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Abstract 

Background: Malaria continues to be one of the most devastating diseases in the world, killing more humans than 

any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For 

this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to under-

stand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation 

also play a significant role in both aquatic and adult stages of the Anopheles.

Methods: In this study, a climate-based, ordinary-differential-equation model is developed to analyse how tempera-

ture and the availability of water affect mosquito population size. In the model, the influence of ambient temperature 

on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Prov-

ince, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle 

and the dynamics of mosquito population over the study region.

Results: The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region 

and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the 

population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which 

is similar to observed data obtained from another study.

Conclusion: The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the 

efficiency of various control strategies. In addition, the model framework is built to accommodate human population 

dynamics with the ability to predict malaria incidence in future.
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Background

Malaria is still one of the deadliest mosquito-borne dis-

eases in the world. In 2015, an estimated 214 million 

malaria cases occured, leading to almost 438,000 deaths 

[1]. Malaria is not present on all continents, mainly 

occurring in Africa, South–east Asia, Central and South 

America. It is caused by the protozoan Plasmodium, 

which is transmitted by mosquitoes of the genus Anoph-

eles [2–7]. In Africa, three Anopheles species, namely 

Anopheles gambiae, Anopheles arabiensis and Anopheles 

funestus are considered to be the major vectors respon-

sible for malaria transmission. �e first two species are 

considered to be the most effective malaria vectors in the 

world and are classified as a group called An. gambiae 

complex [8, 9]. Also, An. arabiensis and An. funestus are 

found in South Africa living in sympatry.

However, malaria as a mosquito-borne disease is 

strongly influenced by climate variables (temperature, 

rainfall and humidity). It is well established that weather 

fluctuations significantly affect not only the life expectancy 

or completion of the life-cycle of the mosquito, but also 

the development of sporogonic stages of the malarial para-

site within the mosquito’s body [8, 10]. �e biting rate and 

gonotrophic processes are also temperature dependent [7, 
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8, 11]. For these reasons, a qualitative relationship between 

the vector abundance and the climate variables can help to 

identify the peaks of the vector population through mete-

orological monitoring and forecast [8, 12].

Although, many studies have explored the impact of 

climate variables on An. gambiae at global and regional 

level, little research has been carried out on An. arabi-

ensis. For instance on An. gambiae, Ronald Ross [13] 

developed a simple mathematical model to describe the 

relationship between the number of mosquitoes and inci-

dence of malaria in humans. Parham and Edwin [14] used 

published, as well as unpublished field and experimental 

data to examine the relationships between vector ecol-

ogy and environmental variables. �ese relationships are 

incorporated within a validated deterministic model of 

An. gambiae s.s. population dynamics to offer a valuable 

tool for highlighting vector response to biotic and abiotic 

variables. Minakawa et al [15] examined the dynamics of 

adult An. gambiae mosquitoes, their larval habitats, and 

egg survival potential during the dry season in the basin 

region of Lake Victoria, western Kenya. In the study, An. 

gambiae showed a strong inclination for wet soil as an 

oviposition substrate rather than dry soil substrate under 

the insectary surroundings. Also their findings show that 

in the dry season, eggs remain latent in the wet soil to 

resist dryness, and are hatched shortly after they are suffi-

ciently wetted. �is suggests why anopheline mosquitoes 

do not necessarily suffer a severe population bottleneck 

during the dry season and thus maintain a large effective 

population size [15]. Craig et al [5] developed a climate-

based distribution model to investigate the impact of cli-

mate change on An. gambiae and malaria transmission 

over Sub-Saharan Africa. �eir model in conjunction 

with population, morbidity and mortality data is used to 

estimate the burden of disease and to support strategic 

control of malaria. Also, Martens et al [16] used a rules-

based modelling method to explore how climate change 

might affect vector abundance and global malaria trans-

mission. Lindsay and Martens [17] extended this study by 

investigating the implications of climate change scenarios 

on An. gambiae and highland malaria in Africa and, more 

precisely, in Zimbabwe. Hoshen and Morse [18] also 

developed a mathematical–biological model, compris-

ing both the climate-dependent within-vector (An. gam-

biae s.l.) stages and the climate-independent within host 

stages to simulate malaria incidence in Zimbabwe. �e 

model shows a qualitative reconstruction of infection 

prevalence and a suitable prediction of malaria transmis-

sion based on seasonal climate forecasts.

Anopheles arabiensis is generally found in Africa, 

mostly in southern Africa. �ey live long enough to 

become infected and infective with Plasmodium fal-

ciparum [19]. Studies have also shown that their life 

expectancy is highly influenced by climate variables. In 

the study of Maharaj [19], it is established in laboratory 

experiments that An. arabiensis feeds and produces eggs 

but does not oviposit during winter. �is is also in line 

with the study of Omer and Cloudsley-�ompson [20]. 

Although Le Sueur [21] found some first instar larvae 

during winter, this suggests that to a lesser extent, ovi-

position may occur in the field [19, 21]. �e laboratory 

experiments further suggest that An. arabiensis could 

possibly transmit malaria during winter since they do 

feed during this period. �e sporogonic process would 

be faster during summer than winter period [19]. �is 

suggestion is in line with the previous study of [22] that 

malaria incidence is directly attributable to the vector 

feeding habits, abundance and survivorship. However, 

these studies are laboratory experiments with a limited 

number of An. arabiensis used as samples. Also, the 

breeding site is assumed to be stagnant. �e aim of this 

study is to develop a deterministic mosquito model that 

gives a detailed account of the impact of climate vari-

ables on the population dynamics of An. arabiensis, and 

to consider a dynamical breeding site being influenced 

by rainfall and temperature. �e laboratory experimental 

data obtained from the study of Maharaj [19] is used in 

calibrating the model.

Methods

Study area

�e study area is a village called Dondotha in Kwa-

Zulu-Natal Province, South Africa. �e village (28°34′S, 

31°56′E) is situated in the northeast of the province that 

share borders with three other provinces (Mpumalanga, 

Free State and Eastern Cape) and countries (Mozam-

bique, Swaziland and Lesotho) as shown in Fig. 1. It expe-

riences long sunny days and dry weather on most days 

with high rainfall during December–April (see Fig.  2). 

In the study period (January 2002–December 2004), the 

heaviest rainfall occurred around December 2002 (78 

mm); whereas the highest temperature occurred around 

January 2003 (mean = 32 °C). Also from Fig. 3, the aver-

age daily mean temperature and rainfall increased from 

January and peaked in February before declining gradu-

ally toward June every year.

Entomological data

�e entomological data used in this study is based on 

laboratory experiments in the study of Maharaj [19]. In 

the experiment, An. arabiensis were collected from the 

village Dondotha. Fresh breeding stock was caught at 

the start of each set of experiments and newly laid eggs 

were kept under insectary conditions of temperature (27 

± 2  °C), relative humidity (70 ± 10 %) and photoperiod 

(12L:12D with 1 h simulated crepuscular period) [19]. 
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Identification was obtained by using the polymerase 

chain reaction (PCR) method on samples of the first lar-

val instars of each female [19, 23]. Also, in their studies, 

all experiments were conducted in a Specht Scientific 

programmable growth cabinet (model SFPGR066) fitted 

with a Dumo Dicon P temperature and humidity control 

unit [19]. �e development and survivorship of immature 

An. arabiensis were studied at four fluctuations tempera-

tures. Temperature levels with mean values (17.9, 23.2, 

26.1 and 21.4  °C) were used to represent winter, spring, 

summer and autumn profiles respectively. �e output 

data were used in their study to describe the life table 

characteristics of An. arabiensis.

Fig. 1 Map showing the location of Dondotha in KwaZulu-Natal Province. Source: GIS unit of the Medical Research Council of South Africa

Fig. 2 Daily rainfall over calibration period. Showing the daily rainfall 

of the study area; Dondotha village in KwaZulu Natal Province, South 

Africa between January 2002 and December 2004

Fig. 3 Daily mean temperature over calibration period. Showing the daily mean temperature of the study area; Dondotha village in KwaZulu Natal 

Province, South Africa between January 2002 and December 2004
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Climate data

In the present study, the observational-reanalysis hybrid 

datasets for the daily precipitation, minimum and maxi-

mum daily temperature are considered over the study 

region for the period 2002–2004. �e Princeton Univer-

sity Global Meteorological Forcing Datasets for land sur-

face modelling are produced by the Terrestrial Hydrology 

Research Group at Princeton University (hereafter, 

[24]). Also in this study, it is assumed in line with pre-

vious studies (e.g., [7, 8]) that the population dynamics 

of Anopheles is mainly driven by two major factors: (1) 

temperatures—have a strong impact on the survival of 

An. arabiensis populations, and on the development of 

aquatic stages (e.g., [19]); (2) precipitations—provide 

breeding sites for immature Anopheles. However, excess 

rainfall can flush away the breeding sites (e.g., [7, 8]).

Model formulation

�e vector population dynamics model used in the pre-

sent study is based on previously developed models by 

others [25–28]. �e compartmental models of [27] con-

sists of three aquatic stages; eggs (E), Larvae (L), and 

Pupae (P), and three adult classes; Adult searching for 

host (Ah), Adult at resting state (Ar) and Adult searching 

for oviposition site (Ao). One more compartment of adult 

female An. arabiensis searching for mating (Am) is added 

as shown in Fig. 4. Temperature has a strong impact on 

the progression rates at the aquatic stage and on the sur-

vival of adult populations [29], while rainfall plays a sig-

nificant role in provision of the breeding sites. In this 

study, the impact of these factors were incorporated into 

the model, and additional attention on the dynamics of 

the mosquito breeding sites (puddle dynamics). Mos-

quito life begins with eggs, which hatch into larvae under 

conducive conditions. �e larvae further develop into 

pupae that advance and emerge into adults. Adult female 

mosquitoes feed on human or animal blood to produce 

eggs. After biting, the female mosquitoes rest a while 

in order to develop their eggs. Once the eggs are fully 

developed, they find a suitable breeding site to lay their 

eggs and then proceed to find another blood meal. �is 

completes the mosquito feeding cycle [4, 27]. �e effects 

of hibernation and breaks in the reproductive cycle is 

ignored, and it is assumed that eggs deposited at breed-

ing sites proceed through development immediately (as 

in [27, 30]. �e male population in this model is also 

overlooked since only female mosquitoes are involved 

in the transmission of malaria. �e seven subgroups 

have diverse mortality and progression rates. Each sub-

group is affected by three processes: (1) increase due to 

recruitment, (2) decrease due to mortality, and (3) devel-

opment or progression of survivors into the next state. 

�e parameter n is the average number of eggs which are 

expected to hatch into female mosquitoes laid during an 

oviposition and ρAo
 (day−1) is the rate at which new eggs 

are oviposited (i.e. reproduction rate). Exit from the egg 

stage is either due to mortality at µe (day−1), or hatching 

into larvae, ρe (day−1). In the larval stage, individuals exit 

by death or progress to pupal stage at a rate, ρL (day−1). 

Assuming a stable environment, inter-competition for 

food and other resources for larvae may occur, leading 

to density-dependent mortality, µLL

K
 (day−1 mosquito−1) 

or natural death at an intrinsic rate, µL (day−1), where K 

is the carrying capacity of the breeding site. Pupae die at 

a rate, µP (day−1), and survivors progress and emerge as 

adults at a rate ρP (day−1). In the adult stage, mate seek-

ing mosquitoes die at a rate µAm
 (day−1) while the sur-

vivors proceed to search for blood meal at a ρAm
 (day−1. 

Host seeking mosquitoes die at a rate µAh
 (day−1. �ose 

surviving this stage, and if they are successful in feeding, 

enter the resting stage at a rate ρAh
 (day−1. In the rest-

ing stage, mosquitoes die at a rate, µAr
 (day−1). Survivors 

progress to the oviposition site searching stage at a rate 

ρAr
 (day−1). Oviposition site seekers will lay their eggs 

and return to the host seeking stage or die at a rate µAo
 

(day−1). An additional mortality rate of adult mosquitoes 

µr (day−1) related to seeking behaviour is also considered. 

In line with other studies (e.g., [7, 8]), it is assumed in this 

study that Anopheles female mosquitoes require a blood 

meal to produce eggs.

Hence, the dynamics of the mosquito population 

are described by the following system of differential 

equations:

Fig. 4 Flow diagram of mosquito population model
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with initial conditions E(0), L(0),P(0),Ah(0),Ar(0), and 

Ao(0), where Tw and Ta are water and air temperatures 

respectively.

Puddle dynamics

In this study, it is assumed in line with [31, 32] that the 

larval carrying capacity K is a function of water availabil-

ity at the breeding site; that is, the water volume of the 

pond, Vpond, such that K = Lmax × Vpond, where Lmax is 

the maximum larval biomass per surface area. �e Lmax 

is set to 300 mg m−2 following [7, 32]. Although An. 

arabiensis is associated with small ponds [33]. It is also 

established that, aside rainfall, rivers and human activi-

ties (such as irrigation, pipe leakage) could serve as water 

source to the breeding sites [31, 34]. In an irrigated area, 

(1)

dE

dt
= nρAo

(Ta)Ao − (ρe(Tw) + µe(Tw))E

dL

dt
= ρe(Tw)E − (ρL(Tw) + µL(Tw)(1 +

L

K
))L

dP

dt
= ρL(Tw)L − (ρP(Tw) + µP(Tw))P

dAm

dt
= ρP(Tw)P − (ρAm

+ µAm
(Ta) + µr)Am

dAh

dt
= ρAm

Am + ρAo
(Ta)Ao − (ρAh

+ µAh
(Ta) + µr)Ah

dAr

dt
= ρAh

Ah − (ρAr
+ µAr

(Ta))Ar

dAo

dt
= ρAr

Ar − (ρAo
(Ta) + µAo

(Ta) + µr)Ao

one can expect to have pools of water even outside the 

raining season. Other studies [7, 16, 35] have also sug-

gested that heavy rainfall can flush off the breeding sites, 

leading to high larvae mortality. For these reasons, in this 

study, the puddle dynamics of [7] is considered for the 

breeding site, that is

such that Vmin ≤ Vpond ≤ Vmax, where, Vmin and Vmax 

respectively represent the pond minimum and maxi-

mum water volume. �e rainfall or precipitation rate is 

denoted as Rf , while Kv represents the puddle geometry. 

Evaporation and infiltration rates are hence denoted by  ̺

and If  respectively. A cylindrical shape puddle of 1.2  m 

diameter and 0.5  m height is considered for the puddle 

geometry with the assumption that water depth is much 

less than puddle height. In line with [7], a fixed constant 

parameter is assigned for the infiltration rate as shown 

in Table  1. �e evaporation rate by Hamon’s equation 

[36] is similarly considered as used in other studies (e.g., 

[37–41]). �e effect of waves in the puddle is also ignored 

since An. arabiensis is less common in the areas that are 

exposed to waves [15].

(2)

dVpond

dt
= Kv

[

Rf (Vmax − Vpond) − Vpond(̺ + If )
]

,

(3)̺ = 2.1 × H
2

t ×

(

es

Ta + 273.3

)

Table 1 Parameters of the model for An. arabiensis

Description Parameters/functional form Ref.

Number of eggs, n (Ta) −0.61411T
3
a + 38.93T

2
a − 801.27Ta + 5391.4 [19]

Egg development rate, ρe (Tw) 0.012T
3
w

− 0.81T
2
w

+ 18Tw − 135.93 [19]

Larva development rate, ρL (Tw) −0.002T
3
w

+ 0.14T
2
w

− 3Tw + 22 [19]

Pupa development rate, ρP (Tw) −0.0018T
3
w

+ 0.12T
2
w

− 2.7Tw + 20 [19]

Egg mortality rate, µe (Tw) 0.0033T
3
w

− 0.23T
2
+ 5.3Tw − 40 [19]

Larva mortality rate, µL (Tw) 0.00081T
3
w

− 0.056T
2
w

+ 1.3Tw − 8.6 [19]

Pupa mortality rate, µP (Tw) 0.0034T
3
w

− 0.22T
2
w

− 4.9Tw − 34 [19]

Gonotrophic rate, ρAo (Ta) 0.00054T
3
a − 0.038T

2
a + 0.88Ta [19]

Adult mortality rate µA (Ta) −0.000091T
3
a + 0.059T

2
a + 1.3Ta + 9.9 [2, 16, 48]

Rate adult seeks mating, ρAm 0.5 Assumed

Rate adult seeks blood meal, ρAh 0.3–0.5 [27]

Rate adult seeks resting site, ρAr 0.3–0.5 [27]

Rate adult seeks to mate, ρAm 0.5 Nominal

Infiltration rate, If 5 mm / day [7]

Maximum volume of puddle, Vmax 0.57 m3/day Nominal

Minimum volume of puddle, Vmin 0.001 m3/day Nominal

Daylight hours per day, Ht 10–14 hrs/day Nominal

Maximum larval biomass, Lmax 300 mg m−2 [7, 32, 49]
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where, Ht is the average number of daylight hours per day 

during the month in which day t falls. Also, es denotes 

saturation vapor pressure, given by

In addition to pond dimension the other important 

parameter of water bodies is the temperature of the water 

near the surface [7]. Since small ponds and puddles tem-

perature is often one or two degrees warmer than the air 

temperature [11, 32, 37, 42], it is therefore assumed the 

temperature of puddles to have a fixed offset relative to 

the air temperature (such that Tw = Ta + 2 °C).

Parameters and functions of the model

�e parameters used for this model are adopted from 

the data generated from the laboratory experiments of 

Maharaj [19]. �e extensive data highlight the impact of 

temperature on developmental attributes of immature 

An. arabiensis under simulated seasonal conditions. �e 

results from the study is used to estimate the param-

eters and the forcing functions for the gonotrophic rate 

(4)es(Ta) = 0.6108e

(

17.27Ta
Ta+237.3

)

(ρAo
), development and mortality rate of immature An. 

arabiensis.

Using MATLAB software, the best fitted curves is 

found (as seen in Fig. 5; Additional file 1) for the gono-

trophic rate (ρAo
), development and mortality rate of 

immature stages. �eir parameter functions were further 

derived as given in the Table 1.

Results and discussion

Model validation

Although it is difficult to find mosquito data to validate 

the model, in order to ascertain the robustness of the 

model, the model output is compared with the results 

obtained from the study of Himeidan and Rayah [43]. 

In the study, larvae are collected over different breed-

ing sites and sources in New Halfa town, eastern Sudan. 

�e collection was done between March 1999 and March 

2000. In the town, temperature is noted to be high in 

summer (March–June) as shown in Fig. 6b. During this 

period, rainfall is noted to be minimal (see Fig. 6a). In the 

raining season (July–September), temperature reaches a 

minimum as indicated in Fig. 6a. Based on the observed 

Fig. 5 Parameter estimates and curves fit for a larvae development rate, b larvae mortality rate of An. arabiensis. see Additional file 1 for other 

parameters
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temperature and rainfall during the study period, the 

dynamics of larvae population at time t (red line) is simu-

lated and compared with the mean number of larvae col-

lected (dashed blue line) over New Halfa town as shown 

in Fig.  6c. �e model produce a similar curve (in red) 

with the observed larvae populations. Also, both graphs 

(in Fig. 6c) indicate that larvae abundance reaches a mini-

mum between October and June, increases between June 

and October while reaching the peak in August. �e rea-

son for this could easily be linked to low and high rainfall 

in October–June and June–October respectively. High 

temperature in summer negatively impacts the larvae and 

other immature An. arabiensis as the breeding sites dry 

up quickly during this period.

Sensitivity analysis

Model sensitivity to parameters

In this section, the sensitivity of the model is exam-

ined with two important parameters, that is, the rate 

at which host seeking adult An. arabiensis enters the 

Fig. 6 Model validation and climate monthly data of New Halfa town, eastern Sudan. a Monthly rainfall, b mean monthly temperature, and (c) 

showing the simulated and observed collected larvae over the study area and period
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resting state (ρAh
) and the rate at which resting adult 

An. arabiensis enters the oviposition searching state 

(ρAr
) . To accomplish this, parameter ρAh

 is held con-

stant at ρAh
= 0.3, while varying ρAr

 between 0.3 

and 0.9 in Fig.  7a. Similarly, ρAh
 is held constant at 

ρAh
= 0.5 , as ρAr

 is being varied between 0.3 and 0.9 

in Fig.  7b. Finally, in Fig.  7c, ρAh
 is held constant at 

ρAh
= 0.9 as it varies ρAr

 between 0.3 and 0.9. All fig-

ures shows a good correlation between the modelled 

and observed larvae. Also, the results show that the 

model is sensitive to both parameters, but more sen-

sitive to ρAh
 than ρAr

. For instance, in Fig.  7a, when 

ρAh
= 0.3 and ρAr

= 0.9 (in green), there is a signifi-

cant difference of about 90 larvae between the peaks 

of the modelled and collected larvae. The peak differ-

ence reduces to about 30 larvae when ρAh
= 0.5 and 

ρAr
= 0.9 in Fig.  7b. The number of simulated larvae 

overshoots that of observed in Fig.  7c by 50 when 

Fig. 7 Model sensitivity to parameters. This highlights the sensitivity of the model to parameters when aρAh = 0.3, b ρAh = 0.5, and c ρAh = 0.9. See 

main text for details
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Fig. 8 Sensitivity of aquatic-stage mosquito population dynamics to temperature. Effect of constant temperature on a eggs, b larvae, and c pupa 

of An. arabiensis
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ρAh
= ρAh

= 0.9. For all the simulations, these were 

considered ρAh
= 0.9 and ρAr

= 0.5 because it produces 

the closest simulated to observed larvae.

Model sensitivity to temperature

For better understanding of the relationship between 

temperature and vector dynamics, the sensitivity to 

temperature on both immature and adult mosquito 

population is examined in Figs.  8 and 9 respectively. 

To analyse this, it is assumed that the temperature is 

constant for the first 30 days with varied rainfall. In 

each class, the dynamics is checked when the temper-

ature is 10, 15, 20, 25C, 30 and 35  °C. It is noticed in 

both figures (Figs.  8 and 9) that the aquatic mosqui-

toes are more sensitive to temperature at 25  °C than 

the adult. It is also noticed that temperature below 

15  °C has negative impact on An. arabiensis. Conse-

quently, the dynamics are negatively influenced by 

temperature above 30  °C as specified in other studies 

(e.g., [7]).

Fig. 9 Sensitivity of adult mosquito population dynamics to temperature. Effect of constant temperature on adult An. arabiensis a searching for 

host, b resting, and c searching for oviposition site
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Incorporating the daily climate data of Dondotha 

between January 2002 and December 2004, the model is 

used to simulate the dynamics of An. arabiensis popula-

tions in the region. �e model simulates well the abun-

dance of mosquitoes per stage (E, L,P,Am,Ah,Ar ,Ao) 

over time and presents a strong seasonal variability as 

shown in Figs. 10 and 11.

With the assumption that the first eggs of the year are 

laid at the beginning of January, eggs density reaches a 

maximum in mid-January, February and early March 

as shown in Fig.  10a. Oviposition activity decreases in 

between June and mid-August of every year. Larvae and 

pupae populations follow the same pattern for each year 

through the study period. Due to human activities such 

as irrigation and water leakage leading to creation of 

breeding sites, the model allows the immature An. ara-

biensis population to remain non-zero even in unfavour-

able conditions between June and August. Differences 

between years were due to differences in climate vari-

ables, the model being otherwise deterministic.

Fig. 10 Simulated population of immature An. arabiensis. Simulations of a eggs, b larvae, and c pupae population dynamics with climate variables
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Similar results of the aquatic stages over the adult 

group were observed as shown in Fig.  11a–d. It is also 

noted that the adult populations also present a strong 

seasonal variability with a 6-month period of adult activ-

ity as mosquito density is minimal through June, July and 

August. �is suggests that that the number of adults old 

enough to transmit malaria is intensely influenced by the 

aquatic stage dynamics, which is in line with the study of 

[3]. �e results also indicate that An. arabiensis mosqui-

toes are present in the region over the study periods, and 

that the population of An. arabiensis in the province is 

highly seasonal with the peak in summer and minimal in 

winter as shown in Fig. 11a–d.

Also, temperature is noted to have a stronger influence 

on adult An. arabiensis abundance than precipitation, and 

it is also the main driver of the model. In fact, most of the 

mortality and progression rates are temperature-depend-

ent functions. Temperature drives the mortality and 

transition rates functions in two different ways: higher 

temperatures favour higher transition rates between 

stages, although mortality rates decrease with tempera-

ture. Yet, according to the simulations in the province, the 

impact of temperatures is rather favourable to An. arabi-

ensis populations as the peak of abundance occurs with 

the highest temperatures observed in summer period.

Running the model over the daily temperature of the 1.0° 

spatial resolution dataset, the oviposition rate is spatially 

simulated over South Africa for December 2001– 2002. �e 

results as shown in Fig. 12 suggest why malaria transmis-

sion in South Africa is distinctly seasonal. It is noticed that 

more eggs are produced in summer (December–February) 

than winter (June–August) period (see Fig. 12B). Some eggs 

are also produced in Spring (September–November) and 

Autumn (March–May). �is is in line with previous stud-

ies [19–21] that An. arabiensis do not oviposit in dry and 

cold conditions. Similarly, as a result of high temperature in 

summer, it is established that gonotrophic activities is faster 

during this period as mosquitoes to bite more aggressively 

for survival and oviposition (e.g., [7]).

Conclusion

In this paper, a mathematical mosquito model is pre-

sented and analysed, this was motivated by the compart-

mental model of [27]. Two climatic factors (rainfall and 

temperature) and puddle dynamics are incorporated into 

the model to understudy the dynamics of immature An. 

arabiensis.

�e forcing functions for gonotrophic cycle, progres-

sion and mortality rate of eggs, larvae and pupae are also 

derived from the laboratory experiment in the study of 

Maharaj [19]. �e efficiency of the model are also veri-

fied by comparing the simulated larvae with total aver-

age number of larvae collected over a town in eastern 

Sudan from the study of Himeidan and Rayah [43]. Fur-

thermore, the model sensitivity analysis is carried out to 

examine the sensitivity of the model to parameters.

(See figure on previous page.) 

Fig. 11 Simulated population of adult An. arabiensis. Simulations of adult mosquitoes a searching for mating, b searching for host, c resting, and d 

searching for oviposition site with climate variables

Fig. 12 Spatial distribution of temperature and oviposition rate over 

South Africa. This highlights the spatial distribution of A observed 

temperature, and B simulated oviposition rate over South Africa
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In addition, the climate data of Dondotha village in 

KwaZulu-Natal Province are incorporated into the model 

to simulate the dynamics of the mosquito population over 

the region. �e results highlight the importance of cli-

mate on An. arabiensis which is accountable for malaria 

transmission in Africa. It also increases the understand-

ing of significance of the role of mosquito biology in 

malaria models. �e model structure demonstrates a 

level of robustness as it can be tested on varied climate 

conditions and on various other species. In particular, the 

model can be used to study the effect of climate change 

and variability on vector population dynamics.

Additionally, the model can be developed further by 

incorporating other processes such as malaria infection. 

Also, since all mosquito vectors share the same basic life 

cycle, the model can be converted to other mosquito-

borne disease systems, such as Dengue Fever and West 

Nile Virus. It can be used efficiently as a tool to predict 

An. arabiensis population dynamics. �e framework of 

the model is also designed to accommodate human pop-

ulation dynamics, with the ability to predict malaria inci-

dence in future.

However, the model neglects other important factors 

influencing the dynamics of the vector population. For 

instance, humidity has been identified to play a crucial 

role in both vector and puddle dynamics [31]. Low levels 

of relative humidity are known to decrease the lifespan 

of mosquitoes [44]. It has also been established that land 

cover affects the duration of larval development through 

its effect on water temperature [45]. Other missing fac-

tors in the model includes irrigation [46], deforestation 

[47], and so on. Hence, the present study leaves these fac-

tors for future consideration.
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