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Abstract 

Shallow water studies of ship hydrodynamics typically examine a single, constant underwater 

canal cross-section at a time. In practice, the underwater cross-sectional area and shape of the 

waterway is rarely, maintained constant over long distances. This study presents an attempt to 

quantify the effects of an abruptly varying water depth by numerically modelling such a 

condition using CFD. The results show that waves propagate and refract in the numerical 

towing tank in a physically consistent manner showing less than 0.1% error in the dissipation 

of a solitary wave when compared to analytical relations. A strong boundary layer is formed 

on the canal bottom almost as soon as the ship enters the shallower region. The resistance 

increase, resulting from the depth change is up to approximately 226% of the initial value near 

critical speeds. 

Keywords: shallow water, restricted water, RANS, wavefield, step change in water depth, 

water depth transition  

1. Introduction  

Contemporary interest in the field of shallow water ship hydrodynamics is driven by the  fact 

that according to EMSA (European Maritime Safety Agency, 2019, 2018, 2017, 2016, 2015), 

a large proportion of all ship incidents occur in restricted waters. Although human factors are 

predominantly thought to be the root cause of this, counter-intuitive ship behaviour can occur 

in shallow waters, magnifying the overall risk (Tuck, 1978). Therefore, understanding the 

hydrodynamic phenomena occurring in shallow, and more generally, restricted waters is of 

practical relevance.  

In some cases, the ship operator may not be aware of the consequences caused by their 

operation in shallow water. An excellent example of this is described and analysed at length by 

Grue (2017), who investigated waves caused by ships sailing past abrupt depth transitions. He 

demonstrated that long waves can be generated at the depth transition, which the author termed 

“mini-tsunamis”. The resulting waves were shown to cause substantial damage to coastal 

infrastructure several kilometres from their inception point. An even more extreme case is 

reported to have caused the loss of life (Soomere, 2007).  

The present study takes inspiration form Grue's (2017) work and seeks to explore the associated 

effects further, using numerical methods. A survey of the literature revealed that studies model 

similar problems using potential-flow based methods. These generally fall within three 

categories including slender body methods (Gourlay, 2003; Plotkin, 1977, 1976; Tuck, 1967), 
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Green function-based methods (Yang et al., 2001; Yuan, 2014; Yuan et al., 2018; Yuan and 

Incecik, 2016), methods based on the Boussinesq equation (Dam et al., 2008; David et al., 

2017; Grue, 2017; Jiang et al., 2002; Torsvik et al., 2006; Wu and Wu, 1982), methods based 

on the Korteweg-de Vries equation (Cole, 1987; Hur, 2019; Katsis and Akylas, 1987, 1984), 

and methods based on the Kadomtsev-Petviashvili equation (Beji, 2018; Mathew and Akylas, 

1990; Sharma, 1995).  

Most methods mentioned previously can be thought of as long wave theories. The long wave 

family of theories can be arrived at by applying a combination of assumptions and appropriate 

boundary conditions to the Euler equations, which are known to model ship waves with 

adequate accuracy. However, as is often the case, there is some disparity between different 

approaches as illustrated by Torsvik (2009) in terms of dispersive properties exhibited by 

generated waves. Neglecting viscosity may not be a valid assumption, based on the findings of 

recent numerical and experimental studies, which observed the formation of a boundary layer 

on the seabed in very shallow conditions (Böttner et al., 2020; Shevchuk et al., 2016). 

By contrast, studies have shown the fully nonlinear Reynolds averaged Navier-Stokes (RANS) 

equations can model the present class of problem well (Bechthold and Kastens, 2020; 

Elsherbiny et al., 2020; Shevchuk et al., 2016; Terziev et al., 2018; Tezdogan et al., 2016a). It 

is therefore prudent to attempt to construct a fully nonlinear viscous towing tank with a varying 

bathymetry. The specific object of the present study is thus to simulate the hydrodynamic 

effects caused by a ship passing over a step change in the water depth using CFD. To the best 

of the authors’ knowledge, such towing tanks have only been constructed via the use of the 
family of long wave theories, described previously, and not with the aid of CFD. The novelty 

of this study therefore lies in the approach and problem adopted. 

According to Jiang et al. (2002), the unsteadiness and three-dimensionality of the problem to 

be investigated herein precludes the use of many methods. Even the applicable methods rely 

on the assumption of inviscid flow, which may not hold for near-critical speeds or very shallow 

waters. Therefore, provided one can cope with the computational effort, it is desirable to 

investigate the effects of depth changes via a RANS method. Therefore, provided one can cope 

with the computational effort, it is desirable to investigate the effects of depth changes via a 

RANS method due to their inclusion of viscosity. The present work is the first to model this 

problem using the RANS approach. 

This study presents an attempt at modelling the above scenario using the commercial RANS 

solver Star-CCM+, version 14.06. As a starting point, the experimentally investigated 

rectangular canal of Elsherbiny et al. (2019) is used. This features a depth-to-draught ratio of 

2.2 and a width of 4.6m. To examine phenomena other methods may not be well-suited for as 

the chosen speed range is trans-critical. Specifically, two subcritical (𝐹ℎ = 𝑈/√ℎ𝑔  < 1, where 𝑈 is the ship speed, 𝑔 is the gravitational acceleration, and ℎ is the water depth) depth Froude 

numbers are chosen to begin with. As the ship advances through the domain, it encounters a 

step increase in the water depth, rendering a higher value of 𝐹ℎ. To model the motion of the 

ship, use is made of the overset domain approach, following recent work by the authors 

(Terziev et al., 2020). 

The specific cases examined in this study are detailed in the following section. Section 3 

presents the numerical implementation, which also contains estimates for the numerical 
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uncertainty. Then, the generated results and their analysis are given in Section 4. Finally, 

Section 5 summarises the study reported in this paper and suggests future research topics. 

2. Case studies 

This section is devoted to an overview of this work’s selected case studies. To begin with, 

justification is given in terms of the selected conditions.  

As stated previously, transitions past the critical depth Froude number are sought. This is to 

demonstrate that RANS solvers are well-equipped to handle such problems, that present 

significant difficulties for several theoretical methods as reported in the literature. For example, 

the slender body theory has a singularity at 𝐹ℎ = 1. Several studies have devised approaches 

to handle the behaviour of the theory around this depth Froude number, but none has become 

widely used (Alam and Mei, 2008; Gourlay and Tuck, 2001; Lea and Feldman, 1972; Miles, 

1986; Tuck, 1967, 1966). Therefore, the decision to simulate conditions where the critical 

speed is met and exceeded was taken. Alongside these, subcritical conditions are also modelled. 

To achieve a high depth Froude number, a relatively high ship speed is required. Although it 

may be the case that few vessels would operate under such conditions, Grue (2017) reported 

fast ferries travelling at 𝐹ℎ = 0.7 prior to the depth transition. Therefore, the high-speed choice 

is deemed both acceptable and practically relevant for ship operations. Since ship waves are of 

greater concern in restricted waterways due to bank erosion, such as rivers and canals, a 

corresponding case study is sought.  

As mentioned earlier, the work of Elsherbiny et al. (2019) is used in this study, as a starting 

point for three reasons. Firstly, they investigated a canal case, which matches what is required. 

Secondly, the present authors have already laid the groundwork in constructing and validating 

the wavefield of this case study in recent work (Terziev et al., 2020). Finally, replicating the 

towing conditions allows other researchers to compare resistance and wavefield data against 

the work presented herein. This could be done by other researchers using numerical methods. 

Alternatively, an experimental version of the case studies presented here should also be carried 

out. 

Initial speeds are selected based on the highest available 𝐹ℎ explored by Elsherbiny et al. 

(2019), namely, 𝐹ℎ𝑖 = 0.77. Since one of the objectives of this study is to model a critical case, 

we restrict the water depth so that when the ship crosses the step at a speed, corresponding to 𝐹ℎ𝑠 = 1. Henceforth, the subscripts i and s will be used to denote the initial condition, and the 

condition past the step, respectively. Naturally the same ship is used as in Elsherbiny et al. 

(2019), the KCS, whose principal characteristics are shown in Table 1.  

 

 

 

 

 

Table 1. KCS principal characteristics (in model scale). 

Quantity Symbol Value Unit 
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Scale factor λ 75 - 

Length L 3.067 m 

Beam B 0.429 m 

Draught T 0.144 m 

Block coefficient CB 0.651 - 

Longitudinal Centre of Gravity LCG 1.488 m 

Wetted area S 1.694 m2 

Making the above choice while maintaining a constant velocity requires the depth to change 

from  ℎ𝑖/𝑇=2.2 to ℎ𝑠/𝑇 ≈ 1.3 (note that the width of the canal, w=4.6 m,is maintained 

constant). Further cases to gauge the sensitivity of the flow to water depth are specified at three 

equal intervals between the two extremities in terms depth Froude number. Moreover, to 

include additional supercritical cases, a second initial depth Froude number is selected as 𝐹ℎ𝑖 =0.9 and ran on the same depths. The resulting test matrix is given in Table 2. Further reductions 

in the water depth are not implemented to avoid numerical problems in the implementation of 

the overset domain approach, used to tow the ship. A schematic drawing of the different steps 

investigated can be seen in Figure 1. 

Table 2. Text matrix. 

No U (m/s) 𝐹ℎ𝑖 ℎ𝑖 (m) ℎ𝑖/T 𝐹ℎ𝑠 ℎ𝑠 (m) ℎ𝑠/T ℎ𝑖/ℎ𝑠 

1 

1.364 0.77 

0.32 2.2 

1 0.190 1.304 1.687 

2 0.943 0.214 1.468 1.500 

3 0.885 0.242 1.665 1.321 

4 0.826 0.277 1.905 1.155 

5 

1.595 0.9 

1.169 0.190 1.304 1.687 

6 1.102 0.214 1.468 1.500 

7 1.034 0.242 1.665 1.321 

8 0.967 0.277 1.905 1.155 

 

Figure 1. Schematic drawing of the step changes in water depth. Not drawn to scale. 

3. Numerical implementation 

This section is devoted to the numerical implementation, with subsections assigned to different 

aspects of the simulations.  

3.1 The numerical environment   

As stated in the introduction, the commercial solver, Star-CCM+, version 14.06 is used in this 

study. The solver is based on the Finite Volume Method (FVM). To avoid deviating from the 
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core topic of this work, specific details in terms of algorithms and subroutines are not discussed. 

Instead, the reader is referred to the user manual (Siemens, 2018) and texts containing detailed 

information of the numerics used (Ferziger and Peric, 2002). 

There are two main aspects of the solution in the present CFD modelling requiring particular 

attention. The first relates to the definition of the free surface. The disturbance caused by the 

ship may be significant and will influence the solution substantially. Therefore, an accurate 

representation is necessary. The definition of the water surface is modelled via the Volume of 

Fluid (VoF) method (Hirt and Nichols, 1981), with the High Resolution Interphase Capturing 

(HRIC) scheme to enhance its sharpness (Muzaferija and Peric, 1999, 1997). The grid on which 

the problem at hand is discretised is discussed in the following subsections. 

The second aspect of the numerical implementation that is of importance relates to turbulence. 

In this study, the k – ω model of Wilcox (2008) is used. The k – ω model provides consistently 

good predictions in terms of computational resources and resistance predictions, as 

demonstrated in recent studies (Eca and Hoekstra, 2008; Elsherbiny et al., 2020). The two-

equation eddy-viscosity turbulence closure is also selected due to its seamless application to 

all types of meshes. This is an advantage because the model does not require modifications 

depending on whether a wall function is used or not. Although a low y+ mesh is constructed on 

the ship hull, as will be demonstrated subsequently, this is not the case for the canal sides and 

bottom. Therefore, wall functions are used at all domain boundaries. To ensure a good 

representation of turbulent properties, all simulations are run with a second order accurate 

convection scheme. 

To model the ship’s longitudinal motion along the domain, the overset domain approach is 
used. In essence, this results in the creation of a box, enveloping the hull. To re-create the ship’s 
motion in the x direction, the overset domain is assigned the ship’s velocity, which can be 
consulted in Table 2. Adopting the overset domain allows the efficient modelling of the 

problem at hand. The alternative would involve re-meshing at each time-step, which would 

cause considerable computational overheads. 

3.2 Computational domain and boundary conditions 

The computational domain dimensions and arrangement are depicted in Figure 2. The location 

labelled as “Step” represents where the water depth transition is located. The values used in 
this study can be consulted in Table 2 and Figure 1. 

 
Figure 2. Depiction of the computational domain (depicted: ℎ𝑖/ℎ𝑠=1.687). 

The main dimensions of the domain are unaltered across case studies. The only change stems 

from the difference in the water depth after the midpoint of the domain. This is also set as the 

global origin to simplify the representation of the results. To further simplify the results, the 
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ship is modelled with an even keel. In other words, ship squat is not accounted for. The reason 

behind this relates to the restricted water depth. If the overset domain were to collide with the 

background domain, the simulation may fail or cause unreasonable results. Since a shock is 

expected as the ship transits past the step, ship squat is not modelled to avoid the 

aforementioned effects.  

The modelling of the KCS with an even keel results in a substantially different resistance values 

to what is recorded in Elsherbiny et al. (2019), precluding the possibility of a validation study. 

However, using an identical set-up, the present authors validated both the resistance and 

wavefield in their several past studies published in different scientific journals (Elsherbiny et 

al., 2019a; Terziev et al., 2019, 2020; Tezdogan et al., 2015, 2016b).  

The manner in which the numerical towing tank is constructed allows the removal of all open 

boundary conditions. This carries positive and negative impacts on the solution simultaneously. 

Specifically, the modelling assumptions related to inlets and outlets, damping lengths and 

clearance between an open boundary and the ship, inlet turbulence, etc. are no longer of 

consequence because they no longer exist in the this work’s CFD simulation. Therefore, the 

modelling assumptions and sources of uncertainty are significantly reduced. On the other hand, 

from a mathematical point of view, open boundaries are easier to implement. Their removal 

may destabilise the solution in some cases. This is particularly the case when performing grid 

refinement studies – if the grid is too coarse, the simulation diverges during the early stages of 

the solution. 

The numerical implementation of the domain results in three types of boundary conditions. 

Symmetry planes are instituted in the overset and background domains, coincident with the 

centreline to reduce the computational effort. The overset domain requires the appropriate 

boundaries imposed on the moving box, encasing the ship. All other boundaries are set as no-

slip walls, as would be the case in a physical towing tank. Therefore, the numerical tank is 

physically consistent with physical towing facilities. 

3.3 Computational mesh 

The computational mesh onto which the RANS equations are discretised is generated within 

the automatic facilities of the software package used. To ensure a good representation of the 

water surface, the mesh used in a recent study where a Fourier technique was used to validate 

the results, is replicated (Terziev et al., 2020). The prism layer mesher, offered by Star-CCM+ 

is used to create near-wall cells at the ship hull, with the average y+ not exceeding 0.8 for the 

highest speed examined. This is used to construct the near-wall cells on the ship hull, 

responsible for accounting for the high velocity gradients within the boundary layer. On the 

other hand, the y+ values on the side walls and bottom are allowed to exceed 1, resulting in the 

use of wall functions on these boundaries. A close-up of the generated grid on the undisturbed 

free surface prior to initiating the simulation is shown in Figure 3. 
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Figure 3. Close-up of the computational mesh on the free surface. 

Table 3 contains the numbers of cells, generated for each case. It should be noted that these do 

not vary with 𝐹ℎ𝑖. Therefore, both 𝐹ℎ𝑖 = 0.77, 0.9 are ran with the same numbers of cells for 

their corresponding cases. 

Table 3. Cell numbers for all four depth transitions 

Cases ℎ𝑖/ℎ𝑠 Number of cells 

1 and 5 1.687 25,248,501 

2 and 6 1.500 25,632,314 

3 and 7 1.321 26,392,544 

4 and 8 1.155 26,776,892 

3.4 Time-step selection 

Making an adequate choice for the time-step (Δ𝑡) in unsteady simulations is of critical 

importance. If the Δ𝑡 value is too large, the numerical solution may become unstable, or give 

unrealistic results. This is to be balanced with computational time – it is not practical for a 

simulation to run over unnecessary long periods of time while consuming computational 

resources. Numerical noise may also manifest itself in the solution if the time-step is not chosen 

correctly. Based on the results of Terziev et al. (2020), Δ𝑡 =0.0035𝐿/𝑈 is chosen with a first 

order discretisation scheme. To ensure adequate representation of the physics, the Courant 

number is monitored throughout the simulation, with a stopping criterion imposed to end the 

simulation if the Courant number equals or exceeds one within the overset domain.  

The overset domain is chosen instead of the background to represent the Courant number 

criteria because in the former, the majority of the flow is accelerated. Had this been applied to 

the background domain, where the majority of the fluid is static, the result in terms of the 

Courant number would be misleadingly low. The generated grid succeeded in preserving a 

Courant number, CFL<1. 

3.5 Numerical verification 

This subsection contains estimates of the numerical uncertainty, induced by the discretisation 

of the RANS equations in time and space. The approach used follows the recent work of 

Bechthold and Kastens (2020), who followed the guide of Celik et al. (2008). This begins with 

the definition of a refinement factor, r. According to ASME (American Society of Mechanical 

Engineers, 2009), acceptable values of r range between 1.1 and 1.5. In the present study, the 

value of √2 is adopted. This is applied as a multiplicative factor to the mesh and time-step, 
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which are magnified successively, creating a medium (i=2) and coarse (i=3) solution for each 

metric (mesh and time-step). To simplify the analysis, the refinement ratio is kept constant, i.e. 𝑟21 = 𝑟32 = √2. Nevertheless, the relationships used to perform the analysis with non-uniform 

r are adopted to enable comparison of results with other studies. 

Once the medium and coarse solutions have been obtained, the observed order of accuracy can 

be determined as shown in Eq. (1): 𝑝 = |ln|𝜖32 𝜖21⁄ |+𝑞(𝑝)|ln(𝑟21)  ,         (1) 

with 𝑞(𝑝) = ln (𝑟21𝑝 −𝑠𝑟32𝑝 −𝑠),          (2) 

and  𝑠 = 𝑠𝑔𝑛 (𝜀32𝜀21),          (3) 

where 𝜀32 = 𝜙3 − 𝜙2, and 𝜀21 = 𝜙2 − 𝜙1, with 𝜙𝑖 denoting the ith solution. For a constant 

refinement case, the function 𝑞(𝑝) = 0. In the case of mesh independence, the medium and 

coarse solution featured 8,684,955 and 3,167,970 cells, respectively. 

The next step is to estimate the uncertainty, denoted GCI (Grid Convergence Index), after 

Roache (1998), shown in Eq. (4): 𝐺𝐶𝐼 = 1.25 × |𝜙1−𝜙2𝜙1 | (𝑟21𝑝 − 1)⁄        (4) 

In the present case, the resistance of the ship before and after the step change in the depth is 

used in the assessment. Therefore, two different estimates of the uncertainty are obtained for 

the mesh and two for the time-step. The specific case to which this is applied is case 1, 𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 = 1, as shown in Table 4. 

Table 4. Numerical uncertainty study results (results are given for the ship resistance). 

 Before step (𝐹ℎ𝑖=0.77) After step (𝐹ℎ𝑠=1) 

 Mesh Time-step Mesh Time-step 

Fine (N) 19.74 19.74 64.43 64.43 

Medium (N) 23.09 23.05 53.40 65.76 

Coarse (N) 23.85 23.04 47.64 65.76 

GCI  6.20% 0.03% 10.94% 0.01% 𝑈𝑐  0.06% 0.11% 

 

In Table 4, the GCI value before and after the step is reported. Then, the combined uncertainty, 𝑈𝑐 is estimated for each case as shown in Eq. (5):  𝑈𝑐 = √𝐺𝐶𝐼𝑚𝑒𝑠ℎ2 + 𝐺𝐶𝐼𝑡𝑖𝑚𝑒2         (5) 

It is apparent from the results of Table 4 that the results are more sensitive to variations in the 

mesh than they are to the time-step. Although the uncertainty exceeds 10% for the mesh in the 
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critical region, this is considered a tolerable level of uncertainty considering the challenging 

case to which the analysis is applied to. The results from this subsection can be interpreted as 

follows. The mesh requirements for critical depth Froude number cases are considerably higher 

than those for subcritical cases. This serves to highlight that the examination of critical speeds 

is not a trivial problem even for RANS solvers. However, results with the given uncertainty 

can be obtained, whereas many potential flow-based methods predict singularities at 𝐹ℎ = 1. 

Finally, it should be noted that while coarsening the grid, the finest time-step was maintained. 

The mesh was magnified by the same factor (𝑟 = √2) in both the overset and background 

domain to preserve the transitional ratio between the two. Conversely, the temporal dependence 

study was carried out on the finest mesh only. 

4. Results and discussion  

This section presents the obtained results, their analysis and discussion. To begin with, the 

resistance characteristics of the ship are presented. For convenience, the percentage increase 

for the model-scale ship in resistance as the water depth changes is presented. This is thought 

to be a more suitable way to enable other researchers to compare different hull forms subjected 

to similar conditions. The initial resistance recorded for the model-scale ship at 𝐹ℎ𝑖=0.77 was 

19.74N, while at 𝐹ℎ𝑖=0.9 the value was 55.891 N.  

 

Figure 4. Resistance increase resulting from the depth change. 

Figure 4 demonstrates that the initial velocity is critically important for the relative increase in 

resistance. To elaborate, the cases where the initial speed is 𝐹ℎ𝑖 = 0.77 exhibit several times 

the increase in resistance when 𝐹ℎ𝑖 = 0.9. More importantly, no jumps or sharp cusps are 

observed, as predicted by linear potential flow theory. The results in Figure 4 also point towards 

the possibility to minimise the total drag by small variations in the ship speed. For example, 

case 3 (𝐹ℎ𝑠=0.885) shows a considerably smaller increase in resistance than case 1 (𝐹ℎ𝑠=1).For 

both initial depth Froude numbers, the resistance does not peak at 𝐹ℎ = 1. This is in line with 

experimental data for a family of hulls given in Benham et al. (2020) and Benham et al. (2019), 

where the authors predicted that wave resistance peaks well before the critical depth Froude 
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number. The reason why ship resistance is thought to exhibit a peak near 𝐹ℎ = 1 is strictly 

related to the sustained generation of waves, which is widely considered an independent 

component of the total resistance. Linear potential flow theories place the peak at the critical 

depth Froude number; however, nonlinear phenomena are known to deform the wave resistance 

curve’s peak towards the lower 𝐹ℎ range. A similar effect can be observed in other experimental 

data in terms of the Kelvin wake angle (𝜃). For example, Johnson's (1957) experiments showed 

that the peak in 𝜃 can occur at around 𝐹ℎ,𝜃=𝑚𝑎𝑥 =0.9. Therefore, the trend exhibited by both 

curves in Figure 4 matches expectations.  

In the cases where 𝐹ℎ𝑠 ≥ 1.1, one might expect to observe a reduction in the resistance. This 

is a well-known phenomenon and has recently been demonstrated by Benham et al. (2020, 

2019). There are two possible explanations as to why this is not observed in the presented 

results, which suggest the resistance increases in each case. One way to look at the data would 

be to suggest that the expected decrease in resistance is too narrow over the depth Froude 

number range. In such a scenario, the dip would be observed if further simulations were carried 

out between 1.09 < 𝐹ℎ𝑠 < 1.15. Evidence to suggest that this may be the case can be found in 

Benham et al. (2019). The decrease in resistance for their hull forms is narrow. It is also worth 

noting that in their study, a family of simple shapes were examined. Similar hulls, for example, 

the Wigley hull, are known to produce a predominantly linear flow field (Chen et al., 2016). 

A second way of interpreting these results may be in terms of the wavefield. When the depth 

Froude number past the step exceeds or is equal to unity, any solitons generated by the ship 

may not be shed sufficiently quickly forward. Therefore, the ship may be trapped sailing 

against a wave. One way to determine whether this is the case would be to examine the wave 

field. This is shown in 

Figure 5 and 



11 

 

Figure 6 for cases 1 and 7, respectively (𝐹ℎ𝑖 = 0.77 with 𝐹ℎ𝑠 = 1, and 𝐹ℎ𝑖 = 0.9 with 𝐹ℎ𝑠 =1.03, respectively). 

 

Figure 5.  Wavefield for case 1, 𝐹ℎ𝑖 =0.77 and 𝐹ℎ𝑠 =1. The solution time and increment 

interval unit at which the free surface is shown is based on the end of the acceleration phase 
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(shown in the first tile). The dashed line indicates the position of the step change in water 

depth. 

 

Figure 6. Wavefield for case 7, Fhi =0.9 and Fhs = 1.03. The solution time and interval at 

which the free surface is shown is based on the end of the acceleration phase (shown in the 

first tile). The dashed line indicates the position of the step change in water depth 

The wave elevation carried in front of the ship is longer for 𝐹ℎ𝑖 =0.9 and 𝐹ℎ𝑠 =1.03 (case 7). 

Thus, it is conceivable that this is could be the root cause for the elevated resistance. The second 

main difference between 
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Figure 5 and 

Figure 6 relates to the generated soliton. While the soliton is clearly visible in 
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Figure 5, it has not detached from the bow wave elevation in 

Figure 6. This is the case because the ship speed is close to the wave speed (𝐹ℎ𝑖 =0.9), 

therefore, the soliton would require a much longer domain to be properly shed. Solitons are 

also known to be essentially two-dimensional (Gourlay, 2001). To check whether the wavefield 

is 2D on the step, the time-history of the wave elevation on the step is recorded and shown in 

Figure 7. The free surface is monitored at four points next to the ship to provide a picture of 

the generated disturbance with distance in the y direction. Since the towing tank is symmetrical 

about the centreline, the probes are not mirrored. For comparison, the time-history of the same 
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probes shown in Figure 7 for 𝐹ℎ𝑖 =0.77, are shown for 𝐹ℎ𝑠=0.9 in Figure 8. These demonstrate 

that the wavefield in the latter case is 2D to a much greater extent and that the change in step 

height (ℎ𝑠) has a smaller relative influence on the deformations of the free surface. 

 
Figure 7. Wave probes at the step for 𝐹ℎ𝑖 =0.77. 
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Figure 8. Wave probes at the step for 𝐹ℎ𝑖 =0.9. 

Figure 7 indicates that the wave field is only uniform along the y axis prior to the ship’s 
interaction with the step. This can be seen by referring to the wave elevation between 20 and 

30 seconds of physical time in Figure 7 and Figure 8. The interactions differ with 𝐹ℎ𝑠 due to 

the physics of wave reflection and transition from a submerged step. Since the wave speed in 

the deeper region is higher than that of the shallower region, past the step, the wave profile 

must transform upon transiting from one depth to the other. There have been many studies into 

how this occurs. The first such work is typically attributed to Lamb (1932), who derived an 

expression for the ratio of transmitted and incident wave. His assumption of zero vertical 

velocity at the step seemed inappropriate to Bartholomeusz (1958), who presented a more in-

depth study. However, the end result was identical to Lamb's (1932). Later, both of these 

studies were put under question by Newman (1965), who also ended up with Lamb's (1932) 

formulation for very shallow water cases.  

The contribution of Newman (1965) however was expressed in the fact that he obtained an 

expression for an infinitely deep incident wave transforming into a shallow region. He provided 

a physical interpretation as to why a transmitted wave asymptotically tends to a wave height 𝜁𝑠 =2× 𝜁𝑖 (where 𝜁 is the wave elevation, whereas the subscripts maintain their earlier 

designation) as ℎ𝑠 → 0. Newman's (1965) interpretation is that as the shallower region’s depth 
vanishes, two phenomena occur. Firstly, the entire incident wave’s amplitude is reflected, 

which is physically consistent. Secondly, that as the wave transits to much shallower regions, 

the energy transmitted into the region of depth ℎ𝑠 reduces at a rate proportional to the ℎ𝑠, 

causing the transmitted component to be twice the incident wave’s height. Newman (1965) 
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then presents experimental results, which show that the theory is consistent, although some 

scatter in the tank data is observed around the theory. To check whether the physical 

phenomena occur in agreement with the aforementioned studies, the wave elevation is recorded 

along the entire tank at different times. 

To simplify the discussion of the results, the obtained wavecuts are split into different phases 

of the simulation as follows (

Figure 5 and 
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Figure 6 can also be consulted in this respect): 

I. End of acceleration – this occurs when the ship has reached its target speed. The 

wavefield at this stage is not yet fully developed and differs from its pseudo-steady state 

in several important ways. Discussion of these can be found in Doctors (1975) and Day 

et al. (2009). 

II. Subcritical wavefield development – this phase of the simulation contains the time 

required by the wavefield to approach its steady state. This process occurs in all towing 

tanks, whether virtual or physical. In numerical tanks where the ship’s position in the x 

direction is maintained constant, this phase is equivalent to the time allowed for 

convergence.  

III. Prior to the step – at this stage, the ship begins to interact with the step. Initially, this 

is indirectly via the bow wave, which is partially compressed by the additional 

blockage. 

IV. Transiting the step – this phase occurs while the step is located under the ship itself. 

V. After the step – this phase begins as soon as the stern of the ship has cleared the step. 

Interactions between the depth transition and the step do not cease here. Instead, the 

accelerated fluid aft of the ship, interacts with the step continuously for a considerable 

time. This effect is subsequently demonstrated. 

VI. Critical wavefield development – once the ship has cleared the step and advanced 

about one ship length along the canal, the wavefield corresponding to the depth ℎ𝑠 has 

begun developing. This can be thought of in similar terms as explained in II, i.e. a 

convergence stage. 

The development of the wavefield is split into the above stages and given in Figure 9 and Figure 

10 for case 1 (𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 =1) along y/w=0.1 and y/w =0.2. In these figures, the maximum 

and minimum wave elevation for each phase is recorded and marked. Evidently, for y/w =0.2, 

shown in Figure 10, the disturbance caused by the ship decays in the y direction, allowing the 
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soliton to assume the maximum value in phases II, III, and IV. For y/w =0.1 (Figure 9), this is 

only the case in phase II.  

An interesting property, observed in Figure 9 and Figure 10 relate to the difference of the wave 

field aft of the ship in phases III and IV (prior and in transit of the step) when compared to 

phase V (after the step). The oscillatory pattern observed in the earlier phases, corresponding 

to the Kelvin wake (refer to 

Figure 5 for a top view) are transformed as the ship enters the region of depth ℎ𝑠. These are 

replaced by a substantial depression, following the ship, as evident in the final stage given in 

Figure 9 and Figure 10 along each wavecut. The length and height of the wave, trapped at the 

ship’s stern is seen to decrease substantially, while the bow wave is considerably stronger in 

both respects. This observation partly explains the increase in resistance, shown in Figure 4. 

Namely, the ship carries with it a greater volume of water at its bow. 
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Figure 9. Wavecut 1 (y/w=0.1) evolution for case 𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 =1, made dimensionless by 

the initial depth ℎ𝑖 =0.32. Maxima and minima are marked with green and red points, 

respectively. Note that the ship outline has been scaled down by a factor of 8 in the vertical 

direction to enable a visualisation of the ship’s position relative to the wavecut. 

In investigating the wavefield, it is important to keep in mind that the RANS solver models the 

flow in a fully nonlinear manner. In a recent piece of work, the authors demonstrated that the 

present set-up models the dispersive properties of the Kelvin wake in good agreement with the 

linear dispersion relation (Terziev et al., 2020). In the present work, the opportunity to compare 

the evolution of the numerical wavefield with linear potential flow approximations of wave 

transmission past different step is used to provide a form of validation.  

As stated earlier, Lamb (1932), Bartholomeusz (1958), and Newman (1965) all arrived at the 

same relationship describing the transmission coefficient, expressed as shown in Eq. (6): 𝑇𝑅 = 2√ℎ𝑖√ℎ𝑖+√ℎ𝑠          (6) 

where TR is ratio of transmitted and incident wave height. This relationship follows directly 

from the wave speed in each shallow water region, whose linear form is √𝑔ℎ, with 𝑔 being the 

gravitational acceleration. Lamb (1932) showed that this relationship can be arrived at simply 

by imposing continuity and equivalence of the two waves (transmitted and reflected 

component) at the point directly above the step. All possible values of TR are shown in Figure 
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11 alongside the numerical predictions for cases 1-4 using this method. Here, the theoretical 

predictions are marked along each line representing the possible coefficient values to enable a 

better visualisation of the numerical results and their deviation from the theory.   

 
Figure 10. Wavecut 2 (y/w=0.2) evolution for case 𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 =1, made dimensionless 

by the initial depth ℎ𝑖 =0.32. Maxima and minima are marked with green and red points, 

respectively. Note that the ship outline has been scaled down by a factor of 8 in the vertical 

direction to enable a visualisation of the ship’s position relative to the wavecut. 
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Figure 11. Transition and reflection coefficients for cases 1-4 (𝐹ℎ𝑖 =0.77). 

Figure 11 also contains the reflected coefficient values for the entire range depth ratios. In this 

case, no numerical predictions are given because a reflected wave elevation is not observed. 

The suspected cause of this is the ship’s interaction with the wavefield. To elaborate, any 
reflected wave will be disturbed almost as soon as it is created by the passing of the ship. On 

the other hand, the numerical results for TR show good agreement with the theoretical line. In 

fact, the present datapoints are less scattered than the experimental results shown in Newman 

(1965). It should be noted that in the aforementioned work, the author used the infinitely deep 

initial region theory to construct his line. Nevertheless, he demonstrated that the experimental 

data is scatted around the line, providing a form of validation for the present wavefield.   

The reason why several closely positioned datapoints are shown in Figure 11 relates to the 

manner in which the wavefield is sampled. Specifically, Figure 9 and Figure 10 show that one 

has a range of choices when it comes to taking the incident wave height and transmitted wave 

height. Therefore, it is thought important to demonstrate that this particular choice is of little 

importance on the positioning of the calculated transmission coefficients. For this reason, only 

one datapoint is given for cases II – IV. To further investigate the significance of the location 

over which the soliton is taken, the wavefield maximum and minimum along the wavecuts 

given in Figure 9 and Figure 10 are shown in Figure 12. 
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Figure 12. Analysis of the wavefield for 𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 =1 along wavecuts y/w=0.1 and 

y/w=0.2 

For the purposes of this work, a simple relation was used to predict the transmitted component 

of the soliton, which was shown to agree well with the numerical results. However, it also 

important to state that following the work of (Newman, 1965), (Lamb, 1932), and 

(Bartholomeusz, 1958), considerable developments have been made in the field of predicting 

the behaviour of waves at depth transitions. Some recent studies include (Bender and Dean, 

2003), and discussions thereof (Bender and Dean, 2005; Liu and Lin, 2005), which can give 

the reader a much more in-depth appreciation of the complexities encountered in the related 

field. Many methods, such as that of Marshall and Naghdi (1990) use the wavenumber, k, in 

each region to arrive at an expression for TR. 

To estimate the wavenumber, Lee and Lee (2019) give several methods, also see Guo (2002), 

and Newman (1990). In the present work, the approach of Hunt (1979) and Havelock (1908) 

are used. These techniques agree well for the examined range (𝐹ℎ𝑖 =0.77), as shown in Figure 

13. 
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Figure 13. Predicted wavenumber (𝑘𝑖) for each depth Froude number 

Clearly, one runs into problems using these methods when predicting the wavenumber in the 

region past the step if 𝐹ℎ𝑠 =1. In this respect, Marshall and Naghdi (1990) proposed the 

following relationships between the two regions’ wavenumbers: 𝑘𝑖 tanh(𝑘𝑖ℎ𝑖) = 𝑘𝑠1tanh (𝑘𝑠1ℎ𝑠)       (7) 𝑘𝑠2 = √ ℎ𝑖𝑘𝑖2ℎ𝑠(1+𝑘𝑖2ℎ𝑖2 3⁄ −𝑘𝑖2ℎ𝑖ℎ𝑠 3⁄ )        (8) 𝑘𝑠3 = 𝑘𝑖√ℎ𝑖 ℎ𝑠⁄          (9) 

Then, the reflected transmitted and coefficients are given in Eq. (10) and Eq. (11), respectively: 𝑅𝑅 = 𝑘𝑠−𝑘𝑖𝑘2+𝑘𝑖                   (10) 𝑇𝑅 = 2𝑘𝑠𝑘𝑠+𝑘𝑖                    (11) 

In Eq. (7) – Eq. (9), the subscripts 1, 2, 3 are used to differentiate the wavenumber predictions. 

To examine the predictions graphically, Figure 14 was constructed to show the relationships 

between 𝑘𝑠1−3 and the wavenumber, as predicted by Hunt's (1979) method.  
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Figure 14. Wavenumber predictions for the region past the step. Depicted: case 1, 𝐹ℎ𝑖 =0.77 

and 𝐹ℎ𝑠 =1. 

As 𝑘𝑠2 increases past a value of 100, it essentially ceases to grow. Fortunately, the values of 

interest in the present study are far from this boundary. The predicted wave numbers using the 

aforementioned methods are summarised in Table 5. 

Table 5. Summary of wavenumbers for cases 1 ~ 4 (𝐹ℎ𝑖 =0.77). 

Method Description Wavenumber value 

Havelock (1908) 

𝐹ℎ𝑖 =0.77 

Initial region  

7.591 

Hunt (1979) 7.367 

Relative difference -3.04% 

Eq. (7) 

𝐹ℎ𝑠 =1 7.974 𝐹ℎ𝑠 =0.943 7.777 𝐹ℎ𝑠 =0.885 7.608 𝐹ℎ𝑠 =0.826 7.470 

Eq. (8) 

𝐹ℎ𝑠 =1 7.224 𝐹ℎ𝑠 =0.943 7.093 𝐹ℎ𝑠 =0.885 7.031 𝐹ℎ𝑠 =0.826 7.085 

Eq. (9) 

𝐹ℎ𝑠 =1 5.672 𝐹ℎ𝑠 =0.943 6.018 𝐹ℎ𝑠 =0.885 6.409 𝐹ℎ𝑠 =0.826 6.855 
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Since Marshall and Naghdi (1990) derived Eq. (7) without additional assumptions, it is used to 

construct transmission coefficients shown in Figure 15 for cases 1~4 (𝐹ℎ𝑖 =0.77). Here, the 

range has been retained from Figure 11 for consistency. Figure 15 demonstrates that the much 

simpler approach of given in Figure 11 can be used to quickly estimate with essentially the 

same accuracy the transmission coefficients. This is valid due to the particular case studies 

selected. Had a deeper water region been chosen, the approach of Marshall and Naghdi (1990) 

is recommended. 

At this stage it is also worthwhile to mention that the decrease in height of the soliton with 

distance, given in Figure 12 is also physically sound. As stated earlier, the height of the wave 

in front of the ship was shown to decay. This was given as a justification as to why there are 

several datapoints for 𝐹ℎ𝑠 =1 in terms of transmission coefficients. The dissipation of the wave 

is due to a combination of viscous action in the fluid and friction at the edges and bottom of 

the tank. Here, the reader is reminded that all boundary conditions, with the exception of the 

symmetry plane and overset box are no-slip walls. Therefore, the dissipation of the wave is an 

expected outcome.  

Dissipation in the present context can be approximated as shown in Figure 16. Here, Eq. (12) 

and Eq. (13) are used to construct the dissipation and amplitude change parts of the plot, as 

reported in Lamb (1932). Further discussion of these equations can be found in the relevant 

literature (Denner et al., 2017; Dorn, 1966; Hunt, 1964; Keulegan, 1948; Liang and Chen, 

2019) 𝐷 = 2𝑘𝑏 √ 𝜈2𝜔 𝑘𝑤+sinh (2𝑘ℎ)2𝑘ℎ+sinh (2𝑘ℎ)          (12) 𝛿 = 𝜁𝑒−𝐷×𝑥          (13) 

where 𝐷 is the dissipation, 𝜔2 = 𝑔𝑘 tanh(𝑘ℎ), 𝜈 is the kinematic viscosity, 𝛿 is the amplitude 

of the wave having travelled x metres, and 𝜁 is the elevation of the initial wave. It should be 

noted that 𝑘𝑠1, as given in Table 5 and Eq. (7) are used throughout for consistency. 
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Figure 15. Transmission and reflection coefficients based on Marshall and Naghdi's (1990) 

method (𝐹ℎ𝑖 =0.77). 
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Figure 16. Viscous dissipation on a unit wave with different dispersive properties travelling a 

unit distance. 

In this work, it is not immediately obvious where the origins of the soliton lie. It is therefore 

difficult to determine an exact damped amplitude. Thus, tracing the soliton’s decay 

continuously and comparing it with the analytical solution is not attempted. Instead, we use the 

value of the soliton after it has transferred onto the step. Then, the damping relations given in 

Eq. (12) and Eq. (13) are applied to arrive at a decrease in magnitude by 2.923%. By contrast, 

the numerical result is that the soliton reduced in magnitude by 2.994% between phases III 

(prior to the step) to VI (critical wavefield development). Note that the soliton has already 

cleared the step at phase III. This agreement is excellent and indicates that the present solution 

has captured the physics of wave propagation and transmission well, as indicated by the results 

given here and in Figure 11 and Figure 15.  

In this work, the numerical modelling of the wavefield, including the friction on the side walls 

and bottom is shown to agree well with analytical solutions. Therefore, the use of wall functions 

at the boundaries of the tank is shown to provide sufficient accuracy. This result also suggests 

that numerical diffusion, incurred by the grid density is minimal for the soliton. 

Another aspect of the generated data considered here relates to the velocity field produced by 

the soliton, the ship and its wave system, as they interact with the step. As was the case earlier, 

we focus on the critical transition case (case 1, 𝐹ℎ𝑖 =0.77 and 𝐹ℎ𝑠 =1). To examine the velocity 

field, the proportion of the domain beneath the undisturbed free surface is plotted at various 

times in Figure 17. The symmetry plane is used as a reference in this case throughout. 

Longitudinally, one ship length before and after the step is included in the plots.  
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Figure 17. Generated velocity field for case 1, 𝐹ℎ𝑖 =0.77 and 𝐹ℎ𝑠 =1 as the ship and soliton 

interact with the step. 

The first part of Figure 17 shows the process of the soliton as it has cleared the step. Here, the 

step causes a region of elevated velocity magnitude to persist even after the soliton has 

propagated a full ship length past the depth reduction. This would likely persist for a long time 

had the ship not disturbed the flow field. The most surprising aspect of the solution is that a 

significant proportion of the fluid maintains its velocity a significant time after the ship has 

cleared the step. The flow field in the final part of Figure 18 is in the direction of the ship, with 

a vortex persisting at the step’s edge. 

The observations made in Figure 18 are in agreement with recent numerical and experimental 

work, which demonstrated that a boundary layer will form on the seabed in very shallow 

conditions (Böttner et al., 2020; Shevchuk et al., 2016). The present work also demonstrates 

this effect in the final part of Figure 17. However, as mentioned earlier, the domain does not 

feature any inlets nor outlets. Therefore, any fluid, accelerated in the ship’s direction must 
return to equalise the pressure and water elevation behind the ship. Ship-generated waves 

would also contribute to this, but they diffuse by a combination of sides/bottom friction, 

numerical and viscous dissipation. Indeed, the smaller the waves, the greater the action of 

numerical dissipation.  

To investigate the mechanism by which the fluid returns after being accelerated in the direction 

of the ship, the velocity field at the step is taken at the end of the simulation (i.e. once the ship’s 
bow is about 1m from the end boundary) and shown in Figure 18. Although the magnitude of 

velocity is given in the contour of the plot, the x-direction velocity is also shown as a vector 

field. This reveals that fluid is returning at a palpable rate to the step. However, once the step 

is cleared, the velocity diminishes rapidly. Such an effect may explain the elevated time-history 

of the free surface  in Figure 7 and Figure 8. Specifically, these indicate that considerable 

volumes of water have been swept along with the ship and are subsequently returning to 

equilibrium. 

 
Figure 18. Example velocity field near the step at the end of the simulation for case 1: 𝐹ℎ𝑖 =0.77, 𝐹ℎ𝑠 =1. 

A final consideration is given to the wavecuts shown in Figure 9 and Figure 10. Although 

difficult to spot, in phase VI (critical wavefield development), a wave trough can be seen 

propagating in the direction, opposite the ship’s. This is not a purely numerical phenomenon. 

Grue's (2017) theory and observations in a Norwegian fjord demonstrated this is a key feature 

of depth transitions. In the case depicted in Figure 9 and Figure 10, the depression is of 

approximately –40cm height when converted to full-scale. This consequence of depth 

transitions is clearly an important part of the physics and has the potential to cause severe 

infrastructure damage. 

5. Conclusion and recommendation for future research 
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This study examined the impact of a step change in the water depth on ship performance using 

the commercial RANS solver Star-CCM+. To the best of the authors’ knowledge, this work, 
using CFD to study depth transitions over a ship’s track, is the first of its type in the field. The 

adopted case studies reflected a narrow canal, along the length of which, the water depth 

changes abruptly. This scenario was modelled to reflect recent work performed experimentally 

(Elsherbiny et al., 2019b) over a constant canal cross-section, and subsequently validated by 

the authors (Terziev et al., 2020). Four depth reductions were modelled with two constant 

speeds. These were deliberately selected to provide transcritical depth Froude numbers, with 

one case targeted specifically at the critical speed. 

The results were reported in terms of percentage increase of the base resistance encountered by 

the ship prior to and after the step. These indicated that a resistance increase of up to 

approximately 226% may occur if the transition results in subcritical depth Froude numbers 

approaching the critical speed. On the other hand, it was shown that when the ship has a high 

initial speed, close to the sub-supercritical boundary, the resistance increase is considerably 

milder. Results indicated in this case a change of less than 50% for the model scale ship. 

In cases where the initial speed is near 𝐹ℎ =1, it was shown that the wavefield is largely two-

dimensional and unaffected by the height of the step. On the other hand, when the speed is 

lower, the interaction of the ship’s wavefield with the depth transition is highly sensitive to the 
step height. For this reason, the transition of waves past shallow water depth discontinuities 

were examined in some detail. Two theories with varying complexity were employed, both of 

which agreed well with the numerical results. This suggested that the shallow water celerity 

approximation √𝑔ℎ holds well even when the critical depth Froude number is reached in water 

depths up to ℎ 𝑇⁄ =2.2.  

There are several aspects of the present work the authors would extend. Firstly, the geometry 

of the depth transition is expected to be of high significance to the results. The same study 

would also be interesting if the width were decreased either independently of or along with the 

depth. Transitions into deeper water are of equal interest, since the formed boundary layer of 

the bottom in the shallow region would spill over into deeper water.  

Simultaneously, the damping of the soliton was shown to be in excellent agreement with 

analytical relations for viscous dissipation of waves in canals. The theoretical result for 

damping in the amplitude of the soliton was 2.923%, whereas the numerically obtained 

decrease in amplitude was 2.994%. This suggests that the present RANS approach can model 

the dissipation of solitons with high accuracy. It was also shown that a boundary layer is formed 

on the canal bottom, which persists long after the ship has passed through. The accelerated 

fluid also requires considerable time to return to its quiescent state.  

In terms of numerical uncertainty, it was observed that the requirements for the grid are 

considerably higher. The numerical uncertainty analysis was performed for both regions, 

before and after the step. This revealed that as the depth Froude number decreased, the 

requirements in terms of mesh increased noticeably, resulting in an elevated uncertainty. On 

the other hand, both regions showed relatively low temporal dependency.  

Strategies to minimise or eliminate the generated soliton can be numerically explored. 

Eliminating the soliton altogether would have applications in towing tanks. The manner in 

which the ship is accelerated is thought to be the primary cause of this. Different profiles of the 
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velocity curve should be investigated, as well as the relative influence of turbulence modelling 

on ship performance in this type of towing tank. Finally, a study on the effect of y+ treatments 

of the background walls would be of interest. Although it is not thought that this particular 

metric impacts the soliton, it may be of consequence to the ship and the formation of boundary 

layers on the bottom. 
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