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Abstract: Acting upon clinical patient data, acquired in the pathway of percutaneous intervention,
we deploy hierarchical, multi-stage, data-handling protocols and interacting low- and high-order
mathematical models (chamber elastance, state-space system and CFD models), to establish and then
validate a framework to quantify the burden of ischaemia. Our core tool is a compartmental, zero-
dimensional model of the coupled circulation with four heart chambers, systemic and pulmonary
circulations and an optimally adapted windkessel model of the coronary arteries that reflects the
diastolic dominance of coronary flow. We guide the parallel development of protocols and models
by appealing to foundational physiological principles of cardiac energetics and a parameterisation
(stenotic Bernoulli resistance and micro-vascular resistance) of patients’ coronary flow. We validate
our process first with results which substantiate our protocols and, second, we demonstrate good
correspondence between model operation and patient data. We conclude that our core model is
capable of representing (patho)physiological states and discuss how it can potentially be deployed,
on clinical data, to provide a quantitative assessment of the impact, on the individual, of coronary
artery disease.

Keywords: haemodynamics; compartmental models; parameter identification; fluid dynamics

1. Introduction

Myocardial function is dependent on sufficient coronary blood flow (CBF), the rate
of which is matched closely to the fluctuating metabolic requirements of the heart. CBF
is compromised in ischaemic heart disease (IHD), the commonest cause of death in the
world. The most frequent cause of IHD is coronary artery disease (CAD), whereby the
epicardial coronary arteries become stenosed or occluded, thus restricting CBF, initially
under exercise conditions, but eventually at rest; see Section 3.2.2. Although there are data
correlating global myocardial ischaemic burden with clinical outcomes, there are little data
linking it with myocardial energetics, function or cardiac output. Here we demonstrate
a multi-compartment, zero-dimensional (0D) model [1–4] of the coronary and systemic
circulation, based on clinical data, with the potential to address myocardial energetics.
Specifically, we postulate that a zero-dimensional (0D) model, adapted to readily available,
patient-specific data, can accurately simulate coronary (patho)physiology, with the potential
to personalise [5] and predict an individual patient’s global ischaemic burden and associate
this with LV energetics and cardiac output. Our aims are to:
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1. Devise and implement a 0D model and robust data handling protocols able to replicate
in silico haemodynamic dysfunction;

2. Make optimal use of appropriate haemodynamic data, collected in the clinical PCI pathway;
3. Demonstrate our process’ ability to capture patient-specific (patho)physiological states

in silico.

2. Background

CFD modelling can provide a detailed assessment of local, usually single-vessel
coronary haemodynamics which may be patient-specific [6]. It has also allowed for less or
even non-invasive diagnostic tools, such as virtual fractional flow reserve (vFFR) [7], and in
the novel form of the lattice Boltzmann simulation [8], it may be extended to describe flow
within multiple small vessels [9]. However, CFD alone cannot provide a description of the
perfusion of the entire myocardium necessary to characterise global ischaemic burden. To
quantify the effects of multi-vessel disease upon total myocardial blood flow, one must
set the diseased vessel(s) within the context of the whole coronary tree. This requires a
methodology which can interact with CFD and wider physiological data.

Windkessel models are not new [10,11], neither are low-order representations of cardiac
function [12–14] and coupled pseudo-mechanical system models, which have both been
utilised here have been available, open source, for years [15]. We are concerned with compu-
tational medicine however, where a parsimonious model design should be constrained by
data sources, with suitable interpretation protocols in mind. A composite of low-order models
comprising a mechanical cardio-vascular 0D model of left heart function, valvular function
and systemic circulation has been shown to have the capacity to ingest CFD-derived data and
prognose the systemic effects of aortic and mitral valve disease [16]. Czechowicz et al. took
CFD-derived valve properties, ingested them into a 0D model and formulated hypotheses
connecting valve physiology, personalised cardiac energetics and valve function, to develop a
clinical decision support tool. Here, we attempt to extend that methodology to a wider range
of clinical data and disease states which are more difficult to characterise. This requires:

1. A coronary network topology conforming to the clinical pattern of atherosclerosis;
2. Modelling that reflects diastolic dominance of myocardial flow;
3. The ability to incorporate all available clinical patient data;
4. Sufficient computational simplicity for clinical deployment.

These demands make it necessary to simplify the task from the outset. To reduce
the burden of model personalisation, we parameterise its right circulation parameters to
normal values [17]. (This decision is supported by our input parameter sensitivity anal-
ysis in Appendix B, which shows that the coronary, left heart and systemic circulation
input parameters are most influential). Further, the fact that resting coronary blood flow
(250 mL min−1; 0.8 mL min−1 g−1 of heart muscle) constitutes about 5% of cardiac out-
put [18] allows us to assume that coronary flow does not directly influence the systemic
circulation. It also allows us to approach our problem by adjusting, with the relevant
coronary flow data a posteriori, a model in which systemic and ventricular outputs are
tuned first. Further, we appeal, hierarchically, to the key physiological principles of LV
performance and the systemic circulation to construct each patient’s baseline and only then
incorporate detailed CFD-derived information related to the coronaries’ microvascular
resistance (MVR), etc., while retaining a minimum number of assumptions necessary to
impose physiological principles. We use cardiac energetics and the concepts encapsulated
in Wiggers’ diagram [19] to refine our low-order model of LV contractility and compliance;
then, we consider ventricular–aortic (VA) coupling (which characterises the interaction
between the myocardial contractile function and LV afterload and defines cardiovascular
performance and efficiency [20]), and finally, the role of passive ventricular filling and
valves. Only once an accurate model of general cardiac function is established will coronary
flow be considered.
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3. Methods and Materials

Broadly, we first describe our model (Section 3.1), then its data (Section 3.2). However,
since model operation and data are related, some model details bleed into Section 3.2.

3.1. Methods

Personalisation cost function hyper-surfaces are intricate in the presence of non-
linearities. Similar to valve functions, the cost function varies at very different rates
with displacement in different parameter directions. Then, the task of locating the global
minimum becomes computationally expensive. We address this difficulty with the multi-
step protocol outlined in Table 1. The six steps declared there buffer clinical data into
our tool, using low-order haemodynamic models, a closed loop system model and finally
3D CFD.

3.1.1. Low-Order Models

To express heart chamber biomechanics and valve characteristics appropriately, we use
the double Hill elastance model [12,14] and the valves’ pressure-flow characteristics. See
Appendix A.2 for details; see also Czechowicz et al. [16], who give a fuller account of valve
characteristic functions. Our passive systemic and pulmonary circulation windkessels, with
proximal inertance (L), viscous dissipation (R) and multiple compliance (C), are also well
documented [21]. Our pulmonary and systemic windkessels are designated LRCRC, having
two capacitances to separate arterial and venous compliance. Note, each coronary branch is
characterised by a compliance with its back plate pressure set to that in the relevant ventricle.
Note also that elastance is not used solely to activate our system model. We will also use it,
together with the LV PV loop [22], to clarify the relationship between our LV pressure and
volume time-series data in Section 3.2.1.

3.1.2. System Model

Figure 1 shows, in relation to our CFD models, our assembly of windkessels, elastance
functions and valves. It is designated a compartmental, electrical analogue or 0D model. It has
four heart chambers as well as systemic arterial and venous, pulmonary arterial and venous,
and several coronary arterial compartments. The overhead of four heart chambers is offset by
enhanced performance [17]. We set the right circulation parameters to population average
values. We compute N sampled time-series outputs yn(ti), n = 1, .., N, derived from internal
states, xn(ti), n = 1, .., N with the sample times ti drawn from the converged heart cycle.
Table 2 declares our compartment numbering convention and Table 3 our names, conventions,
equivalent subscripting and input parameter base values. Note, micro-vascular resistance
(MVR) is distributed relative to arterial compliance, with a proximal-to-distal ratio controlled
by input parameter α.

It is typical to express the dynamics of the system in Figure 1 in coupled ordinary
differential equations (ODEs), or differential algebraic equations (DAEs [23]), typically with
compartment pressures serving as internal states. In state-space form [24], using relative
time, our model is expressed as

dx
dτ

= f (x(τ); Θ), y(τ) = h(x(τ); Θ),

Vector function h(∗), which maps between internal states and outputs, is often the identity.
Outputs y(τ) can, of course, be sampled to generate a discrete output metrics vector. Θ
denotes the system model’s full input parameter set and

x(τ) = (p1(τ), p2(τ), .., p10(τ))
T .

is our instantaneous state vector. We use Θ (θ) to denote the full set (a subset) of input
parameters. Particular examples of the system expressed in equations in Section 3.1.2
are given in Appendix A. Deriving equations in Section 3.1.2 uses recursive applications
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of simple haemodynamic sub-models, to formulate, in closed form, all the necessary
relationships between compartmental pressures, volumes and flows (see Appendix A).
A simple but lengthy process of eliminating flow and volume variables results in a DAE
system [23] which is readily transformed into state-space form, by differentiating equations
where necessary. Typically, the system is solved using a time-marching numerical solution,
e.g., a fourth-order Runge–Kutta algorithm. A time step of 1× 10−3 was chosen for the
numerical solution. It will occasionally be helpful to replace the numerical compartment
index (subscript) with an abbreviation of its name, e.g., p1(t) = pLV(t), with LV denoting
left ventricle, etc.; see Tables 2 and 3. For example model output data see Figure 2, which
shows flow in a coronary artery illustrating a key feature- to capture diastolic dominance
in coronary flow, our coronary vessels’ compliance is biased by the LV or RV pressure,
as appropriate.

Table 1. Stages in the personalisation process and their rationale. Physiological effects (column 2) are
sequentially ingested into the workflow, with the objective declared in column 3, culminating, at step
5, in a patient-specific in silico model of the resting patient state.

Step Processing Tool Physiology Objective Comment

0 statistical analysis LV function ensemble average, downsample time-series synchronised to ECG1 R-R interval

1 elastance model LV function derive LV elastance; ingest into 0D model characterised by double Hill LV parameters

2 0D system model LV–aortic
coupling in systole

primary tune of 0D model systemic
circulation windkessel parameters

large sub-space scanned by GA tuning

3 0D system model LV–atrial coupling
and diastolic filling

ancillary tuning of 0D left atrial elastance
and mitral valve resistances

uses gradient descent tuning.

4 CFD analysis coronary flows ingest into 0D model computed Rsten, MVR use software VirtuHEARTTM

5 0D system model system-coronary in silico representation of the patient at rest

Table 2. Indexing and naming conventions for system model variables. Free subscript * is to be
replaced by the appropriate symbol. Flows generally are trans-compartment; pressures and volumes
apply to compartments directly.

Subscript

Number
Name

p∗(t), v∗(t) q∗(t)

1 LV ao val

2 RA tri val

3 RV pul val

4 LA mit val

5 sys art sys prox

6 pul art pul prox

7 sys ven sys dist

8 pul ven pul dist

9 cor art cor prox

10 cor ven cor dist
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Table 3. System model input parameter nomenclature and status. The 0D model chamber parameters
are classified by compartment. The status of the parameter is either fixed (at population average value)
or tuned, from an initial value declared above. In the latter, the step in which the parameter is tuned
is identified below. Note, the coronary LAD circulation parameters 74, . . . , 80 and the coronary RCA
circulation parameters 81, . . . , 87 follow the naming convention of those declared above for the left
circumflex artery, with the text “LAD” and “RCA” replacing the text “Cx” and identical initialisations.

Compartment Index Symbol Description Unit Status Base Value

NA 1 HR Heart rate bpm Allocated

NA 2 mcfp Mean circulatory filling pressure mmHg tuned, step 3 7

Left Ventricle
(LV)

3 ELV,min LV min. elastance (“compliance”) mmHg/mL assigned, step2 0.08

4 ELV,max LV max. elastance (“contractility”) mmHg/mL assigned, step3 3

5 nLV,1 LV contraction rate constant - tuned, step 2 1.32

6 nLV,2 LV relaxation rate constant - tuned, step 2 27.4

7 τLV,1 LV systolic time constant - tuned, step 2 0.269

8 τLV,2 LV diastolic time constant - tuned, step 2 0.452

9 VLV,0 LV volume offset mL fixed 10

10 TLV,shi f t LV fractional time shift - fixed 0

Left Atrium
(LA)

11 ELA,min LA max. elastance (“compliance”) mmHg/mL tuned, step 4 0.08

12 ELA,max LA min. elastance (“contractility”) mmHg/mL tuned, step 4 0.17

13 nLA,1 LA contraction rate constant - fixed 1.32

14 nLA,2 LA relaxation time constant - fixed 13.1

15 τLA,1 LA systolic time - tuned, step 4 0.11

16 τLA,2 LA diastolic time - tuned, step4 0.18

17 VLA,0 LA volume offset mL fixed 3

18 TLA,shi f t LA fractional time shift - fixed 0.85

Right Ventricle
(RV)

19 ERV,min RV min. elastance (“compliance”) mmHg/mL fixed 0.04

20 ERV,max RV max. elastance (“contractility”) mmHg/mL fixed 0.6

21 nRV,1 RV contraction rate constant - fixed 1.32

22 nRV,2 RV relaxation rate constant - fixed 27.4

23 τRV,1 RV systolic time - fixed 0.269

24 τRV,2 RV diastolic time - fixed 0.452

25 VRV,0 RV volume offset mL fixed 55

26 TRV,shi f t RV fractional time shift -l fixed 0

Right Atrium
(RA)

27 ERA,min RA max. elastance (“compliance”) mmHg/mL fixed 0.04

28 ERA,max RA min. elastance (“contractility”) mmHg/mL fixed 0.15

29 nRA,1 RA contraction rate constant - fixed 1.32

30 nRA,2 RA relaxation rate constant - fixed 13.1

31 τRA,1 RA systolic time - fixed 0.11

32 τRA,2 RA diastolic time - fixed 0.18

33 VRA,0 RA volume offset mL fixed 17

34 TRA,shi f t RA fractional time shift - fixed 0.85

Systemic Circulation
LR CRC windkessel

35 Rsysart,dist Systemic Resistance Distal mmHg·s/mL tuned, step 3 0.033

36 Rsysart,prox Systemic Resistance Proximal mmHg·s/mL tuned, step 3 0.9

37 Csysart,prox Systemic Arterial Proximal Capacitance mL/mmHg tuned, step 3 1

38 Vsysart,prox,0
Systemic Arterial Proximal

Unstressed Volume mL fixed 720

39 Csysart,dist Systemic Arterial Distal Capacitance mL/mmHg fixed 11

40 Vsysart,dist,0
Systemic Arterial Distal

Unstressed Volume mL fixed 3000

41 Lsysart,prox Systemic Arterial Inertance (Proximal) mmHg·s2/mL tuned, step 3 0.005
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Table 3. Cont.

Compartment Index Symbol Description Unit Status Base Value

Pulmonary Circulation
LR CRC windkessel

42 Rpulart,dist Pulmonary Resistance Distal mmHg·s/mL fixed 0.01

43 Rpulart,prox Pulmonary Resistance Proximal mmHg·s/mL fixed 0.05

44 Cpulart,prox Pulmonary Arterial Proximal Capacitance mL/mmHg fixed 10

45 Vpulart,prox,0
Pulmonary Arterial Proximal

Unstressed Volume mL fixed 180

46 Cpulart,dist Pulmonary Arterial Distal Capacitance mL/mmHg fixed 15

47 Vpulart,dist,0
Pulmonary Arterial Distal

Unstressed Volume mL fixed 720

48 Lpulart,prox Pulmonary Arterial Inertance (Proximal) mmHg·s2/mL fixed 0.0017

Aortic Valve

49 a2,aortic Aortic Valve quadratic coefficient mmHg·s2/mL2mL fixed 1.60 × 10−5

50 a1,aortic Aortic Valve linear coefficient mmHg·s/mL fixed 0

51 a2,aortic,regurg
Aortic Valve regurgitant

quadratic coefficient mmHg·s2/mL2mL fixed 0

52 a1,aortic,regurg Aortic Valve regurgitant linear coefficient mmHg·s/mL fixed 0

Mitral Valve

53 a2,mitval Mitral Valve quadratic coefficient mmHg·s2/mL2mL tuned, step 4 6.25 × 10−6

54 a1,mitval Mitral Valve linear coefficient mmHg·s/mL tuned, step 4 0

55 a2,mitval,regurg
Mitral Valve regurgitant

quadratic coefficient mmHg·s2/mL2mL fixed 0

56 a1,mitval,regurg Mitral Valve regurgitant linear coefficient mmHg·s/mL fixed 0

Pulmonary Valve

57 a2,pulval Pulmonary Valve quadratic coefficient mmHg·s2/mL2mL fixed 8.16 × 10−6

58 a1,pulval Pulmonary Valve linear coefficient mmHg·s/mL fixed 0

59 a2,pulval,regurg
Pulmonary Valve regurgitant

quadratic coefficient mmHg·s2/mL2mL fixed 0

60 a1,pulval,regurg
Pulmonary Valve regurgitant

linear coefficient mmHg·s/mL fixed 0

Tricuspid Valve

61 a2,trival Tricuspid Valve quadratic coefficient mmHg·s2/mL2mL fixed 6.25 × 10−6

62 a1,trival Tricuspid Valve linear coefficient mmHg·s/mL fixed 0

63 a2,trival,regurg
Tricuspid Valve regurgitant

quadratic coefficient mmHg·s2/mL2mL fixed 0

64 a1,trival,regurg
Tricuspid Valve regurgitant

linear coefficient mmHg·s/mL fixed 0

Coronary Left Main
65 a2,LMart,regurg Left main stenosis, quadratic coefficient mmHg·s2/mL2 assigned, step 5 0

66 a1,LMart,regurg Left main stenosis, linear coefficient mmHg·s/mL assigned, step 5 0

Coronary Circumflex
RCRC windkessel

67 a2,Cx,art Circumflex, quadratic coefficient mmHg·s2/mL2mL assigned, step 5 0

68 a1,Cx,art Circumflex, linear coefficient mmHg·s/mL assigned, step 5 0

69 RCx,MVR Circumflex, RCR total resistance mmHg·s/mL assigned, step 5 35

70 CCx Circumflex, RCR capacitance mL/mmHg tuned, step 5 0.25

71 αCx
Circumflex, RCR fraction

proximal resistance - tuned, step 5 0.9

72 VCx,0 Circumflex unstressed volume mL tuned, step 5 8

73 βCx
Circumflex capacitance back

pressure fraction - fixed 0.5

3.1.3. Input Parameters, Local Sensitivity and Orthogonality Analysis

Of our 87 input parameters, a majority take population average values and are not
tuned; see Table 3. The interrogated input parameter sub-space is spanned by parameters
of cardiac energetics, coronary perfusion, LV and left atrial elastance, the mitral valve, the
coronary and systemic windkessels and mean circulatory filling pressure. The underlying
full local sensitivity and input parameter orthogonality analysis is shown in Appendix B,
along with a reduced analysis, based upon the most relevant inputs and outputs.

3.1.4. Model Personalisation or Input Parameter Identification

Personalisation involves inverse operation, guided by a cost function, together with an
appropriate multi-variate functional minimisation algorithm. Our personalisation process
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is multi-stage. It is summarised in the inter-relating Tables 1, 4 and 5. For all stages, the
minimised cost function is a scalar weighted composite of: (i) the L2 norm of the difference
between model-predicted and target data interpolated onto the same times, ti, and (ii) a
derived metric, Yn

f (Θ) =
M

∑
j=1

(
w(1)

j

{
N

∑
i=1

(
yj(x(ti; Θ))− ytarget

j (ti)
)2
}
+ w(2)

j Y2
n

)
. (1)

For example, a derived metric might be systolic systemic arterial (compartment 5) pressure

Y5 = max
ti

(p5(ti; Θ))−max
t

(
ptarget

5 (t)
)

,

with w(1)
j and w(2)

j denoting the weights. We defer further discussion until Section 3.2.
Having summarised our processing and its rationale and declared our notation, we

may now conclude this sub-section by defining the processing in key steps 3 and 4 of our
protocol, which require inverse operation, or tuning, of the 0D system model. In Table 6 we
state the model input parameters which are tuned and the corresponding patient data that
is used to perform the tuning in each of the steps 3 and 4.

Table 4. Patient-specific data. Data are classified according to physical and mathematical significance,
how the data are used, patient state and the 0D model compartment(s) to which they apply. Table 5
provides more information on the sub-models used to introduce these data into our 0D system model.
The free subscript * in column 6 denotes one of the resolved coronary arteries, LMS (left main stem),
LCA (left coronary artery), LCX (left circumflex) and RCA.

Data Source Compartment Role Unit Data Form Notation
State Pathway Stage

Rest Exercise Hyperemia Pre PCI Post PCI

six-minute walk test all (general) cardiac output proxy ∼ statistics ∼ yes yes no yes yes

activity monitoring all (general) cardiac output proxy ∼ statistics ∼ yes yes no yes yes

CMR scan left ventricle volume ml time-series vLV(t) yes no no yes no

coronary angiograms coronaries flow mL/s discrete < Q∗ >t yes no yes yes yes

coronary angiograms coronaries MVR mmHg·s/mL discrete RµLCA etc. yes no yes yes yes

PCI pressure catheter left ventricle pressure mmHg time-series pLV(t) yes no yes yes yes

PCI pressure catheter systemmic pressure mmHg time-series pAO(t) yes no yes yes no

PCI pressure catheter coronaries pressure mmHg time-series p∗(t) etc. yes no yes yes yes
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Figure 1. Interacting 0D system and CFD models. Clockwise from the top. First panel uses colour
coding to expose the interaction between (a) core heart module; (b) systemic and LRCRC windkessels;
(c) coronary module; and (d) 3D steady CFD workflow used to parameterise the stenotic resistance and
MVR. (e) An enlargement of (a), the heart module. Important pressure, flow and volume variables
are displayed. Valves are all diodes. Chamber elastances are represented by double Hill elastance
functions. The subscripting of the compartment state variables (pn, vn, qn), n = 1, . . . , 10 is that which is
used throughout, with the convention that compartment, inlet pressure, volume and outlet flow are all
subscripted by the compartment number. (f) An enlargement of (c), the coronary windkessel set. There
is a RCR windkessel for each of the three principal vessels, designated LCx, LAD and RCA. The back
plates of the vessel compliances are all coupled to the relevant ventricular pressure. (g) An enlargement
of (b), the systemic and pulmonary circulation windkessels.
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Figure 2. Diastolic dominance of coronary artery flow in the system model. It is essential to capture
the diastolic dominance of flow in the coronaries. Here, the vertical red line indicates the end of
systole. These illustrative data show that computed flow peaks in the diastolic phase.

Table 5. Sub-models used to pre-process patient data. We provide further information on how patient
data outlined in Table 4 are prepared. Here, < . >EA denotes an ensemble average, taken over
equivalent intervals of dimensionless time τ. This table shows the interaction between the various
data sources and re-processing, to allow them to be ingested into the 0D compartmental system
model (column 3). All pressure data were downsampled onto the CMR phase times; see Equation (2).

Source Data Pre-Processing Ingests into 0D System Model as

< vLV(τ) >EA fit to double Hill
elastance function personal elastance function parameters

< pLV(τ) >EA

< vLV(τ) >EA extract extrema personal LV volume extrema

< pLV(τ) >EA extract extrema personal LV pressure extrema

< pAO(τ) >EA personal systemmic (aortic) pressure time-series

coronary angiograms steady-state CFD
simulations personal MVRs for treated vessels

< pLMS(τ) >EA etc.

coronary angiograms steady-state CFD
simulation

personal stenotic Bernoulli resistance quadratic
and linear coefficients in treated vessels< pLMS(τ) >EA etc.

6mwt
clinical interpretation validation data

monitoring
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Table 6. Supplementary information for Table 1. Additional information on personalisation steps 3, 4,
declared in Table 1. The search target data and input parameter sub-space are identified here. Note
that search targets accumulate between steps 3 and 4.

Step
Personalisation Search Definition

Input Parameters Adjusted Output Metrics Targeted

3 mcfp, L, Rprox , Rdist, Cprox maxτ(vLV(τ)), minτ(vLV(τ)), maxτ(pLV(τ)), minτ(pLV(τ)), {pAO(τi); i = 1, .., 29}

4 a1,mit, a2,mit, nLA
1 , nLA

2 , τLA
1 , τLA

2 , ELA,max , ELA,min to the above, add {vLV(τi); i = 1, .., 29}

3.1.5. 3D CFD Models

We proceed to consider the CFD tools and modelling used in our study. Patient-
specific stenotic Bernoulli resistance coefficients and MVRs are provided in our core model
using two validated CFD based methods, (i) VirtuHEARTTM (University of Sheffield,
Sheffield, United Kingdom) and (ii) VirtuQTM (University of Sheffield, Sheffield, United
Kingdom) [6,7]. In the domain Ω, these tools solve the incompressible Navier–Stokes and
continuity equations

(v(r) · ∇)v(r) = −1
ρ
∇p(r) + ν∇2v(r), (2)

∇ · v(r) = 0,

for steady, i.e., time-average flow; all symbols have their usual meaning. An accepted
approximate value of Reynolds’ number Re ≈ 600 for the coronary arteries, which indi-
cates transitional flow. Note that we assume blood is a Newtonian fluid. Patient-specific
boundary conditions are derived as follows. A closed coronary artery geometry (Figure 1d)
is decomposed into a luminal boundary, ∂Ω1, an entrance face, ∂Ω2, and an exit face, ∂Ω3.
Using epipolar geometry and two compatible angiogram views, taken at the time of PCI,
we construct ∂Ω1, generate a mesh and apply a Dirichlet, no-slip condition

v(r) = 0, r ∈ ∂Ω1.

We remark that a model of vessel sequestration using Murray’s law [25,26] to assign a
flux across the luminal boundary based upon local geometry is available [7,27]; however,
zero leak was specified here. Lesion proximal and distal time-averaged pressures are also
recorded at PCI. Solutions were computed using FluentTM (Ansys Corporation, Canons-
burg, PA, United States of America), with boundaries ∂Ω2 and ∂Ω3 processed in each of
two ways:

1. Following VirtuQ methodology, apply measured proximal and distal average pressure
on ∂Ω2, ∂Ω3, respectively,

p(r) =
〈

p∗,prox(τ)
〉

τ
, r ∈ ∂Ω2; p(r) =

〈
p∗,dist(τ)

〉
τ
, r ∈ ∂Ω3,

we compute the steady-state solution and deduce vessel flow

q∗ =
∫ ∫

∂Ω3

v(r) · dA;

then, we use Ohm’s law and
〈

p∗,dist(τ)
〉

τ
to compute a patient-specific MVR.

2. Following VirtuHeart methodology, assume an MVR based on patient characteris-
tics [6]; compute vessel inlet and outlet areas

Ain =
∫ ∫

∂Ω2

dA, Aout =
∫ ∫

∂Ω3

dA,
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set two physiologically plausible inlet flows (q∗ = 1, 3 mL/s), find uniform inlet and
outlet streamwise velocities

vin
s (r) =

q∗
Ain

, r ∈ ∂Ω2; vout
s (r) =

q∗
Ain

, r ∈ ∂Ω3,

compute the two corresponding pressure drops, δp1
∗, δp3

∗ and hence infer the two
Bernoulli resistance coefficients of the stenosis.

3.2. Materials

We analysed anonymised clinical datasets from 40 CAD patients with angina symp-
toms. The elective PCI workflow culminates in re-vascularisation of one or more of the
coronaries in a majority of cases. The decision to stent is guided by the average pressure
drop across a lesion. This is measured using a pressure wire (PRESSUREWIRETMX Abbott,
downloading software CoroflowTM, Coroventis Uppsala, Sweden) with the patient in a
hyperaemic state of pharmacological stress induced by adenosine (a strong vasodilator);
from this, one computes

FFR =
pdistal

pproximal
, (3)

with re-vascularisation indicated for FFR < 0.8. The clinical pathway generates PCI
pressure data, cardiac MRI of the LV, six-minute walk tests (6mwt) before and after PCI
and home activity monitoring (see below); these data fall into two categories

1. Measured data (such as pressure and volume, expressed as time-series);
2. Exercise and physical activity data (like patient 6mwt (exercise) and home monitoring

(activity) measures).

Table 4 identifies data available for every patient, for Table 5, the particular form in
which pre-processed data modalities, declared in Table 4, are ingested into the system
model, and Table 1, a commensurate sequence of handling protocols.

Our personalisation process steps 0, . . . , 5 (Table 1) introduce physiological effects
sequentially, considering

1. Functional form (qualitative data trends should accord with accepted physiology);
2. Modality (pressure is measured directly, using a manometer; CMR volumes, in con-

tradistinction, involve reciprocal space reconstruction).

Our raw data take the form of time-series at two sampling rates. Pressure data were
all sampled for 120 s, using a sampling rate of 100 Hz. CMR volumes were acquired
at a nominal sampling rate of 30 images per heart cycle. Pressure and volume can be
co-registered to the start of ventricular contraction using the RR interval of the concurrent
ECG1 traces, also recorded. Pressure and CMR data were acquired at different stages in
the patient pathway (Table 4), with patients often in different physiological states. For
all pressure signals, the sampled wave-train had its low frequency contribution removed
and was decomposed, using time-domain analysis, into single beat pressure excursions,
identified from the concurrent ECG 1 R-R interval, and then ectopic beats were filtered, and
the remaining cycle pressure samples were downsampled onto the 30 dimensionless times
defined as follows

τn =
n
30

τ, n ∈ N, 0 ≤ n ≤ 29; τ =
t
T

, T =
60
HR

, (4)

corresponding to CMR data sampling times. This set was then ensemble averaged, with
the sample standard deviations in each dimensionless time channel providing an error.
Example aortic and LV pressure data are shown in Figure 3. CMR-derived LV volume data
are also effectively ensemble averaged (acquisition involves a reciprocal space reconstruc-
tion of data acquired at a given cycle phase, over several consecutive beats). Our CMR total
LV volume measurements are attributed to 30 equispaced dimensionless times. Each was
computed by segmenting the chamber, in a set of between 9 and 12 cross-sections, with
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the base and apical frames frequently discarded, owing to error. Frames were positioned
along the long axis of the approximately cylindrical LV. Our segmentation and subsequent
volume computation were performed using the MASSTM software (Leiden University,
Version 2018 EXP, Leiden University Medical Centre, Leiden, The Netherlands). Figure 3,
right panel, shows a typical CMR volume time-series.

Downsampled pressure and volume are acquired relative to a common clock provided
by the ECG 1 RR interval which can potentially synchronise them, to yield a personal double
Hill elastance function, ELV(t), etc. However, there are demonstrable inconsistencies, such
as heart rate (HR) miss-match. Pressure data have a certain HR, and CMR data another. We
will demonstrate that careful pressure and volume time-series co-registration is essential,
and we will develop a minimal rigid shift which adjusts only relative phase.

3.2.1. Physical Data Processing

Chamber elastance functions (Appendix A.2) are low-order models developed from
studied physical data. Elastance may be defined as follows

E∗(τ) ≡
p∗(τ)

(v∗(τ)− v0)
, (5)

where subscript ∗ now denotes the chamber and v0 its unstressed volume. We take the
clinical approximation, v0 = 0. Clearly in Equation (5), E∗(τ) is sensitive to the relative
phase of p∗(τ) and v∗(τ), but the importance of co-registration is perhaps better illustrated
by another metric—the PV loop. The latter is a closed, two-dimensional parametric,
Cartesian curve

(pLV(τ), vLV(τ)), τ ∈ [0, 1].

Figure 4, top panel, shows a personal PV loop in which the LV pressure and volumes
are correctly co-registered. The ventricular–aortic coupling parameter (blue line) and the
wasted mechanical work, as well as the useful mechanical work (loop area), can be deduced.
In contradistinction, Figure 4, bottom panel, shows the same patient’s PV loop using the
putative common clock of the RR interval, to co-register the two time-series signals (red
data). This primitive co-registration is implausible: it has no identifiable iso-volumetric
phases, and it implies a high level of valvular regurgitation and irregular aortic and mitral
valve actuation pressures. The difference between Figure 4, top and bottom panels. argues
for a principled co-registration other that the EGG 1 RR signal. Reserving for subsequent
work a more elaborate co-registration, possibly involving signal dilations, we chose rigidly
to delay the LV volume samples {vLV(τn), 0 ≤ n ∈ N, n ≤ 29} relative to a fixed pressure
sample set {pLV(τn), n ∈ N, n ≤ 29}, by an integral number of dimensionless time steps,
δτ = (τn− τ(n−1)). We observed a cohort-average shift of two CMR phases. Patient-specific
synchronisation was accomplished by seeking the instant at which the aortic and mitral
valves open, in the separate pressure and volume time-series, using the multiple criteria
declared in the fourth column of Table 7.
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Figure 3. Raw time-series data. Top panel. Downsampled aortic (right ordinate) and left ventricular
(left ordinate) pressure variation. These pressure time-series (original sampling rate 120 Hz) were
acquired with a concurrent ECG time-series (ECG 1 lead) in the catheterisation laboratory while the
patient was undergoing elective PCI. The independent signals were co-registered, using the common
background clock of the RR interval of the accompanying ECG 1 recordings. The error bar on these
data is derived from the standard deviation of the downsampled pressure time-series sample bins.
Bottom panel. LV volume variation. These time-series data are expressed in 30 equispaced CMR
phases times. The horizontal error bar corresponds to two CMR phases because the principal source
of error in the CMR signals was deemed to originate in the pressure–volume co-registration, which
was corrected by a rigid shift, relative to the pressure signals, of about two CMR phases. The data in
both panels have time period 60

HR secs, but the patient HR and systolic time typically vary between
the data collections.

When times Tp
ao and Tv

ao are not simultaneous, a plausible co-registration is imposed
by postulating a shift, or delay in the data {vLV(τi), i = 0, .., 29} of δao

t = (Tp
ao − Tv

ao) CMR
phases. Similarly, δmit

t = (Tp
mit − Tv

mit) was evaluated. The final rigid shift of CMR volume
time-series data is

S ≈
(
δao

t + δmit
t
)

2
, S ∈ N, 0 ≤ S ≤ 29.

Here, the symbol ≈ is used to denote a rounded value. The result of applying the rigid
shift defined in Table 7 to our volume time-series data transforms the PV loop; see Figure 4,
bottom panel. Our processing paradigm may be summarised as: constrain the LV pressure
and volume time-series to conform to accepted PV loop physiology.
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Figure 4. Patient-specific PV loops. Top panel. The closed curve, or loop, derives from the raw data in
Figure 3, appropriately co-registered. Ventricular–arterial coupling [20] is measured by the modulus
of the gradient of the blue solid line. Isovolumetric compression (right) and relaxation (left) segments
are apparent. The volume enclosed within the PV loop is the useful mechanical work, applied to
ejected fluid. Wasted work is calculated from the area bounded by the red lines and the left-hand side
of the PV loop. Bottom panel. One PV loop based up the same data as shown in the top panel, but
using different co-registrations of pressure and volume time-series data. The primitive co-registration
(red) has no rigid shift applied to the volume data; the blue dataset shows the result of a rigid shift of
one CMR phase, and the black data show the result of a shift of two CMR phases (the value of the
shift obtained by synchronising the valve timing points). These data demonstrate the clear need for
careful co-registration of the two signals.

With an acceptable co-registration of pressure and volume data, we derive the LV
double Hill elastance function parameters. ELV,max (widely termed “contractility”) and
ELV,min (“compliance”) are assigned directly
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ELV,max = max
i

(
pLV(ti)

vLV(ti)

)
, ELV,min = min

i

(
pLV(ti)

vLV(ti)

)
. (6)

Table 7. Identification of mitral and aortic valve opening times, in LV pressure and volume time-series
data. Each valve opening instant was identified by multiple criteria (column 3). Discrete time-series
data temporal derivatives were evaluated by the class of finite difference approximation stated in
column 4. Column 5 defines the notation for the identified cycle time fraction.

Valve Time-Series Valve Opening Signature Difference Notation

Aortic

pressure
pLV & 80 mmHg

central Tp
ao

maxt

(
dpLV

dt

)
volume

dvLV
dt . 5 mL/s forward Tv

ao
close to maxt(vLV)

Mitral

pressure

dpLV
dt < 0

central Tp
mit

d2 pLV
dt2 & 0

pLV ≈ 10 mmHg

volume

(
dvLV

dt

)
> 0

forward Tv
mit(

d2vLV
dt2

)
> 0

The remaining activation function parameters accrue by seeking the extremum of a
multi-variate function, which is assumed to be differentiable

f (n1, n2, τ1, τ2) =
29

∑
i=0

(pLV(τi)− E(τi; θ)vLV(τi)), θ = (n1, n2, τ1, τ2)
T ⊂ Θ. (7)

Note, n1, n2, τ1, τ2 are variables (parameters) on the left (right)-hand side of Equation (7).
Minimisation was performed using a gradient descent, initialised to the population average [12].
Figure 5 below shows a derived elastance function.

In this way, our mechanical time-series signals are downsampled onto a common rate
of 60

30HR Hz, suitably co-registered, and then used to deduce a personalised ELV(τ) for each
patient. These data will be recycled as 0D system model personalisation targets, both as
discrete time-series and derived metrics.
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Figure 5. A personalised elastance function. The solid line corresponds to the optimum elastance
function, obtained from suitably co-registered coordinates (pLV(τi),vLV(τi)), i = 0, . . . , 29 using the
cost function in Equation (7), minimised using a gradient descent simplex method. Broken line: our
common initialisation, using Mynard’s population average [12] parameterisation, θ. Open red circles:
raw data, with the appropriate shift applied. Black circles and line: optimised fit on the shifted data
minimising the residual declared in Equation (7).

3.2.2. Exercise/Monitoring Data Processing

CAD and cardiorespiratory fitness are linked. Endothelial nitric oxide synthase (eNOS)
prevents platelet aggregation and white cell adhesion and inhibits vascular smooth muscle
cell proliferation [28], and regular physical exercise enhances bioavailability of eNOS and
regeneration of the vascular endothelium [29]. Conversely, inactivity is associated with
pathological processes preceding atherosclerosis and CAD [30]. As a result, a dose–response
relationship exists between physical activity and the risk of CAD [31], with exercise capacity
predictive of mortality, myocardial infarction and risk of re-vascularisation in patients with
established CAD [32]; see Figure 6. Assessing patients’ activity and exercise capacity is key
in the management and assessment of CAD. For completeness, therefore, we summarise, in
two categories, the study exercise and activity data which will, in future work, quantify the
change in patient exercise tolerance attending measured PCI-related physiological changes.

1. Home activity monitoring. FitbitTM Charge 4 wrist watches (Healthy Metrics Research
Inc. San Francisco, CA, USA) and a smartphone were used. Data monitoring started
at recruitment and extended up to six months post PCI. All data were uploaded
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to the Fitbit website simultaneously through a smartphone application and then
exported as coarse-grained time-series (mechanical energy consumption, distance
walked, minutes spent sedentary, light, fairly, and great activity). Concurrent HR data
were also exported as downsampled HR data, which were simultaneously updated
throughout the day as time-averaged values every 10–15 min.

2. Formal six-minute walk tests (6MWT). These were performed at baseline before the
PCI (ideally one day) with a repeat assessment after three and six months. In these
standard clinical assessments, the data collected were cuff blood pressure, HR and
distance walked.

We remark that exercise training in CAD is superior to PCI in improving event-free
survival and exercise capacity and is at a much lower cost [33], and the total distance
walked is a proxy for cumulative CO.

Figure 6. Schematic representation of the relationship between exercise, coronary artery disease
progression and cardio-pulmonary fitness and the underlying physiology. The exercise and activity
data gathered in this study will eventually expose quantitative links between physical activity,
cardio-respiratory fitness and coronary artery disease.

4. Results

Three randomly chosen patients designated A, . . . , C were used to validate our per-
sonalisation process, by demonstrating an accurate in silico description of patients’ pre-PCI
rest state. Since changes in arterial geometry accompanying re-vascularisation are recorded,
PCI-modified MVR and stenotic Bernoulli resistance coefficients will accrue with our
approach. Thus, data such as those presented here will eventually be available on the post-
operative patient; see Section 5. Results fall into two categories: (i) data on our methodology
as summarised in Tables 1 and 4 and (ii) the emergent patient representations.

4.1. Elastance Function Evaluation

Downsampling and ensemble averaging of patient LV and aortic pressure time-series
datasets were performed straightforwardly. We proceed to protocol step 2 (a personal
ELV(τ))), where we encounter the sensitivity of ELV(τ), to the co-registration of pressure
and volume data. See Table 8 and Figure 7, which describe patient B, who required the
largest shift. The PV loop illustrates the importance of co-registration, in Figure 4, where
the PV loop shape progressively acquires accepted physiological features of iso-volumetric
compression and relaxation phases. The corresponding sensitivity of ELV(τ), in Figure 7, is
quantified by the parameterisations in Table 8. We defer further comment to Section 5.
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Figure 8 shows the personalised ELV(τ) (left) and PV loop (right) for patients A, . . . , C.
The elastance data take correctly co-registered LV pressure and volumes and show the initial
(red) and optimised (black) fit. The PV loops in the right-hand column show the importance
of co-registration case by case, with the PV loop obtained without co-registration shown in
red and that with an appropriate co-registration in black.

Table 8. Sensitivity of LV double Hill elastance function parameterisation. For a single patient B,
fitted double Hill elastance function shape parameters are declared for a range of co-registration
shifts. We deem a shift of 5 in the last column to be the correct co-registration for this particular
patient. The corresponding elastance function sequence is plotted in Figure 7.

Shift 1 2 3 4 5

double Hill LV elastance parameter

n1 1.91 1.83 1.78 1.68 1.52

n2 16.46 17.93 18.06 17.52 17.04

τ1 0.28 0.32 0.38 0.47 0.73

τ2 0.47 0.48 0.49 0.49 0.49

ELV,min 0.04 0.04 0.04 0.04 0.04

ELV,max 2.95 2.86 2.68 2.48 2.27

Fluids 2023, 1, 0 19 of 33

Figure 7. Sensitivity of a patient elastance function to co-registration shift. Data correspond to the
double Hill elastance function parameters in Table 8. The shift increases top to bottom with the
bottom panel corresponding to the expected shift of 5 phases, deduced using the co-registration
declared in Table 9. The broken line shows our common initialisation using Mynard’s population
average [12] parameterisation. Open red circles show the raw data with the appropriate shift applied.
The black circles and the line show the optimised fit on the shifted data from a gradient descent
simplex method applied to Equation (7).

Figure 7. Cont.
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Figure 7. Sensitivity of a patient elastance function to co-registration shift. Data correspond to the
double Hill elastance function parameters in Table 8. The shift increases top to bottom with the
bottom panel corresponding to the expected shift of 5 phases, deduced using the co-registration
declared in Table 9. The broken line shows our common initialisation using Mynard’s population
average [12] parameterisation. Open red circles show the raw data with the appropriate shift applied.
The black circles and the line show the optimised fit on the shifted data from a gradient descent
simplex method applied to Equation (7).

Figure 7. Sensitivity of a patient elastance function to co-registration shift. Data correspond to the
double Hill elastance function parameters in Table 8. The shift increases top to bottom with the
bottom panel corresponding to the expected shift of 5 phases, deduced using the co-registration
declared in Table 9. The broken line shows our common initialisation using Mynard’s population
average [12] parameterisation. Open red circles show the raw data with the appropriate shift applied.
The black circles and the line show the optimised fit on the shifted data from a gradient descent
simplex method applied to Equation (7).

Table 9. Patient-specific LV double Hill elastance function parameters. These parameterisations result
from fitting the product vLV(τi)× E(τi; θ) to the measured, downsampled pressure pLV(τi), using
the cost function defined in Equation (7) and a gradient descent method. The applied co-registration
rigid shift, or relative delay, applied to the volume data is declared in the first row.

Patient ID A B C

Co-Registration Rigid Shift 1 5 2

double Hill LV elastance
parameter

τ1 0.29 0.54 0.82

τ2 0.42 0.5 0.42

n1 1.58 1.56 1.26

n2 17.53 17.96 19.95

ELV,max 1.1 2.22 2.17

ELV,min 0.05 0.03 0.03
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Figure 8. Patient-specific PV loops and elastance functions, for patients A, . . . , C. Left column. Patient-
specific elastance functions. Red lines correspond to LV pressure and volume time-series data, which
are correctly co-registered according to the criteria declared in Table 7 but which is not optimised.
Black circles, with black lines to guide the eye, correspond to an optimised, double Hill elastance
function parameterisation, obtained by minimising the residual declared in Equation (7), targeting
the 30 downsampled LV pressure time samples, using the 30 LV volume time samples. Right column.
The corresponding patient-specific PV loops. These data were processed as described in the text, with
the personal co-registration shifts identified in Table 8. The red line shows the result which would
be obtained without any co-registration. The black circles, with black lines to guide the eye, are the
co-registered data.

4.2. Tuning Protocol Evaluation

Steps 0, 1, and 2 culminate in a personal ELV(τ) which is input into the system 0D
model. The latter then provides time-series outputs for LV and aortic pressures and LV
volume at the end of step 3; see Figure 9. The cost function used to acquire these data,
Equation (1), equally weights its five targets. Step 3 uses a genetic algorithm (GA) to localise
the global cost function minimum, by adjusting the systemic windkessel. In general, the
LV diastolic phase exhibits the largest discrepancy between model outputs and targets.
This suggests parameters, such as mitral valve resistances and left atrial (LA) elastance,
as secondary targets for step 4, which uses a less expensive gradient descent search, on
the assumption that previous GA tuning will first have located the correct region. The
initial values of the input parameters of the mitral valve Bernoulli resistance and ELA(τ)
are specified in Tables 1 and 5. Step 4 retains the targets of step 3 but adds the LV volume
time-series. That step 4 favours the diastolic phase, particularly for cases A and C, is
apparent from Figure 9, which shows outputs at the end of step 3 in the left column and
outputs from the end of step 4 in the right column.

Having assigned systemic and left-heart energetic parameters, it remains to tune
flow in patients’ coronary circulations. The coronaries sequester a small fraction of cardiac
output [18]. It is reasonable to suppose that this does not perturb already identified systemic
and left heart parameters. The tuning of coronaries in step 5 relies upon CFD data to assign
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the MVR and stenotic Bernoulli resistance coefficients. The latter rely on data declared in
Tables 10 and 11 and are derived as described in Section 4.3.

Figure 9. Systemic parameter tuning for patients A, B, C. Key 0D system model outputs (solid
lines) are shown alongside the corresponding ensemble-averaged and downsampled data (open
circles). Black line is LV pressure (mmHg), red line is aortic pressure (mmHg), and blue line is LV
volume (mL). All data that were acquired after the appropriate personal elastance function assigned
in step 2 had been ingested. Left column, step 3. The search used the GA guided by the cost
function in Equation (1), with equal weights applied to patients’ discrete LV pressure and volume
extrema and the aortic time-series data. These data result from tuning the following subset of the
0D model input parameters {L, Rprox, Cprox, Rdist} of the systemic circulation. Right column, step
4. The search used a gradient descent method based on the cost function, Equation (1), with equal
weights applied to patients’ discrete LV pressure, volume extrema, aortic time-series data and now LV
volume data. These data result from tuning the following subset of the 0D model input parameters
{amit, bmit, ELA,min, ELA,max, τ1,mit, τ2,mit}.

4.3. CFD Data Evaluation

Patients’ stenotic Bernoulli resistance coefficients were derived, as discussed above,
from VIRTUheartTM (University of Sheffield, Sheffield, UK). VirtuQTM (University of
Sheffield, Sheffield, UK) was used to compute the corresponding MVRs. Both tools assume
steady flow. Furthermore, VIRTUheart approximates pressure distal to the MVR as zero.
The first assumption is raised within our transient 0D system model. Moreover, the 0D
system model, with its four hear chambers, develops an unconstrained pressure distal to
the MVR. The stenotic Bernoulli resistance coefficients ingested into the system 0D model
(Table 10) are deemed to be unaffected by these differences. However, the MVR yielded by
our CFD tool requires the correction in Equation (8)

MVR→
(
〈pd(τ)〉τ − 〈pRA(τ)〉τ

〈pd(τ)〉τ

)
MVR. (8)

Tables 10 and 11 declare the patient-specific CFD data inputted into the system 0D
model. There, we encounter that sparsity and incompleteness which are typical of clinical
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data- none of our selected patients have three vessel disease and others have total coronary
occlusion (TCO). The latte precludes all treatment but which can still be mapped to the
coronary artery module in Figure 1 however, by setting large stenotic resistance coefficients.
The latter are used to determine the pressure drop, δP∗, across a lesion from the flow, using
Equation (9)

δP∗ = Rsten∗,aq2
∗ + Rsten∗,bq∗. (9)

Above, ∗ identifies the particular vessel.

Table 10. Coronary artery average pressure data. Time average pressure for lesion-proximal, aortic
sinus, and lesion-distal locations. Study data are recorded for treated arteries only. Pressures were
obtained using a pressure transducer by catheterisation during the PCI process.

Patient

Vessel

LAD LCx RCA

pprox pdist pprox pdist pprox pdist

UNIT mmHg mmHg mmHg mmHg mmHg mmHg

A 88.60 74.50 ∼ ∼ ∼ ∼

B 103.71 99.17 103.95 101.69 ∼ ∼

C 121.74 115.73 ∼ ∼ 127.23 125.89

Table 11. CFD-derived data for the patient coronary arteries. Stenotic Bernoulli resistance coefficients
and MVRs for patients A,B,C.

Patient Metric Unit
Vessel

LAD LCx RCA

A

MVR mmHg·s/mL 1.50 ∼ ∼

Rsten,a mmHg·s2/mL2 28.45 ∼ ∼

Rsten,b mmHg·s/mL 28.58 ∼ ∼

B

MVR mmHg·s/mL 0.77 1.10 ∼

Rsten,a mmHg·s2/mL2 16.56 10.22 ∼

Rsten,b mmHg·s/mL 22.34 14.33 ∼

C

MVR mmHg·s/mL 1.75 ∼ 1.01

Rsten,a mmHg·s2/mL2 22.34 ∼ 16.67

Rsten,b mmHg·s/mL 12.33 ∼ 14.11

5. Discussion

We have characterised the pre-PCI patient state, but equivalent data exist for post-PCI
patient states; thus, the approach described here may be used to examine post-intervention
physiology. Our methodology brings within scope for the first time, a means to relate
qualitative changes in physiology to changes in, e.g., exercise tolerance. The importance of
a careful co-registration of our LV pressure and volume time-series data is underscored
by the data in Figure 7 and the corresponding double Hill parameterisations, declared
in Table 8. These data show LV contractility (ELV,max) and systolic activation function
parameters τ1, n1 to be the most sensitive elastance parameters to co-registration shift.
These parameters respectively quantify LV contractility and the vigour of systolic onset
and are very important indicators of cardiac health.

Step 2 of our protocol is seen to be robust and necessary. It represents a successful
means of dealing with nonsimultaneous pressure and volume time-series data. From
the data of Figure 8, it is apparent that a range of elastance functions and PV loops are
successfully addressed. The change in the elastance function as correct co-registration
is progressively applied demonstrates a significant degree of sensitivity in the elastance
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function. This underscores the importance of step 2 in our protocol. From Figure 8, it is
also apparent that the PV loop of some cases is rather more sensitive than others to our
rigid shift co-registration of pressure and volume time-series data.

From Figure 8, we see that the optimisation process enshrined in Equation (7) makes
relatively little difference to the final shape of the elastance function, certainly compared
with that produced by the volume and pressure time-series co-registrations.

6. Conclusions

We have verified the ability of appropriate protocols, PCI-acquired data and a suitable
0D system model, robustly interacting with 3D CFD models to recover a quantitative in
silico representation of three individual patients’ physiological and pre-PCI cardiovascular
state. This depiction relies on parsing diverse clinical data, compiled during the elective
PCI clinical pathway. Specifically, our hierarchical, multi-stage protocol is shown to identify
prioritised input model parameters of cardiac energetics and coronary perfusion, within
a 0D (compartmental) four-chamber system model with data-adapted coronary artery
topology. Using this, we reached verifiable in silico representations of significant LV
aortic and coronary artery volume, flow and pressure time-series. This process of input
parameter identification is known in the clinical context as model personalisation. It is
a key determinant of clinical utility, which urges a parsimonious model or (as here) the
prioritisation of a subset of model input parameters, chosen with the supporting sensitivity
and orthogonality analysis, provided in the appendices. The present study requires accurate
representation of coronary flow states which are dominated by diastolic dynamics. The
coupling of the coronary arteries’ compliances (capacitances) to the appropriate chamber
pressure (see Figure 1) apparently recovers diastolic dominance in coronary flow.

Time-series data play a defining role. To utilise them optimally, it was necessary to
reconcile data collected at different stages of the clinical pathway with patients at different
points in their physiological envelopes. This is deemed to be our largest source of error.
The time-series data in question are non-invasive left ventricular volume, derived from
CMR, and invasive LV and aortic pressures measured during PCI. Our approach involves
downsampling pressure to accord with MRI phases and devising a suitable rigid phase
shift, based upon LV valve timings, to overcome an identified co-registration error; results
were assessed by the qualitative credibility of a physiological properties inferred from
the LV PV loop. The commensurate LV elastance function is an input into the system
0D model personalisation process. It is shown to be sensitive to the co-registration of
time-series data. Possibly, the most consequential, purely clinical outcome of this work is
that we have been able to obtain credible results for patient PV loops and left-ventricular
elastance functions by using a straightforward co-registration of non-simultaneous invasive
pressure and non-invasive volume data when guided by rudimentary and therefore robust
physiological principles.

Despite sources of error, it is apparent that there remains sufficient depth in the
clinical pathway dataset to build appropriate digital twins, and we present as evidence
data for three patients in the pre-PCI state. A route to the complementary, post-intervention
description of the patient now lies open. One simply needs to apply the current workflow
to extant data which are of equivalent form to that considered here. Therefore, using
our methodology, one can expect to develop both pre- and post-PCI representation of
patients from which to measure physiological changes attending PCI. Section 3.2.2 outlines
a range of relevant activity measures which might be used meaningfully to contextualise
this change in global ischaemic burden. Put another way, the act of correlating these
model-derived statistics of the study data has the potential to reveal relationships between
coronary physiology, cardiac energetics and physical activity, as well as providing clinical
decision support. The model represents a means not only to establish a connection between
global coronary perfusion and cardiac energetics, but to quantify it.
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Appendix A. System Model

Appendix A.1. System Model Dynamical Equations

It is possible to formulate the 0D model in terms of ordinary differential equations or
differential algebraic equations [23]. Compartments are specified by their time-dependant
dynamic pressure p (mmHg), inlet flow q (mL/s) and volume v (mL). The equations relating
to the passive compartmental state variables all take the form

dvi
dt

= qi − qi+1,
dpi
dt

=
1
Ci

(qi − qi+1), qi =
pi − pi+1

Ri
. (A1)

Above, the subscripts (i− 1), i, (i + 1) respectively represent the proximal, present
and distal system compartments, vi(mL) denotes the circulating (stressed) volume and Ci
(mL/mmHg) and Ri (mmHgs/mL) denote compartmental compliance and the Ohmic,
or Bernoulli, resistance between compartments i, (i + 1). We turn to the active system
compartments, described by so-called activation functions, and valve characteristics.

Appendix A.2. Sub-Models—Chamber Elastances and Valve Characteristic Functions

The double Hill elastance used here [12,14] is that in most widespread use within the
clinical and physiological communities. The same essential model is used to express the
biomechanics of all four heart chambers. Shi proposed an alternative model, with more
compact support, which is arguably more intuitive [34], having similar properties. Neither
takes into account stress stiffening in systole. Arts et al. [35] and Bovendeerd et al. [36]
developed a model based on a more formal approach which accounts for stress-stiffening
of the chamber. The double Hill function for it is expressed in terms of an activation or
shape function, which is a product of monotonically increasing and decreasing expressions,
as follows:

e(τ; n1, n2, τ1, τ2) =
x

(1 + x)(1 + y)
, x =

(
τ

τ1

)n1

, y =

(
τ

τ2

)n2

.

A model elastance is then assigned

E(τ; θ) = Emax

(
e(τ; n1, n2, τ1, τ2)

maxτ(e(τ; n1, n2, τ1, τ2))

)
+ Emin.
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Above, θ denotes the set elastance parameters {Emax, Emin, n1, n2, τ1, τ2}. Emax and
Emin specify chamber contractility and compliance, respectively. Parameter n2 (the relax-
ation rate constant) is commonly set to large values to produce a sharp cut-off in E(τ; θ)
at the systolic to diastolic boundary. The double Hill parameter, τ2, (the diastolic time
constant) is the principal determinant of the systolic to diastolic ratio. Amplitude and
shape parameters differ between all four chambers. Moreover, atrial elastance functions
have adjustable phase, relative to ventricular elastances.

Valve characteristic functions express the relationship between flow through a valve,
Qvalve, and pressure difference, δp, between separated compartments. Valves used in this
work are diodes, having quadratic (Bernoulli) flow-pressure characteristics under forward
bias with no leakage flow under reverse bias

q∗(τ) =

{
a1,∗δp(τ)2 + a2,∗δp(τ) δp(τ),> 0,
0 δp(τ) ≤ 0.

Above, the free subscript ∗ denotes one of our four valve flows.

Appendix B. Sensitivity and Orthogonality Analysis

Personalisation is a parameter identifiability analysis [5] applied to a chosen subset
of input parameters which are often hypothesised to serve as clinical biomarkers and to
a set of output metrics which correspond to available clinical data. The foundations of
input parameter identifiability are sensitivity and input parameter orthogonality analysis.
Using such, one can turn to formal methods (see, e.g., Li et al. [37]) which help to determine
subsets of model input parameters which are optimal for personalisation [38]. Relative
sensitivity and input parameter orthogonality analyses, derived from the operation of our
system 0D model, are presented here in two forms. First, we consider an full analysis, based
on the whole set of our system model’s input parameters with an impractically large range
of discrete outputs. Then we present the same analyses, with the list of input parameters
restricted, to reflect those which we use in our patient personalisation process. For this
subset, we also restrict the range of discrete model outputs to be representative of our
study’s patient data.

The relative sensitivity of the mth discrete output, Xm, on the nth discrete input, θn, is
measured by a numerical approximation to the normalised partial derivative

Snm =
θn,0

Xm(Θ0)

[
∂Xm

∂θn

]
Θ0

, 1 ≤ m ≤ M, 1 ≤ n ≤ N. (A2)

Above, the model base state, Θ0, corresponds to our normal patient, where N (M)
is the number of model inputs (outputs) and Snm is a sensitivity matrix element. Noting
the system input index, n, which identifies rows of S, we define a relative sensitivity row
vector, characteristic of the nth input

sn = (Sn1, Sn2, ..., SnM), 1 ≤ n ≤ N. (A3)

From such sensitivity vectors, it is possible to measure the linear independence of
the action across all outputs, of two chosen input parameters using a simple, intuitive
orthogonality measure, which is a straightforward generalisation of the scalar product of
two vectors

dnn′ = sin
(

cos−1
(

sn · sn′√
sn · sn

√
sn′ · sn′

))
, 1 ≤ n, n′ ≤ N. (A4)

Above, for two input parameters having identical action on all outputs, we find
dnn′ = 0. Put another way, if dnn′ = 0, then incrementing θn and θn′ will move all the
system outputs in the same direction. Under such circumstances, while θn and θn′ might
each have considerable influence, they do not act upon them differentially. Optimal choices
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of input parameters for personalisation should clearly be chosen on the basis of influence
and orthogonality. Clearly, dnn′ = dn′n, and it is convenient to survey the orthogonality of
the model input parameters by presenting the square, symmetric matrix d, as a heatmap.

Figure A1 shows the full sensitivity matrix, based upon all inputs and a large range of
discrete outputs. Of course, no practical study, however extensive, will have access to the
range of outputs shown here. For the sake of completeness, however, we also present the
corresponding input parameter orthogonality matrix and the statistics of that dataset in
Figures A2 and A3, respectively. These figures are to be interpreted using Table A1.

Of much greater practical significance, certainly for the present study, is the partial
sensitivity matrix, now based upon that subset of model inputs which are considered in
this study alongside a set of outputs which are representative of the data we access. These
data are presented in Figures A4–A6. They suggest that the systemic circulation parameters
influence coronary flow. This, of course, is consistent with our assumptions: the recognised
principal determinant of LV afterload is the systemic arterial windkessel parameterisation
and a reduction in (say) systemic vascular resistance will increase flow to the system, and
thereby, the fixed fraction which is sequestered to the coronaries increases. Conversely,
changes in the parameterisation of the coronaries have little effect on the systemic metrics.
The block diagonal structure in Figure A6 reinforces the conclusion that there is only weak
coupling between the coronaries and the systemic and cardiac parameters of our model.

Figure A1. Full relative sensitivity matrix of the model, at base state. The sensitivity matrix is
represented here as a heatmap. These data represent the fullest assessment of the studied four-
chamber model and are presented for the sake of completeness. Input parameters and outputs
are identified by their numerical subscripts, identified in Table A1. Many of the sensitivities are of
restricted utility as they are based upon unobservable outputs. A restricted sensitivity analysis is
presented in Figure A4 where the range of model inputs and outputs is restricted, in line with data
available in the present study. Here, and in a majority of complex models, the heatmap is dominated
by a few large sensitivities.



Fluids 2023, 8, 159 27 of 33

Figure A2. Full input parameter orthogonality analysis of the model sensitivity vectors. This heatmap
is a representation of the matrix d (Equation (A4)). Input parameters are identified by their numerical
subscripts identified in Table A1. Data are based upon sensitivity vectors, derived from the full
model sensitivity matrix, in Figure A1. A more meaningful input parameter orthogonality analysis is
presented in Figure A4, where the range of model inputs and outputs is restricted, in line with the
data available in the present study.

Figure A3. Statistics of the full input parameter orthogonality analysis. The statistical distribution
of the matrix elements dnm are shown in heatmap form in Figure A2. The distribution of these data
tends to suggest that with a comprehensive set of outputs, a majority of model input parameters
are identifiable.
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Figure A4. Restricted relative sensitivity matrix of the model, at base state. Relative to the data
in Figure A1, here we show the sensitivity matrix based upon model input parameters which are
emphasised within this study, combined with outputs which are acquired within the patient clinical
pathway. Input parameters and outputs are identified by the numerical subscripts identified in Table A1.

Figure A5. Restricted input parameter orthogonality analysis. These data represent the subset of
model input parameters used in this study. The output parameters which are embedded in these
data are those effectively declared in the data of figure A4. Input parameters are identified by the
subscripts declared in Table A1.
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Figure A6. Statistics of the restricted input parameter orthogonality analysis. The statistical distribu-
tion of the matrix elements dnm are shown in heatmap form in Figure A5.

Table A1. Key to full and restricted sensitivity and orthogonality analyses in Figures A1, A2, A4 and A5.
First column, index, and second and third columns are restricted analysis, fourth and fifth columns are full
analysis. Θn denotes an input parameter; Xn denotes an output parameter.

n Θn Xn Θn Xn

1 Heart Rate Cardiac Output Heart Rate Cardiac Output

2 Mean circ. filling press. LV End Diastolic Volume Mean circ. filling press. Useful Cardiac Power

3 ELVmin LV End Systolic Volume ELVmin LV End Diastolic Volume

4 ELVmax LV Maximum Pressure ELVmax LV End Systolic Volume

5 n1LV LV Minimum Pressure n1LV LV Stroke Volume

6 n2LV Systemic Artery Systolic Press. n2LV LV Ejection Fraction

7 Tau1fLV Systemic Artery Diastolic Pres. Tau1fLV LV Maximum Pressure

8 Tau2fLV Systemic Artery True MAP Tau2fLV LV Minimum Pressure

9 LV fractional time shift AV Opens LV volume offset LV End Diastolic Pressure

10 ELAmin AV Closes LV fractional time shift LV dp/dt (peak)

11 ELAmax MV Opens ELAmin LV Stroke Work per Beat

12 n1LA MV Closes ELAmax LV Stroke Power (Mean)

13 n2LA Mean Coronary Flow n1LA LV Stroke Power (Peak)

14 Tau1fLA Maximum Coronary Flow n2LA LV Myocardial Power (mean)

15 Tau2fLA Left Main Flow (mean) Tau1fLA LV Myocardial Power (peak)

16 LA fractional time shift Left Main Flow (peak) Tau2fLA LV Wasted Myocardial Power (Suga)

17 Systemic Resistance (Prox.) Left Main ’FFR’ (<Pd> / <Pa>) LA volume offset LA Maximum Volume

18 Systemic Resistance Distal Cx Flow (mean) LA fractional time shift LA Minimum Volume

19 Systemic Art.
Cap (Prox.) Cx Flow (peak) ERVmin LA Maximum Pressure
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Table A1. Cont.

n Θn Xn Θn Xn

20 Systemic Art.
Inertance (Prox.) Cx ’FFR’ (<Pd> / <Pa>) ERVmax LA Minimum Pressure

21 Mitral Valve quadratic coeff. LAD Flow (mean) n1RV RV End Diastolic Volume

22 Mitral Valve linear coeff. LAD Flow (peak) n2RV RV End Systolic Volume

23 Left main,
quadratic coeff. LAD ’FFR’ (<Pd>/<Pa>) Tau1fRV RV Stroke Volume

24 Left main, linear coeff. RCA Flow (mean) Tau2fRV RV Ejection Fraction

25 Cx, quadratic coeff. RCA Flow (peak) RV volume offset RV Maximum Pressure

26 Cx, linear coeff. RCA ’FFR’ (<Pd> / <Pa>) RV fractional time shift RV Minimum Pressure

27 Cx, RCR total res. ∼ ERAmin RV End Diastolic Pressure

28 Cx, RCR cap. ∼ ERAmax RV dp/dt (peak)

29 Cx Cap. back press. fraction ∼ n1RA RV Stroke Work per Beat

30 LAD, quadratic coeff. ∼ n2RA RV Stroke Power Expenditure

31 LAD, linear coeff. ∼ Tau1fRA RV Stroke Power (Peak)

32 LAD, RCR total resistance ∼ Tau2fRA RV Myocardial Power (mean)

33 LAD, RCR cap, ∼ RA volume offset RV Myocardial Power (peak)

34 LAD Cap. back
press. fraction ∼ RA fractional time shift RV Wasted Myocardial Power (Suga)

35 RCA, quadratic coeff. ∼ Systemic Resistance Prox. RA End Diastolic Volume

36 RCA, linear coeff. ∼ Systemic Resistance Dist. RA End Systolic Volume

37 RCA, RCR total resistance ∼ Systemic Arterial Prox. Cap. RA Maximum Pressure

38 RCA, RCR capacitance ∼ Systemic Arterial Prox.
Unstressed Vol. RA Minimum Pressure

39 ∼ ∼ Systemic Arterial Distal Cap. Systemic Artery Systolic Pressure

40 ∼ ∼ Systemic Arterial Distal
Unstressed Vol. Systemic Artery Diastolic Pressure

41 ∼ ∼ Systemic Arterial Inertance
(Prox.l) Systemic Artery Nominal MAP

42 ∼ ∼ Pulmonary Resistance Prox. Systemic Artery True MAP

43 ∼ ∼ Pulmonary Resistance Distal Systemic Artery Pulse Pressure

44 ∼ ∼ Pulmonary Arterial Proximal
Cap. Systemic Vein Mean Pressure

45 ∼ ∼ Pul. Art. Prox. Unstressed Vol. Systemic Vein Pulse Pressure

46 ∼ ∼ Pul. Art. Distal Cap. Pulmonary Artery Systolic Pressure

47 ∼ ∼ Pulmonary Arterial Distal
Unstressed Vol. Pulmonary Artery Diastolic Pressure

48 ∼ ∼ Pulmonary Arterial
Inertance (Prox.) Pulmonary Artery Nominal MAP

49 ∼ ∼ Aortic Valve quadratic coeff. Pulmonary Artery True MAP

50 ∼ ∼ Aortic Valve linear coeff. Pulmonary Artery Pulse Pressure

51 ∼ ∼ Aortic Valve regurgitant
quadratic coeff. Pulmonary Vein Mean Pressure

52 ∼ ∼ Aortic Valve regurgitant
linear coeff. Pulmonary Vein Pulse Pressure

53 ∼ ∼ Mitral Valve quadratic coeff. AV Forward Flow [ml/beat]

54 ∼ ∼ Mitral Valve linear coeff. AV Regurgitation [ml/beat]

55 ∼ ∼ Mitral Valve regurgitant
quadratic coeff. AV Regurgitant Fraction [-]

56 ∼ ∼ Mitral Valve regurgitant
linear coeff. AV Maximum Pressure Drop
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Table A1. Cont.

n Θn Xn Θn Xn

57 ∼ ∼ PulmonaryValve quadratic coeff. AV Mean Pressure Drop

58 ∼ ∼ Pulmonary Valve linear coeff. (Stroke Power Lost):(AV Resistance)

59 ∼ ∼ Pulmonary Valve regurgitant
quad. coeff. (Stroke Power Lost):(AV Resistance)

60 ∼ ∼ Pulmonary Valve regurgitant
linear coeff. MV Forward Flow [ml/beat]

61 ∼ ∼ Tricuspid Valve quadratic coeff. MV Regurgitation [ml/beat]

62 ∼ ∼ Tricuspid Valve linear coeff. MV Regurgitant Fraction [-]

63 ∼ ∼ Tricuspid Valve regurgitant
quad. coeff. MV Maximum Pressure Drop

64 ∼ ∼ Tricuspid Valve regurgitant
linear coeff. MV Mean Pressure Drop

65 ∼ ∼ Left main, quadratic coeff. Stroke Power Lost to MV Regurgitation

66 ∼ ∼ Left main, linear coeff. (Stroke Power Lost):(MV Regurgitation)

67 ∼ ∼ Cx. quad. coefficient AV Opens

68 ∼ ∼ Cx. linear coefficient AV Closes

69 ∼ ∼ Cx. RCR total resistance MV Opens

70 ∼ ∼ Cx. RCR cap. MV Closes

71 ∼ ∼ Cx. RCR fraction
proximal resistance Period of Systole

72 ∼ ∼ Cx. cap. back pressure fraction Period of Diastole

73 ∼ ∼ LAD, quadratic coefficient Proportion of Heart Period in Systole

74 ∼ ∼ LAD, linear coefficient Period of Isovolumetric Contraction

75 ∼ ∼ LAD, RCR total resistance Period of Isovolumetric Relaxation

76 ∼ ∼ LAD, RCR capacitance Mean Coronary Flow

77 ∼ ∼ LAD, RCR fraction
proximal resistance Maximum Coronary Flow

78 ∼ ∼ LAD cap. back pressure fraction Left Main Flow (mean)

79 ∼ ∼ RCA, quadratic coefficient Left Main Flow (peak)

80 ∼ ∼ RCA, linear coefficient Left Main ’FFR’ (<Pd> / <Pa>)

81 ∼ ∼ RCA, RCR total resistance Circumflex Flow (mean)

82 ∼ ∼ RCA, RCR capacitance Circumflex Flow (peak)

83 ∼ ∼ RCA, RCR fraction proximal
resistance Circumflex ’FFR’ (<Pd>/ <Pa>)

84 ∼ ∼ LAD cap, back pressure fraction LAD Flow (mean)

85 ∼ ∼ ∼ LAD Flow (peak)

86 ∼ ∼ ∼ LAD ’FFR’ (<Pd>/ <Pa>)

87 ∼ ∼ ∼ RCA Flow (mean)

88 ∼ ∼ ∼ RCA Flow (peak)

88 ∼ ∼ ∼ RCA ’FFR’ (<Pd> / <Pa>)
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