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Modelling the flight of a soccer ball in a direct free kick
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This study involved a theoretical and an experimental investigation of the direct free kick in soccer. Our aim was

to develop a mathematical model of the ball’s flight incorporating aerodynamic lift and drag forces to explore

this important ‘set-play’. Trajectories derived from the model have been compared with those obtained from

detailed video analysis of experimental kicks. Representative values for the drag and lift coefficients have been

obtained, together with the implied orientation of the ball’s spin axis in flight. The drag coefficient varied from

0.25 to 0.30 and the lift coefficient from 0.23 to 0.29. These values, used with a simple model of a defensive

wall, have enabled free kicks to be simulated under realistic conditions, typical of match-play. The results reveal

how carefully attackers must engineer the dynamics of a successful kick. For a central free kick some 18.3 m (20

yards) from goal with a conventional wall, and initial speed of 25 m×s71, the ball’s initial elevation must be

constrained between 16.58 and 17.58 and the ball kicked with almost perfect sidespin.

Keywords: aerodynamics, ball flight, defensive walls, model, soccer.

Introduction

Spin is an important determining factor in the trajectory

of a rapidly moving ball. It is usually deliberately

applied in the act of kicking, throwing or striking the

ball when the player intends to modify the resulting

flight. The intention may be to deceive an opponent by

swerving a free kick in soccer, pitching a curveball in

baseball, or simply to overcome an obstacle in golf by

deliberately hooking or slicing the ball around it.

The deflecting force due to the spin of a moving ball

is associated with the Magnus effect. The wake of a

moving but non-rotating ball is symmetrical about the

line of flight, the airflow separating at equivalent points

around the ball’s surface. With spin, separation occurs

earlier at points on the surface advancing into the flow

and later for those that are receding. This produces a

non-symmetrical wake and a resultant force whose

direction is normal to the plane containing the velocity

vector and the spin axis of the ball. The deflecting force

due to the Magnus effect is frequently referred to as the

‘lift’ or sometimes the ‘sideways’ force, although it must

be remembered that for some orientations of the spin

axis, the force can be downward-pointing. The con-

vention ‘lift’ to describe the force and the associated

aerodynamic constant will be followed in this paper.

General accounts of the physics and mathematics of

ball flight are contained in Daish (1972) and de Mestre

(1990). Mehta (1985) has also given a comprehensive

account of the aerodynamics of sports balls. This latter

work is important in emphasizing that not all anom-

alous aspects of ball flight are derived from Magnus

effects alone. Raised seams, such as the pronounced

seam on a cricket ball, can also produce non-

symmetrical airflow and a differential force that tends

to swing the ball in flight.

The first systematic study of spin in a sports context

was that of Tait (1896), who showed that backspin

would greatly extend the carry of a driven golf ball.

Most subsequent work has focused on baseball and

golf, where the intention has generally been to

determine the lift and drag coefficients so as to interpret

the flight characteristics of the ball (see, for example,

Davies, 1949; Briggs, 1959; Bearman and Harvey,

1976; Watts and Ferrer, 1987). Alaways and Hubbard

(2001) have extended the work for baseballs and have

shown that the lift coefficient is significantly affected by

the rotating seam, according to whether the ball is

pitched in a two-seam or four-seam orientation. This

effect is not the same as that seen in seam bowling in

cricket, however, where the bowler attempts to deliver

the ball with the seam inclined at a fixed angle relative

to the line of flight (Mehta, 1985).

The influence of spin on a soccer ball’s flight has

received little attention by comparison. Fuchs

(1991a,b) has produced a detailed theoretical treat-
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ment of the flight of a spinning ball, but restricts

application of the work in soccer to a limited

discussion of the trajectory of a corner kick. Lees

and Nolan (1998) have further reported that while

kicking is the most widely studied football skill –

maximal velocity instep kicking in particular – little

detailed scientific research has been committed to

spin as a determining factor in ball flight in soccer.

These authors referred to work by Levendusky et al.

(1988), who, in a study of impact characteristics of

soccer balls, commented on the difficulty of dropping

them with repeatable accuracy onto a force plate from

a height of 18.1 m. The variability was attributed to

‘aerodynamic drag forces and [the] Magnus effect’,

although no quantitative information was given to

support the statement. This lack of committed

research on spin effects in soccer is surprising, since

the technique is widely used by players in many

aspects of the game, especially when trying to beat

the defensive wall with a direct free kick.

The defensive wall was introduced very early in the

development of the game to counter the threat of a

direct shot at goal. Free kicks within the ‘D’, roughly

18 m from goal, are usually accepted as the most

threatening, although elite players continue to stretch

this boundary and goals beyond 25 m are not un-

common. Beyond the requirement that defenders must

stand 10 yards (9.14 m) from the kick, there are no

constraints on the configuration of the wall. Current

guidance (Hargreaves, 1990; Hughes, 1999) is that the

defenders in the wall should cover the far post of the

goal and extend only part of the way to the near post,

leaving a clear sight of the kick for the goalkeeper. This

arrangement is shown in Fig. 1. It is much frustrated by

the practice of members of the attacking side joining the

wall to unsight the goalkeeper and breaking away at the

instant of the kick.

The introduction of the modern ball with its non-

absorbent surface may well have accelerated devel-

opment of the skills necessary for the swerving free

kick. Earlier, untreated leather balls were prone to

significant water absorption (Armstrong et al., 1988),

making the ball less responsive to aerodynamic

forces. With the older ball, players would usually

shoot very hard at the wall hoping that it would

break, leaving a gap, or that the ball would be

fortuitously deflected beyond the goalkeeper. Today,

coaches and players alike are well aware of the goal-

scoring potential of direct free kicks, as elite players

are able to swerve the ball over or around the wall in

a clean strike at goal. In the 1998 FIFA World Cup,

for example, of the 171 goals scored, 42 originated

from set-plays, 50% of which were from free kicks

(Grant et al., 1999). It is not surprising, therefore,

that most teams contain at least one free-kick

specialist and that the spectators’ expectation of

success from a direct free kick is approaching that

of the penalty kick.

Here, we describe mathematical models of both the

ball’s flight in a direct free kick and the associated

defensive wall. Our objectives are two-fold: to obtain

representative values for the lift and drag coefficients

for a soccer ball and to use these in a realistic model of

the free kick to determine the constraints the defensive

wall places on the kicker in attempting a direct strike

at goal.

Methods

Mathematical models

Ball flight

Figure 2 shows the path of a ball, position vector r,

kicked in the y direction from the origin of a Cartesian

frame (x, y, z). At some time t, the velocity vector v is

inclined at angle c to the (x, y) plane with resolute in

this plane at angle y to the y axis. The unit vector t
defines the direction of v.

Following the impulse of the kick, the ball is assumed

to spin about an axis parallel to the (x, z) plane, inclined

at constant angle g to the x axis. This orientation is

assumed to remain fixed throughout the flight with no

diminution in the spin rate. Under these assumptions,

the unit vector s, which defines the direction of the spin

axis, will have two components, in x and z. This is not

unreasonable given the observed action of sidespin

Fig. 1. Geometry of the defensive wall and free kick position.

C is the centre of the goal line and G is the goalkeeper’s

position.

76 Bray and Kerwin
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kicking, where the resulting vertical and lateral deflec-

tions are closely dependent on the uprightness achieved

in the spin axis at the instant of the kick. A more general

treatment of the problem would involve all three

components (x, y and z) in ss, but we have adopted

this simpler approach pending more detailed measure-

ment of the spin axis orientation.

Considering only Magnus, drag and gravity forces,

and with the subscripts d and l denoting drag and lift

respectively, the resultant force F on the ball is

F ¼ mgþ Fd þ Fl

where

Fd ¼ ÿ
1

2
rAv2Cd is the drag force

and

Fl ¼
1

2
rAv2Cl � is the Magnus ðliftÞ force

In these equations, m is the mass of the ball, A is its

cross-sectional area, r is the density of air and

v = |v| =H(vx
2 + vy

2 + vz
2), where vx, vy and vz are

the Cartesian velocity components. Cd and Cl are the

drag and lift coefficients.

The differential equation for the flight is, there-

fore,

::
r ¼ gÿ kdv2 þ klv

2 � ð1Þ

where
::
r = d2r/dt2, kd = rACd/2m and kl = rACl/2m.

From Fig. 2 it can be seen that
t

s t

t s t

Fig. 2. Definition of coordinate system. The dotted line represents ball trajectory. (a) Velocity vector v inclined at angle c to the (x,

y) plane. OP = r(x, y, z) is the position vector of the ball. t is a unit vector parallel to v. (b) Resolute of v in the (x, y) plane inclined

at angle y to the y axis. (c) The spin axis of the ball remains at fixed orientation g in the (x, z) plane. ss is a unit vector parallel to the

spin axis.

77Modelling soccer ball flight



D
ow

nl
oa

de
d 

B
y:

 [S
t F

ra
nc

is
 X

av
ie

r U
ni

ve
rs

ity
] A

t: 
20

:5
6 

17
 J

un
e 

20
08

 

¼ coscsinyi þ cosccosyj þ sinck ð2Þ

and

¼ cosgi ÿ singk ð3Þ

where i, j and k are unit vectors on (x, y, z).

Furthermore, vcoscsiny= vx = _xx (i.e. coscsiny= _xx/v).

Similarly, cosccosy= _yy/v and sinc= _zz/v.

These expressions can be substituted into equation

(2) and the vector product s6t can be evaluated.

Substituting the result into equation (1), and

collecting the components of i, j and k, we find that

::
x ¼ ÿvfkd

:
x ÿ klsing

:
yg ð4Þ

::
y ¼ ÿvfkd

:
yþ kl ½cosg :zþ sing :x�g ð5Þ

::
z ¼ ÿg ÿ vfkd

:
zÿ klcosg :yg ð6Þ

These equations have no closed form solutions but

can be solved numerically using a Runge-Kutta

routine, for example, given the initial conditions for

g, x, _xx, etc., and the constants m, A and r. The

parameters Cd and Cl present problems, however, in

view of the lack of quantitative information for soccer

balls. A value of Cd = 0.2 has been suggested by de

Mestre (1990), with Cl determinable from experimental

data for a smooth sphere, after Davies (1949). The

assumption of ‘smoothness’ for a soccer ball is

questionable and our approach has been to compare

the model predictions with a controlled series of

experimental kicks. Details of how Cd and Cl have been

obtained from this procedure are given in the ‘Data

analysis’ section. A fundamental assumption is that Cd

and Cl remain constant in equations (4)–(6). This is the

case provided post-critical Reynolds numbers prevail

throughout the flight and this is addressed for the

measured trajectories under ‘Experimental findings’.

Defensive wall

The assumed position of the wall relative to the kick is

shown in Fig. 1. With the geometry of the figure it can

be shown that

w ¼ dsina½p=ðRÿ pcosaÞ þ q=ðRþ qcosaÞ� ð7Þ

Here, 2p is the width of the goal, w is the required

width of the wall, d is the compulsory 10 yard

(9.14 m) distance and R and a are the distance and

angle of the free kick, respectively. The parameter q

represents the implied coverage of the goal line by the

wall, ranging from complete cover (q = p) to a portion

of the line left open for the goalkeeper’s view of the

shot (05q5p). There are no explicit recommenda-

tions for this parameter in practice (Hargreaves, 1990;

Hughes, 1999) and so q = p/2 has been chosen as a

reasonable compromise. The number of defenders in

the wall for various distances and angles can be

calculated from equation (7) by dividing w by the

average player’s width. This number is of interest in

practical coaching but not explicitly required in the

analysis that follows.

The wall height (h) has not so far been considered,

but can be taken as the average player height. The wall,

therefore, is modelled by a rectangle of dimensions

w6h and can be used in conjunction with solutions of

equations (4)–(6) to determine the constraints the

defensive wall imposes on a free kick from some defined

position.

Determination of aerodynamic parameters Cd

and Cl

Free kick trials

A male player who had provided written informed

consent performed a series of trial kicks. He was

skilled in striking a ball with spin and launch velocity

representative of a realistic free kick. A large indoor

sports hall was used for the trials to ensure that the

ball’s flight could be monitored in still air, free from

any external disturbances. Other than requiring the

player to simulate the action of a free kick some 20

yards (18.3 m) from goal, with an imagined wall of

the regulation height and distance, no special

constraints were imposed. We monitored a series of

10 sidespin kicks, for which the player was asked to

strike the ball from the ground with as nearly a

vertical spin axis as possible. Sidespin is the most

commonly used technique by elite players in seeking

to swerve a ball beyond the goalkeeper’s reach. Our

player was left-footed and with conventional instep

kicking would be expected to spin the ball clockwise

when viewed from above and to swerve it from left to

right.

Experimental design and data capture

Two digital video camcorders (Sony CCD-TRV900E,

Japan) were located at the corners of the sports hall

(Fig. 3) approximately 32 m apart, 1.50 m above the

ground and at a distance of 33 m from the centre of

the line of intended ball flight. Video recordings were

made while a single pole (height 3.20 m, containing

t

s

78 Bray and Kerwin
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four 0.10 m diameter spherical markers located at

heights of 0.101, 1.187, 2.137 and 3.145 m) was

moved in sequence around 10 carefully measured

locations encompassing a volume of 206363.145 m.

Recordings were also made with the calibration pole

located at the initial ball position and at two points

along a diagonal in the (x, y) plane at 7 and 16 m

from the origin to enable positional accuracy within

the calibrated volume to be determined indepen-

dently.

Each camera was operated at 50 Hz with shutter

exposure times of 1/1000 s. The focal length of the

lens on each camera was adjusted until the whole of

the calibrated volume was within the field of view.

Each camera’s pan, tilt and roll angles and the focal

length of the lens were locked throughout the data

collection. Dates and times were recorded onto each

tape, enabling the corresponding video sequences to

be paired. A synchronization unit, as used by Kerwin

and Trewartha (2000), comprising 20 light-emitting

diodes (LEDs) was placed between each camera and

the calibrated volume. A radio-controlled trigger

simultaneously initiated the illumination of 20 LEDs

at 1 ms intervals for each kicking trial. All digitizing

was completed by the same skilled operator using the

‘Target’ system (Kerwin, 1995). The four spherical

markers in 10 calibration and three checking locations

were digitized six times. The position of the ball in

each of the kicking sequences was digitized from

when the ball was clearly in free flight (approximately

0.1 s after initial foot contact) to when the ball passed

out of the calibration volume. Camera calibration was

carried out using a 12-parameter direct linear

transformation (DLT) procedure (Karara, 1980).

The three-dimensional coordinates of the ball location

were reconstructed by finding a least-squares solution

to four planes defined by the DLT equations. An

estimate of the reconstruction error was calculated as

an unbiased root mean square distance from the four

planes.

Synchronization of each pair of digitized data was

determined using the time offset in milliseconds

between the video images containing the initial LED

displays. An interpolating quintic spline (Wood and

Jennings, 1979) was used to generate matching data

points for the time-shifted data set.

C1

C2

Fig. 3. Camera, LED synchronization unit and calibration pole positions in the sports hall for kicking trial data collection.

79Modelling soccer ball flight



D
ow

nl
oa

de
d 

B
y:

 [S
t F

ra
nc

is
 X

av
ie

r U
ni

ve
rs

ity
] A

t: 
20

:5
6 

17
 J

un
e 

20
08

 

Data analysis

The experimental results for each of the kicks were

analysed in the following way. Positional information

for the ball was stored in individual data arrays for x, y

and z as functions of time, t, in seconds. Polynomials

were fitted to the positional data for x, y and z in the

form

x ¼ a0 þ a1t þ a2t2 þ a3t3 þ a4t4 ð8Þ

The coefficients a0 to a4 were determined from the

Levenberg-Marquardt algorithm (Press et al., 1992).

The velocity components vx, vy and vz were then

obtained by numerical differentiation of these new

positional data. The initial values for x, vx, etc., to be

used in the Runge-Kutta solutions of equations (4)–(6)

were obtained from the new positional and velocity data

arrays at t = 0.1 s. Visual inspection of the raw data

indicated that an elapsed time of 0.9 s was sufficient to

cover a 20 m flight, adequate for representing a realistic

kick.

The parameters g, Cd and Cl were determined for

each kick as follows. Initial values were chosen and the

differential equations solved to produce the appropriate

predicted trajectory. A parameter e was determined for

the complete trajectory by examining the root mean

square error in the quantity rp–rm, where rp and rm

represent the position vectors of the model (predicted)

and experimental (measured) data. Iterations were

repeated until a minimum value of e was obtained.

The process was found to be stable and convergent with

an average value of e= 0.052 m for the 10 kicks.

Results and discussion

Error analysis

Reconstruction errors

Reconstruction errors from the DLT analysis based on

six repeat digitizations of four markers on the calibra-

tion pole in 10 locations were 0.011, 0.007 and 0.005 m

in the x, y and z directions, respectively, with a resulting

overall root mean square error of 0.008 m.

Digitizing errors

The accuracy with which well-defined stationary points

could be located within the calibrated volume was

determined by comparing the known locations of the

four spheres mounted on the moveable pole at three

positions within the calibration volume (Fig. 3). Six

repeat digitizations of the 12 known locations resulted

in root mean square errors in x, y and z of 0.021, 0.015

and 0.007 m, respectively, with an overall root mean

square error of 0.026 m.

Implicit errors in g, Cd and Cl

The differential equations (4)–(6) do not yield closed

form solutions containing g, Cd and Cl explicitly and so

it was not possible to undertake a conventional error

analysis for these quantities. A simulation approach was

used instead. For each kick, the x, y and z values

obtained from the polynomials defined by equation (8)

were compared with the raw data values for each point

on the trajectory. This enabled the standard deviations

in the experimental coordinates to be determined using

the fitted polynomial values as the basis. Averaged over

all 10 kicks, the standard deviations were found to be:

sx ¼ 0:017 m

sy ¼ 0:008 m

sz ¼ 0:010 m

It was then possible to define a modified experimental

trajectory by perturbing the measured coordinates using

a random normal deviate (rnd) in the form

x! x� rndð1:96 � sxÞ

Table 1. Summary of experimental results (ni and nf are the

velocities at 0.1 s and 0.9 s, respectively)

Velocity (m×s71) Spin

angle g(8) Cd Cl

vi vf +4 +0.03 +0.05

23.0 17.9 71 0.27 0.29

26.3 19.8 95 0.29 0.29

26.8 20.1 96 0.30 0.28

24.8 19.6 83 0.25 0.23

24.2 19.1 71 0.28 0.27

25.7 18.4 66 0.28 0.25

25.1 19.4 77 0.27 0.29

24.9 18.6 61 0.28 0.23

24.4 19.1 83 0.28 0.24

28.3 20.4 80 0.27 0.26

80 Bray and Kerwin
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with similar expressions for y and z. New values of g, Cd

and Cl were then obtained for the modified experi-

mental trajectory by re-solving the differential equations

(4)–(6). From 50 replications of this process, the

implicit errors in the quantities were estimated to be

g+48, Cd+0.03 and Cl+0.05.

Experimental findings

Table 1 summarizes the results and includes the initial

and final ball speeds for each kick. The lowest speed

recorded, 17.9 m×s71, gives a Reynolds number (Re) of

2.56105. Transition to post-critical conditions is

usually taken to occur at Re 42.16105, and so post-

critical conditions can be assumed for all of our

measured trajectories.

The values of Cd exceed those generally quoted of

around 0.2 for soccer balls (Daish, 1972; de Mestre,

1990), although, as already noted, there is little

published information on experimental values in this

area. As we were unable to obtain the spin rate

explicitly, no general conclusions can be drawn about

the Cl values in Table 1. All that can be said is that the

parameters are more representative of ‘rough’ spheres

within the range of conditions prevailing in soccer (cf.

Bearman and Harvey, 1976), although more work is

needed to corroborate this.

Figure 4 shows comparisons between a measured

and predicted trajectory for one of the kicks in our series

where the parameters were determined to be g= 838,
Cd = 0.25 and Cl = 0.23. Agreement between the mea-

sured and predicted trajectory for the individual

coordinates is good (a root mean square error of

e= 0.045 m was obtained for this case). Figure 4 also

gives some indication of the amount of swerve that can

be imparted to the ball in practice. Sidespin can easily

be achieved with conventional instep kicking and very

nearly pure sidespin (g= 838) was produced by our

player in this case.

Simulated free kicks with defensive wall

To assess the constraints imposed on the kicker by the

defensive wall, representative values from the trials of

Cd = 0.28 and Cl = 0.26 were chosen. Taking a= 908
and R = 20 yards (18.28 m) in Fig. 1 would represent a

central free kick symmetrically within the ‘D’. A

defensive wall of height 1.83 m with geometry defined

by equation (7) is assumed. The goalkeeper (G) is

assumed to take the position indicated in Fig. 1, with

the wall blocking 75% of the goal line (q = 1.83 m).

Figure 5 shows a scale diagram of the free kick position

with respect to the pitch markings.

Although it would be possible to analyse this

position exhaustively using various angles, distances

and widths of the wall, the main features can be

revealed by taking some illustrative values of the

parameters. Sidespin kicks with a right-footed kicker

will be assumed, taking an initial kicking speed of

25 m×s71. While the ball could be swerved around the

wall below the height of the defenders, most attackers

choose to play the ball over the wall, towards the far

post and beyond the goalkeeper’s reach. This has the

added advantage of obscuring the ball during the

early portion of its flight, further reducing the

goalkeeper’s reaction time.

Figure 6a shows the path of a ball kicked at a speed of

25 m×s71 with an elevation of 16.58. Pure sidespin

(g= 908) has been assumed. The initial direction of the

kick is taken to be down the centre line to goal. This ball

would just clear the wall and would cross the goal line,

under the bar, approximately 4 m from the goalkeeper’s

position. Kicking at an inclination of 3.58 to the centre

line, towards the far post, with the same initial

conditions, would result in the ball entering the net

just inside the far post.

Free kick – lateral displacement
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Fig. 4. Comparison of predicted and measured trajectories.
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Fig. 5. The free kick and defensive wall positions used in the kick simulations.

Fig. 6. Simulated free kick. (a) Ball speed 25 m×s71, initial elevation 16.58, spin axis 908 to horizontal. Initial kicking directions 08
and 3.58 to centre line to goal. (b) Ball speed 25 m×s71, initial elevation 17.58, spin axis 908 to horizontal. Initial kicking directions

08 and 3.58 to centre line to goal.
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Figure 6b differs from Fig. 6a only in the assumption

of the initial elevation of the kick. If this were increased

by as little as 18 to 17.58, the ball would clear the wall

but would only just pass under the bar for both

directions of kick.

Similar constraints apply to the initial velocity of the

kick. As Fig. 7a shows, a ball kicked with an initial

elevation of 16.58 but with an initial velocity of

26 m×s71 would only just pass under the bar. Control

of the orientation of the spin axis is also important.

Figure 7b represents an initial elevation of 16.58 and a

kicking speed of 25 m×s71, but with the spin axis

reduced by 78 from the vertical to 838. The outcome is

virtually identical to that in Fig. 7a, with the backspin

introduced by tilting the spin axis slightly being as

detrimental to the kick as increased kicking velocity.

The above results illustrate how closely the striker

must control the parameters of the kick to achieve a

successful outcome. By the same token, little can be

done by the goalkeeper in attempting a save when

the ball is struck correctly. A further constraint is

placed on the goalkeeper if the ball is not seen at

the instant it is played, but only when it first clears

the defensive wall. The time of flight to goal from

this point, using the parameters in the above

examples, would typically be 0.45 s, leaving virtually

no margin for indecision, even for a shot with very

little swerve.

Conclusions

The objectives of this study were to obtain representa-

tive values for the drag and lift coefficients for soccer

balls and to use these in a realistic model of a free kick

with associated defensive wall. Video analysis of ball

flight for a series of free kicks enabled successive ball

positions to be accurately determined and hence

Fig. 7. Simulated free kick. (a) Ball speed 26 m×s71, initial elevation 16.58, spin axis 908 to horizontal. Initial kicking directions 08
and 3.58 to centre line to goal. (b) Ball speed 25 m×s71, initial elevation 16.58, spin axis 838 to horizontal. Initial kicking directions

08 and 3.58 to centre line to goal.
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facilitated the estimation of the required aerodynamics

parameters. Lack of published experimental data for

soccer balls has not enabled us to compare our findings

with data derived from wind tunnel tests, for example.

The values determined do, however, produce deflec-

tions, which, when used in conjunction with other

parameters typical of free kicks in soccer, are in line

with those observed in match-play. This lends con-

fidence to use of the flight model, in conjunction with a

simple model of the defensive wall, to explore the

constraints posed by the wall in a direct free kick. A

particular style of free kick has been used to illustrate

the models, but this could readily be extended by

variation of a few parameters to more complex

geometries and to a systematic study of the optimal

strategies for attackers and defenders in this important

set-play.

We have restricted the present study to the

sidespin free kick, although there is ample evidence

that elite players are able to strike a ball from the

ground with topspin, producing a free kick that

descends (dips) much more rapidly than its sidespin

counterpart. The more rapid descent is associated

with the downward-pointing component of the

Magnus force for this case. With this type of kick,

the ball can be struck relatively harder with a

corresponding increase in velocity and a reduction

in the flight time to goal. Examination of Table 1

reveals that our player achieved a small component of

topspin in two kicks where the orientation of the spin

axis exceeded 908. This type of kick, although more

demanding in terms of the precision with which the

ball must be struck, can be very easily modelled with

appropriate adjustment of the terms in the differential

equations for the flight and is the subject of ongoing

work.

As noted, we have to date been unable to

determine spin rate for the ball explicitly and have

represented this quantity implicitly via the lift

coefficient, Cl, in the equations of motion. Work in

progress will enable spin rate to be measured at the

instant of the kick, together with the implied

orientation of the ball’s spin axis, as both affect the

resultant trajectory significantly.
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