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Consumption of antibiotics in food animals is increasing

worldwide and is approaching, if not already surpassing,

the volume consumed by humans. It is often suggested that

reducing the volume of antibiotics consumed by food animals

could have public health benefits. Although this notion is

widely regarded as intuitively obvious there is a lack of

robust, quantitative evidence to either support or contradict the

suggestion. As a first step towards addressing this knowledge

gap, we develop a simple mathematical model for exploring

the generic relationship between antibiotic consumption by

food animals and levels of resistant bacterial infections in

humans. We investigate the impact of restricting antibiotic

consumption by animals and identify which model parameters

most strongly determine that impact. Our results suggest

that, for a wide range of scenarios, curtailing the volume

of antibiotics consumed by food animals has, as a stand-

alone measure, little impact on the level of resistance in

humans. We also find that reducing the rate of transmission

of resistance from animals to humans may be more effective

than an equivalent reduction in the consumption of antibiotics

in food animals. Moreover, the response to any intervention is

strongly determined by the rate of transmission from humans

to animals, an aspect which is rarely considered.

1. Introduction
Heightened concern about increasing levels of antimicrobial

resistance worldwide has led to renewed calls to reduce

substantially the use of antibiotics in food animals [1]. The notion

that such a reduction could have public health benefits arises

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted

use, provided the original author and source are credited.
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primarily from the observation that the volume of antibiotics consumed by food animals worldwide is

approaching, and may have already overtaken, the volume consumed by humans [2]. This situation is

expected to worsen as the transition to intensive animal production systems continues in many regions,

especially China, India, Brazil and other Asian countries [3,4].

Antibiotic consumption by food animals occurs for the purposes of herd health, prophylaxis

and growth promotion. Growth promotion, often involving sub-therapeutic doses, is particularly

controversial. It has been banned in European Union (EU) countries since 2005 and is the subject of

a more recent voluntary ban in the USA. Currently, 51% of the OIE member countries who report on

antibiotic consumption/usage have a complete ban on using antimicrobials as growth promoters, and

a further 19% have a partial ban [5,6]. There has been some impact on consumption of antibiotics by

food animals [7,8] and levels of antibiotic resistance therein [8–10]; however, any consequent benefits to

human health are not easily discerned.

A key challenge for understanding the expected impact of reducing drug usage is that the relationship

between antibiotic consumption by food animals and levels of resistant bacteria in humans is complex.

First, food animals are far from the only source of human exposure to antibiotic resistant bacteria: high

levels of antibiotic use in hospitals, clinics and the general population are also major drivers of resistance

in humans [11]. Quantifying the specific contribution of the food animal route is not straightforward and

has yet to be attempted. Second, there will be many different answers to the quantification question: there

are numerous combinations of different antibiotics, bacterial strains and farm animal species, each with

their own dynamics, and these are likely to vary between different countries with different healthcare

systems and agricultural production systems.

As a first step towards addressing this knowledge gap, here we develop a simple mathematical

model for exploring the generic relationship between antibiotic consumption by food animals and levels

of resistant bacteria in humans. Our objective is to better understand the dynamics of antimicrobial

resistance moving between food animal and human populations and to identify which model parameters

have the greatest influence on levels of resistance in humans and for which parameter combinations we

expect to see the greatest impact of reducing antibiotic consumption by food animals.

By using the simplest possible mathematical model as a starting point, we hope to be able to make a

first step in understanding this highly complex system and gain some robust and useful insights into its

behaviour.

2. Material and methods

2.1. Mathematical model

Our mathematical model is intended to be as simple as possible while still capturing the nonlinearities

inherent in infectious agents spreading between two host populations. To achieve this, we consider two

variables: RH, the fraction of humans with antibiotic resistant bacteria (so a measure of the ‘level of

resistance’); and RA, the fraction of food animals with antibiotic resistant bacteria. The rationale of the

model is that humans or food animals can acquire antibiotic resistant bacteria from different sources:

(1) within host selection for resistant bacteria in response to direct exposure to antibiotics;

(2) direct or indirect exposure to antibiotic resistant bacteria or mobile genetic elements containing

resistance determinants carried by other individuals within the same population (e.g. humans

acquiring resistance from a human source); and

(3) as (2) but between different populations (e.g. food animals acquiring resistance from a human

source).

The dynamics of RH and RA is given by the coupled ordinary differential equations:

dRH

dt
= ΛH(1 − RH) + βHHRH(1 − RH) + βAHRA(1 − RH) − µHRH; (2.1)

dRA

dt
= ΛA(1 − RA) + βAARA(1 − RA) + βHARH(1 − RA) − µARA,

where ΛH is the per capita rate at which humans acquire antibiotic resistant bacteria through direct

exposure to antibiotics and ΛA is the equivalent in food animals; (1 − RH) and (1 − RA) are respectively

the fraction of humans without antibiotic resistance and the fraction of food animals without antibiotic

resistance. βHH is the per capita rate at which humans acquire antibiotic resistant bacteria as a result of
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exposure (directly or indirectly via environmental contamination) to other humans harbouring resistant

bacteria and βAA is the equivalent for animals; βAH is the per capita rate at which humans acquire

antibiotic resistant bacteria as a result of exposure (directly or, more frequently, indirectly via food

products or environmental contamination) to food animals harbouring resistant bacteria and βHA is

the reverse; µH is the per capita rate at which humans with resistant bacteria revert to having only

susceptible bacteria (as a combination of clearance of resistance bacterial infections and demographic

replacement) and µA is the equivalent in food animals. The time unit is arbitrary and does not affect

the equilibrium values. We assume that all transmission parameters (e.g. all β’s) combine transmission

of both antibiotic resistant bacteria and transmission of mobile genetic elements. Although these rates

could be disaggregated, this would (for our study) have no impact on the system dynamics for a given

set of parameters.

Studying the system in a steady state (i.e. at equilibrium) allows us to explore the long-term effects of

changing different parameter values. To obtain an equation for the equilibrium value, R∗

H, equation (2.1)

was set to 0 and solved for RH in terms of the eight model parameters. Although we do not consider the

real-world system to be at equilibrium, largely because antibiotic consumption patterns have changed

considerably in recent decades (from zero before 1932) and continue to do so, we regard R∗

H as a useful

indication of where the model system is tending, and the approach to R∗

H will be relatively rapid if µH

and µA are high, i.e. the mean duration of resistant infections is short (≪ 1 year).

As an indication of the potential impact of curtailing antibiotic usage in farm animals on the level of

resistance in the human population we define RC∗

H as an adjusted R∗

H in which ΛA = 0 (i.e. no antibiotic

usage in food animals) and define impact, ω, as 1—the ratio of RC∗

H to R∗

H:

ω = 1 −
RC∗

H

R∗

H

. (2.2)

All analyses were carried out in Wolfram MATHEMATICA v. 10.3 [12].

2.2. Scenarios

To identify key parameters and capture the nonlinearities of the system in more detail, we consider

two distinct scenarios in this study, a low impact scenario and a high impact scenario. The difference

between these two scenarios is the choice of baseline value for βHA. For the low impact scenario,

βHA = 0.1, and for the high impact scenario, βHA = 0.001. These values were chosen to maximize the

differences while minimizing changes in the baseline levels of resistance between the two scenarios.

The baseline parameters for the two scenarios are given in table 1. The baseline parameter values were

chosen such that the long-term prevalence of the fraction of the human population that is affected by

resistant bacteria is roughly 70%. This is, for example, consistent with the situation of bacterial resistance

to ampicillin in the United Kingdom, where both humans and food animals show similarly high level of

resistance [13,14].

2.3. Sensitivity analysis

We determine which model parameters have most influence on the outcome value by computing the

total sensitivity index DTi using the extension of Fourier amplitude sensitivity test (FAST) as described

in Saltelli et al. [15]. The extended FAST method is a variance-based, global sensitivity analysis technique

that has been largely used for studying complex agricultural, ecological and chemical systems (see

[16,17] for examples). Independently of any assumption about the model structure (such as linearity,

monotonicity and additivity of the relationship between input factors and model output), the extended

FAST method quantifies the sensitivity of the model output with respect to variations in each input

parameter by means of spectral analysis. It provides measures of the amount of variance of the

prevalence that arise from variations of a given parameter in what is called a total sensitivity index,

DTi. It therefore captures the overall effect of parameter variations on equilibrium levels of resistance

over a pre-specified range (i.e. including first- and higher-order interactions between model parameters).

For example, a value of DTi = 0.10 indicates that 10% of the total observed variation of the prevalence

is explained by the parameter under consideration. The sensitivity analysis was carried out using R

[18]. For the sensitivity analysis, we used a parameter range of 0.0 to 1.0 for all parameters under

investigation.
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Table 1. Baseline parameters for the two scenarios.

value used

parameter description low impact high impact

βAA per capita rate at which animals acquire antibiotic resistant bacteria as a result

of exposure to other animals harbouring resistant bacteria

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βHH per capita rate at which humans acquire antibiotic resistant bacteria as a result

of exposure to other humans harbouring resistant bacteria

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βAH per capita rate at which humans acquire antibiotic resistant bacteria as a result

of exposure to food animals carrying resistant bacteria

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βHA per capita rate at which food animals acquire antibiotic resistant bacteria as a

result of exposure to humans carrying resistant bacteria

0.1 0.001

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΛH per capita rate at which humans acquire antibiotic resistant bacteria as a result

of direct exposure to antibiotics

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΛA per capita rate at which food animals acquire antibiotic resistant bacteria as a

result of direct exposure to antibiotics

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µA per capita rate at which humans with resistant bacteria revert to having only

susceptible bacteria

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µH per capita rate at which food animals with resistant bacteria revert to having

only susceptible bacteria

0.1 0.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Results
For the two scenarios considered here, figure 1 shows the trajectory of RH and RA in time. Figure 1

shows that the long-term prevalence of resistance in the human population stabilizes to a value of 0.71

for the low impact scenario and 0.70 for the high impact scenario. The long-term prevalence of resistance

in the animal population stabilizes to a value of 0.71 for the low impact scenario and 0.62 for the high

impact scenario. These differences between the scenarios are because of the lower value of βHA in the

high impact scenario (table 1). These prevalences are consistent with scenarios encountered in practice

(see Material and methods).

The sensitivity analysis on the equilibrium equation for R∗

H shows that this equilibrium is most

sensitive to changes in µH, followed by ΛH, βAH and βHH, (figure 2). Furthermore, the system is

minimally sensitive to changes in ‘animal’ parameters (βAA, βHA, ΛA and µA).

Figure 3 shows that, in accordance with the sensitivity analysis, the equilibrium R∗

H is relatively

insensitive to changes in ΛA, but is more sensitive to changes in βAH, suggesting that reducing the former

without addressing the latter may have limited impact on the prevalence of antibiotic resistance in the

human population. Furthermore, the figure shows that the change in R∗

H owing to βAH is nonlinear,

which suggests that partial reductions of βAH may only have limited impact when R∗

H is already

high. Comparing figure 3a with figure 3b shows that the effect of reducing the rate at which animals

acquire antibiotic resistant bacteria as a result of exposure of animals to antibiotics (ΛA) is also strongly

influenced by the per capita rate at which food animals acquire antibiotic resistant bacteria as a result of

exposure to humans carrying resistant bacteria (βHA). For the higher value of βHA (low impact scenario,

figure 3b) lowering ΛA by itself has little influence.

Figures 4 and 5 show the results for the impact of curtailing antibiotic use in food animals, quantified

as the variable ω (defined above). Figure 4 shows the sensitivity of the impact to the different parameters.

From figure 4, it is clear that the impact is most sensitive to ΛH, the rate at which humans acquire

antibiotic resistant bacteria as a result of exposure of humans to antibiotics, followed by µH, µA and

βHA. ΛA and βAH have less influence. Figure 5 shows the effects of varying βAH and ΛA on the impact,

ω, of curtailing antibiotic use in food animals. The difference between the low impact scenario and the

high impact scenario is immediately clear from these graphs as there is virtually no impact of reducing

ΛA in the low impact scenario (with relatively high per capita rate of transmission from humans to food

animals, βHA), while in the high impact scenario (with relatively low βHA) there is a much more obvious

benefit.
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Figure 1. Trajectory of the fraction of the human population with antibiotic resistant bacteria (RH) and the fraction of food animals with

antibiotic resistant bacteria (RA) in time for the low impact scenario (a) and the high impact scenario (b). Blue curves represent RH, orange

curves represent RA.
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Figure 2. Results of a global sensitivity analysis on the equilibrium equation showing the partial variance of the individual model

parameters. Higher bars indicate greater sensitivity of the model to that parameter. See Material and methods section for details about

the sensitivity analysis and parameter ranges used.
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4. Discussion
It is often implied that the high levels of consumption of medically important antibiotics by food animals

is contributing significantly towards the global public health problem of antibiotic resistance. Therefore,

we tested the potential impact of curtailing the use of antibiotics in food animals on the (long-term)
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prevalence of humans carrying resistant bacteria using a mathematical model designed to capture the

nonlinearities inherent in the transmission of infectious agents between two populations as simply as

possible. Our results show that, as expected, the system is sensitive to changes in per capita rate at which

humans acquire antibiotic resistant bacteria as a result of direct exposure to antibiotics (ΛH). Of much

greater interest is the importance of the per capita rate of transmission of antimicrobial resistance from

humans to animals (βHA) (figures 4 and 5). For this reason, we compared two scenarios, a low impact

scenario (high βHA) and a high impact scenario (low βHA). If βHA is high (figures 3a and 5a) then the

effects of reducing the rates at which animals acquire resistance as a result of antibiotic usage (ΛA) and

humans acquire antibiotic resistant bacteria from animals (βAH) are limited (figures 3a and 5a, when

βAH or ΛA approaches 0). This contrasts with the situation where βHA is low (figures 3b and 5b). This

indicates that whenever the rate of transmission of antibiotic resistant bacteria from humans to animals

is high it is more difficult to curb the antibiotic resistance problem, a rather counterintuitive result and

often overlooked in discussion about this topic.

Also of interest is that a failure to address the agricultural usage of antibiotics severely limits what

can be achieved by tackling the problem from the human side, i.e. even if no resistance is acquired

via direct exposure to antibiotics in humans (achieved by reducing ΛH to 0), we can only reduce the

long-term prevalence of antibiotic resistance in humans to 0.56 for the low impact scenario and 0.54

for the high impact scenario (see the electronic supplementary material, figure S1). In other words, if

resistance dynamics in human and animal populations are coupled, as is generally thought to be the case

in practice, substantial impacts on levels of resistance requires coordinated interventions across both

populations.

Our study has several limitations that should be recognized. The first limitation is the simplicity

of the model used. As indicated in the introduction, antibiotic resistance is a highly complex problem

 on June 9, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


7

rsos.royalsocietypublishing.org
R.Soc.open

sci.4:161067
................................................

with numerous routes of transmission and with dynamics that will vary qualitatively and quantitatively

for different drug-bug-animal combinations. Accounting for all these different routes and combinations

separately is challenging. However, by taking the simplest possible mathematical model as a starting

point, we are able to make a first step in trying to understand this highly complex system and gain some

robust and useful insights into its behaviour. These findings can then be used as stepping stones for

the development of more complicated (and perhaps more precise) models. As with all models, several

assumptions have been made in this study. For example, Λ is clearly related to antibiotic consumption,

but the shape of this relationship is left undefined in this study as we are only interested here in the

specific alternative scenario, where ΛA = 0. For a partial reduction in ΛA, however, this relationship

would need to be specified as different relationships could lead to (very) different results. Similarly,

for the β’s we combined the rate of acquiring resistance through transmission of (clonal) bacteria and

through the transmission of mobile genetic elements. Although it is possible to disaggregate these modes

of transmission, this would require an additional parameter and would not alter the system dynamics for

a given set of parameters (and thus would not alter our results). However, if the separate contributions

of the different transmission paths were of interest, such disaggregation would be necessary. Lastly, for

the recovery rates (µ) we assumed that these combine recovery from infection with a resistant strain

with demographic replacement by hosts with susceptible ones. The scenarios considered here assume

high recovery rates and so emphasize the former (given that human and food animal demographies are

very different).

Key aspects of future models might include: (i) information on geographical distance and contact

structures between and within populations; (ii) explicit consideration different modes of inheritance

of resistance; and (iii) quantitatively relating rates of gain of resistance to historical data on antibiotic

consumption. Also, the dependency of resistance on demographics should be taken into account as

human and livestock demographics can be very different (for example the batch structure that is common

in poultry has an influence on infectious disease [19]).

As with all models, parametrization is an important issue. In this study, we chose our baseline

parameter values such that the long-term prevalence of the fraction of the human population that

is affected by resistant bacteria is roughly 70%. This mimics, for example, the situation of ampicillin

resistance in both human and livestock in the United Kingdom where antibiotic resistance is well

established but still leaves room for improvement or deterioration of the levels of resistance. However,

knowledge of the prevalence of resistance in the two populations is not by itself sufficient to parametrize

this model, as there are eight parameters to be estimated. Independent estimates of parameter values

are required, but are not currently available, even for any specific drug-bug-animal combination in a

defined setting. In practice, the many different combinations of antibiotic, bacteria strain, food animal

species and setting will represent many different points in parameter space, each of which would need to

be determined individually—a significant challenge. That said, the results of the simple, generic model

presented here are robust in the sense that they apply over a wide range of parameter space that we

expect to cover many real-world scenarios.

5. Conclusion
To conclude, we have shown in this study that we can obtain useful insights into a highly complex

problem like antibiotic resistance by using a simple mathematical model. Although it is widely regarded

as intuitively obvious that reducing antibiotic consumption in animals would decrease levels of antibiotic

resistance in humans this is, in fact, not the case for a wide range of scenarios (i.e. parameter space),

especially if this intervention is made in isolation. Reducing the rate of transmission of resistance from

animals to humans may often be more effective. In addition, the behaviour of the system, and so the

response to any intervention, is strongly determined by the rate of transmission from humans to animals,

but this has received almost no attention in the literature. It is thus not enough to only lower the

consumption of antibiotics in food animals, the transmission both from and to food animals should

also be limited in order to maximize the impact of this and other interventions. We recommend that

formal, quantitative analyses are needed to assess the expected benefits to human health of reducing

antibiotic consumption by food animals. In some circumstances, these benefits will be very small and

other measures will be needed to reduce the public health burden of antibiotic resistance.
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