CHEMISTRY A European Journal

Supporting Information

Modelling the Inhibition of Selenoproteins by Small Molecules Using Cysteine and Selenocysteine Derivatives

Kishorkumar M. Reddy and Govindasamy Mugesh*^[a]

chem_201901363_sm_miscellaneous_information.pdf

Table of Contents

S. No	Contents	Page/ Page range
1	Synthetic scheme for the intermediates 1 , 2 and 3	S2-S3
2	¹ H NMR and HPLC analysis of formation of Dha from the compounds 17 and 18	S3
3	¹ H NMR and HPLC analysis of formation of Dha from the compounds 2	S4
4	⁷⁷ Se spectra of 17 after incubating with H ₂ O ₂	S5
5	⁷⁷ Se spectra of 19 after incubating with H ₂ O ₂	S5
6	⁷⁷ Se spectra of 17 after incubating with H ₂ O ₂ and GSH	S6
7	Spectroscopic characterization (¹ H, ¹³ C and ⁷⁷ Se spectra)	S7-S18
8	ESI-MS data of selected compounds	S19-S20
9	References	S20

Scheme S1. Synthetic route to starting materials **1** and **2** used for the synthesis of aryl cysteine and selenocysteine derivatives. a) SOCl₂, MeOH, reflux, 4 h, b) Boc anhydride, aqu., NaHCO₃, Dioxane, 27 °C, c) TsCl, Pyridine, 27 °C, d) i) SOCl₂, pyridine, dry ACN, -40 °C, 3 h, ii) NalO₄, RuCl₃. 3H₂O, ACN, H₂O, 0 °C, 2 h.

Compound **1**^[1]: ¹H NMR (CDCl₃), δ (ppm): 1.55 (s, 9H), 3.86 (s, 1H), 4.68-4.71 (d, 1H), 4.77-4.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 28.15, 53.91, 58.00, 68.18, 86.49, 148.45, 168.01.

Compound **2**^[2]: ¹H NMR (400 MHz, CDCl₃), δ (ppm): 1.42 (s, 9H), 2.45 (s, 3H), 3.70 (s,3H),4.29 (dd, 1H), 4.40 (dd, 1H), 4.51 (dt, 1H),5.32 (d, 1H),7.36 (d, 2H),7.76 (d, 2H); ¹³C-NMR (100MHz, CDCl₃): 21.6, 28.2, 52.85, 52.90, 69.5, 80.4, 128.0, 129.9, 132.3, 145.1, 154.9, 168.9.

Scheme S2. Synthetic route to protected selenocystine(**3**) starting from pMob diselenide and o-tosyl serine (**2**). a) NaBH₄, DMF, b) compound **2** in DMF, c) I₂ in MeOH & H₂O.

Compound **3**^[3].¹H NMR (400 MHz, CDCl₃), δ (ppm): 1.43 (s, 9H), 3.35-3.39 (m, 2H), 3.75 (s, 3H), 4.58-4.63 (m, 1H), 5.38-5.40 (bd, 1H); ¹³C-NMR (100MHz, CDCl₃): 28.77, 32.81, 53.05, 54.14, 80.72, 155.48, 171.73; ⁷⁷Se NMR (76.29 MHz, CDCl₃), δ (ppm): 295.8.

All these values are matching with literature values.

Figure S1. A) ¹H NMR spectrum of **21** after incubating with H_2O_2 and its comparison with authentic sample of **23**. B) HPLC chromatogram obtained for the reaction of **21** with 4 equiv. of H_2O_2 . C) HPLC chromatogram obtained for the reaction of **21** with 10 equiv., of H_2O_2 .

Figure S2. A) ¹H NMR spectrum of **17** after incubating with H_2O_2 and HPLC chromatogram obtained for the reaction of **17** with 4 equiv. of H_2O_2 indicating the formation of Dha. B) ¹H NMR spectrum of **18** after incubating with H_2O_2 and HPLC chromatogram obtained for the reaction of **18** with 4 equiv., of H_2O_2 , indicating the formation of Dha.

Figure S3. ⁷⁷Se spectrum obtained for the reaction of **18** with H_2O_2 , indicating the generation of selenenic acid **31** and seleninic acid **43**.

Figure S4. ⁷⁷Se spectrum obtained for the reaction of **19** with H_2O_2 , indicating the generation of selenenic acid **32**, seleninic acid **44** and selenonic acid **50**.

Figure S5. (A) Effect of hydrogen peroxide concentration on the initial rate for compound **20**. Phosphate buffer, 2mM GSH, 0.4 mM of NADPH, 1.74 U GR, 0.1 mM of compound and 0.1 mM to 1.5 mM of H_2O_2 . (B) Effect of GSH concentration on the initial rate for compound **20**. Phosphate buffer, 0.2 mM to 2 mM GSH, 0.4 mM of NADPH, 1.74 U GR, 0.1 mM of compound and 1.5 mM of H_2O_2 .

Figure S6. ⁷⁷Se spectrum obtained for the reaction of **18** with H₂O₂, indicating the generation of selenenic acid **31** and seleninic acid **43**. The subsequent reaction with GSH to produces the selenenyl sulphide **54**.

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **7**.

Figure S8. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 7.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **22**.

Figure S10. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 22.

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **8**.

Figure S12. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 8.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **17**.

Figure S14. ¹³H NMR spectrum (100.56 MHz, CDCl₃) of compound 17.

Figure S15. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **9**.

Figure S16. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 9.

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **18**.

Figure S18. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 18.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **11**.

Figure S20. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 11.

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **19**.

Figure S22. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 19.

Figure S23. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 20.

Figure S24. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 20.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃) of compound **21**.

Figure S26. ¹³C NMR spectrum (100.56 MHz, CDCl₃) of compound 21.

Figure S27. ⁷⁷Se NMR spectrum (76.29 MHz, CDCl₃) of compound 22.

Figure S28. ⁷⁷Se NMR spectrum (76.29 MHz, CDCl₃) of compound 17.

Figure S29. ⁷⁷Se NMR spectrum (76.29 MHz, CDCl₃) of compound 18.

Figure S30. ⁷⁷Se NMR spectrum (76.29 MHz, CDCl₃) of compound 21.

Figure S31. ⁷⁷Se NMR spectrum (76.29 MHz, CDCl₃) of compound 20.

Figure S32. ESI-MS data of compound 8.

Figure S33. ESI-MS data of compound 9.

Figure S34. ESI-MS data of compound 11 [BocNH-Cys(DNB)-OMe]

Figure S35. ESI-MS data of compound 17.

Figure S36. ESI-MS data of compound 18.

Figure S37. ESI-MS data of compound 20.

References:

- (a) J. F. Bower, J. Švenda, A. J. Williams, J. P. H. Charmant, R. M. Lawrence, P. Szeto, and T. Gallagher, *Org. Lett.*, **2004**, *6*, 4727; (b) N.B. R. Baig, R. N. Chandrakala, V. S. Sudhir and S. Chandrasekaran, J. Org. Chem., **2010**, *75*, 2910; (c) V. S. Sudhir, N.Y. Phani Kumar, N. R. B. Baig and S. Chandrasekaran, J. Org. Chem., **2009**, *74*, 7588.
- (a) J. Roy, W. Gordon, I. L. Schwartz and R. Walter, *J. Org. Chem.*, **1970**, *35*, 510. (b) L. A. Pete Silks, III, *Phosphorus, Sulfur and Silicon*, **1998**, *136*, *137&138*, 611; (c) N. L. Brock, A. Nikolay and J. S. Dickschat, *Chem. Commun.*, **2014**, *50*, 5487.
- 3. (a) M. D. Gieselman, L. Xie, and W. A. van der Donk, *Org. Lett.*, **2001**, *3*, 1331. (b) Y. A. Lin, J. M. Chalker, and B. G. Davis, *J. Am. Chem. Soc.*, **2010**, *132*, 16805.