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ABSTRACT
We present a Markov chain Monte-Carlo (MCMC) method for modelling the Galactic
magnetic field using total and polarised synchrotron emission data as well as rotation
measures of extragalactic sources. With these three datasets, we study the three com-
ponents of the magnetic field: the large-scale regular field, the small-scale isotropic
random field, and the ordered field. In this first paper, we use only data along the
Galactic plane and test a simple 2D logarithmic spiral model for the magnetic field
that includes a compression and a shearing of the random component giving rise to
an ordered component. We demonstrate with simulations that the method can indeed
constrain parameters such as the ratios of the magnetic field components. Finally, we
apply the methods to the data and find that they are well fitted by a model where
the magnetic field energy density has regular, random, and ordered components in
roughly the ratios 10, 50, and 40 per cent, respectively, at the peak along magnetic
arms. We outline further work to extend this type of analysis to study the details of
the turbulence as well as the vertical profile of the magnetic field.

Key words: ISM: magnetic fields – Galaxy: structure – polarisation – radiation
mechanisms: general – radio continuum: ISM

1 INTRODUCTION

Observations of external galaxies show that the relationship
between the magnetic field and the ionised gas is far from
simple and varies from galaxy to galaxy. (See, e.g., Beck
2009 for a review.) Our own galaxy is more difficult to study
since we must observe it from within and looking through
the plane. In this work, we present a method for comparing
magnetic field models of many parameters to a variety of
observables. With the tools we describe, we can use more
realistic models for the small-scale components and there-
fore have less need for the simplifying assumptions (such as
isotropy) that are often made with unknown effect on the
results. For the first time, we now have coverage of signif-
icant portions of the Galactic plane in total and polarised
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synchrotron intensity as well as in rotation measures (RM),
and we show how these complementary datasets are vital
for disentangling the different components of the Galactic
magnetic field.

It is useful to think of the Galactic magnetic field as
separable into three components referred to as regular, or-
dered, and random/tangled/turbulent. These are illustrated
by the cartoon in Fig. 1. The term “regular” refers to, e.g.,
a large-scale spiral structure, while the “random” compo-
nent usually refers to the small-scale component varying in
three dimensions in both strength and direction. The term
“ordered” refers to a field where variations simply imply
sign reversals; the ordered component points along a com-
mon, ordered axis but simply changes direction on small
scales, perhaps stochastically. (There are different uses of
the word “ordered” in the literature. It can be thought of as
an anisotropic random component, but in this paper, we will
distinguish between an isotropic random component and an
ordered component. “Ordered” is also sometimes used to
refer to the combination of what we in this paper call the
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Figure 1. Cartoon illustrating the three components of the mag-
netic field and how they relate to the three observables of total
synchrotron intensity (I), polarised synchrotron intensity (PI),
and Faraday rotation measure (RM). (Note that the situation is
the same for dust emission, which is also polarised perpendicular
to the magnetic field due to grain alignment.)

ordered plus regular field, but we find that usage confusing
and prefer to think of them as three distinct components.)

The regular fields are assumed to probe processes such
as galactic-scale dynamos, while the small-scale random
component probes turbulent processes in the ISM. The or-
dered component is thought to result from the effects of
larger scale shearing dynamics, compression, etc. on the ran-
dom component. This component is often neglected for sim-
plicity (see, e.g., Burn 1966).

In external galaxies, the synchrotron emission is com-
pared to the thermal emission to study how the magnetic
fields correlate with the ionised gas in the galaxy. The arms
seen in total intensity tend to follow the arms seen in thermal
emission, but the same is not true of the polarised intensity.
This has two implications. Firstly, the random component is
often significant, perhaps dominant, in the spiral arms, thus
lowering the polarisation fraction. Secondly, the ordered and
regular fields may be strongest in “magnetic arms” distinct
from the matter spiral arms (matter referring to the ionised
gas component). As reviewed by Beck (2009), NGC 6946 is
an example where the magnetic arms appear to be between
the matter arms, while M 51 appears to have magnetic arms
on the edge of the spiral arm.

Though we cannot assume anything about how the
magnetic field components follow the matter spiral struc-
ture, Fig. 2 shows that the synchrotron emission has clear
step features that may correspond to arm tangents. The

Figure 2. The three primary tools we use for studying the mag-
netic field in the plane of the galaxy are the synchrotron total
intensity (top), the synchrotron polarised intensity (middle), and
the RM (bottom). The field structures that we can perhaps infer
from the profile of these data along the plane are indicated. The
vertical lines mark interesting sight-lines, also shown on Fig. 4,
either showing what may be tangent to arm features or showing
the coverage of future RM surveys. (Note that the RM data are
boxcar smoothed to emphasize the structure.)

rotation measures also indicate field reversals that may be
related. Learning how the field varies in strength, direction,
and coherence across a matter spiral arm will inform theo-
ries of how the fields are generated and maintained in the
dynamic environment of the magnetised interstellar medium
(MIM).

In this work, we take a first step toward disentangling
these components in our own Galaxy. Since we cannot look
down upon it from above to determine where the magnetic
arms lie relative to the matter spiral arms, we are limited
to looking through the plane. Our ongoing project is to see
whether the profiles in total and polarised synchrotron emis-
sion can distinguish arm ridges in the different components,
but for this work, we assume that they all peak in the same
ridges. We do not, however, constrain those ridges to lie
where the matter spiral arm ridges are thought to be, but
instead use the data to constrain the orientation of the mag-
netic spiral arms. We leave it to later work to determine if
the data can distinguish models where in addition to inde-
pendent magnetic arms, the peaks in the three components
do not coincide.

But there are several difficulties in interpreting the
emission profile of synchrotron total intensity along the
Galactic plane. Firstly, the random component introduces
a sort of “galactic variance” (analogous in a limited sense to
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the cosmic variance in cosmic microwave background stud-
ies). Nearby random features will perturb the profile mak-
ing it difficult to separate the field components accurately.
Secondly, the plane contains a strong emission component
from thermal bremsstrahlung, commonly known as free-free
emission. This component is difficult to separate from the
non-thermal emission we wish to study and has a different
spatial distribution.

Using the polarised synchrotron emission in addition
helps to resolve some of these problems, as the isotropic
random component does not on average contribute to the
polarised intensity. The addition of rotation measures fur-
ther helps to break the degeneracies in the parameter space,
as they are only dependent on the regular component. The
three field components can then be studied by comparing
these three observables.

There have been various efforts to model the
Galactic magnetic field, from Beuermann et al. (1985)
and Broadbent et al. (1990) to Page et al. (2007),
Miville-Deschênes et al. (2008), Sun et al. (2008),
Jansson et al. (2009), and Orlando et al. (2009). Most
of these works use only one or two datasets and are limited
by simplifying assumptions about the nature of the random
component. Broadbent et al. (1990) (with more details in
Broadbent 1989) consider a detailed galaxy model and
have remarkable success in reproducing the profile of
synchrotron emission along the plane. That work is unusual
in including an analytic method to model the anisotropy
in the small-scale random component of the MIM. While
it seems unlikely that the data constrain all of the dozens
of parameters in their model (particularly considering the
above-mentioned problems of thermal emission separation
and galactic variance), we consider it an interesting place
to start and adopt several aspects of their model.

It is only recently that we have enough data to study
the three components of the magnetic field and perhaps to
separate them. We can look at the continuum emission and
compare the total intensity to polarised intensity as well to
the Faraday rotation measures. These three contain infor-
mation about the relative strengths of the regular, ordered,
and random components. We now have synchrotron emission
maps over the full sky at several bands including polarisa-
tion, and we have unprecedented coverage of a large part
of the Galactic plane in RMs of extragalactic sources. The
combination of these datasets allows us to probe the three-
dimensional distribution of magnetic fields and matter in
the Galaxy.

For this work, we describe the method we use to model
the Galaxy, to simulate the observables, and to map out
the likelihood space using a Markov Chain Monte-Carlo
(MCMC) method. The problem is a large and complicated
one, and in this first paper, we focus on a 2-dimensional
analysis of the Galactic plane only, though the methods can
certainly be extended to 3D. We apply the method to deter-
mine the relative strengths of the three components of the
magnetic field, the regular, random, and ordered fields, and
discuss how to extend the analysis using additional data.

2 OBSERVATIONS

2.1 Synchrotron emission in total intensity

The synchrotron emission along the plane in Fig. 2 is
mapped at 408 MHz by Haslam et al. (1982) (available in
HEALPix1 format from the LAMBDA website2). The to-
tal intensity gives information about the magnetic field (B)
component perpendicular to the line of sight:

Isync ∝
Z

LOS

JCREB
p+1

2

⊥ dl (1)

where JCRE normalises the density of cosmic ray electrons
(CREs); it is described explicitly in § 3.5. The index on B
depends on the spectral index of the cosmic ray electron
distribution, assumed to be a power law. We follow the no-
tation of Rybicki & Lightman (1979) and define the number
density of particles in the range γ to γ + dγ (where γ is the
Lorentz factor such that E = γmec

2) as N(γ)dγ ∝ γ−pdγ.
Observations show that p ≈ 3, in which case dI ∝ B2.
It also implies a power law in synchrotron flux density of
S ∝ ν−(p−1)/2 = ν−1 or brightness temperature of T ∝ ν−3.

The synchrotron total intensity is sensitive to all com-
ponents of the magnetic field. The regular component, ran-
dom component, and ordered component all contribute ac-
cording to their projection perpendicular to the line of sight.
The profile of the synchrotron emission along the Galactic
plane, shown in Fig. 2, has distinct steps, exactly as if the
emission increases as the observer looks along a spiral arm.
Unless this is coincidental, it therefore seems that either the
magnetic field structure or the CRE density must follow to
some degree the matter spiral structure.

The 408 MHz map includes thermal bremsstrahlung
(free-free) emission in a very narrow region about the Galac-
tic plane. (Other available radio surveys include the 2.3 GHz
data of Jonas et al. 1998 or the 1.4 GHz survey of Reich 1982
and Reich & Reich 1986. Higher frequencies, however, will
have more free-free contamination due to its flatter spectral
index.) Since it is along the plane that we are interested
in the synchrotron emission, we must subtract the ther-
mal emission. We use the Wilkinson Microwave Anisotropy
Probe (WMAP) foreground maps generated from the max-
imum entropy method (MEM) described in Hinshaw et al.
(2007). The WMAP MEM free-free map for the Ka-band
(33 GHz) contains the best estimate of the free-free distri-
bution that we have for the Galactic plane region. The MEM
maps are also available from the LAMBDA website.

The data are generated by starting with the full sky
HEALPix maps at Nside = 512 (pixel size of 6.9 arcmin)
for the Haslam and the WMAP (3-year) Ka-band MEM
free-free component. Each map is then smoothed to an ef-
fective beamwidth of 3◦ FWHM and the maps downgraded
to Nside = 128 (pixel size of 27.5 arcmin). From the Haslam
data, we then subtract the free-free component extrapolated
from the Ka-band assuming a power law dependence of ν−2.1

(see, e.g., Dickinson et al. 2003). The 512-pixel (4Nside) slice
along the plane is then extracted, further smoothed in 1-
dimension by boxcar-averaging by 8 pixels, and the result is
then downgraded to the 64 bins whose centres coincide with

1 http://healpix.jpl.nasa.gov/
2 http://lambda.gsfc.nasa.gov/
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the Nside = 16 pixels along the plane. The result is a profile
with a resolution of ≈ 6◦ in longitude and three in latitude.

The reason for this processing is to minimize the effects
of the inaccurate thermal emission separation. The WMAP

MEM free-free component is generated by an analysis in-
cluding only three foregrounds, namely synchrotron, free-
free, and thermal dust. The results are therefore contami-
nated by the anomalous dust component. There is no other
reliable indication of the thermal emission on the plane, how-
ever, (Hα, for example, is absorbed by dust on the plane and
is only a reliable tracer of free-free at high latitudes) and the
free-free emission is strong enough on the plane relative to
the other components that the separation, while imperfect,
is probably sufficient. The free-free latitude profile is very
narrow (see e.g., Dickinson et al. 2003) compared to that
of the synchrotron emission. Smoothing the maps first then
leaves the profile of synchrotron emission along the plane
essentially unchanged but reduces the relative amount of
free-free emission.

In future work, we will investigate other ways to sep-
arate the thermal emission on the plane, for example by
using the newer results from WMAP in Gold et al. (2009),
which include a pixel-based MCMC separation method. In
that work, the authors estimate that the spinning dust frac-
tion is at most ≈ 15 − 20 per cent of the emission in the
Ka-band. It is hard to predict the fraction that ends up in
the free-free template (in either the MCMC or MEM analy-
ses) when the spinning dust component is ignored, since this
depends on whether its spectral behaviour better matches
the free-free or the synchrotron. Note that the remaining
uncertainties due to the inaccurate thermal emission sepa-
ration and subtraction are unlikely to be as significant as
the galactic variance described in § 1 itself.

Because the Galactic centre region is likely complicated
and currently mysterious, we exclude the four nearest pixels
corresponding to roughly 10◦ either side of ℓ = 0. This makes
the analysis insensitive to what happens in the innermost
∼2 kpc of the galaxy and allows us to focus on the step-
features as well as the general profile.

2.2 Polarised intensity

Polarised synchrotron emission depends on the cosmic ray
power law spectral index, and is at most a fraction Π of the
total intensity, where

Π ≡ PI

I
=

p + 1

p + 7/3
= 0.75 (2)

(for p = 3) in the case that the magnetic field is uniform
(Rybicki & Lightman 1979). The observed degree of polari-
sation compared to the total intensity therefore gives infor-
mation about how ordered the magnetic field is perpendicu-
lar to the line of sight. Averaging over an isotropic random
component produces, on average, no polarised intensity, as
emission polarised in perpendicular directions cancels. An
ordered or anisotropic random component, however, will still
add to the polarised intensity, since the polarisation angle
depends only on the orientation rather than the direction of
the field.

We use the Page et al. (2007) three-year WMAP

23 GHz K-band map of polarised intensity and smooth it to
extract the plane as described above for the Haslam data.

Likewise, we ignore the four pixels toward the Galactic cen-
tre.

2.3 Faraday Rotation measure

The polarisation angle of an electromagnetic wave rotates
when propagating through a magnetised plasma. The rota-
tion angle changes as RMλ2, where the Faraday rotation
measure (RM) is defined as the the line-of-sight (LOS) in-
tegral from a source at a distance D:

RM ∝
Z 0

D

neB‖dl (3)

where ne is the number density of thermal electrons. A pos-
itive RM means that B‖ points toward the observer.

The RM can be measured for both pulsars within the
galaxy as well as external sources. These data complement
the synchrotron emission, since the RM is sensitive to di-
rection as well as orientation and to the parallel compo-
nent rather than the perpendicular. Therefore, RMs trace
only the regular magnetic field component, since any ran-
dom component or even ordered component will have a null
effect on average. This means that these data can help break
degeneracies that arise in modelling the synchrotron emis-
sion due to the regular versus random field parameters.

We are therefore probing three components of the mag-
netic field using three main datasets. But unfortunately,
there is a further source of uncertainty, namely the distribu-
tion of thermal electrons in the galaxy. As mentioned above,
the relationship between the matter structure (as defined
by the thermal electron distribution) and the magnetic field
structure is unclear.

The data we use are the RMs for the extragalactic
sources in the Southern Galactic Plane Survey (SGPS) of
Brown et al. (2007). There are a total of 148 sources within
1.5◦ of the plane in the range 253◦ 6 ℓ 6 356◦, which we bin
into 5◦ longitudinal bins. Note that, following Brown et al.,
we exclude from our analysis the 30 sources in the region
270◦ . ℓ . 280◦, where there is evidence for anomalously
low RMs due to a local feature. That leaves a total of 118
sources used in our analysis. These are binned into the 19
pixels corresponding to those used for the other datasets in
this longitude range.

3 GALAXY MODELS

We must model each of the relevant components of the MIM,
namely the magnetic field (regular, random, and ordered),
the thermal electron spatial distribution, and the cosmic ray
electron spatial and spectral distribution.

3.1 Regular magnetic field

We model the regular magnetic field beginning with a simple
axisymmetric spiral that defines the direction of the field. In
Sun-centric coordinates, then, the field direction is

B̂ = sin(θp + φ − ℓ)x̂− cos(θp + φ − ℓ)ŷ

where φ is the azimuthal angle in the polar coordinate sys-
tem with the Sun at the origin, while ℓ is the Galactic lon-
gitude. We are working only in the plane, and the vertical

c© RAS, MNRAS 000, 1–17
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component is always zero. (We use this form since we will
integrate along the LOS from the Sun as the origin.) This
defines a spiral field with a pitch angle of θp.

As in Broadbent et al. (1990), the amplitude is de-
scribed by a simple radial profile:

B(r) = B0(1− exp(−r2/R2
2))(exp(−r2/R2

0)+exp(−r4/R4
1))
(4)

where r is the Galacto-centric radius, and the three scale
radii define the shape. Their default values are given in Ta-
ble 1, though as described in § 2.1, we exclude the innermost
longitudes from the analysis, which means we do not con-
strain R1 and R2.

The parametrization of the radial profile comes from
Broadbent et al. (1990), but we have changed the parameter
values. The Broadbent et al. profile represents a modulation
in the magnetic field only, while the cosmic ray electron den-
sity was assumed to be constant. In our analysis, we have an
independent modulation for the cosmic ray profile, described
below. With a decreasing profile in the cosmic rays, we need
to flatten the profile of the magnetic field component in or-
der to reproduce a similar synchrotron intensity profile. The
scale radii of the field and CRE distribution are degenerate
with the datasets we use in this work. In further work, how-
ever, we plan to add dust emission data, which will break
the degeneracy, so we have separated the parameters.

The “default” values in Table 1 were found by hand to
approximate the synchrotron profile so that we could explore
the parameters of the random versus ordered components.
In a later paper, we will explore these parameters in more
detail.

This azimuthally symmetric field is then amplified along
spiral arm ridges (defined parallel to the field direction) as
described in § 3.3. Note that those ridges are not constrained
to lie along the matter spiral arm ridges, and each magnetic
arm has a corresponding amplitude parameter, an, so that
we can fit for the strength of each arm independently. The
parameters are summarised in Table 1 and the radial profile
shown in Fig. 3.

3.2 Random magnetic field

The polarisation of synchrotron emission in the spiral arms
of external galaxies is generally low (a few percent according
to Beck 2009), implying that a large fraction of the total
magnetic field is due to an isotropic random component.

The random component we simulate begins with a
Gaussian Random Field (GRF) simulated in Fourier space
(k is the wavenumber, 1/λ) with a variance given by
|k|(α−2)/2, where α is the spectral index of the power law de-
scribing the total magnetic energy in one dimension, P (k) ∝
kα, following Han et al. (2004). For a Kolmogorov-type sim-
ulation that perhaps matches the small-scale (1/k <

∼ 1pc)
fluctuations, α = −5/3, while Han et al. (2004) find an in-
dex of α = −0.37 at larger (1/k >

∼ 1kpc) scales.
This field in k-space is then Fourier transformed to real

space and amplified along the ridges of magnetic spiral arms
by a parametrized compression described in the next section.

In this paper, we are simulating the entire galaxy,
though only in two dimensions. In § 5, we describe how the
resolution of the random component affects the results. In
short, we find that the analysis of the whole plane at low res-

Figure 3. An example of the radial profile of the regular field and
of the compression. (Note that the values used are just for illus-
tration and not those found to fit the data.) The uncompressed
profile is shown in purple, while the dotted black line includes the
compression factor, ρc(r), showing example spiral arms. The bot-
tom axis is the radius from the Galactic centre, while the top axis
is the corresponding longitude if viewed from the perpendicular
direction at a distance of R⊕ = 8.5 kpc.

olution is not strongly sensitive to many parameters of the
GRF. We use the spectral index for larger scales, α = −0.37,
a box size 40 kpc long on each side, and 512 bins for a bin
size of 80 pc. This is very low resolution and not much better
than a single scale random component. But as described in
§ 5, we find that increasing the resolution does not change
the results significantly.

For later papers, we will analyse small regions of the
sky at high resolution (e.g., pixels of 0.5 arcmin) and look
in detail at the properties of the turbulent component, but
for this paper, those details are not constrained.

3.3 Compression

As discussed above, in some external galaxies, the magnetic
field appears enhanced in the spiral arms as traced by the
matter, while in others, there appear to be separate “mag-
netic arms”, sometimes between the matter arms or showing
a different (even varying) pitch angle. We therefore define a
logarithmic spiral arm model for such ridges parallel to the
regular field direction and allow the orientation of the spiral
to vary to fit the data. In addition to the spiral arms, we
also include an annulus at 5 kpc from the Galactic centre,
roughly coinciding with the “molecular ring” feature in the
NE2001 model.

We define a four-arm model in this paper, and will test
other models in a later work. Each arm is then described by
a curve

r(φ) = Rs exp [(φ0n − φ)/β] (5)

where β ≡ 1/ tan(θp), θp being the same pitch angle defined
above for the regular field direction. The angle φ0n is the
reference angle for the nth spiral arm, always π/2 away from
its neighbours in the case of four arms.

The arm ridges (and ring) are then defined by a mod-
ulation that peaks along the ridge and reaches a minimum

c© RAS, MNRAS 000, 1–17



6 T. R. Jaffe et al.

Figure 4. An example of a regular spiral arm magnetic field
model (no random component shown) compared to NE2001 spiral
model for the thermal electron density shown as overlaid contours.
Interesting sight-lines are over-plotted corresponding to the ver-
tical lines in Fig. 2. The peaks in the RMs correspond to looking
roughly tangentially to a spiral arm. (Note that the contours do
not make clear the high-density “molecular ring” between roughly
2 and 5 kpc of the Galactic centre.) For comparison with Table 1,
the Perseus arm corresponds to amplitude a0, Sag-Carina with
a1, Scut-Crux a2, Norma a3, and the ring a4. (As discussed in
§ 3.1, the parameters used in this example are not necessarily the
defaults in that table.)

between the arms. The compression profile we use is based
on Broadbent et al. (1990), who modelled a magnetic field
component that is enhanced in the arm by a compression
factor ρc,

ρc = c(r) exp(−(d/d0)
2) + 1 (6)

where d is the distance to the nearest of the four arm ridges
as measured along the line passing through the Galactic cen-
tre. The amplitude of this modulation, c(r) is constant in the
inner galaxy and drops linearly to zero in the outer galaxy.
I.e.,

c(r) =

8

>

<

>

:

C0 if r < R3

C0 [1 − (r − R3)/(R
arms
max − R3)] if R3 < r < Rarms

max

0 if r > Rarms
max

(7)
This implies a field that is unaltered between the arms

but amplified in the arms according to a Gaussian pro-
file, when seen though a radial cross-section, with a width
of d0. This amplitude enhancement profile applies to both
the isotropic random component and the regular compo-
nent. This Gaussian modulation may not accurately repre-
sent what may in reality be a shock front with a different

profile, but it is meant simply as a first order approximation
to an enhancement parallel to the shock plane. (Though we
refer to the “shock plane”, note that ρc is not the density
contrast across the shock, as often used, but simply the to-
tal Gaussian density enhancement as compared to the un-
shocked inter-arm region.) An example of the compressed
regular field viewed from above is shown in Fig. 4.

To simulate an ordered component, the random field is
then also stretched along the plane defined by the arm ridge.
This can be thought of as an anisotropic random component,
or as the addition of an ordered component (in addition to
the regular and isotropic random components) whose ori-
entation is always along the spiral arm but whose specific
direction changes stochastically. Rather than using the nu-
merical approximation given in Broadbent et al., we apply
this compression explicitly to our simulated random compo-
nent. Namely, we use

Birreg = ρcBGRF + ford(ρc − 1)Bproj
GRF ≡ Biso + Bord (8)

where Bproj
GRF is the component of the random field projected

onto the shock plane,

Bproj
GRF = Breg

Breg · BGRF

|Breg|2
, (9)

and ford sets the ratio of the ordered field to the amplified
but isotropic random component in the arms. (Note that
ford is not the ratio itself, since that changes from the arm
to inter-arm regions.) The first term in Eq. 8 is then the
isotropic (but no longer homogeneous) random component
while the second term is the ordered component. The shock
plane is assumed to be perpendicular to the Galactic plane
and parallel to the spiral arm traced by the regular compo-
nent.

The form of this parametrization means that in the
inter-arm regions, the ordered component goes to zero, while
the isotropic random component is not amplified but non-
zero. The combination of BRMS and C0 determines the am-
plification in the arm relative to the inter-arm region. In
particular:

˙

B2
iso

¸1/2
=

(

˙

B2
GRF

¸1/2 ≡ BRMS, as ρc → 1 (interarm)

(C0 + 1)BRMS, as ρc → C0 + 1 (ridge).

(10)
In other words, in the inter-arm region, d is large, ρc goes
to 1 (see Eq. 6). On the ridge, d goes to zero, ρc reaches its
maximum at C0+1, and the random component is amplified
by C0 + 1. In between, the amplification is falling off with
a Gaussian profile of width d0. The profile of the ordered
component, proportional to ρc−1, is the same Gaussian but
without the offset, i.e., it goes to zero between the arms:

˙

B2
ord

¸1/2
=

8

<

:

0, as ρc → 1 (interarm)

fordC0

D

(Bproj
GRF)2

E1/2

as ρc → C0 + 1 (ridge)

(11)

Note that this model approximates the case where the or-
dered component is due to the compression wave in the arm,
but it does not represent the possibility that the ordered
component might arise simply due to differential rotation.

The ratio of ordered to random is then zero in the inter-
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arm regions; along the ridge, the ratio is
˙

B2
ord

¸1/2

〈B2
iso〉

1/2
= ford

C0

C0 + 1

r

2

3
(12)

because
D

(Bproj
GRF)2

E

= 2/3
˙

B2
GRF

¸

.

When looking down a spiral arm, the ordered compo-
nent does not contribute to the synchrotron emission. The
impact of this change on total intensity is then seen in the
relative amount of emission seen looking down an arm rela-
tive to elsewhere, i.e., in the shape the emission steps seen
in the longitude profiles in Fig. 2. Since the isotropic compo-
nent does not contribute to polarisation, the ordered com-
ponent, along with the regular field, also determines the po-
larised emission profile.

The same effect on the synchrotron can be obtained
with an isotropic compression of the random component
combined with a stronger regular component. Amplifying
the random component along the arms essentially adds an
ordered component, which as described above, is indistin-
guishable from a regular component in synchrotron. The two
cases can be distinguished, however, by looking at the rota-
tion measures as well, where a too-large regular component
will overpredict RM.

3.4 Thermal electrons

For the thermal electrons, we consider three possibilities:

• a physically unrealistic constant density;
• the NE2001 model; or
• a parametrized spiral arm structure analogous to the

regular magnetic field component.

The thermal electron density model that has been most
widely used is that of Cordes & Lazio (2002), known as
NE2001. Based on observations of pulsars at known dis-
tances, this model relates the thermal electron density, ne,
to the dispersion measure (DM) of a give source and its
distance, D:

DM ≡
Z D

0

nedl (13)

Though this model was intended for determining pulsar
distances, it is also used for modelling the magnetic field
through RM, as it is the best existing predictor of the ther-
mal electron density.

The constant model is useful as a comparison to deter-
mine whether or not we can distinguish either of the others
from the null hypothesis. We have compared the results of
using a constant density to those using the NE2001 model
and find that the resulting data profiles are largely indistin-
guishable. The models and RM data are shown in Fig. 5,
with the corresponding parameters that were fitted listed
in Table 2. (The synchrotron profiles, not shown, are effec-
tively indistinguishable.) The curves are the same except in
the complicated Galactic centre region, and though the indi-
vidual arm amplitudes change, the effect on the synchrotron
emission will be degenerate with the other parameters (ford

and Brms).
In this work, we use the NE2001 thermal electron den-

sity model unless otherwise specified. Though it is not likely
to be correct in detail, it is at least based on observations

Figure 5. A comparison of the rotation measures from two mod-
els fitted to the Brown et al. data, in the one case with a constant
thermal electron density of ne = 0.1 and in the other case with
the NE2001 prediction. The best-fit parameters are given in ta-
ble 2. (The dotted lines indicate the galactic variance due to the
random magnetic field component.)

and demonstrated to give reasonable results for pulsar dis-
tances.

The possibility of defining our own model introduces
quite a few more parameters to the problem, and those are
unlikely to be constrained with the data we are using. In the
future, however, we can include dispersion measures (DM)
that depend only on the thermal electron density (and are
calculated in the integration code we use) and additional
data about the distribution from Hα emission.

3.5 Cosmic-ray electrons

The spatial and spectral distribution of cosmic rays in the
Galaxy is thought to be fairly smooth until energies above
100 GeV (see, e.g., Strong et al. 2004 and Strong et al.
2007). But it is not clear how smooth the distribution is, and
local measurements are obviously affected by local sources,
so it is difficult to determine the average distribution over
the galaxy.

For the purposes of constraining the structure of the
magnetic field, however, we start simple. We adopt an
exponential disk model such as that used by Page et al.
(2007) and Sun et al. (2008) (motivated by the work of
Drimmel & Spergel 2001), namely

JCRE(r, z) = JCRE,⊕ exp(−(r − R⊕)/hr) (14)

where R⊕ is the Galactocentric radius of the Solar system.
(In the current analysis on the plane only, we neglect any
modulation with height.) The normalisation is uncertain,
but as a first estimate, we read off the value at 10 GeV from
Fig. 4 of Strong et al. (2007) of roughly E3J(E = 10GeV) ≈
250 GeV2m−2s−1sr−1. We then use the value of JCRE,⊕ =

0.25
`

GeV m2 s sr
´−1

to set the cosmic ray normalisation. 3

3 This is sometimes expressed as a spatial number density nor-
malisation. The spatial number density (assuming relativistic
electrons with v ∼ c) is then N(E) = J(E) × 4π × 1/c. Of-
ten, what is given is a normalisation C(r, z) such that N(γ)dγ ≡
C(r, z)γ−pdγ where γ is the Lorentz factor (E ≡ γmec2). There-
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For comparison, Sun et al. (2008) use a value of JCRE,⊕ =

0.4
`

GeV m2 s sr
´−1

.
For this work, we also adopt a simple power law energy

distribution with the index p = 3.
We should emphasize that this model is overly simplis-

tic in assuming a smooth spatial distribution and a simple
power law spectrum that is the same throughout the Galaxy.
Neither of these assumptions is likely to be true in reality.
What we are then constraining is then the spatial distribu-
tion of the product nCREB2. The degeneracy between spa-
tial variations in the two independently is only broken for
the regular field using the rotation measure data. In a later
work, we will see how much the two can be separated by
adding thermal emission from dust (dependent only on the
magnetic field) to the analysis.

4 MODEL SELECTION METHOD

The problem is then to parametrize the Galactic magnetic
field (as well as the the thermal and cosmic ray electrons
if possible) and find the model parameters that best fit the
data. There are, then, a large number of parameters, and
a brute-force approach like a simple grid search would re-
quire prohibitive amounts of computing time. Instead, we
use the far more efficient and flexible method of a Monte
Carlo Markov Chain (MCMC) analysis.

4.1 Simulation with hammurabi

The likelihood function we use computes a simple χ2 from
a comparison of the model to the data along the Galac-
tic plane as shown in Fig. 2. For the given values of the
input parameters, we generate the observed emission and
RM at each pixel by performing a line-of-sight integration
through a simulated galaxy using the hammurabi code of
Waelkens et al. (2009).

The hammurabi code is designed to compute observ-
ables such as synchrotron emission and dust emission in full
Stokes parameters while taking into account Faraday rota-
tion and depolarisation effects. It performs a line-of-sight in-
tegration through a galaxy simulation, but uniquely, it can
refine the integration resolution as the distance increases in
order to maintain a roughly constant physical cell size. This
is crucial for simulating effects such as beam depolarisation.
We do not take full advantage of this code in this current
work, but we will later use it to investigate more thoroughly
the properties of the turbulent ISM and its effect on the
observables.

For this analysis, we simply use one observing “shell”
(i.e., no grid refinement with distance) and a simple 2D sim-
ulation in the plane of the Galaxy only. We compute the
observables at each of 512 pixels along the plane that cor-
respond to the centres of the HEALPix pixels on the plane
in a map at Nside = 128 map. We then smooth the result
in the same way we smoothed the data as described in § 2.1
and bin them into 64 pixels.

fore, C⊕ = N(γ)γp = J × 4π
c

× mec2 ×
“

10 GeV
mec2

”3
= 4 ×

10−5 cm−3, assuming p = 3.

4.2 MCMC with cosmomc

For the MCMC sampling, we use the tools already developed
by Lewis & Bridle (2002) and publicly available as the pack-
age cosmomc. It consists of a Fortran sampling routine, into
which one can insert a parametrized likelihood function, and
an analysis tool, getdist, to read the resulting Markov chains
and determine the parameters’ mean and maximum likeli-
hood values and correlation matrices. We use the cosmomc

sampler but have written our own analysis tool in order
to add further functionality described below. The sampler
has the ability to continuously update the proposal density
based on the likelihood space so far sampled, which makes
for a more efficient mapping out of the likelihood.

This method is complicated in this case by the fact that
we do not compute the model, i.e., the simulated emission
and rotation measures, analytically. Rather, as described
above, we simulate a Gaussian random field for the ran-
dom component and apply the compression algorithm. The
model we wish to compare to the data is then the expecta-
tion value of the emission profiles resulting from such simu-
lations, and the corresponding variance among realisations
determines the error. These are difficult to compute analyt-
ically, so we instead use a brute-force approach of creating
a set of N = 10 realisations and taking the mean. This
must be done for each likelihood evaluation. (We have tried
several different numbers of realisations at each sample and
found ten to be the most efficient in terms of the trade-off
between sample variance and run time.)

For simplicity, we assume a Gaussian distribution of
the data points, xi, about the mean model value, µi, with a
variance of σi so that the likelihood is:

− ln (L) =
X

i

ln
“√

2πσi

”

+ (xi − µi)
2 /(2σ2

i ) (15)

(where the summation is over the pixels along the plane).
The distributions are not exactly Gaussian, as can be seen in
Fig. 6, but the assumption appears to work reasonably well
nonetheless. The differences come from the relation between
the Gaussian random field and the observables, which in the
case of the synchrotron emission, is non-linear. The RMs of
extragalactic sources start with an average value through the
galaxy, dependent only on the regular magnetic field compo-
nent, that is then perturbed by a one-dimensional random
walk due to the random magnetic field component projected
along the LOS. The random component then adds a vari-
ance proportional to the number of steps. (Because the ran-
dom component has structure on many scale lengths, it is
essentially a superposition of random walks with different
sized steps.) For polarised intensity, the polarisation vector
behaves like a two-dimensional random walk, and the ob-
servable is only the length of the result. With only a GRF,
the expectation value of either Stokes Q or U would be zero,
but the expectation of P =

p

Q2 + U2 is non-zero and adds
to the regular component. For total intensity, the emission
of all components simply adds.

Note that the variance at each longitude depends both
on the position and on the model parameters and is deter-
mined simply from the variance of the simulated realisations.
There is an additional uncertainty in both the model mean,
µi, and its variance, σi, due to the limited number of reali-
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Parameter Default Equation Description

Regular magnetic field: Breg(r, φ) = B0(r)anρc(d)

B0 1 µG Global amplitude normalisation
Rs 7.1 kpc see p Scale radius of spiral.
θp -11.5 β ≡ 1/ tan(θp) and θp is the pitch angle of spiral

r(φ) = Rs exp [(φ0 − φ)/β] (r(φ) gives arm radius at given azimuth)
φ0 0 See pitch Angle representing rotation of spiral around

axis through Galactic poles
Rmol 5. kpc Radius of “molecular ring”
Rmax 30 kpc Maximum radius, beyond which |B| = 0
Rarms

max 20 kpc Maximum radius, beyond which c(r) = 0 (see
C0).

Narms 4 Number of spiral arms
an Breg(r, φ) = B0(r)anρc(d(r, φ)) Amplitude modulation and direction for a

given arm, n.
d0 0.3 kpc ρc(d) = c(r) exp(−(d/d0)2) + 1 Defines width of arm for density enhancement,

ρc; d is the distance to the nearest arm in kpc
R0 30 kpc B0(r) = B0(1 − exp(−r2/R2

2))(exp(−r2/R2
0) + exp(−r4/R4

1)) Outer radial profile parameter. See Fig. 3.
R1 3 kpc see R0 Inner radial profile parameter
R2 0.5 kpc see R0

C0 1 c(r) = C0 if r < R3

C0 [1 − (r − R3)/(Rarms
max − R3)] if R3 < r < Rarms

max

0 if r > Rarms
max Peak density contrast. Sometimes C0 ∝ an;

see § 6.4.
R3 20 kpc see C0

Random magnetic field

α -2.37 PB(k) ≡
˙

Bran(k)2
¸

∝ kα Power law spectral index of initial GRF; de-
fault from Han et al. (2004) (0.37 in 1D); Kol-
mogorov value −5/3 (in 1D)

Dco 1 kpc Bran(k) = 0 for k < 1/Dco Cutoff maximum of GRF fluctuations (mini-
mum determined by resolution)

Brms 1 µG Brms ≡
˙

B2
ran(x)

¸1/2
Total RMS amplitude of GRF fluctuations

ford 1 B′
ran = ρcBran + ford(ρc − 1)Bproj ≡ Biso + Bord Ratio of ordered to isotropic random compo-

nent

Thermal electrons

ne0 - ne(r, φ) = ne0 Alternative constant density test model.
By default, we use the NE2001 model of
Cordes & Lazio (2002), which peaks in the
arms around 0.1 cm−3.

Cosmic-ray electrons

p 3 Electron power spectrum power law index. See
§ 2.1 and § 3.5.

hr 15 kpc JCRE(r) = JCRE,⊕ exp(−(r − R⊕)/hr) Scale radius of CREs.

JCRE,⊕
0.25

GeV m2 s sr
See § 3.5.

Table 1. Table of modelling parameters as described in § 3.

sations, so in the determination of χ2, we actually use

σ̂2
i = (1 + 1/N)σ2

i (16)

in the likelihood evaluation of Eq. 15.
When analysing the chains, there is essentially an addi-

tional “noise” term added to the likelihood space, since two
evaluations at the same point in parameter space will return
slightly different likelihoods. This means that we need more
samples to overcome the sample variance and to map accu-
rately the shape of the likelihood space. It also means that
we need to give a “temperature” parameter to the sampler.
The latter is necessary to prevent the algorithm from falling

into an unusually low χ2 hole and never getting out again.
So rather than sampling from P ∝ exp−χ2/2, we sample
from P ∝ exp−χ2/2T , where T is the temperature. This
temperature is simply tuned to ensure that the acceptance
rate of the sampler (i.e., the fraction of proposed samples
that are accepted) remains roughly a third. (With a total
of 140 data points and corresponding χ2 values, we find a
temperature of 10 usually sufficient.) This temperature cor-
rection is then reversed to analyse the results, correcting
both the likelihoods as well as the weights (the number of
steps in the chain where it remained at a given sample before
it accepted the next).
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10 T. R. Jaffe et al.

Figure 6. Distribution of data values compared to the mean.
For 1000 simulations and 64 pixels along the plane, the histogram
shows the difference between the data for a given simulation and

at a given pixel, xi, and the mean at that pixel over all simula-
tions, mi, normalised by the variance, σi. Clearly, for total and
polarised intensity, there is a tail on the positive side that biases
the mean. The solid line shows a Gaussian of the equivalent mean
and width, which is essentially what using a χ2 assumes, while
the dotted line shows a Gaussian that approximately fits the left
half of the histogram.

To simplify the analysis of the chains, we need to re-
move this noise, and we do this simply by smoothing the
likelihood space (as, for example, done in Dick et al. 2006).
For each sample, we replace the likelihood with the mean
of the nearby likelihoods. We must also smooth the weights,
which are by construction meant to be proportional to the
likelihood. The result of the smoothing is a distribution of
likelihood values approximating that seen in an essentially

noiseless situation with otherwise identical parameters. We
smooth by binning the samples in likelihood space with a
binsize of 1/15 times the range (after burn-in) for each pa-
rameter.

The number of samples required for the
chains to converge (using cosmomc’s parameter
MPI Limit Converge Err = 0.3) is between a few thousand
for a 2D fit and a few hundred thousand for a 6D fit.

In §5, we describe how we tested with simulated inputs
to verify that the MCMC search returns the input param-
eters and reasonable uncertainties. An example is shown in
Fig. 7.

4.3 Parameters and datasets

One could, in theory, throw all data and all parameters into
the MCMC analysis at once, but it would be surprising
if such an approach yielded useful information. Degenera-
cies among parameters make samplers highly inefficient, and
when starting values are very far from the peak likelihood,
the burn-in time to random-walk over to the peak can be
very long. Instead, we make educated guesses (informed by
trial and error) about what combinations of parameters and
data will give good constraints and test them using sim-
ulations. For the parameters we fix for the course of the
analysis, we choose by hand values that roughly match the
data, since these are not our primary interest.

For example, as described above, the RMs are the best
dataset to constrain the regular magnetic field component.
Particularly, the angle φ0 describing the azimuthal orienta-
tion of the spiral may have a strong effect on the position
of the RM sign reversals, while the an describe the relative
magnitudes of the RM features. While these parameters do
have an effect on the profiles of the synchrotron emission,
given the galactic variance, this may not be detectable. So
to determine these parameters, then, we use only the RM
data.

The synchrotron emission is particularly interesting for
studying the different components of the random field. As
described above, we can use the RMs to constrain the regular
field and then use the synchrotron to constrain the parame-
ters such as Brms and ford, keeping φ0 and an fixed to their
best-fit values from the RM-only analysis.

Table 1 lists all of the parameters that go into the mod-
elling, and clearly studying all of them would be a huge
undertaking. For this first paper, we focus on the most im-
mediately interesting issues of the magnetic field reversals
and the relative contribution of the regular, ordered, and
random components.

5 TESTING

5.1 Basic Parameters

Figure 7 shows an example of how the MCMC method works
with a simulated dataset. The results on the left use only
RM data, which only cover a portion of the southern sky.
For this reason, some parameters are unconstrained (a0, not
shown), while others, whose LOS tangents lie in the region
covered, are well constrained (a4 and a2, and to some degree
a1 or a3). Among the six parameters simultaneously fit for
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Figure 7. Example of MCMC results. The colours represent the mean likelihood, while the white contours indicate the 68, 95, and
99.7 per cent confidence regions. The solid black lines show the mean value plus or minus the uncertainty, while the dotted lines give
the correct input values. The example on the left shows the results for several parameters describing the regular magnetic field found
fitting only to the RM data. On the right are the results for the two parameters describing the amount of isotropic random and ordered
components found using all the data.

this test (all an and φ0), all return a mean, µi, that is within
2σ of the input value, µ0, where σ is the variance of the
samples.

On the right of Fig.7 is the result of the second step of
fitting. We fix the amplitudes at the values found using the
RM data only and then fit to all data the two parameters
controlling the ratio of ordered to random magnetic fields in
the arms. The returned values lie roughly within 1 σ of the
correct values.

We have run a set of ten such simulations to verify that
the estimates of ford and BRMS are correct and unbiased
(i.e., | 〈µi〉 − µ0| < σ/

√
10).

5.2 Resolution

Figure 8 shows a test of the importance of the resolution
level in the simulations along the plane. Here, we test the im-
plications of the simplifications we make for computational
efficiency.

The choice of the resolution of the GRF simulation is an
important question. The GRF normalisation, e.g., its RMS
over the whole galaxy box, is a function of the outer scale,
the power law index, and the resolution. Though the smaller
scales are increasingly irrelevant due to the power law’s neg-
ative spectral index, there is an effect of not including all rel-
evant dynamical scales. We have verified that quadrupling
the resolution appears to have only a small effect on the re-
sults of the simple Galactic plane analysis, as seen in Fig. 8.

More importantly, we simulate only a 2-dimensional
GRF rather than a full 3-D galaxy, which speeds up the
computation by almost a factor of ten. Though we are only
looking along the Galactic plane, structure near the plane
does enter the beam of each observation, particularly for vol-
umes further away. To be fully correct, we would simulate
a 3D galaxy and include contributions from high-resolution

pixels just off the plane by using multiple hammurabi shells
to simulate a finite instrument beam. The differences in the
profiles are shown in Fig. 8. There is a visible difference in
the total intensity profiles; the blue curve shows the correct
profile, while the red is what we simulate. The effect of this
simplification is to underestimate the RMS of the random
component. If we perform the MCMC analysis to fit for the
BRMS and ford parameters, we find that the latter is unaf-
fected but the former is underestimated by approximately 7
per cent. We consider this acceptable given that our knowl-
edge of the relative strengths of these components has not
previously been anywhere near that accurate and that there
are further limitations of our analysis discussed in § 6.

5.3 Non-linear parameters

Some of the parameters are fairly linearly related to the ob-
servables. The arm amplitudes, for example, simply increase
the RM in a given direction, and since the RMs are the best
dataset to use to constrain them, we use only the RM data
to determine the an parameters (as seen in Fig. 7) as well
as the angle φ0.

Parameters related to the synchrotron emission, partic-
ularly those describing the random magnetic field compo-
nent, are more clearly non-linear. Firstly, the emission itself
depends on the field to the power of γ as described in Eq. 1.
Secondly, the observable polarised emission is affected by
the random component much like a 2D random walk, whose
mean distance from the starting point is then a function
of the square root of the number of steps, N , and the step
size. In the case of a power law GRF, we have essentially a
superposition of random walks of many step sizes and Ns.

Furthermore, the variance used in the likelihood calcu-
lation (Eq. 15) depends on the particular location in param-
eter space. As described above, this affects the “noise” due
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Figure 8. Testing the effects of resolution and dimension of GRF
simulation as described in § 5.2. The solid lines are the mean mod-
els while the dotted lines indicate the RMS. The difference be-
tween our 2D analysis and a better but more time-consuming 3D
method is apparent only in the strength of the step-features cor-
responding to spiral arm tangents where the small-scale random
component is strongest. These differences are within the uncer-
tainties but are systematic and introduce a small bias discussed
in § 5.2.

to the non-analytic way we compute the model. We have
tested with a set of simulations to see how well the method
works despite these shortcomings and found that it works
surprisingly well. We fixed the other parameters and fit only
to ford and Brms, the two most important but perhaps most
complicated and correlated parameters. Using both the total
and polarised intensities does succeed in constraining these
parameters. In all but one of the ten simulations, the result-
ing best-fit positions were within 2-σ of the correct values
and showing no bias. An example is shown in Fig. 7.

6 RESULTS

Our principle aim is to attempt to constrain the ratios of the
three components of the Galactic magnetic field: the regular
component, the isotropic random component, and the or-
dered component. With the three complementary datasets
of total synchrotron emission, polarised synchrotron emis-
sion, and Faraday rotation measures, we have demonstrated
that these three components can be disentangled using rea-
sonable models of the magnetised ISM.

6.1 RM fits

We begin by constraining the large scale, regular field. In
other galaxies, the magnetic field usually shows spiral struc-
ture, sometimes azimuthally symmetric, sometimes not. We
should not assume that the magnetic spiral follows the mat-
ter spiral; the field strength may or may not be higher in
matter arms, and even the spiral pitch angles may not be
the same. But it is not our primary aim in this work to de-
termine the global morphology of the regular magnetic field.
We use the RM data largely to constrain the amplitude of
the emission due to the regular field. Though its morphology
may not follow precisely the spiral model we have fit to the
data, it is enough to limit the amount of synchrotron emis-
sion from that component, allowing us to then examine that
from the random and ordered components independently.

Using the methodology described in § 4, we fit a six pa-
rameter spiral model to the RM data alone to constrain the
values of the following parameters: the orientation angle, φ0,
the amplitudes a0 to a3 for each of the four arms, and a4 for
the “molecular ring”. The amplitudes an then give the rela-
tive strengths of each feature, which combined with C0 then
give the maximum field strength along the ridge. The rela-
tive amplitudes, particularly their signs that determine the
direction of the field in each arm (clockwise or counterclock-
wise when viewed from the north Galactic pole) determine
the features seen in the RM data as in Figs. 2 or 5.

The parameter fit results are shown in Table 2. This
part of the analysis does not give much that is new compared
to what has been done by Brown et al. (2007) and others.
We do clearly see the magnetic field reversals, visible in the
RM data, in the general direction of Scutum-Crux and near
the tangent to the proposed “molecular ring” at negative
longitudes. This is visible in comparing Figures 2 and 4. We
also confirm the field strength peaking at ≈ 2 µG in the
strongest arm (arm number 2 corresponding to Sagittarius-
Carina). It is interesting to note that, though the field is free
to fit the azimuthal rotation φ0, the result lies very close to
the matter spiral arms in the NE2001 model, whether that
model is assumed for the thermal electrons or not.

The value of a0 is not constrained, because as seen in
Fig. 4, no sightlines are really tangent to the arm. It con-
tributes relatively little in the region where we have RM
data.

6.2 Synchrotron fits

Our main aim, however, is to attempt to quantify the rela-
tive amounts of regular, random, and ordered magnetic field
components. As found by Broadbent at al., the magnetic
field must be amplified in the arms. Since the cosmic rays
are likely smooth on these scales, the step-like features in
the synchrotron profile are probably due to the enhancement
of the perpendicular component of the magnetic field in the
arms. Though the regular component could be scaled to pro-
duce such structures, it would also require an extremely low
(ne ≈ 10−3 cm−3) electron density in order to be consistent
with the RM data.

The fit results in Table 2 for the parameters BRMS and
ford are simply due to the relative strengths of the total
and polarised emission along the plane. The resulting best-
fit profiles are shown in Fig. 10 and the residuals in Fig. 11.
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These profiles are not a perfect match to the total intensity
data, but they agree remarkably well in most places. The
most significant deviation is where there is a strong thermal
feature around longitude -70◦ to -80◦, which is the region
that dominates the high χ2. There is also a mismatch in
the profile around longitude 60◦ which bears further inves-
tigating. Recall from § 2.1 that the innermost region is not
included in the fit. Further work will be necessary to de-
termine the magnetic field structure in the Galactic centre
region; the model we use, particularly the central part of the
profile shown in Fig. 3, is ill-constrained.

Figures 10 and 11 show that the polarised synchrotron
profiles are only fit to first order. The χ2 values are not
bad due to the galactic variance, but the residuals show
clear systematic differences where the profile shape is wrong.
More work will be needed to determine what this means for
the model, particularly the spatial variation of the magnetic
field components.

6.3 Component ratios

From the results of our fitting the parameters φ0, an, Brms,
and ford, we learn the following:

(i) The rotation measures allow us to constrain the regu-
lar magnetic field parameters an. As shown in Fig. 5, they
alone cannot distinguish between the NE2001 spiral model
for the thermal electron density and a simple uniform model.
Not shown on that figure are the synchrotron profiles, which
are effectively indistinguishable. The reason is that the syn-
chrotron profile is apparently dominated by the random and
ordered components. The RMs, regardless of the thermal
electron model, have constrained the regular field to an am-
plitude that is fairly low compared to the synchrotron pro-
file, assuming that the cosmic ray electron density is roughly
correct.

Therefore, our results suggest that the regular field in the
arms peaks around B0an(C0 + 1) = 1 − 2µG in the arms,
varying from arm to arm with an average of 1.5 µG.

(ii) The isotropic random field component peaks around
˙

B2
iso

¸1/2
= (C0 + 1)BRMS = 3.6 µG (see Eq. 10).

(iii) The ordered field component peaks slightly lower at
3µG.

(iv) The fractions of the energy density in regular, ran-
dom, and ordered field components (∝

˙

B2
¸

) are then
roughly 10, 50, and 40 per cent, respectively. The uncer-
tainties are discussed further in § 6.6. Note that this model
implies a total local field strength of roughly 3 µG, and a
mean field strength in the inner 10 kpc of the Galaxy of
3.5 µG.

6.4 Arm strength

In the basic analysis, the arm strengths, an, determine the
regular field strength in each arm (as well as direction) but
do not affect the random or ordered components. For sim-
plicity, these components are simply scaled by ρc as de-
scribed in Table 1, which is only a function of the distance
from the ridge. We can also, however, adjust the strength of
these components by the same factors by multiplying C0 by
|an|. This makes the contrast in each arm proportional to

Fits to RM data only

NE2001 ne = 0.1 cm−3

φ0 63 ± 6.2 65 ± 8.9
a0 0.42 ± 0.87 −0.07 ± 0.51
a1 0.80 ± 0.25 0.36 ± 0.24
a2 −1.02 ± 0.16 −0.65 ± 0.22
a3 0.75 ± 0.33 0.54 ± 0.44
a4 −0.78 ± 0.23 −1.0 ± 0.33

Fits to all data with above NE2001 ne values fixed
constant compression scaled

BRMS 1.8 ± 0.02 1.9 ± 0.02
ford 2.0 ± 0.14 2.8 ± 0.17

χ2
I /N 6.1 6.1

χ2
PI/N 1.4 1.6

χ2
RM/N 2.7 2.3

Table 2. Top: results of fitting RMs with the simple spiral
model parameters and comparing constant thermal electron den-
sity model to NE2001. Bottom: results of fixing the φ0 and an

parameters to the best fit values show on top using NE2001 and
all others to the “defaults” listed in Table 1, and then fitting
only the ford and BRMS parameters to all datasets. As described
in § 6.4, the “constant compression” have the same amplitude
of random components in each arm while the “scaled” have the
factors of an applied.

the regular field strength of that arm rather than constant.
(It also implies that the ratio of the ordered to isotropic
random fields changes from arm to arm.)

A comparison of the best-fit profiles is shown in Fig. 10.
The physical motivation for either model is unclear, but the
result including the extra scaling appears to fit the syn-
chrotron profile slightly better in some places and slightly
worse in others.

Above, we found that the basic model gives peak mag-
netic field strengths for the regular, isotropic, and ordered
components of approximately 1.5 µG, 3.6 µG, and 3 µG, re-
spectively. Adding the additional scaling of C0 by an to
the latter two components increases the ratio of the ordered
to random slightly. We instead have regular, isotropic, and
ordered components of approximately 1.5µG, 3.2 µG and
3.3 µG, respectively.

6.5 Arm/inter-arm Contrast

In the basic analysis presented above, we have fixed the value
of the parameter C0 that defines the contrast between the
arm ridges and inter-arm regions. We can instead allow this
parameter to vary as well. The combination of C0 and BRMS

controls the relative strength of the arm versus the inter-arm
region for the random component (as C0 and B0 or an does
for the regular component).

These three parameters, however, are somewhat degen-
erate as shown in Fig. 12. The data do not easily distinguish
between a stronger BRMS with a weaker contrast (C0) or vice

versa. This is an example of one of many degeneracies in the
parameters listed in Table 1. But our basic result comparing
the strengths of the components in the arms is not signifi-
cantly affected.

c© RAS, MNRAS 000, 1–17



14 T. R. Jaffe et al.

Figure 11. Residuals as in Fig. 10. The χ2 values are reduced χ2, i.e.,
P

(d − m)2/(Npix − Npara).

Figure 12. MCMC results showing the degeneracies described in § 6.5 among the three parameters: BRMS, ford, and C0.

6.6 Discussion

We have used the three complementary datasets of total
synchrotron emission, polarised synchrotron emission, and
rotation measure to study the three components of the
Galactic magnetic field, namely the regular, random, and
ordered fields. We find that we can fit the profiles of these
datasets along the plane with a model where the compo-
nents peak in magnetic arm ridges and where the regular
component contributes roughly 10 per cent to the energy
density (

˙

B2
¸

), while the random and ordered components
contribute roughly 50 and 40 per cent, respectively.

This is a first attempt to constrain models with many
parameters and degeneracies. If the estimates for the CRE
and thermal electron densities are even approximately right,
our method gives a fairly robust constraint on the relative

strengths of the three field components. We should, how-

ever, quantify the impact of such assumptions and their un-
certainties:

• There is a degeneracy between the thermal electron
density in the arms and the amplitude of the regular mag-
netic field. A factor of two uncertainty in the mean electron
density in the arms implies a factor of two uncertainty in
the regular field strength. If the electron density is a factor
of two smaller than our model for a given arm, the regular
field is then a factor of two larger to reproduce the same RM
profile. This then requires a drop in Brms to reproduce the
same synchrotron total intensity profiles. The ratios of en-
ergy densities of the components (regular:random:ordered)
would go from roughly 10:50:40 to 50:30:20.

• There is a degeneracy between the magnetic field
strength and the cosmic ray electron density. We assume
a value of JCRE,⊕ = 0.25

`

GeV m2 s sr
´−1

at the position

c© RAS, MNRAS 000, 1–17
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Figure 9. Top: selected results of fitting the regular field pa-
rameters to the RM data only using the NE2001 thermal electron
density model. Bottom: results of fixing the regular field parame-
ters to the values found in the RM analysis, and then fitting the
two parameters controlling the small-scale, irregular components
to all the data. The means and uncertainties are given in Table 2.
Compare to Fig. 7.

of the Sun. If the uncertainty in this number is a factor of
two (which it may well be; see, e.g., Strong et al. 2004) and
assuming Breg is constrained by the RM data, then we can
solve for the other components. The ratio of energy densi-
ties would then vary from 5:55:40 (CREs halved) to 22:46:32
(CREs doubled).

The recent results from the Fermi γ-ray telescope
(Abdo et al. 2009) seem to indicate a density that is some-
what lower than what we use from Strong et al. (2007) based
on EGRET data. A lower CRE density implies a larger ran-
dom magnetic field component to reproduce the observed
synchrotron emission. (The work of Sun et al. (2008) use an

even higher density of JCRE,⊕ = 0.4
`

GeV m2 s sr
´−1

, which
likely explains how they can reproduce roughly the observed
amount of emission with only an isotropic random compo-
nent and no ordered component.)

• We have assumed a spatially smooth cosmic-ray elec-
tron distribution with a simple power-law power spectrum

Figure 10. Best fit models from MCMC analysis varying BRMS

and ford to all datasets, with regular field parameters fixed by
analysis of RM only as described in the text. The solid lines are
the mean models while the dotted lines indicate the RMS. In ma-
genta is the result where all arms have equal random and ordered
compression, while in blue is the result where those components
are also scaled by an as described in § 6.4.

that is the same throughout the Galaxy. A spatial variation
in power law spectrum would also affect our analysis.

As an example, we can imagine that the CRE distribu-
tion varied between spiral arm and inter-arm regions by a
factor of two due to the higher density of CRE accelera-
tion sites (e.g., supernova remnants) in the arms (see, e.g.,
Case & Bhattacharya 1996). This would have a similar ef-
fect as the global uncertainty discussed above.

• There are uncertainties in the zero-levels of the syn-
chrotron datasets we used. These uncertainties are relatively
small (e.g., a few K for the 408 MHz map), usually much
less than the galactic variance, and will be most significant
where the synchrotron emission profile is lowest toward the
Galactic anticentre. For our analysis of the magnetic field
component ratios in the spiral arm peaks, this uncertainty
is certainly not significant. It will, however, affect the pa-
rameters describing the strength of the field and the density
of CREs in the outer region of the galaxy. As we have dis-
cussed above, these two distributions are degenerate and
not constrained by our analysis. In future work, when we
add dust emission to the analysis to break the degeneracy,
we will also have to address the zero-levels more accurately.
For this work, however, we consider the impact of the un-
certainty minimal.

• We have assumed that the large-scale regular field and
the small-scale field components are all strongest in the same
regions, the magnetic spiral arm ridges. There is some ev-
idence in one galaxy that the regular field, in contrast to

c© RAS, MNRAS 000, 1–17
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the random field, may be stronger in the inter-arm regions
(Beck & Hoernes 1996). Further work will be needed to de-
termine whether we can distinguish these possibilities.

Our results are the ratios of the field components’ en-
ergy densities that we measure as roughly 10:50:40 (regu-
lar:random:ordered). The above uncertainties primarily af-
fect the fraction of magnetic field energy in the regular com-
ponent; the balance is then made of of roughly compara-
ble random and ordered components. The rough estimates
above then imply that the regular component could make
up as little as 5 percent of the total energy in the field, or as
much as 20 per cent given an uncertainty of a factor of 2 in
the CRE density, or as much as 50 per cent if the thermal
electrons are half the assumed value. The latter is certainly
possible for a small region, but on the whole, pulsar distance
measures averaged over the galaxy are unlikely to allow such
a large discrepancy. As mentioned above, Fermi estimates of
the CRE density are even lower than what we assumed, im-
plying even larger random and ordered components.

The main conclusion then is that the regular field is a
relatively small fraction of the total. It is not possible to
reproduce all of the observables, particularly the polarised
emission, without considering an ordered field component as
well.

7 CONCLUSIONS

We have outlined a method to simulate observables such as
synchrotron emission and Faraday rotation measure based
on models of the physical components of the Galaxy and
to use these to study the complicated parameter space in
an MCMC analysis. In particular, we describe how to deal
with the galactic variance due to the fact that one of the
principle physical components is stochastic. These tools can
be used to study the turbulent component of the magneto-
ionic medium in detail, or to model the global properties of
the Galaxy’s magnetic field in 3D.

In this work, we have used the three complemen-
tary datasets of total synchrotron emission, polarised syn-
chrotron emission, and rotation measure to determine the
relative contributions of the regular, random, and ordered
components of the magnetic field. We find the relative en-
ergy densities of these components to be roughly 10, 50, and
40 per cent, respectively, at their peaks in a magnetic spiral
arm model. If our assumed CRE and thermal electron den-
sities are roughly correct, then this implies field strengths
of 1.5, 3.6, and 3 µG, respectively, in the peaks of magnetic
arms.

In future work, we will address some of the limita-
tions and degeneracies discussed above. More importantly,
we look forward to the prospect of additional data. In the
next few years, we will have the C-Band All Sky Survey
(C-BASS)4 at 5 GHz giving a much more sensitive mea-
surement of the polarised synchrotron emission in the radio
bands. These data will help us to study the spectral variation
of the synchrotron emission, and in turn the distribution of
cosmic ray electrons.

The Planck satellite (The Planck Collaboration 2006)

4 http://www.astro.caltech.edu/cbass/

will also provide a higher sensitivity polarised synchrotron
sky map in the microwave bands when combined with con-
tinuing observations by WMAP . Its many bands will also
contribute, along with C-BASS and WMAP , to a much more
accurate separation of the thermal emission than is currently
possible. This will improve our fitting of the step features in
the synchrotron emission along the plane where the thermal
emission is a problem. Furthermore, the High Frequency In-
strument on Planck will give us a much better map of the
polarised dust emission, a completely independent tracer of
the magnetic fields that we have not used in this work.

The GALFACTS 5 survey at Arecibo Observatory will
give us the vital coverage of the northern side of the Galac-
tic centre in rotation measures (see Fig. 2). This will be
crucial in distinguishing the various models of the magnetic
field reversals currently so controversial. And that in turn
will inform theories such as dynamo models for the origin,
amplification, and evolution of the regular field.

The Australian Square Kilometre Array Pathfinder
(ASKAP) 6 will significantly improve our southern sky cov-
erage of rotation measures. Even better will be the Square
Kilometre Array7 itself. Not only will this inform our knowl-
edge of our own galaxy but allow us to make similar ob-
servations of external galaxies using background polarised
sources.
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ley J., Halpern M., 2007, ApJS, 170, 335

Reich P., Reich W., 1986, A&AS, 63, 205
Reich W., 1982, A&AS, 48, 219
Rybicki G. B., Lightman A. P., 1979, Radiative processes
in astrophysics. Wiley-Interscience, New York

Strong A. W., Moskalenko I. V., Ptuskin V. S., 2007, An-
nual Review of Nuclear and Particle Science, 57, 285

Strong A. W., Moskalenko I. V., Reimer O., 2004, ApJ,
613, 962

Sun X. H., Reich W., Waelkens A., Enßlin T. A., 2008,
AAP, 477, 573

The Planck Collaboration 2006, (astro-ph/0604069)
Waelkens A., Jaffe T., Reinecke M., Kitaura F. S., Enßlin
T. A., 2009, AAP, 495, 697

This paper has been typeset from a TEX/ LATEX file prepared
by the author.

c© RAS, MNRAS 000, 1–17


	Introduction
	Observations
	Synchrotron emission in total intensity
	Polarised intensity
	Faraday Rotation measure

	Galaxy Models
	Regular magnetic field
	Random magnetic field
	Compression
	Thermal electrons
	Cosmic-ray electrons

	Model Selection Method
	Simulation with hammurabi
	MCMC with cosmomc
	Parameters and datasets

	Testing
	Basic Parameters
	Resolution
	Non-linear parameters

	Results
	RM fits
	Synchrotron fits
	Component ratios
	Arm strength
	Arm/inter-arm Contrast
	Discussion

	Conclusions

