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In tokamaks, additional heating can affect the poloidal asymmetry of impurity

densities, as recently measured in the core of Alcator C-Mod plasmas [1], and already

proposed in [2]. The possibility of influencing the poloidal potential by heating with

waves in the ion-cyclotron (ICRF) and in the electron-cyclotron range of frequencies was

already investigated in [3] (and therein citations), and a simplified model of the ICRF

effects has been recently suggested in [4]. Since plasmas generally rotate at toroidal

speeds large enough to affect the density of heavy ion, it is necessary to simultane-

ously account for plasma rotation and for temperature anisotropies in the calculation of

poloidal density asymmetries of highly charged impurities.

Since the time scale of parallel equilibration is smaller than the characteristic time

of cross-field transport for impurities, it is justified to analyze the parallel dynamics

separately on each flux surface, by taking the limit of negligible Larmor radius and

neglecting the drift terms which are connected with the calculation of the neoclassical

transport, which is not the purpose of this work. Precisely, we consider here the

zeroth-order equation of the usual expansion in the small parameter δ = ρi/L⊥ of

the neoclassical transport theory [5], where ρi is the (poloidal) Larmor radius and L⊥

is the characteristic macroscopic gradient length, in the presence of a plasma flow V0

comparable to thermal ion velocity vthi =
√

2Ti/mi [6]. However, besides the collision

operator, we also take into account the effect of additional operators which describe

the impact of auxiliary heating systems. Finally, we consider here only axisymmetric

geometry.

Closely following the derivation in [6] and working in the velocity coordinate system

shifted by the flow velocity V0, the zeroth-order Fokker-Planck (FP) equation for the

equilibrium distribution function f0 is
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=

Ccoll(f0) +Qrf(f0) + SNBI − Lpart ,

(1)

where B is the confining magnetic field, b̂ = B/B, and the subscripts ‖ and ⊥ refer to

the direction of B. On the rhs (right-hand side), Ccoll is the collisional operator, Qrf

is the quasilinear operator describing radio-frequency (rf) heating, SNBI is the neutral-

beam-injection (NBI) source, and Lpart is the particle loss term necessary to guarantee

the constancy of the average densities in the presence of NBI particle sources [7].

As demonstrated in [6], in order to have a gyrotropic f0 in rotating plasmas and

in the limit of small ion gyroradius, the flow velocity is made of two components,

V0 = ΩϕR êϕ+K B, where Ωϕ is the angular frequency of the plasma toroidal rotation,

R is the distance from the torus axis, and K B is a degree of freedom on the parallel

flow, used to impose the periodicity of the solution [8]. Since we are interested in

the steady-state solution of (1), we set the derivatives ∂/∂t0 equal to zero. Next, we
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approximate f0 with F0 that cancels the bounce-averaged rhs, and approximate F0 with

a bi-Maxwellian, as proposed in [3],

F0 ≈ n0
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)3/2 1
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, (2)

where T⊥ and T‖ are the perpendicular and parallel temperatures of F0. In absence

of external heating, such as NBI and ICRF, the collision operator ensures that F0 is

Maxwellian, i.e. T‖ = T⊥. We use (2) in the lfs (left-hand side) of (1), and by requiring

the lhs to be zero the equations of our problem follow from imposing to be zero the

coefficients of (vm⊥ v
n
‖ ) as reported at the beginning of each equation
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Equation (3) is the parallel momentum equation, (4) is the particle conservation in

steady state (obtained by combining (7) and (8) with the equation for the term with

no velocity dependence), (5) states that no parallel gradient of T‖ is allowed, and (6)

constrains the parallel gradient of T⊥ to be controlled by the mirror force. The choice

K = 0 satisfies (7) and (8) together with particle conservation (4). However, in the

more general description which includes also neoclassical drift terms, an additional

poloidal flow (K 6= 0) is necessary to guarantee particle conservation in presence

of the neoclassical parallel return flow [8]: in other words, this term guarantees the

conservation of the number of ions of a given species in a flux-tube whose cross-section

varies according to the conservation of the magnetic flux. Using (5) in (3), the parallel

momentum equation becomes
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with ∇‖ := b̂ ·∇. According to (5), T‖ along the magnetic field line is constant, and the

integration of (9) becomes straightforward

n0(ψ, ϑ) = n0∗(ψ)
T⊥(ψ, ϑ)
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exp
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−
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}

, (10)

where star stands for the initial values defined at a poloidal angle ϑ∗ (the poloidal angle

ϑ is used as coordinate along the magnetic field), and ψ is the radial coordinate labelling
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the magnetic surfaces. The poloidal potential Φ0 is defined up to an additive constant,

which is set in such a way that Φ0∗(ψ) := Φ0(ψ, ϑ∗) = 0.

Alternatively, we can directly extend the bi-Maxwellian approximation (2) by

observing that the solution of the bounce-averaged Fokker-Planck equation is always

given at the point of minimum B, through which all the particles pass. We use the

subscript “lfs” for the point where the confining magnetic field is minimum, and in

tokamaks this point is in the low-field side. In particular, we can re-write (2) on the lfs

point as

F0(ψ, ϑlfs; E , µ) =
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where µ = mv2⊥/2B is the magnetic moment, and E = mv2/2 + Φeff is the particle

energy in the shifted-velocity coordinate system, with Φeff = qΦ0 −mV 2
0 /2 the effective

potential [6]. If we map F0 along the magnetic field line while keeping constant µ and

E , F0 remains bi-Maxwellian
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,

(11)

where T‖ is constant along the magnetic field lines in agreement with (5), n0 is

exactly (10) with the subscript ∗ replaced by lfs, and T⊥ varies according to

T‖(ψ)

T⊥(ψ, ϑ)
= 1−

(

1−
T‖(ψ)

T⊥lfs(ψ)

)

Blfs(ψ)

B(ψ, ϑ)
. (12)

The local perpendicular temperature (12) satisfies (6). This model of f0 is consistent

with the requirements on n0, T⊥ and T‖ of the lfs of the starting equation (1). In prac-

tice, T⊥ and T‖ are completely defined by the rhs of (1) and estimated from the solution

of the bounce-averaged Fokker-Planck solver, whereas the density n0 is controlled by

(3). Since in a tokamak B ≥ Blfs, the mirror force reduces the temperature anisotropy

when moving from the lfs to the hfs.

In passing, it is easily shown that F0 satisfies the collisionless drift kinetic equation

v‖∇‖F0 = 0, valid when guiding-center drifts across the magnetic field as well as the

time derivative are neglected [8] (cfr. equation (34) in [9]). In the case of ICRF heating,

the distribution, when mapped on the point where the resonance crosses the magnetic

surface, is indeed well approximated by a bi-Maxwellian [10]. Therefore, applying the

same procedure for (11) we obtain the same expression (12) with T⊥lfs and Blfs replaced

by the corresponding values at the IC resonance point. We note that the model pro-

posed in [9] (precisely, equation (40)) is derived by assuming only the conservation of

µ and of the kinetic energy in an inhomogeneous plasma (i.e. only with mirror force),

which implies that ∇‖n0/n0 = (1−T⊥/T‖)∇‖B/B. Thus, n0 is monotonic if the sign of

∇‖B does not change in going from the lfs to the hfs (high-field side), as it is usually the
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case in tokamaks. Hence internal local maxima of density at the crossings between the

IC resonance and the magnetic surface in [4] are fictitious consequence of the absolute

value artificially introduced in equation (40) of [9] to mimic the typical “rabbit ears”

in the contour plot of the distribution function at the outer midplane point. A similar

shortcoming of the model proposed in [9] arises from the detailed analysis done in [11].

The problem is fully determined when Φ0 and V0 are known. For the latter, one

typically uses the experimental measurements of the plasma toroidal rotation, whereas

the former is determined from equation (9) applied to electrons. Since for electrons the

centrifugal force can be neglected because of the smallness of their mass, and the electron

distribution function can be considered isotropic, it holds e Φ̃0/Te = ln(ne/ne,lfs), where

the tilde symbol stands for the poloidally varying part. In turn, the electron density is

determined via the quasi-neutrality condition, namely ne =
∑

iZini, with q = Z e, and

e the elementary charge. Finally, the set of normalized algebraic equations describing

the poloidal variation of the plasma densities in the presence of plasma rotation and

temperature anisotropies is:
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(13)

where Mϕ = ΩϕRlfs/
√

2Te/mp is the toroidal Mach number of thermal protons in ther-

mal equilibrium with electrons, A = m/mp, and mp the proton mass.

It is instructive to perturbatively solve (13) and to generalize formulas of [12]. In

this way, we have explicit expressions of the poloidal asymmetry of impurity density.

For convenience, here we normalize densities and temperatures to the corresponding

electronic values, the potential to e/Te, and the radial distance from the torus axis

R and the magnetic field to their values on the outer midplane point, Rlfs and Blfs,

respectively. To address both NBI and ICRF heating, we consider a plasma made of

two main ion species, (mM , ZM) and (mm, Zm), with the concentration of the minority

much smaller than the concentration of the majority, Zm nm ≪ ZM nM . In absence of

the minority species (nm = 0), the quasi-neutrality simplifies, ne = ZM nM , and the

neutralizing poloidal potential becomes

Φ̃
(0)
0 =

T‖M
T‖M + ZM

[

AM

M2
ϕ (R2 − 1)

T‖M
+ ln

(

ZM
T⊥M

T⊥M,lfs

)]

. (14)
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The presence of a minority species perturbs the potential, Φ̃0 ≈ Φ̃
(0)
0 + δΦ̃. If

|δΦ̃| ≪ |Φ̃
(0)
0 | as one expects if Zm nm ≪ ZM nM , we keep only terms up to the

first-order correction in δΦ̃, namely exp{−ZΦ̃0/T‖} ≈ (1 − ZδΦ̃/T‖) exp{−ZΦ̃
(0)
0 /T‖}.

By exploiting that the electron density perturbation δne can be determined as δne ≈

δΦexp{Φ̃
(0)
0 } and as δne = Zm n

(0)
m + ZMδnM , we approximate

δΦ̃ ≈ Zm

(

n(0)
m − nm,lfs n

(0)
M

)

[

exp{Φ̃
(0)
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ZM

T‖M
n
(0)
M

]−1

, (15)

with n
(0)
m and n

(0)
M given by the first of (13) with (14) as potential. It follows that the

density of the majority species is

nM ≈

(

1− Zm nm,lfs − ZM
δΦ̃

T‖M

)

n
(0)
M ,

whereas the density of traces of other ion species is

nZ
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≈

T⊥Z
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(

1− ZZ
δΦ̃
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)

exp
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(
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. (16)

Equations (14), (16), and (15) give an explicit expression for the poloidal asymmetry of

traces species in the case of ICRF heating, with temperature anisotropies inferred from

the solution of the FP equations.

Equation (16) simplifies further if we consider the case of one-species plasma externally

heated, like in the case of NBI heating,

nZ

nZlfs

≈

(

ZM
T⊥M

T⊥M,lfs

)−ZZ

T‖M/T‖Z
T‖M + ZM exp

{

(
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T‖M + ZM

)
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M2
ϕ
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R2 − 1
)

T‖Z

}

.

(17)

Because of the centrifugal force the majority density increases on the lfs with the cre-

ation of a poloidal potential which partially compensates the centrifugal force on the

impurities. In general this is not enough to produce a localization of impurities on the

hfs, since it is typically AMZZ/AZ(T‖M + ZM) < 1. When T⊥M > T‖M , however, the

density of high-Z impurities can be indeed inverted up to a localization of impurities on

the hfs, and this is stronger, the higher ZZ is.

As illustrative cases, we consider a circular large-aspect-ratio tokamak, with the

magnetic field approximated as B(ψ, ϑ) = B0(1 − ψ εa cosϑ), where εa is the tokamak

inverse aspect ratio. In this geometry it holds (1−εa)/(1+εa) ≤ R ≤ 1. With reference

to the magnetic surface characterized by ψ ǫa ≈ 0.17, figures (1) show the dependence

of the in-out asymmetry of tungsten impurities on the temperature anisotropy of one

of the ion plasma species, and this is shown for few values of Mϕ. In figure (1.a) it is

considered the case of pure deuterium plasma with traces of tungsten W+31: the dashed
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lines are the values according to (17) and the dotted lines are solution of (13). When the

poloidal inhomogeneity of the impurities increases, formula (17) (dashed lines) departs

from the solution (13) (dotted lines) since local impurity build-ups start to modify the

poloidal potential Φ̃0 via the quasi-neutrality constraint. In general, since NBI heating

does not create large temperature anisotropy of the main species (roughly not larger

than 1.1), an inversion of the out-in impurity asymmetry is possible only for moderate

Mach numbers. The case considered in figure (1.b) refers to the conventional hydro-

gen (minority) IC fundamental heating in deuterium (majority) plasmas. The dashed

and dotted lines correspond to the cases of fixed hydrogen concentration of 5% on the

lfs. In (1.b) the W+31 density in-out asymmetry is plotted as function of the temper-

ature anisotropy of the minority species in a range of values expected during ICRF

heating [4]. The difference between approximated solutions (dashed lines) and numeri-

cal solution of (13) becomes larger when T⊥H/T‖H is increased, as already observed in

the case of figure (1.a). Note that with increasing T⊥/T‖ the average content of the

minority decreases. Thus, we have also considered the more realistic case where the

average hydrogen concentration is forced to be equal to 5% (solid lines). In this case

an inversion of the out-in build-up is more easily set, as already found experimentally [1].

In conclusion, the set of equations (13) has been derived and can be applied when

Ωϕ and the plasma densities and temperatures are known on the outer midplane point.

The parallel and perpendicular temperatures of the heated ion species are estimated with

bounce-averaged Fokker-Planck solvers, whereas the angular toroidal frequency of the

plasma is typically measured. Explicit formulas, obtained perturbatively, give a correct

qualitative behaviour of the in-out density asymmetry, but they fail to quantitatively

reproduce the solution of (13) in the presence of strong temperature anisotropies.

Despite its apparent simplicity, the solution of (13) involves the zero search of coupled

transcendental equations. It is simpler and more advantageous to formulate (13) as a set

of ordinary differential plus algebraic equations by replacing the first equation with (9).
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