access to and/or collection of relevant data. Lawson (2006) notes that the

use of open-source software and collaboration with universities and research

groups are beneficial for increasing the maturity of models.

A promising approach is to use an iterative layered system, in that the

social activities model is linked to an existing activity-travel model and the

model process iterates between the two layers: the social network updates

based on the activity plans and the activity plans are generated based on

the social network, not dissimilar to the work of Hackney (Hackney, 2009).

Alternatively, the social model could be used as a way of searching for pa-

rameters and choice sets that could be inputs to the activity-travel model.

Several researchers are working on the development of layered multi-

agent systems (Dignum and Dignum, 2010), in which layers can be used for

different levels of detail. In our case, the negotiation component could form

one layer, which then informs the activity scheduling layer, which then flows

into the travel scheduling layer.

10.6 Where to from here?

This thesis had two overall contributions: how these sorts of models can be

built (taking into account the expectations and theories of both the trans-

port modelling community and the agent-based modelling/simulation com-

munity), and whether the inclusion of social networks into transport models

makes a difference. It has been shown that the use of agent-based modelling

is useful in permitting the incorporation of social networks and that this

incorporation can affect the outcomes of the model. However, there are still

strands of this work that require further exploration. Several of these, such

as the incorporation of group activities and the more detailed incorporation

of network capital concepts, have already been discussed in the conceptual

model outlined in chapter 4.

The first matter to consider for future work is the collection of data.

A range of data is needed, from more aggregate data on group size and

composition and types of activities to more specific data on how decisions

are made. This notion of “levels” of data has been recognised by projects

such as FEATHERS (Bellemans et al., 2010). Data on decision making could
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be collected by asking people how they came to a decision after the fact (for

example, Clark and Doherty (2008) asked people which issues (start time,

end time, type, location, and people involved) of a particular activity were

fixed before the activity took place) or by setting up an experiment and

observing people making hypothetical decisions. This is commonly used in

models based on exchange, such as asking people how they would share an

amount of money.

Another issue with transport models is scope: how detailed does the

model need to be? The exploration of social activities within a city requires

a detailed representation of the environment, however, as we have seen,

people undertake activities outside their home city. As people move about

more, their networks will cover a reasonable distance. In a country like

the Netherlands, then a nation-wide model is feasible, and as people often

commute from one side of the country to the other, their networks are widely

spread.

Time is also an important scope consideration for transport models.

The temporal difference between organising daily activities and network

changes requires further investigation. Sharmeen et al. (2010) are currently

undertaking a long-term survey of how social networks change over time and

the effect on travel patterns. Once these results are available, the networks

in the model presented in this thesis can be made dynamic.

An aspect not thoroughly explored in existing transport models is that

of culture. Different societies operate in different ways regarding social ac-

tivities (as the author has discovered firsthand). For example, it is common

for some societies to plan activities well ahead of time, while other societies

are more informal. This means that the decision making strategies devel-

oped in one cultural context may not be transferable to another. In terms of

more detailed decision making, the concept of credit and power introduced

by Ettema et al. (2007) have been the focus of preliminary models by Ma

et al. (2011) and Ronald et al. (2010) respectively.

Software tools that incorporate cultures and norms are being developed

(e.g., MASQ (Tranier, 2007)). Once these reach maturity, they will be useful

to explore the social network dynamics and possibly generated activities. On

top of this, Hamill (2010) also noted that better “building blocks” are needed

for building agent-based models with social networks. This work is outside

the scope of this thesis, however these research strands will be of use in the
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future.

To conclude, there are some immediate threads that can be picked up.

Further experimentation with the form of utility function can be undertaken,

in particular in light of the data already collected in Eindhoven. Group

size can be incorporated. The detail of the spatial environment can be

increased and possibly linked to a GIS file format for easy import. On

top of this, the model could be attached for a travel model so that the

agents can get feedback on different modes and travel options. Environment

exploration and preferences (such as those developed in Han et al. (2009))

can be included.

The model presented in this thesis is an initial step in incorporating social

networks into multi-day activity-demand models. The literature identifies

this as an important step. This thesis has shown that the social network

can have a significant impact on model results and therefore the decisions

made by planners and stakeholders. There are many possible directions in

which this model can be taken. The next step will be determining which is

the priority.
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Appendix A

Module overview

This chapter lists the classes developed for the model described in this thesis.

The reader is directed to chapter 5 for a more detailed explanation of how

the model works.

A.1 sasim.main

Main

The main class for the simulation. Processes command line, creates a sim-

ulation object, runs simulation, and creates output.

Simulation

Contains the population, environment, runtimes, and the global schedule.

A.2 sasim.input

Synthesis.java

Handles the reading in of files and initialising the simulation components.

The main input file needs file names in the following order:

sim, alpha location, alph day time, duration, threshold, beta, error,

nodes, links, locations, home locations, core, non core, alts, mylocs
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ISimilarityReader.java, SimilarityReader.java

An interface for the similarity parameters and an instance to read files and

calculate similarity.

The file format is:

lambda_age, lambda_gender

age levels

gender levels

AlphaLocationReader2.java, AlphaLocationReader.java

Objects for reading in and storing of αl parameters. AlphaLocationReader

reads only one value for each combination, AlphaLocationReader2 uses so-

ciodemographic variables.

The file format is:

<header>

activity, location, constant, values*

...

AlphaDayTimeReader.java, AlphaDayTimeReader2.java

Objects for reading in and storing of αady parameters. AlphaDayTimeReader

reads only one value for each combination, AlphaDayTimeReader2 uses so-

ciodemographic variables.

The file format is:

<header>

activity, day, time, constant, values*

...

DurationReader.java

Reads in duration data from a file.

The file format is:

location, duration_values*

...
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ThresholdReader.java

Reads in threshold values and stores them.

The file format is:

work status, work type, value

...

BetaReader.java, TextBetaReader.java

An abstract class for a beta parameter and a concrete class with a read

method.

The file format is:

<header>

type, type number, constant, values*

...

EnvironmentReader.java, TextEnvReader.java

An abstract class for environments and an object that reads two files (post-

codes and links).

The postcode file format is:

postcode, x, y

...

The link file format is:

end1, end2, distance

...

LocationReader.java, TextLocationReader.java

An abstract class that reads two files of locations (home and non-home).

The file format is:

id, type,detailed type,name, postcode,opening_hours*

...

The opening hours are 14 values long: open and close for seven days of

the week.



186 APPENDIX A. MODULE OVERVIEW

PeopleReader.java, TextPeopleReader.java

An abstract class for reading the population in and an instance thereof. This

takes two files: core and non-core people.

The file format is:

id, postcode, child, car,work, age, licence, gender

...

AltReader.java, TextAltReader.java

An abstract class for reading the links in and an instance thereof.

The file format is:

i,j, type,last seen, strength, known since

...

MyLocsReader.java, TextMyLocsReader.java

An abstract class for reading personal location knowledge and an instance

thereof.

The file format is:

person id, location id, last seen

...

TravelReader.java

A class for reading travel cost parameters: a constant (which is also a con-

stant for the entire equation) and a factor.

The file format is:

constant, factor

A.3 sasim.environment

LocationType.java

An enum of the location types used in the model: HOME, SHOP, HORECA,

OTHER.
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IEnvironment.java

Interface for an environment.

Postcode.java

Contains details for a postcode, such as x and y coordinates.

EnvLink.java

Contains information about an link between two postcodes.

NetworkEnvironment.java

Implementation of an environment using a network representation of post-

codes and links with a separate list of locations.

Location.java

Contains details for a location, such as the id, postcode, location type,

location name, and opening hours.

A.4 sasim.activity

ActivityType.java

An enum of the activity types used in the model: EXPERIENCE, VISIT-

ING, CHATTING, INFO, OTHER.

WorkType.java

An enum of the work types used in the model: NONE, PART, FULL.

TimeType.java

An enum of the time types used in the model: MORNING, AFTERNOON,

EVENING, NIGHT. Also contains methods to determine the relevant cat-

egory for a time, and the start and end times of a category.

DurationType.java

An enum of the duration types used in the model.
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Day.java

An enum of the day types in the model. Also contains a method to convert

a day number to a day of the week.

Schedule.java

The schedule for a Person.

GlobalSchedule.java

The schedule for the whole simulation.

Activity.java

Contains details for an activity: id, day, time, duration, type, location, host,

participants. Also contains methods to execute the activity by updating

personal and link attributes.

ActivityOption.java, ActivityOptionNoNetwork.java

Contains details about an activity and its utility to a particular person.

The no network variant does not include the Uj component of the utility

function, instead replacing it with a constant.

A.5 sasim.population

Person.java

Contains details about a person, such as their attributes (age, gender, chil-

dren, car ownership, licence, work status, home location), parameter values,

behaviour, the number of activities they have undertaken, the time since

they last undertok particular activities, a message queue, a personal sched-

ule, a list of alters, and the list of locations visited and people seen.

ISocialNetwork.java

An interface for the social network. Declares amongst others methods for

addling links, returning all pairs, and retrieving details about pair relation-

ships.
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Population.java

Contains details about the population, in particular a list of all people, a list

of non-core individuals, and a list of core individuals. Also stores the Glob-

alSchedule, the objects containing parameter values, a list of conversations,

and the social network.

PersonLink.java

Contains details about a link that are shared, namely similarity, last seen,

and location similarity.

SocialNetwork.java

A representation of a social network.

Alt.java

Contains personal details for an alter, namely error.

MyLocation.java

Contains personal details for a location, namely error, last seen, distance

and travel cost.

A.6 sasim.population.communication

Conversation.java

Contains details about a conversation.

ConversationStatus.java

An enum of conversation statuses: SUCCESS, FAIL, TIME, PERSONAL,

PREFS.

Message.java

Contains information about a message between two agents: conversation id,

message type, message value, sender.
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MessageQueue.java

A queue of messages. Extends LinkedList at the moment, but could be

customised if necessary.

IProtocol.java

Base interface for a protocol.

A.7 sasim.output

ActivityOut.java

Writes output for each activity in CSV format.

Writes id, day, day type, time, time type, duration, type, location, loc

type, host, and participants of each activity.

ConversationOut.java

Writes output for each conversation.

Writes id, host, number of messages exchanges, and the error code.

PairsOut.java

Writes output for each link.

Writes id1, id2, activities, similarity, distance between home locations,

lastSeen, strength, knownSince, travel1, travel2, work1, work2, age1, age2,

gender1, gender2, locSim0, and locSimN.

locSim0 is the location similarity at the beginning of the simulation,

locSimN at the end.

PersonalOut.java

Writes output for each person in CSV format.

Writes id, age, child, gender, car, driver, work, betaA, betaL, betaP,

number of activities, activities per type, activities per location, amount

of travel, work type per day, activities per day, activities per worktype,

centrality, clustering, unique locations visited, locations known at beginning,

locations known at end.
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ScheduleOut.java

Writes output for the schedule for each person in CSV format.

Writes id, day, time, act, location, activity type, location type, activity

time since, location type time since, location time since, distance, partici-

pant, participant time since

A.8 sasim.util

ActivityOptionComparator.java, ActivityOptionNoNetwork-

Comparator.java

Compares two ActivityOption(NoNetwork)s and orders by decreasing utility.

Errors.java

Reads and stores error variables.

BetaParameter.java

Stores a beta parameter.

ActivityComparator.java

Compares two Activities and orders by increasing id.
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