
Modelling the Informativeness of Non-Verbal Cues
in Parent–Child Interaction

Mats Wirén, Kristina N. Björkenstam and Robert Östling
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Abstract
Non-verbal cues from speakers, such as eye gaze and hand po-
sitions, play an important role in word learning [1]. This is
consistent with the notion that for meaning to be reconstructed,
acoustic patterns need to be linked to time-synchronous pat-
terns from at least one other modality [2]. In previous stud-
ies of a multimodally annotated corpus of parent–child interac-
tion, we have shown that parents interacting with infants at the
early word-learning stage (7–9 months) display a large amount
of time-synchronous patterns, but that this behaviour tails off
with increasing age of the children [3]. Furthermore, we have
attempted to quantify the informativeness of the different non-
verbal cues, that is, to what extent they actually help to discrim-
inate between different possible referents, and how critical the
timing of the cues is [4]. The purpose of this paper is to gener-
alise our earlier model by quantifying informativeness resulting
from non-verbal cues occurring both before and after their as-
sociated verbal references.
Index Terms: language acquisition, child-directed speech,
word learning, cross-situational learning, social cues, non-
verbal cues, synchrony

1. Introduction
Several computational models of word learning based on cross-
situational information from sounds and perceptually salient ob-
jects have been put forward, for example, Yu and Ballard [5],
but most of these models (too numerous to survey here) do not
take the time-order of the associated events into account. An
exception to this is Frank et al. [6], who attempted to quantify
the informativeness of eye gaze, hand positions and hand point-
ing (collectively called social cues) directed at objects as coded
from video sessions of parent–child interaction. For each spo-
ken utterance by the parent, they coded a) the toys present in
the field of view of the child; b) the objects in the context being
looked at, held or pointed to by the parent (the social cues); c)
the objects being looked at or held by the child (referred to as
attentional cues); and d) the parent’s intended referent for the
noun phrase in the utterance (“look at the doggie”, “look at his
eyes and ears”). The condition for coding an event in this way
was that it had some overlap with the time-wise extension of the
whole utterance.

An analysis of the informativeness of the individual social
cues showed that they were noisy, and that no such cue was able
to disambiguate fully between objects on its own. (The number
of objects in the child’s view, hence the ambiguity, for each ut-
terance was on average between 1.2 and 2.9 per dyad.) The cues
were used frequently but correct only half or less than half of the
time in the sense that they were directed at the object referred by
the parent. Simulations with a supervised classifier showed that
only a moderate improvement of the accuracy could be achieved
by combining information from different cues. A possible ex-

planation of the noisiness of this model (suggested by Frank
et al. themselves) is its coarse temporal granularity in the sense
that a referent was predicted from all the events observed during
an utterance, thus losing temporal coordination.

Björkenstam et al. [4] showed that it is possible to arrive at a
much more precise model of the informativeness of non-verbal
cues in parent–child interaction by using continuous-time reso-
lution. This, in turn, was made possible by their fine-grained,
multimodal corpus annotation [3]. As a proxy for informa-
tiveness, they used classification accuracy of verbally referred
objects, with predictions being based on information from the
non-verbal cues. It was assumed in this model that only non-
verbal cues that occur before the verbal mentions have predic-
tive value. To capture the timewise co-occurrence of the cues, a
model of memory decay was used which decreased as a function
of the time between the non-verbal cue and the verbal mention.
In other words, the purpose of the function was to reflect the hy-
pothesis that the non-verbal cues and the verbal mentions must
be timewise synchronised, in that particular order, for them to
be perceived as causally linked.

A seemingly quite common behaviour, however, is that a
non-verbal cue can also occur after the verbal reference with
which it is associated. For example, the parent may start to look
at a target object before naming it, and may then display an
additional non-verbal cue which strengthens the one displayed
before the mention. The aim of this paper is to generalise the
above model by investigating the effects on accuracy of using
information from non-verbal cues both before and after their
associated verbal reference.

2. Data
2.1. Corpus

Our primary data consist of audio and video recordings, using
two cameras, from parent–child interaction in a recording stu-
dio at the Phonetics Laboratory at Stockholm University [2].
The corpus consists of 18 parent–child dyads, totalling 7:29
hours, with three children each participating longitudinally in
six dyads between the ages of seven and 33 months. The mean
duration of a dyad is 24:58 minutes. The scenario was free play
where the set of toys varied over time, but where two target
objects (cuddly toys) were present in all dyads and thus very
frequently referred to.

2.2. Coding

All annotation of the corpus was made with the ELAN tool [7]
according to the guideline of [3]. Annotations in ELAN are
created on multiple tiers that are time-aligned to the audio and
video, with separate tiers for the parent and child, as well as for
events that include different verbal and non-verbal cues. The
latter are coded in cells spanning the corresponding timelines
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on the associated tier, thereby allowing us to track information
from the cues very precisely.

Figure 1: Screen cap of the annotation in ELAN.

Figure 2: A close-up of some of the annotation tiers in ELAN:
Annotation cells in the Parent tier contain transcriptions of
the parents’ utterances. Annotation cells in the Segment tier
contain intervals in which a target object is in focus. Annota-
tion cells in the P-Gaze and C-Gaze tiers contain information
about the objects looked at by the parent and child, respectively.
Annotation cells in the P-ObjAct and C-ObjAct tiers con-
tain information about the object-related actions displayed by
the hands of the parent and child, respectively, as well as the ob-
jects involved. Annotation cells in the P-Speech tier identify,
for each verbal mention, the object referred to by the parent.
Note that the extension of each annotation cell codes the time
interval of the associated event in continuous time.

First, for each dyad, the discourse segments in which a
target object was in focus were coded by creating cells that
spanned the corresponding timelines in a designated tier, anno-
tated with the name of the focused object. “Focus” here means
that at least one of the participants’ attention was directed at a
target object, and that, in the course of the segment, at least one
verbal reference to the object was made by the parent. (Thus,
there is not necessarily joint attention to the target object in the
whole of such a segment.) Such a segment was considered to
end when the focus was shifted permanently to another (target
or non-target) object.

These segments, comprising altogether 100 minutes or 22%
of the corpus, and including 648 mentions to target objects,
were then coded for verbal and non-verbal referential cues, in-
volving speech, eye gaze and hand position relative to an ob-
ject. The coding used cells spanning the timelines correspond-
ing to the respective events in a separate tier for each type, and
with separate tiers for the parent and child, thus resulting in six
ELAN tiers overall.

The coding of speech involved all references to objects and
persons present in the room by means of a name, definite de-
scription or pronoun. Each such reference was coded in an an-
notation cell spanning the timeline corresponding to the dura-
tion of the expression, with addition of its orthographic tran-
scription and the speaker’s intended referent. The coding of
gaze similarly consisted of a cell spanning the timeline of the
event, with a specification of the agent and object looked at.
The coding of hand additionally distinguished between differ-
ent types of object manipulation acts.

3. Method
Following Frank et al. [6], we use classification accuracy as a
proxy for the variable we are really interested in, namely, the
informativeness of the different cues. Highly informative cues
provide relatively unambiguous information about the referent,
and a classifier should then be able to identify the referent with
a high level of accuracy. The classifier is only given informa-
tion about the non-verbal cues and the time of the parent’s re-
ferring utterance. We used supervised classification in the form
of multinomial logistic regression, equivalently formulated as
maximum entropy modelling [8].
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As features for the classifier, we extracted information
from the coding which we represent as tuples. For gaze, we
extracted triples consisting of 〈gaze, agent, patient〉, and for
hand triples in the format 〈predicate, agent, patient〉. for ex-
ample, 〈pick-up,C,car〉. Each combination of values in a
tuple that encodes a non-verbal event corresponds to a feature
in the model. To compute the value of this feature at time t,
we used an exponential decay function to simulate short-term
memory, as illustrated in Figure 3. The memory equation has

Figure 3: Short-term memory as seen from spoken mention,
where tm is the time at which the mention starts and te is the
time at which the non-verbal event ends. Features for on-going
non-verbal events have value 1. After the end of the non-verbal
event, the value is determined by the decay function.
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Table 1: Accuracy (in percent) of model prediction given type
of cue. Columns show from which agents information is incor-
porated into the model (P = parent, C = child, P + C = both).
The upper half shows results from our model as described. The
lower half uses the same data but only utterance-level binary
features, thus emulating the model of [6].

Type of cue used P C P + C
Continuous-time resolution

Hand 72.9 71.8 82.5
Gaze 75.8 80.8 84.2
Hand + gaze 81.7 83.6 88.7

Utterance-level time resolution
Hand 61.5 64.1 66.6
Gaze 61.4 59.8 62.3
Hand + gaze 64.4 65.0 69.5

the form f(t) = e−kt. Here, k is a constant that determines the
half-life of the memory, and t is defined by t = tm − te, where
tm is the time at which the mention starts, and te is the time
at which the non-verbal event ends, or t = 0 in case these two
overlap. Features for on-going non-verbal events are defined to
have a value of 1; when a non-verbal event ends, the value of
the feature is determined by the decay function. In case the non-
verbal event and mention overlap, the event will have a value of
1, according to the memory equation. Future non-verbal events
(that have not yet occurred) are defined to have a value of 0; in
other words, only non-verbal cues that do not start after a verbal
mention can predict the referent of this mention.

We trained and evaluated models using leave-one-out cross
validation on the recording session level, so that we fitted as
many models as there are recording sessions (18). Each model
was fitted using data from all but one session, then used to pre-
dict the referents of the remaining session. This method allowed
us to use as much as possible of the available data, while avoid-
ing session-specific context to influence the model.

4. Accuracy and timing
Björkenstam et al. [4] used the model described above to train
classifiers on cues for gaze and/or hand for the input from each
agent as well as from both of them, using the two target ob-
jects as referents. Table 1 shows the classification accuracy of
the model’s predictions given different cue combinations and
agents. The half-life of the short-term memory decay in this
experiment was 3 seconds. The baseline was given by the most
frequently referred object (target object 1, Siffu), which was
used in 58% of the cases.

As seen in the table, the figures are clearly above the base-
line, indicating that the non-verbal cues provide a lot of infor-
mation for disambiguation. Furthermore, gaze is more accurate
than hand, and the single most informative cue is the child’s
gaze. A similar result for child gaze was obtained by Johnson
et al. [9]. We can also see that the prediction accuracy is higher
when the information sources are combined, as expected. The
lower half of Table 1 shows the results of emulating the model
of Frank et al. [6], that is, associating all features with the utter-
ances with which they overlap (without temporal coordination
or memory decay). The result is a sharp decline in prediction
accuracy, only slightly above the baseline. Also, gaze is then
less accurate than hand. Both of these results are consistent with
those of Frank et al., and the conclusion drawn by Björkenstam
et al. [4] is that continuous-time resolution is needed to properly

quantify the informativeness of the cues.
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Figure 4: Classification accuracy (y-axis) as a function of ver-
bal mention offset whole seconds from actual word occurrence
in parent speech up/down to±4 seconds (x-axis), given a short-
term memory of 1, 3, and 10 seconds, respectively. Time = 0
coincides with the start of the mentions by the parent.

In a further experiment, Björkenstam et al. [4] trained a
classifier on input from both agents combined, where the timing
of the predictions relative to the onset of speech had been moved
by whole seconds up/down to ±4 seconds. This is comparable
to displacing the speech relative to the non-verbal event with
the same amounts of time. They also explored how different
memory decays influenced classification accuracy by compar-
ing classifiers with a memory half-life of 1, 3 and 10 seconds,
respectively. The effects of the timing displacement on accu-
racy is shown in Figure 4. The 0 second verbal mention offset
is the baseline, with an accuracy of about 86% for the 1 second
memory model, and around 88% for the 3 and 10 second mem-
ory models. Accuracy dropped when the verbal mention offset
was displaced. Offsetting the verbal mention ahead in time by
as little as two seconds resulted in accuracy scores of 82% for
the 1 second model, and 84% for the 3 and 10 second mem-
ory models. Delaying the verbal mention by 2 seconds had a
less detrimental effect, in particular for the 10 second model.
Interestingly, the asymmetry resulting from displaced timing is
consistent with experimental results in work using an altogether
different methodology, the Human Simulation Paradigm [10, p.
128], in which observers try to estimate referential transparency
by reconstructing intended referents from non-verbal cues as
they watch a muted video of parent–child interaction.

5. Symmetric decay
Given that the decay function in the above model was taken
to simulate short-term memory, it only made sense to predict
the referents of verbal mentions from previously occurring non-
verbal cues (since only things in the past can be remembered).
It is evident from our data, however, that non-verbal cues can
also occur after the verbal mentions with which they are associ-
ated. For example, the parent may look at a target object while
naming it, and may subsequently also touch it, thereby provid-
ing an additional non-verbal cue to the object, strengthening the
one displayed before the mention.

To capture this kind of behaviour, we were interested in
modelling not just the effects of non-verbal cues prior to the
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Figure 5: Symmetric decay from the non-verbal cue, where tm
is the time at which the mention starts and (in addition to what is
shown in Figure 3), ts is the time at which the non-verbal event
starts. Features for on-going non-verbal events have value 1.
Before the beginning and after the end of the non-verbal event,
the value is determined by the decay function.
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Figure 6: Classification accuracy analogous with that in Fig-
ure 4, but with symmetric decay of the non-verbal cues, forward
and backward as seen from the spoken mention at time = 0.

mentions, but rather the effects of using symmetric decay of
the values of the non-verbal cues regardless of whether they oc-
curred before or after the spoken mentions. To this end, we
modified the equation from Section 3 to be symmetric in the
sense of mirroring the decay forward and backward from the
end points of the non-verbal cue, as seen in Figure 5. Using this
function, we trained classifiers for the non-verbal input, again
from both agents combined, using half-lives for the decay func-
tion of 1, 3 and 10 seconds, respectively.

The results of the experiment are shown in Figure 6. Com-
pared to Figure 4, the accuracy is only marginally better. Fur-
thermore, the asymmetry is slightly less pronounced, especially
for the longer half-lives of the decay function. The most obvi-
ous difference, however, is that the optimal timing of the par-
ents’ spoken mentions occurs about a second earlier than the
actual timing in the data for the 1 second memory, and even
earlier for the longer half-lives. We conjecture that these differ-
ences are largely attributable to the following factors.

First, in the beginning of a segment, when a focus shift has
just occurred, one phenomenon which may result in additional
non-verbal cues from the parent after the verbal mention is the
parent exhibiting follow in [11]. This occurs when the child
takes the initiative by moving its attention to a new target object,
and the parent adapts his/her focus to that of the child, typically
by first referring verbally to the object and then looking at it,
and/or reaching to it, etc. It was shown in Björkenstam et al.
[3] that 40% of the segments in our data begin with follow in,
so the children clearly take a lot of initiatives like this, with the
parents adapting their focus.

A second factor which may result in additional non-verbal
cues from both the parent and child after the verbal mention,
and which is relevant in the rest of a segment, is discourse con-
tinuity. This is notion that the parent is talking about the same
thing in the current utterance as in the previous utterance. Dis-
course continuity occurs since, by definition, the focus remains
on the same target object (or both of them) throughout a seg-
ment (though this does not exclude non-verbal cues from the
parent and/or child also to non-target objects in the segment).
For example, if the child occupies itself with a target object
which has just been referred to by the parent, the child will
surely be adding to the non-verbal cues to this object.

To confirm these conjectures, and to understand the precise
reasons for the fact that the optimal timing of the parents’ utter-
ances occurs earlier than in the data, more analysis is needed,
however.

6. Conclusion
The aim of this paper was to generalise our model of the infor-
mativeness of non-verbal cues in parent–child interaction, and
the effects on this of displaced timing of the non-verbal cues,
by using information from non-verbal cues both backward and
forward in time. The key difference of the results compared to
the earlier model, where non-verbal cues occurring after verbal
references were not used for predicting the associated referents,
was that the optimal timing for the parents’ spoken mentions
occurred earlier than in the data. We attribute this difference to
instances of follow in and to the discourse continuity manifested
in the segments that we investigate. A more in-depth analysis of
the instances in the data and how they contribute to referential
transparency is needed to confirm this, however. We believe that
our continuous-time annotation and model provide an excellent
basis for such an analysis.
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