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Abstract

Metaphors allow us to convey emotion by

connecting physical experiences and abstract

concepts. The results of previous research

in linguistics and psychology suggest that

metaphorical phrases tend to be more emotion-

ally evocative than their literal counterparts. In

this paper, we investigate the relationship be-

tween metaphor and emotion within a com-

putational framework, by proposing the first

joint model of these phenomena. We experi-

ment with several multitask learning architec-

tures for this purpose, involving both hard and

soft parameter sharing. Our results demon-

strate that metaphor identification and emotion

prediction mutually benefit from joint learning

and our models advance the state of the art in

both of these tasks.

1 Introduction

Metaphors allow us to reason about abstract con-

cepts by linking them to our physical experiences

(Lakoff and Johnson, 1983). Metaphorical lan-

guage arises through systematic association be-

tween two distinct semantic domains — the source

and the target — as illustrated by the sentence

“The news leaked out despite the secrecy”, where

a term from the source domain of liquids is used

to describe information (the target domain). This

metaphorical association widely manifests itself in

language, e.g. we can similarly talk about “being

engulfed by a stream of bad news”. Metaphorical

associations allow us to project knowledge from

the source domain to the target, inviting new rea-

soning frameworks and connotations to emerge.

Much previous research on metaphorical lan-

guage in fields such as linguistics (Blanchette

et al., 2001; Kövecses, 2003), cognitive psychol-

ogy (Crawford, 2009; Thibodeau and Boroditsky,

2011) and neuroscience (Aziz-Zadeh and Dama-

sio, 2008; Jabbi et al., 2008) points to its prevalent

affective content. Linguistic expressions describ-

ing one’s emotional state have a relatively high

incidence of figurative language and metaphor in

particular (Fainsilber and Ortony, 1987; Fussell

and Moss, 1998; Gibbs Jr et al., 2002), as illus-

trated by the phrase “My mind was seething and

boiling”. On the other hand, a stronger emo-

tion appears to be conveyed through the associa-

tion of source and target domains more generally.

Mohammad et al. (2016) found that metaphori-

cal phrases are consistently perceived as carrying

more emotion than their literal paraphrases and the

literal uses of the same source domain words. For

instance, “leaking information” conveys an im-

plicit judgement, as compared to the more neu-

tral paraphrase “disclosing information”. Their re-

sults also suggest that the emotional content of the

metaphor is not due to the properties of individual

source and target domains, but rather arises com-

positionally through their interaction. These find-

ings are supported through a range of psycholin-

guistic studies: Citron and Goldberg (2014) find

taste metaphors to be more emotionally evocative

than their literal counterparts. Citron et al. (2016)

show that conventional metaphorical language in

short stories from various domains elicits more ac-

tivation in brain regions involved in emotional pro-

cessing, compared to literal language.

Computational modelling of metaphor (Shutova

et al., 2016; Rei et al., 2017; Gao et al., 2018) and

emotion (Wang et al., 2016; Zhang et al., 2018;

Wu et al., 2019) are tasks widely addressed in

natural language processing (NLP), with a range

of applications from machine translation (Fadaee

et al., 2018) to opinion mining (Yadollahi et al.,

2017). However, the two phenomena have been

typically modelled independently. Exceptions in-

clude the use of hand-engineered emotion fea-

tures when training a classifier for metaphor iden-

tification (Strzalkowski et al., 2014) and auto-
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matic identification of affect carried by metaphors

(Kozareva, 2013; Strzalkowski et al., 2014). How-

ever, none of this research has attempted to model

metaphor and emotion within a unified model of

semantic composition. In this paper, we present

the first joint model of metaphor and emotion,

trained to learn the patterns of their interaction via

flexible parameter sharing techniques offered by

multitask learning (MTL). Our model is composi-

tional, building meaning representations of words

and phrases in context. The intuition is that the

meaning of a word is not intrinsically metaphor-

ical or emotional, but both of these phenomena

may manifest when the word is used in a partic-

ular context.

Specifically, we train deep learning architec-

tures on metaphor identification and emotion pre-

diction tasks jointly. Metaphor identification is

performed at word level and sentence level, while

emotion prediction is modelled as a regression

task, predicting numerical scores for the valence,

arousal and dominance dimensions of emotion.

We experiment with MTL architectures employ-

ing both hard and soft parameter sharing methods.

Models employing hard parameter sharing jointly

encode the lower-level word representations using

layers shared among the tasks. The soft parameter

sharing methods have two task-specific networks

connected through linear units or gates.

Our models outperform existing approaches to

both metaphor identification and emotion predic-

tion tasks, advancing the state of the art in these

areas. Moreover, we show that jointly learning

both tasks within one model provides stable per-

formance improvements across architectures.

2 Related work

2.1 Computational models of metaphor

Early approaches to metaphor identification used

hand-engineered features and a trained classifier,

such as logistic regression (Dunn, 2013), ran-

dom forests (Tsvetkov et al., 2014), decision trees

(Mohler et al., 2013; Gargett and Barnden, 2015)

or support vector machines (Hovy et al., 2013;

Mohler et al., 2013). Examples of linguistic fea-

tures used are POS tags (Hovy et al., 2013), con-

creteness or imageability ratings (Turney et al.,

2011; Broadwell et al., 2013; Gargett and Barn-

den, 2015), ontological concepts (Dunn, 2013)

and WordNet super-senses (Hovy et al., 2013) and

synsets (Mohler et al., 2013). To become less re-

liant on hand-crafted features, corpus-driven ap-

proaches emerged, using sparse (Shutova et al.,

2010; Gutierrez et al., 2016) or dense word em-

beddings (Shutova et al., 2016; Bulat et al., 2017).

Recently, the use of deep neural networks for

metaphor identification has gained popularity. Rei

et al. (2017) presented a network designed to pre-

dict the metaphoricity of a word pair, by mod-

elling the words’ interaction using a gating func-

tion. Other approaches treated metaphor identifi-

cation as a sequence labelling task. Do Dinh and

Gurevych (2016) proposed a multi-layer percep-

tron acting on word embeddings. Do Dinh et al.

(2018) present a MTL approach combining multi-

ple metaphor identification tasks using two archi-

tectures: a hard parameter sharing recurrent net-

work and the recurrent Sluice network of Ruder

et al. (2019). During a recent shared task on

metaphor identification, various deep neural ar-

chitectures were presented (Leong et al., 2018),

among which were several hybrid approaches that

incorporated linguistic features in recurrent net-

works. Gao et al. (2018) presented the current

best-performing model for metaphor sequence la-

belling. They employed GloVe (Pennington et al.,

2014) and ELMo (Peters et al., 2018) embeddings

as input to a bidirectional LSTM (Bi-LSTM) fol-

lowed by a classification layer.

2.2 Computational models of emotion

The vast majority of NLP research on affective

language analysis has focused on the prediction of

emotion categories and sentiment analysis. Early

work on emotion prediction assumed categorical

models of emotion, such as Ekman’s model of six

emotions (Ekman, 1992) (anger, disgust, fear, joy,

sadness and surprise). A variety of computational

models have been proposed for emotion classifica-

tion, ranging from vector space models (Danisman

and Alpkocak, 2008), to machine learning classi-

fiers (Perikos and Hatzilygeroudis, 2016) and deep

learning architectures (Zhang et al., 2018).

Recently, multi-dimensional emotion analysis

has gained popularity: it represents emotion

through a more fine-grained and psychologically-

motivated model (Buechel and Hahn, 2017). We

employ the Valence-Arousal-Dominance (VAD)

model (Mehrabian, 1996) that describes affective

states relative to these emotional dimensions. Va-

lence represents the polarity, arousal the degree of

excitement, and dominance the perceived degree
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of control over a situation.

Existing methods for dimensional emotion anal-

ysis are either lexicon-based or use supervised

learning. Lexicon-based methods assume the

emotional value of a sentence to be a composi-

tion of per-word values. These values are ex-

tracted from an affect lexicon (Warriner et al.,

2013) and combined using their mean (Kim et al.,

2010), a weighted mean, or a Gaussian Mixture

Model (Paltoglou et al., 2013). Other approaches

train classifiers using n-gram and sentiment fea-

tures (Malandrakis et al., 2013; Buechel and Hahn,

2016), and deep learning models.

Wang et al. (2016) were among the first to

present a deep learning architecture for dimen-

sional emotion analysis using the VA model: they

proposed a convolutional network operating on re-

gions within the input, and a LSTM layer acting on

the region encodings. Wang et al. (2018) used the

VAD labelled corpus of Buechel and Hahn (2017),

but considered only valence, effectively reducing

the task to sentiment analysis. They present a deep

network of stacked Bi-LSTM layers with resid-

ual connections. Akhtar et al. (2018) performed

regression for all three dimensions using a con-

volutional and two recurrent networks combined

in an ensemble extended with hand-crafted fea-

tures. The emotion dimensions were considered

separately and in a MTL setup. Most recently, Wu

et al. (2019) proposed a variational auto-encoder

model including a recurrent module trained to per-

form emotion prediction. The model was trained

in a semi-supervised way, using only the labels of

40% of the training samples.

2.3 Metaphor and emotion

Existing work combining metaphor and emotion

either focuses on the inclusion of emotion fea-

tures in metaphor identification or on the auto-

matic identification of affect carried by metaphors.

Kozareva (2013) and Strzalkowski et al. (2014)

modelled the affect carried by metaphors and eval-

uate their approaches on a metaphor-rich corpus

containing data from four languages. Kozareva

(2013) performs polarity classification and va-

lence regression using the AdaBoost classifier and

support vector regression trained on information

from the sentence, its context, and source and tar-

get domain annotations. Strapparava and Mihal-

cea (2007) proposed an affect calculus to estimate

the affect expressed by a linguistic metaphor as

positive, negative, or neutral. The affect calculus

takes into account the metaphor target, the source

relation, the relation’s arguments and type, and the

prior affect of the target.

Gargett and Barnden (2015) considered

metaphor identification on nouns, verbs and

prepositions using hand-engineered features,

including lexicon-based VAD emotion features.

The emotion features proved most beneficial for

metaphor identification for nouns and verbs.

3 Tasks and datasets

VUA metaphor corpus The VUA metaphor

corpus1 (Steen, 2010) is a subset of the British

National Corpus (Leech, 1992) in which each

word is annotated as literally- or metaphorically-

used. The corpus contains over ten thousand

sentences, sampled from four genres: academic

writing, news, conversation and fiction. The re-

ported inter-annotator agreement is 0.84 in terms

of Fleiss’s κ. For comparability reasons, we use a

preprocessed variant of the corpus as provided by

Gao et al. (2018), who use 25% of the sentences

for testing. We perform metaphor identification at

word level, experimenting in a sequence labelling

paradigm.

LCC metaphor corpus The Language Com-

puter Corporation (LCC) metaphor dataset

(Mohler et al., 2016) is a metaphor-rich corpus

containing data in English, Farsi, Spanish and

Russian.2 We use the English portion of this

dataset that consists of data from the ClueWeb

corpus and the Debate Politics online forum. An-

notators rated the metaphoricity of sentences from

zero (i.e. literal) to three (i.e. clearly metaphori-

cal). Mohler et al. (2016) considered agreement

between annotators to be a difference of ≤ 1 (on

a range from 0 to 3). With this definition, the

inter-annotator agreement on metaphoricity is

92.8%.

We extract nine thousand samples from the

freely available portion of the dataset, average the

scores assigned by individual annotators and nor-

malise them to the scale from zero to one. We use

the data to perform sentence-level regression, em-

ploying ten-fold cross-validation using 70-10-20

splits for training, validating and testing, respec-

tively.

1Preprocessed variant available at: https://github.
com/gao-g/metaphor-in-context.

2Available upon request from Mohler et al. (2016).

https://github.com/gao-g/metaphor-in-context
https://github.com/gao-g/metaphor-in-context
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Sentence Val. Arous. Dom.

“Tell her I love her.” .94 .88 .83

Tell me, or I’ll kill – .35 .69 .83

What did you say? .50 .54 .50

This is torture. .14 .72 .27

Table 1: EmoBank examples with normalised scores,

illustrating the differences among the dimensions.

EmoBank corpus EmoBank,3 (Buechel and

Hahn, 2017) is one of the most recent corpora

developed based on the VAD model. EmoBank

contains ten thousand sentences from the man-

ually annotated sub-corpus of American English

(Ide et al., 2008) and the Affective Text corpus

(Strapparava and Mihalcea, 2007). The corpus

balances many genres: news headlines, blogs, es-

says, fiction, letters, newspapers and travel guides.

Each sentence is rated on a scale from one to five

for each dimension, from the perspective of the

writer and the reader. The inter-annotator agree-

ment rates are 0.61 and 0.63 in terms of Pearson’s

r for the two perspectives, respectively. We com-

bine the scores of readers and writers, normalised

to the scale from zero to one. We use EmoBank to

perform sentence-level regression for each of the

V, A, and D dimensions separately, using ten-fold

cross-validation with 70-10-20 splits for training,

validating and testing, respectively. Table 1 lists

examples exhibiting a range of VAD values.

Since we focus on the interaction of metaphor

and emotion, we pair up the word-level and

sentence-level metaphor tasks with the regression

tasks for each separate dimension of V, A, or D

one by one, in a MTL setup.

4 Methods

We construct a recurrent neural architecture op-

erating at two different levels. Based on the

VUA metaphor corpus, the model learns to de-

tect metaphor at word level in a sequence labelling

paradigm. When optimised on the LCC metaphor

corpus, the architecture is adapted to predict a

metaphoricity score at sentence level. For emo-

tion prediction, the architecture is the same as for

the sentence-level metaphor prediction task.

The system receives a tokenised sentence as in-

put and maps it to word embeddings, by concate-

nating representations from pre-trained GloVe and

3https://github.com/JULIELab/EmoBank.
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ELMo, GloVe Bi-LSTM Classification Output Cross-Stitch Unit Attention Gate

Figure 1: Overview of the MTL architectures. The pa-

rameters of the main and auxiliary task are indicated

through highlighting, where the metaphor detection

task is considered the main task in this setup. For com-

pactness, two of the three Bi-LSTM layers are shown.

ELMo models. Next, these embeddings are passed

through a Bi-LSTM, building task- and context-

dependent representations for each word. For to-

ken labelling, the hidden states from each direc-

tion are concatenated and passed through a feed-

forward layer, followed by a sigmoid activation.

We model metaphor detection as a binary task for

comparability to the literature. Gao et al. (2018)

use a similar model for metaphor detection at word

level, but employ a softmax activation.

For the sentence-level score prediction, the

concatenated Bi-LSTM hidden states are passed

through the attention function, which includes a

linear layer and softmax normalisation, in order

to construct a sentence representation. The result-

ing vector is passed through a feedforward layer,

then used to predict a sentence-level score with

sigmoid activation. Since we used a sigmoid ac-

https://github.com/JULIELab/EmoBank
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tivation function in the token labelling task, both

the metaphor and emotion tasks are structurally

very similar. We train for metaphor detection us-

ing the binary cross-entropy loss function and for

regression using the root mean squared error loss

function.

We also experiment with fine-tuning a pre-

trained BERT architecture (Devlin et al., 2019) for

each of the tasks. This validates that the perfor-

mance differences are due to the task interactions

and not specific to the recurrent architecture. The

inputs to this network consist of the BERT-specific

word and position embeddings. For the word-

level sequence labelling task, the outputs of the

last Transformer layer are fed to the classification

layer. For the sentence-level tasks, an additional

attention module is again used to construct sen-

tence representations. An alternative way of us-

ing BERT would be to provide contextualised em-

beddings. We do not consider this in the present

work but leave it as an area to be explored. BERT

performs labelling on subword units called Word-

Pieces; we consider a word metaphorical if any

of these subword units is labelled metaphorical.

This choice is motivated by the fact that although a

metaphorical prefix or suffix could result in an in-

correct metaphorical label, this is unlikely: what is

much more likely is that a common prefix or suf-

fix is not considered metaphorical while the main

piece is.

In the following sections we describe three dif-

ferent approaches to optimising these networks us-

ing MTL. We experiment with four setups: one

recurrent and one BERT hard parameter sharing

setup, one recurrent cross-stitch network and one

gated recurrent network. In the MTL setups, the

models are trained on two tasks at once, but we

distinguish between a main and auxiliary task by

down-weighting the loss of the auxiliary task to

allow the networks to specialise most in one di-

rection. For example, when seeking performance

improvements in the word-level metaphor identi-

fication task, metaphor identification is the main

task and emotion regression is the auxiliary task.

4.1 Hard parameter sharing

We customise the models to jointly perform

metaphor detection and emotion prediction. By

training the model to identify emotional states

in text, the system learns to recognise emotion-

related features which can be useful for the task

of metaphor detection. In addition, optimising for

two different but related tasks helps prevent the

model from overfitting to either of them.

Following established work on MTL (Caruana,

1993), we first experiment with hard parameter

sharing. In this setting, the architecture shares the

word embeddings and lower Bi-LSTM layers be-

tween the two tasks, as shown in Figure 1a. On top

of these shared components, each task has one sep-

arate Bi-LSTM layer, followed by a task-specific

output layer. For sentence scoring, the attention

function for constructing sentence representations

is also learned individually for every task. This

setup allows the model to learn shared feature de-

tectors in the lower layers, while top layers are still

able to learn task-specific features.

The hard parameter sharing setup using BERT

shares all of BERT’s Transformer layers among

the tasks, apart from the last layer to allow for spe-

cialisation. Furthermore, the output and attention

layers are task-specific as well.

4.2 Cross-stitch network

As an alternative to hard parameter sharing, soft

sharing provides parallel models with dedicated

parameters for each task, while also connecting

them together to allow for information transfer. In

the cross-stitch network, the soft sharing mech-

anism is a cross-stitch unit (Misra et al., 2016).

These units contain α-parameters which regulate

the information flow in each direction and are opti-

mised during training. We apply cross-stitch shar-

ing after each recurrent layer, computing the up-

dated hidden states as:

h̃A = αAAhA + αBAhB (1)

h̃B = αBBhB + αABhA (2)

where hA and hB are the concatenated Bi-LSTM

hidden states, from parallel networks for tasks A

and B, while h̃A and h̃B are the updated hidden

states. Note that the α-parameters are specific to

each layer. The α-parameters control the direc-

tions of information flow; for example, αAB scales

the information passed from network A to network

B. The cross-stitch network is shown in Figure 1b.

If both tasks operate at sentence level, an ad-

ditional cross-stitch sharing unit is placed after the

attention module. The α-parameters are initialised

with a bias towards favouring the information in

the same network, with αAA = αBB = 0.9 and

αAB = αBA = 0.1. These values are optimised
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during training but remain static during testing.

4.3 Gated network

The cross-stitch network learns a single set of

shared values for the α-parameters during optimi-

sation. As an alternative, we can construct a net-

work that calculates these values dynamically for

each input sentence, even at testing time. This al-

lows the model greater flexibility and modulates

the information flow depending on the particular

input sentence.

In this architecture, shown in Figure 1c, the

α-parameters are replaced with gates (Liu et al.,

2016). Each pair of parallel layers has two gates,

where one modulates the information flow from

the main to the auxiliary task, while the other con-

trols the information flow in the opposite direc-

tion. For two jointly learned sentence-level tasks,

two more gates are placed before the classification

layer, operating on the sentence representations.

Equations (3)-(6) detail the gating mechanisms:

gA = σ(WA[hA;hB] + bA) (3)

h̃A = (1− gA)⊙ hA + gA ⊙ hB (4)

gB = σ(WB[hA;hB] + bB) (5)

h̃B = (1− gB)⊙ hB + gB ⊙ hA (6)

where gA and gB are the gates for task A and B,

WA and WB are weight matrices, bA and bB are

bias vectors. The bias parameters of the gates are

initialised with a bias towards one task.

5 Experiments and results

5.1 Experimental setup

MTL training procedure We apply pairwise

joint learning, where at each step in the training

process one of the two tasks is selected at random

and a batch is sampled from that task. To distin-

guish main tasks from auxiliary tasks the loss of

the auxiliary task is down-weighted by a factor λ

such that it comprises 10% of the loss of the main

task. λ is initialised with 1

10
and computed dynam-

ically as training progresses.

Hyperparameters The input to the recurrent

network consists of concatenated ELMo and

GloVe embeddings, with 1, 024 and 300 dimen-

sions respectively. The recurrent encoder contains

three Bi-LSTM layers with a dimensionality of

200. The models are trained using a batch size of

64 for 2, 000 steps and the Adam optimiser with

initial learning rates of 4e−3, 1e−3 and 0.5e−3

Approach Metaphor Task

Word (F1) Sent. (r)

Gao et al. (2018) .726 -

LSTM (single task) .737 .544

Hard Sharing

+ Valence .740 .559

+ Arousal .740 .558

+ Dominance .743 .560

Cross-Stitch Network

+ Valence .741 .556

+ Arousal .740 .558

+ Dominance .743 .563

Gated Network

+ Valence .742 .561

+ Arousal .741 .558

+ Dominance .745 .560

BERT (single task) .763 .604

Hard Sharing

+ Valence .769 .614

+ Arousal .765 .610

+ Dominance .768 .614

Table 2: System performance for the word- and

sentence-level metaphor tasks using the F1-score and

Pearson’s r respectively. Statistically significant (p <

0.05) differences to the single task models are shown

in boldface.

for metaphor detection, metaphor regression and

emotion regression respectively. Models are se-

lected based on validation data.

We employ the pretrained BERT Base model,

whose inputs and hidden states have 768 dimen-

sions. The model contains 12 Transformer lay-

ers and is fine-tuned as described by Devlin et al.

(2019), using the Adam optimiser with an ini-

tial learning rate of 5e−5 and a batch size of 32.

BERT is fine-tuned for 3, 000 steps for the regres-

sion tasks and for 8, 000 steps for the word-level

metaphor detection task. The difference is com-

pensated for through down-scaling λ.

Significance testing We test for statistical sig-

nificance using the one-sided approximate ran-

domisation test (Edgington, 1969) for metaphor

detection, and Williams’s test (Williams, 1959) for

regression tasks. For Williams’s test we consider

the number of samples to be the number of unique

samples in the dataset. All performance measures

reported are averages from models initialised with

ten random seeds.
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Approach Emotion Task

Val. Arous. Dom.

Akhtar et al. (2018) .616 .355 .237

+ Val., Arous., Dom. .635 .375 .277

Wu et al. (2019)† .620 .508 .333

LSTM (single task) .728 .557 .373

Hard Sharing

+ Metaphor (Token) .734 .564 .384

+ Metaphor (Sent.) .734 .558 .388

Cross-Stitch Network

+ Metaphor (Token) .737 .564 .388

+ Metaphor (Sent.) .735 .558 .384

Gated Network

+ Metaphor (Token) .738 .563 .389

+ Metaphor (Sent.) .735 .560 .384

BERT (single task) .771 .565 .403

Hard Sharing

+ Metaphor (Token) .779 .572 .420

+ Metaphor (Sent.) .778 .570 .417

Table 3: System performance for emotion regression

tasks according to Pearson’s r. Statistically significant

(p < 0.05) differences to the single task model are

shown in boldface. †Used 40% of the gold labels.

5.2 Results

Table 2 presents the results for the two metaphor

tasks. The STL setup already provides improve-

ments over the current state of the art, but more-

over, we see further improvements when MTL is

introduced. Each MTL setup should be compared

to the corresponding STL setup, which involves

training the model on the metaphor task only. Re-

gardless of the MTL architecture, the auxiliary

task of dominance regression provides statistically

significant (p < 0.05) improvements over the STL

setup. Furthermore, valence regression provides

significant improvements as well in a select num-

ber of setups. The largest improvement is achieved

by replacing the recurrent encoder with BERT.

This indicates that the rich contextual informa-

tion learned by BERT in the pre-training phase is

highly relevant for metaphor identification. For

sentence-level metaphor regression, MTL setups

consistently improve upon STL setups, indicating

that the effect is not specific to the VUA metaphor

corpus. Our MTL models outperform the previous

state of the art in metaphor identification (F1 of

0.726 on the VUA corpus Gao et al. (2018)) with

both LSTM (F1 of 0.745) and BERT (F1 of 0.769)
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Figure 2: Illustration of the information flow in be-

tween the Bi-LSTM layers, for the dominance regres-

sion (B) and metaphor identification (A) tasks. Gate

saturation % is calculated by averaging across the hid-

den dimensionality for every word in the test set.

encoders. These results lend support to the hy-

pothesis on the interaction of metaphor and emo-

tion in semantic composition.

Table 3 presents the results for the emotion

regression tasks. Again, STL setups perform

strongly, and MTL architectures improve this

even further. While the valence and dominance

tasks consistently improve with the addition of

the metaphor task, the improvements achieved on

arousal regression are less stable. Once again, our

MTL models outperform the best-performing ex-

isting approaches to dimensional emotion mod-

elling (Akhtar et al., 2018; Wu et al., 2019), ad-

vancing the state of the art in this task. These re-

sults suggest that it may be beneficial to include

information about metaphor into emotion analysis

and, more broadly, sentiment analysis systems.

The differences between hard and soft param-

eter sharing manifest most with metaphor identi-

fication. This is possibly due to the explicit per-

word sharing mechanisms in the top layer. While

the bottom layers capture more general informa-

tion, the top layer captures task-specific informa-

tion. This can be seen through analysing the mod-

els’ behaviour: the gating mechanism is most se-

lective at the top layer and is the most active for

emotion-laden words. The cross-stitch units grad-

ually share less information from the bottom to the

top layer. This behaviour is illustrated in Figure 2.

6 Data analysis and discussion

Metaphor identification Most improvements in

word-level metaphor identification are achieved

by corrections from a literal prediction in STL

to metaphorical in MTL. To establish this fact,
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Auxiliary Task Sentence STL MTL Gold

Valence It is sad, and somewhat ominous, that so little of that L M M

should have been reflected in the sombre statement (. . . )

Arousal There is still endless dithering on how broad a safety net L M M

Britain will extend to its citizens.

Dominance In a bare, mud-walled cell, sitting on the floor, is Tepilit. L M M

Table 4: Examples of how MTL improves over STL on metaphor identification, with gold metaphors underlined

and corrections by MTL bolded. L refers to literal and M to metaphorical.

Main Task Sentence STL MTL Gold

Valence Scam lures victims with free puppy offer. .48 .41 .40

Valence (. . . ) looking at me like I was breaking her poor, sweet heart. .52 .42 .24

Arousal (. . . ) the authors depict her as bewitchingly beautiful. .51 .57 .61

Dominance In fact, I’ve never felt so out of place in all my life. .73 .54 .17

Dominance Frustration rises as North Korea nuclear talks stall. .46 .41 .30

Table 5: Examples of how MTL using metaphor identification improves over STL emotion prediction, with pre-

dicted metaphors underlined.

we pooled predictions on test data for ten mod-

els trained with different random seeds. The STL

outputs were compared to MTL outputs to deter-

mine whether corrections changed from literal to

metaphorical or the other way around. Examining

this set of corrected predictions gives us insight

into the behaviour of the MTL model.

While some improvements hold across all

emotion dimensions, others are unique to each.

Among the corrections unique to each dimension

we find multiple terms indicative of the dimen-

sion: for valence regression we find improvements

for attractiveness (wise, attractive) and averseness

indicators (severity, drain) and for arousal excite-

ment (flame, crisis) or calmness indicators (empty,

rest). Dominance corrects various terms related

to control (capable, courtesy) and submissiveness

(owe, puny). We selected the presented example

terms from the set of corrections described previ-

ously, and established the scores using the ANEW

lexicon (Warriner et al., 2013).

Table 4 illustrates model decisions corrected

through joint learning. Examples for valence and

arousal illustrate how emotion-laden words par-

ticipate in metaphors, such as “a sombre state-

ment” or “a safety net”. The example for domi-

nance illustrates that control indicators may seem

less related to emotion (e.g. bare), but carry affect

through the contexts in which they are embedded.

Overall, introducing emotion improves perfor-

mance of metaphor identification, as we expected.

Dominance appears to be most beneficial, while

arousal contributes the least. This might be due

to the fact that arousal (and to some extent va-

lence) predictions rely strongly on explicit senti-

ment markers in text. In contrast, dominance pre-

diction requires the model to learn richer semantic

representations. In our models, this manifests in

the sparseness of the attention distribution: mod-

els trained using arousal have the most sparse at-

tention patterns as measured through the Gini in-

dex sparsity measure (Hurley and Rickard, 2009),

while models trained using dominance have the

least sparse attention patterns.

Dominance regression is the most complex task

and yet the most beneficial performance-wise, de-

spite it sometimes being discarded by previous re-

search in favour of the VA emotion model. Several

studies argue for the inclusion of dominance in

emotion analysis (Stamps III, 2005; Bakker et al.,

2014). Bakker et al. (2014) emphasise that while

valence and arousal highlight the affective and

cognitive aspects of emotion, dominance is related

to environmental factors and social influences.

This relates to the role of metaphorical framing in

the social world, e.g. in politics. Metaphor allows

us to highlight certain aspects of a target domain

and mask others, encouraging specific inferences

(Lakoff, 1991; Entman, 1993). These in turn acti-

vate emotional considerations (Boeynaems et al.,
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2017), allowing the metaphor to steer the emo-

tions recalled and affecting the evaluation of the

argument made and persuasiveness of the speaker

(Marcus, 2000).

Emotion prediction Table 5 lists examples for

which including metaphor identification improved

performance on emotion regression. The exam-

ples for valence show that metaphor can be used

to describe an emotion (“to break one’s heart”)

explicitly or to convey an implicit judgement (e.g.

luring). For arousal, example improvements in-

clude applying excitement indicators to objects

or concepts, such as “being bewitchingly beauti-

ful”. Examples for dominance regression indicate

the importance of power; one has no control over

stalling or “feeling out of place”.

While joint learning improves the estimations

overall, it also introduces some new errors. Al-

though generally the presence of metaphor makes

phrases more emotionally evocative (Mohammad

et al., 2016), this does not always hold. Lexi-

calised metaphors – e.g. up in “grades going up”

– are no longer viewed as metaphorical by lay lan-

guage users and throw the models off. Other com-

mon errors introduced are related to misinterpret-

ing the perspective – e.g. confusing “to be knocked

out” and “to knock out” – and the direction in

which words contribute to emotion – e.g. negative

metaphorical terms can contribute to the positive

sentiment and vice versa, such as in “Stop cancer

with a shot”.

7 Conclusion

In this paper, we introduced the first compositional

deep learning model to jointly capture the phe-

nomena of metaphor and emotion. We considered

metaphor tasks at word and sentence level and

modelled emotion through the dimensional model

of valence, arousal and dominance. We experi-

mented with multiple MTL techniques, regulating

the information flow between the two tasks.

We demonstrated that the proposed methods ad-

vance the state of the art for the tasks of metaphor

identification and emotion regression. Both tasks

benefit from joint learning, with the emotion

dimension of dominance contributing most to

metaphor and benefiting most from metaphor. Our

results support the hypothesis on the interaction of

metaphor and emotion, and suggest that it may be

beneficial to incorporate a model of metaphor into

emotion- and sentiment-related NLP applications

in the future.
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