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Abstract

This paper develops a model of activity and trip scheduling that combines three elements that have to date mostly been
investigated in isolation: the duration of activities, the time-of-day preference for activity participation and the effect of
schedule delays on the valuation of activities. The model is an error component discrete choice model, describing individ-
uals’ choice between alternative workday activity patterns. The utility function is formulated in a flexible way, applying a
bell-shaped component to represent time-of-day preferences for activities. The model was tested using a 2001 data set from
the Netherlands. The estimation results suggest that time-of-day preferences and schedule delays associated with the work
activity are the most important factors influencing the scheduling of the work tour. Error components included in the
model suggest that there is considerable unobserved heterogeneity with respect to mode preferences and schedule delay.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Activity based modelling; Time allocation; Activity and trip timing

1. Introduction

The recent growth of interest in activity-based methods has focused particular attention on travellers’ deci-
sion-making process regarding the timing and duration of their participation in activities. Models of timing
and duration choice have direct application to a wide range of demand management policies and are at the
core of many recent activity based modelling systems. However, to date in the literature these two dimensions
of activity participation have been largely treated separately, despite the compelling observation that in gen-
eral, the benefit that an individual derives from participating in an activity will depend inter alia both upon the
time at which the activity is undertaken and the amount of time devoted to the activity. Moreover, since many
of the influences on the timing and duration of activity participation (such as the perceived quality of available
travel modes and activity opportunities and the intensity with which an individual undertakes activities) will
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vary by individual and context and some are inherently difficult to completely characterise via conventional
travel or time use data, it is likely that such decisions will be characterised by a significant degree of
heterogeneity.

This paper proposes a model for the simultaneous choice of the timing and duration of activities and travel
mode. The model is based on earlier work by the authors (Ashiru et al., 2004; Ettema et al., 2004), which for-
mulated the model of activity timing and duration as a discrete choice system. It extends the previous work in
two important aspects. First, it accommodates the influence of explicit schedule constraints, in the form of a
schedule delay concept, thus providing an important point of connection between the recent activity schedul-
ing literature and the earlier literature on trip re-scheduling. Second, it accounts for both observed and unob-
served heterogeneity in activity scheduling behaviour. Observed heterogeneity is accommodated through
explicit segmentation of model parameters according to socio-demographic characteristics whereas residual,
unobserved inter-personal heterogeneity is accommodated through allowing key parameters to vary randomly
across individuals.

The structure of the paper is as follows. Section 2 of the paper provides a brief review of the existing lit-
erature on activity timing and duration choice. Section 3 introduces the theoretical approach, which assumes
that the marginal utility derived from activities encompasses two distinct components; one derived from the
duration of activity involvement and the other derived from activity participation at a particular time-of-day,
possibly in relation to existing anchor points, such as the work start time. Section 4 discusses the data that
were used to test the model empirically. Section 5 describes the estimation methodology. Particular attention
is given to the use of advanced optimisation techniques needed to estimate the non-linear utility function
expressing individuals’ timing and duration preferences. Section 6 discusses the estimation results and the con-
clusions that can be drawn with respect to individuals’ decision making regarding timing and duration of
activities. The paper closes with some overall conclusions and a discussion of future research directions.

2. Relevant literature

According to activity based travel theory (Ettema and Timmermans, 1997), trips can be regarded as a nec-
essary means to connect spatially remote activities that will logically precede or follow these activities. This
implies that the timing of trips not only depends on trip characteristics that vary by time-of-day (such as travel
time and delays) but also on preferences with respect to the timing and duration of activities. Consequently,
when modelling trip-timing decisions, these should be regarded in the context of the activity-scheduling pro-
cess (e.g. Ettema and Timmermans, 2003).

With respect to modelling the timing and duration of activities, various approaches have been taken within
the activity-based framework. Focusing on timing decisions, a first group of models (Bowman and Ben-Akiva,
1998; Arentze and Timmermans, 2005), although applying widely different decision-making mechanisms, have
essentially treated the timing of activities as being a choice between a limited number of discrete time intervals.
For instance, Bowman and Ben-Akiva (1998) conceptualise the timing of activities as the choice between the
morning, afternoon or evening. Models of this type are based on the assumption that for particular activities,
certain periods of the day are more attractive, resulting in higher utilities. A limitation of this approach is that
only a limited number of broad periods are assumed, and that the exact timing of activities is not directly mod-
elled. In addition, it is assumed that utility is gained from the execution of activities as a whole, thereby ignor-
ing the variation in the utility gained during the execution. This may be a suitable approach for shorter
activities, but in case of activities with a long duration, such as work, it is desirable to allow for variation
in the attractiveness of the activity during its execution. This is especially the case if one is interested in for
instance responses of travellers to congestion which involve retiming of the commute trip, resulting in retiming
of the work activity.

To account for variations in the duration of activities, several authors (e.g. Ettema et al., 1995; Bhat, 1996)
have proposed the use of hazard based duration models. Hazard models treat duration as a continuous var-
iable and describe the probability of exiting an activity conditional on the time already spent in the activity.
The hazard rate is typically affected by a series of socio-economic variables. A drawback of hazard modelling,
however, is that it provides only a statistical approach to modelling distributions of durations, which lacks an
underlying behavioural theory. In response to this shortcoming, various approaches have described the sched-
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uling of activities in continuous time, using a utility based framework. The central idea of these approaches is
that for each time-of-day t, there exists a marginal utility (which may vary over time), expressing the utility
gained from one time unit of activity participation. The idea of a time of day specific marginal utility (or utility
rate) was first introduced in the context of activity scheduling by Polak and Jones (1994), building on the work
of Winston (1982). The idea was refined further by Ettema and Timmermans (2003), who proposed specific
functional forms for the utility rate functions.

Although the Polak–Jones–Ettema–Timmermans (henceforth, PJET) models provide a flexible approach to
modelling activity-timing decisions; two problems need to be addressed. The first problem is the neglect of the
duration component within their marginal utility formulations. Many activities are likely to be subject to fati-
gue or satiation effects, implying that the utility derived from one time unit of activity participation diminishes
with increasing duration. The basic PJET models in contrast, assume that one unit of activity engagement at
time-of-day t will always yield the same utility, irrespective of the duration of activity engagement.

A way to account for satiation effects is offered by time allocation models, which are based on the seminal
work of Becker (1965), who treated time as a finite resource, which can be allocated to activities, resulting in a
certain level of utility. Time allocation is in this view regarded as an optimisation problem under the restriction
of a fixed amount of resources (time). The duration of activities is then determined by the allocation of time to
activities such that the overall utility is maximised. Becker’s model was elaborated by, amongst others, Evans
(1971) and DeSerpa (1971) in order to account for the consumption of goods given consumption rates, prices
and the available monetary budget. Other extensions of this approach include the modelling of time allocation
on the household level (Zhang et al., 2002) and the specification and testing of advanced time-dependent utility
functions (Joh et al., 2003). If the utility derived from an activity is defined as a log-function of the time spent
on an activity, the time allocation model can be formulated as a system to be estimated using for instance
seemingly unrelated regressions (Kitamura, 1984; Bhat and Misra, 1999). An important property of this type
of formulation is that the marginal utility of activities decreases with their duration, representing the onset of
activity fatigue. Although the Becker-type models are able to describe how individuals maximise utility by
allocating time to activities, they do not take into account the preferences that individuals have with respect
to the timing of activities. Recently, Ashiru et al. (2004) and Ettema et al. (2004) have formulated and empir-
ically tested models that combine the time-of-day dependent marginal utility function of the PJET-models and
the duration dependent Becker-type models.

A second problem of the JPET formulation is the assumption that the timing of activities is purely based on
continuous marginal utility functions associated with activities. This assumption overlooks the fact that the
timing of many activities is partially determined by constraints such as work or school arrangements and
opening hours of stores and facilities (Hägerstrand, 1970). Such constraints may lead to discontinuities in
the marginal utility function relative to anchor points such as work start time or the opening and closing time
of facilities.

An approach explicitly accounting for such discontinuities is the schedule delay approach (Small, 1982).
This approach focuses especially on the desired start time of activities. It is typically assumed that associated
with each activity there is a preferred start time. Likewise, the trip to this activity has some preferred arrival
time (PAT). Deviations from the preferred arrival time (schedule delays) result in a negative utility. In Small’s
model trip utility is not only a function of travel time t, but also of schedule delay:

V t ¼ at þ c1SDEþ c2SDL ð1Þ

where SDE is an early schedule delay, defined as max((PAT � ta), 0); SDL is a late schedule delay, defined as
max((ta � PAT),0); and ta is the actual arrival time.

This formulation implies that there is overlap between the schedule delay approach and the JPET models.
In particular, the SDL-parameter can be interpreted as the (constant) marginal utility of the activity to start
after arrival, since each time unit the activity starts later results in a loss of utility of c2. Likewise, the SDE-
parameter can be interpreted as being associated with the duration of the activity preceding the trip in a sim-
ilar way, since arriving too early goes at the cost of the activity at the trip origin. On the other hand, there are
also differences between the approaches. For instance, the schedule delay approach does not explicitly include
any valuation of utility of activity participation. In addition, the valuation of an activity that starts before the
preferred arrival time is not directly addressed.
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From a conceptual point of view, one can argue that the JPET models assume that activities can be sched-
uled at any time, independent of timing constraints. This scheduling process is then based on some intrinsic
time-of-day dependent utility. In reality, however, the timing of most activities is at least to some extent guided
by constraints, even if applying to other activities. For instance, the timing of an activity such as ‘‘taking a
walk’’ which can principally take place any time, will be determined by obligations to spend time on work
and household obligations, limiting the available time window. In empirical studies, it may therefore be dif-
ficult to properly disentangle the pure time-of-day preference and the impact of constraints when estimating
the marginal utility functions. The schedule delay approach, on the other hand, is much more focused on the
direct effect of scheduling constraints on the timing of activities and trips.

Schedule delay models have mostly been applied to model trip departure time choice in the context of single
activities, such as work. Occasionally, the schedule delay approach has been applied to model the choice
between activity patterns, combining schedule delay of the work trip with duration effects of work and other
activities (Hess et al., 2007). A limitation, however, is that the schedule delay approach assumes the existence
of some anchor point representing the optimal point in time to arrive or start an activity. This may work well
for activities such as work, which are relatively fixed in time, but is more cumbersome for e.g. leisure activities.

From the above, one can conclude that three sources may be identified that influence the timing and dura-
tion of activities and thereby the emergence of activity patterns:

• ‘intrinsic’ time-of-day preferences, represented by continuous marginal utility functions (Ettema, 2005;
Polak and Jones, 1994);

• satiation effects, stemming from diminishing marginal returns, as described in the Becker-type time alloca-
tion models (Kitamura, 1984; Bhat and Misra, 1999);

• scheduling constraints of the Hägerstrand type as described by the schedule delay approach (Small, 1982).

In most modelling studies to date, these sources of scheduling utility have been treated in isolation. An
exception is Ettema et al. (2004), who combine time-of-day and duration dependent utility in one frame-
work. Another notable exception is Vovsha and Bradley (2004), who also combine duration and time-of-
day dependent utility in their model. In particular, they assume that the utility of a tour consists of utility
components related to the start time of the tour, the duration of the tour and the arrival time home of the
tour. In each of these components, utility is described as a linear function of clock time or duration, by using
continuous shift variables, in which socio-demographic characteristics interact with time. Timing constraints
are explicitly dealt with by excluding certain time intervals from the set of feasible times. In terms of the
above classification of scheduling utility components, the tour duration is related to the satiation effect,
whereas the tour departure and arrival time preferences may be conceptually linked to both intrinsic time
of day preferences and scheduling constraints. A particularly strong point of the Vovsha and Bradley
approach is that it can be estimated in a straightforward way using conventional activity-trip diaries. The
framework proposed in this paper is related to the Vovsha and Bradley’s approach in that it assumes that
the utility of a daily work tour consists of various utility components based on duration and time-of-day.
However, our approach is based on a different specification of utility components, which is in line with
the three sources of utility (time-of-day, satiation, scheduling constraints) outlined before. This implies
the following characteristics:

1. Instead of utility being a linear function of duration, we account for a satiation effect, by using a marginal
utility function which decreases with duration.

2. To represent intrinsic time-of-day preferences we use a highly flexible, non-linear utility specification.
3. We explicitly include interactions between activities in the duration dependent utility component to repre-

sent trade-offs in time allocation between different parts of the day.

Thus, the framework outlined in this paper extends the models recently developed by Ashiru et al. (2004)
and Ettema et al. (2004), including both time-of-day dependent components and duration dependent compo-
nents, with a schedule delay component. The resulting model is tested in the context of the combined choice of
work tour and mode under a road-pricing regime. In specifying and testing the model, particular attention is
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given to incorporating both observed and unobserved heterogeneity, by including socio-demographic factors
and error components.

3. Theoretical framework

3.1. Theoretical model

Our theoretical model follows some basic assumptions put forward by a number of other authors, namely
that:

1. Individuals derive a certain utility from allocating time to activities (Becker, 1965; Yamamoto and Kitam-
ura, 1999) and this utility depends both on the amount of time allocated and the time of day at which par-
ticipation in the activity takes place (Ettema et al., 2004).

2. Individuals derive a certain (dis)utility from the time spent travelling (Ben-Akiva and Lerman, 1985).
3. Individuals aim at optimising the utility of their overall activity pattern, being the sum of the individual

activity and trip utilities (Becker, 1965; Jara-Diaz, 1998a,b; Meloni et al., 2004).

Mathematically speaking, we assume that individuals maximise their utility by solving:

max V ¼ maxðV T þ V AÞ ð2Þ

where VT is the total utility derived from trips and VA the total utility derived from activity participation. This
specification is in line with Vovsha and Bradley in that the overall utility of a tour or utility pattern is com-
posed of activity and trip utilities. These utilities are the sums of the utilities of individual trips and activities:

V T ¼
X

m

V T
m ð3Þ

V A ¼
X

n

V A
n ð4Þ

Since our study focuses on timing and duration effects associated with activities, the utility of each individual
trip m is defined as a relatively simple function of travel time (Rm(sm)) and travel cost (Cm(sm)) associated with
trip T made at start time sm. In addition, a constant Dl

m is included to represent the constant utility of a trip
made by mode l:

V T
mðsmÞ ¼ Dl

m þ mRmðsmÞ þ lCmðsmÞ ð5Þ

where l and m are the travel time and cost parameter, respectively. It is noted that additional trip character-
istics can be added without materially changing the approach. Scheduling costs, which represent the disutility
of the diversion of some preferred arrival time for the trip, are not included in the utility of trips. Instead, these
are represented in the utilities of activities through the implications for activity duration and timing. It is also
noted that socio-demographics are included as adjustments to a specific parameter as follows:

bp ¼ b0 þ
X

J

j¼1

bjdj

" #

ð6Þ

where bp is the parameter for a person with socio-demographics defined by a J-dimensional vector p, contain-
ing dummy-variables; b0 is the base value of the parameter; bj is the adjustment for the jth dummy variable;
and dj takes value 1 if the jth element of p is unity and zero otherwise. The utility derived from an activity
depends, as noted before, on three distinct elements:

• the time-of-day at which an activity is performed. In this respect we assume that there is some intrinsic pref-
erence for the time-of-day at which certain activities are undertaken;

• the duration of the activity, assuming that with increasing duration fatigue effects will come into play,
resulting in a diminishing utility with increasing duration;
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• the start time of the activity, relative to some reference point. In this respect, we assume that specific con-
straints, such as work hours and store-opening hours, directly affect the timing of activities.

With respect to timing and duration, the above implies for instance that the first minute spent on an activity
may be valued differently than the 10th or 50th minute, but the 10th minute may be valued differently when
engaged in at 7.00 AM or 2.00 PM. In addition, the start time of the activity will have an effect on the utility,
which is, however, independent of the duration of the activity. To capture these effects, we define the utility
V A

n , derived from engagement in activity n as:

V A
n ¼ f ðV H

n ðtn; snÞ; V
D
n ðtnÞ; V

S
nðsn; s

�
nÞÞ ð7Þ

where V H
n is the time-of-day dependent utility, depending on start time sn and duration tn; V

D
n is the duration

component, depending on duration tn; V
S
n is the schedule delay component depending on the preferred activity

start time and the actual start time sn.
Focusing first on the three separate components, the time-of-day component is specified as the baseline util-

ity profile, specifying the user benefit of being involved in an activity at a particular time of day. The time-of-
day dependent utility is best understood in terms of the marginal utility V 0H

n ðsÞ specifying the amount of utility
gained from participation during one time unit at time of day s. The assumption underlying our framework is
that individuals have a preferred time-of-day for engagement in an activity, at which time the marginal utility
is maximal. Engagement before of after this time then leads to a gradually lower marginal utility. A bell
shaped marginal utility function meets these specifications. Ettema et al. (2004) tested various bell shaped
functions empirically and found a symmetrical Cauchy distribution to be an efficient function to describe
time-of-day dependent utility:

V 0H
n ðsÞ ¼

1

cnp
s�bn
cn

� �2

þ 1

� � � V max;n ð8Þ

In this function, bn defines the optimum location, that is where the utility is a maximum, cn defines the width of
the curve (which is symmetrical), which gives the time period in which an acceptable level of utility is gained,
and finally Vmax,n scales the Cauchy distribution (see Ettema et al., 2004 for examples of the effects of the
parameters on the utility shape). The essence of the marginal utility component V 0H

n is to express that the utility
derived from activity engagement intrinsically depends on the time-of-day. In this case we have assumed a
bell-shaped curve to represent the time-of-day dependent utility, implying that the high marginal utility is
concentrated in one period. Without materially changing the approach, however, alternative functions may
be specified, implying for instance multiple periods with a high marginal utility. Socio-demographic variables
can principally affect the time-of-day dependent utility through Vmax,n, bn or cn in the same way as indicated in
Eq. (6).

Given the marginal utility function V 0H
n ðtÞ, the utility gained from activity n can be determined by integra-

tion if the start time sn and duration tn are known:

V H
n ðsn; tnÞ ¼

V max;n

p

arctan
sn þ tn � bn

cn

� �

� arctan
sn � bn

cn

� �� �

ð9Þ

With respect to the duration dependent utility V D
n , we assume that the utility follows a logarithmic function, as

proposed for example by Yamamoto et al. (2000) and Bhat and Misra (1999):

V D
n ðtnÞ ¼ gn lnðtnÞ ð10Þ

This results in the following marginal utility:

V 0D
n ðtnÞ ¼

gn
tn

ð11Þ

An important implication of this function is that marginal utility decreases with increasing duration, repre-
senting a satiation effect, which is intuitively plausible. Socio-demographics can affect the duration dependent
utility by modifying the constant g, as specified in Eq. (6). It is noted that Eq. (11) in combination with the
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additive formulation of Eq. (4) implies that the utilities of different activities are independent of each other.
That is to say, the utility derived from n minutes of participation in activity A is independent of the time spent
in activity B. There are, however, instances in which time spent on one activity is valued higher if more time is
spent on another activity. For instance, time spent on recreation activities may give a higher utility if more
time is spent on working on a given day. To allow for such interactions, we extend the utility function (11) to:

V D
n ðtn; tmÞ ¼ gn lnðtnÞ þ gnm lnðtnÞ lnðtmÞ ð12Þ

In this formulation gnm represents a parameter indicating the degree to which two activities complement or
substitute each other. A positive parameter would indicate that two activities complement each other, whereas
a negative sign would point at substitution between activities.

Finally, we define the schedule delay dependent utility of an activity n as:

V S
n ¼ cenSDEn þ clnSDLn ð13Þ

where SDE and SDL are the early and late schedule delay, respectively, defined as (see Hess et al., 2007):

SDEn ¼ maxð0; ðs�n � snÞÞ

SDLn ¼ maxð0; ðsn � s�nÞÞ
ð14Þ

where s�n is the preferred start time of the activity. Having specified the components V D
n ; V H

n and V S
n , the total

utility derived from an activity, V A
n , is specified as a function of the respective parts. It is recognised that the

components can be combined in different functional specifications (additive, multiplicative, logarithmic or
combinations of these). Since this paper constitutes a first exploration of these utility components, we have
chosen to use the most straightforward additive function:

V A
n ðtn; sn; s

�
nÞ ¼ V H

n ðtn; snÞ þ V D
n ðtnÞ þ V S

nðsn; s
�
nÞ ð15Þ

Because the components V D
n and V H

n are scaled by gn and Vmax,n, respectively, it is not necessary to add
weights to each component. The utility of activity n is thus defined by:

V A
n ðsn; tn; s

�
nÞ ¼

1

p

arctan
sn þ tn � bn

cn

� �

� arctan
sn � bn

cn

� �� �� �

V max;n þ gn lnðtnÞ þ cenSDEn þ clnSDLn

ð16Þ

3.2. Operational model

The operational model is applied to a home-based work tour and is defined in the current study as follows.
Following the approach of Polak and Jones (1994), we assume that travellers choose the departure time of
trips from home to work and from work back to the home. This effectively divides the day into three periods
(pre-work, work, and after-work), which we regard as single activities of which the utility is defined by Eq.
(16). It is recognised that regarding the daily activity schedule effectively as consisting of three activities is a
strong simplification, which is likely to have an effect on the outcomes. In particular, regarding the pre-work
and after-work period as single composite activities disregards the differences that exist between the individual
activities included in these categories in terms of timing and duration preferences. This implies that the various
utility functions derived for the pre-work and after-work period represent some average that may not hold for
any of the individual activities, suggesting that much heterogeneity is associated with differences between
activities will be missed. Nevertheless, we believe that the approach suffices to illustrate the interplay between
timing, duration and schedule delay considerations, especially in the scheduling of daily work arrangements.
Deriving utility specifications for a wider spectrum of activities is regarded as an important objective for future
work in this area. The above implies that the total utility of a commuters’ activity pattern i can be formulated
as:

V i ¼ V T
1 þ V T

2 þ V A
1 þ V A

2 þ V A
3 þ ei ð17Þ
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with V T
n as defined in Eq. (5) and V A

n as defined in Eq. (16). In this respect, early and late schedule delays are
defined relative to the current work start time or start time of the after work activity, which is assumed to be
the preferred start time. It is recognised that the current work start time is not necessarily the preferred start
time. However, the fact that the variations in work start time in the stated preference survey were large (up to
2 h) makes this assumption defendable. In addition, formulations were tested allowing for interactions
between the durations of activities (see Eq. (12)), such that the total utility gained from activity duration is
expressed as:

V Dðtprework; twork; tafterworkÞ ¼ gpre-work lnðtpre-workÞ þ gwork lnðtworkÞ þ gafter-work lnðtafter-workÞ

þ gprework�work lnðtpre-workÞ lnðtworkÞ þ gpre�afterwork lnðtpreÞ lnðtafterworkÞ

þ gwork�afterwork lnðtafterworkÞ lnðtworkÞ ð18Þ

In the current study we will assume that an individual chooses between a limited number (say N) of feasible
activity patterns [P1, . . .,PN] characterised by total utilities [V1, . . .,VN]. It is assumed that the choices made in
the SP experiment reflect the preferences for certain time allocation patterns. In particular, the chosen alter-
native may be considered to be the closest match to an individual’s unconstrained allocation outcome. There-
fore, the discrete choice data can be used to disentangle the marginal utility functions that guide time
allocation on a continuous scale. Assuming a Gumbel distribution for ei in Eq. (17) leads to a multinomial
logit model as the base specification.

Thus, it is assumed that discrete choice theory provides an adequate framework to model the choice of
activity patterns. As noted previously, our model can account for heterogeneity associated with socio-demo-
graphic characteristics. However, heterogeneity in preferences may also arise from unobservable sources, such
as taste variations. Especially when various types of utilities are combined which may interact and partly over-
lap, as in this study, it is expected that significant variation between individuals will exist with respect to their
valuation of various timing and duration aspects and their interactions. Accounting for such variations is
deemed crucial in this study. Such variations can be accounted for by more flexible formulations of the tra-
ditional discrete choice models (Train, 2003; Hensher and Greene, 2003) in which error components are
included in the utility function. In particular, in this study, we assume that the evaluation of a certain utility
component may vary from person to person, leading to addition of a random parameter, following a normal
distribution with zero mean and unknown standard deviation. A complication in this case is that we work with
stated preference data, in which multiple observations per person are available. In order to take account of
correlations between choices that are expressed by the same individual, we assume here that the error compo-
nent terms only vary from individual to individual. Taking the schedule delay formulation as an example this
is expressed as:

US
n;ir ¼ ðcen þ fen;iÞSDEn þ ðcln þ fln;iÞSDLn ð19Þ

where US
n;ir is the schedule delay utility of activity n experienced by individual i in replication r. In this formu-

lation, fen;i is an error component with mean zero and some standard deviation re
n;i to estimate. In the current

study, error components will mainly be used to test for the heterogeneity in the evaluation of attributes. That
is to say error components can in principle be added to any parameter bn, cn, Vmax,n, gn, c

e
n or cln in Eq. (16).

We will in addition use an error component term associated to sets of modes, in order to take a possible nest
structure into account.

4. Stated preference data

The model proposed in Section 2 was empirically tested using a stated preference data set, collected on var-
ious sites in The Netherlands in 2001 as part of a project to assess commuters’ potential responses to various
road user-charging schemes. Respondents were recruited by means of detailed screening and quota control
criteria in which drivers undertaking work, employers business, shopping and social and leisure tours were
selected.

The stated preference experiments involved respondents being offered realistic choices between alternative
tour patterns. In order to avoid highly unattractive or highly unrealistic SP alternatives, these alternatives were

834 D. Ettema et al. / Transportation Research Part A 41 (2007) 827–841



developed based on the characteristics of the individual’s current tour, which could include any type of activ-
ity. For the present study, however, only work tours were used.

During the SP experiment respondents were provided with (a) re-timing options involving shifts earlier or
later relative to the most temporally constrained activity (work); (b) activity duration options; (c) total two-
way travel time options; and (d) total road price charge options. In the survey, a public transport tour, similar
to the most attractive existing PT tour, was offered as an alternative for the road pricing options. Thus, each
respondent was offered four basic alternatives:

1. A car tour with departure times around the current departure times.
2. A car tour with departure times earlier than the current departure times.
3. A car tour with departure times later than the current departure times.
4. A public transport tour.

Each alternative was presented in terms of:

1. Departure time of the commute trip.
2. Duration of the outbound and return commute trip.
3. Work start time and work duration.
4. Departure time of return trip.
5. Duration of return trip.

Each respondent was presented eight choice sets.
The data set provides data regarding the relevant choice dimensions incorporated in the model: activity tim-

ing and duration, trip duration and mode choice and is therefore suitable to test the model. To define the pre-
work and post-work period in terms of their duration, it was decided to end the after-work period and start
the pre-work at midnight. The underlying motivation is that it in this way the after-work activity includes the
evening activities, while the pre-work activity includes sleeping and the activities before work, such as personal
care and breakfast. To evaluate the model, data for respondents who indicated that their current tour was a
work trip were selected, as the resulting home-based tour is considered most likely to represent a daily activity
pattern. After tests for data consistency and completeness, this resulted in some 1,382 observed choices, deliv-
ered by 188 individuals. For each subject, a limited number of socio-demographics were available, along with
information regarding their working arrangements.

Stated preference data were used to test the modelling framework since it has some important advantages
over revealed preference data for our purpose. Most importantly, it allows us to estimate utility specifications
based on trade-offs between different alternative activity schedules in which factors such as timing, duration
and schedule delay are varied systematically. Using revealed preference data would provide us with detailed
observed activity patterns, but not with alternative activity patterns that are needed to derive the model
parameters in a discrete choice framework. It is recognised that the current stated preference data implies a
serious simplification in that daily activity schedules are reduced to three activity types. However, since our
objective is to demonstrate the principles of our approach, we feel that the use of these data are appropriate.
Further work is needed to develop stated preference procedures that allow for estimating utility components
for much more detailed activity classes. More advanced stated preference approaches could include a wider
range of activity classes, varying numbers of activities and different activity sequences. Based on such data,
more specific utility functions can be estimated, which can be applied to real life settings with greater validity
than the current demonstration. As for any model including the concept of schedule delays based on preferred
arrival times, such an application would require that data are collected regarding arrival preferences in such a
way that it can be generalised to the population as a whole.

5. Estimation procedure

Estimating the model outlined previously involves finding the parameters that maximise the goodness-of-fit
of the logit model. Following Ben-Akiva and Lerman (1985) the log-likelihood function is formulated as:
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LLðhÞ ¼
1

I

X

I

i¼1

X

n

y in log P
i
n ð20Þ

where P i
n is the probability that individual i chooses activity pattern n; yin is a dummy variable indicating

whether individual i chooses alternative n; and I is the population size.
The parameters h are then computed by solving:

max
h

/ðhÞ ¼ LLðhÞ ð21Þ

The highly non-convex character of the log-likelihood function (20), caused by the non-linear utility specifi-
cation, leads us to consider nonlinear programming approaches, especially trust-region methods. The main
idea of a trust-region algorithm involves the calculation, at iteration k (with current estimate hk), of a trial
point hk + sk by approximately maximising a model mk of the objective function inside a trust region defined
as

Bk ¼ fh such that kh� hkk 6 Dkg; ð22Þ

where Dk is called the trust-region radius. We can for instance use a quadratic model:

mkðsÞ ¼ LLðhkÞ þ sTrhLLðhkÞ þ
1

2
sTH ks; ð23Þ

where Hk is a symmetric approximation of the Hessian r2
hhLLðhkÞ. The predicted and actual increases in the

value of the objective function are then compared by computing the ratio:

qk ¼
LLðhk þ skÞ � LLðhkÞ

mðhk þ skÞ � mðhkÞ
: ð24Þ

If this ratio is greater than a certain threshold, set to 0.01 in our tests, the trial point becomes the new iterate,
and the trust-region radius is (possibly) enlarged. More precisely, if qk is greater than 0.75, we set the trust-
region to be the maximum between Dk and 2sk, otherwise we set Dk = 0.5Dk. If the ratio is below the bound,
the trial point is rejected and the trust region is shrunk by a factor of 2, in order to improve the correspondence
of the model with the true objective function. We have followed Conn et al. (2000) in our choice of the
parameters.

We additionally constrain the parameters Vmax,n end cn of the marginal utility (8) to be strictly positive,
since its integral (10) is discontinuous at cn equal to zero. Moreover we assume that V H

n is positive, so Vmax,n

and cn must be of the same sign. Note, however, that if Vmax,n or cn converges to zero, both corresponding time
of day marginal utility and its integral vanish. Therefore, if some of the non-negativity constraints are active at
the solution, the associated time of components do not add useful information to the model, and can be
excluded from it. The resulting model is then unconstrained, and can be estimated using standard nonlinear
programming techniques.

In order to estimate the error component parameters, we have used 1024 randomised Sobol draws (Owen,
1998) per individual for each error component. Experimentations with increasing numbers of draws suggest
that stable results are obtained with this number of draws.

6. Empirical results

Using the above algorithm, the model according to Eqs. (16) and (17) was estimated. While this slightly
differs from the specification given in Eq. (17), alternative specific constants were added to the early and late
car trip alternatives, as well as to the public transport alternative, since this significantly increased the good-
ness-of-fit of the models. It is recognised that adding alternative specific constants for time-of-day is undesir-
able in a model of activity timing and scheduling, which is based on a continuous time representation. In the
non-error component logit models, adding alternative specific constants added very significantly to the good-
ness-of-fit of the models. In the error component specifications, however, it is found that the time-of-day con-
stants are no longer significant. This suggests that the error component logit models provide a better base for
developing models of activity timing and duration. In addition, schedule delays are included only for the work

836 D. Ettema et al. / Transportation Research Part A 41 (2007) 827–841



activity in the final specifications. In the estimation process we tested specifications with schedule delays apply-
ing to the after-work activity but we did not find significant effects of these. A potential reason is that the after-
work activity basically includes a wide variety of activities, some of which are tied to specific constraints while
others can freely be scheduled. The effect of schedule delays may therefore differ widely between individual
settings.

Based on an initial MNL formulation various models were estimated (Table 1). Model 1 is a base formula-
tion, which only includes alternative specific constants and duration dependent utility components. Model 2 is
an extended model, including also schedule delay and time-of-day dependent components. Model 3 is a model
specification, which also includes error components for schedule delay parameters and the public transport con-
stant. Model 4, finally, includes interactions between the duration-based utilities of different activities as well as
error components. Various alternative specifications of Eq. (19) were tested, allowing for different interactions.
The specification with all three interactions was found to perform best and is presented here. From the good-
ness-of-fit measures it is concluded that including time-of-day and schedule delay components results in a sig-
nificant improvement as also indicated by a likelihood ratio test (Table 2). This finding suggests that when

Table 1

Estimation results of models of activity pattern choice

Model 1 Model 2 Model 3 Model 4

Alternative specific constants

Dcar,early �1.08*** �0.46*** 0.20 0.15

Dcar,late �2.44*** �0.74*** �0.43 �0.45

Dpublic transport �2.03*** �2.25*** �5.51*** �5.59***

Duration dependence utility parameters

gpre-work 1.99** 6.70*** 6.79*

gwork 1.26** 0.58 -0.03

gpost-work 0.81 �0.37 �1.69

gpre-work*work 0.85**

gpre-work*post-work 0.61

gwork*post-work �0.86**

gpost-work,male 0.46 1.40** 2.59*** 2.63**

gpre-work,high-educ 1.04* 3.80** 0.40 2.43

Schedule delay parameters

cework (early schedule delay) �0.0141*** �0.067*** �0.064***

clwork (late schedule delay) �0.0093** �0.031*** �0.032***

Time-of-day dependent utility parameters

bwork (time-of-day with highest utility) 569.05*** 580.93*** 573.28***

cwork (width of Cauchy curve) 69.696*** 83.72*** 78.29***

Vmax,work (maximum utility at time bwork) 6.24*** 14.47*** 16.32***

Vmax,work,high-educ 1.18 �1.95 �3.24

Travel time parameters

mcar �0.0076*** �0.0005 �0.0092* �0.0072*

mPT �0.0061** �0.0003 �0.0123 �0.0090

Travelcost parameters

lcar �0.040*** �0.075*** �0.180** �0.180**

lPT 0.0002 0.0050 0.0108 0.0086

Error terms

fPT 4.028*** 3.984***

fSDE,work 0.042*** 0.042***

fSDL,work 0.030*** 0.032***

LL(0) �1904.77 �1904.77 �1904.77 �1904.77

LL(b) �1323.16 �1219.09 �952.286 �948.346

* Significant at a = 0.10.
** Significant at a = 0.05.
*** Significant at a = 0.01.
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modelling activity-scheduling processes, all three factors (duration, time-of-day and schedule delays) should be
taken into account in order to obtain a realistic behavioural description and adequate sensitivity to policy sce-
narios. The error component models (models 3 and 4) in turn constitute a very significant improvement in
model fit (Table 2). Partly, this suggests that taste variations exist between travellers with respect to their timing
and duration preferences. In addition, the error component found for the public transport constant suggests a
violation of the IIA property of the MNL formulation. On the other hand, it is recognised that the data used to
test our framework has limitations with respect to the explanatory variables that can be included in the model.
For instance, treating the time before and after work as one single activity is a simplification that ignores the
wide variety in the way individuals spend their leisure time, which has different impacts on their scheduling
behaviour of the work activity. Thus, the highly significant error components also capture these unobserved
variations in activity scheduling conditions. Although the modelling framework used in this study suffices
for demonstrating the importance of combining various timing and duration components, the error compo-
nents suggest that more elaborate models are needed to describe the activity scheduling process in more detail.
The estimation results are discussed in the remainder of this section with particular focus on the error compo-
nent models (models 3 and 4). In terms of goodness-of-fit, model 4 outperforms model 3, suggesting that the
interactions explain more of the observed behaviour than the main effects of duration only. However, since
the models are not nested, we cannot test the significance of this improvement.

The alternative specific constants (Dcar,early,Dcar,late,Dpublic transport) suggest that travellers have a lower pref-
erence for a public transport tour than for car options.Models 1 and 2 suggests that they value an earlier or later
retiming of their current tour negatively, but this effect is not significant in the error component specification.

With respect to the utility of activity durations, the results of models 2 and 3 suggest that activity
involvement leads to an increased utility only for the pre-work activity (gpre-work) (although only marginally
significant in the error component logit models). Engagement in post-work activity (gpost-work,male) is
valued positively by males. Highly educated individuals gain a higher utility from the pre-work activity
(gpre-work,high-educ), but this effect is not significant in the error component model. We do not find a significant
effect of the duration of the work activity on utility, probably because the utility of work comes through the
time-of-day dependent utility component. Interestingly, the model in which interactions between the duration
components are included gives significant parameter estimates for the interaction between pre-work and work
(positive) and work and after-work (negative). This suggests that time spent before work and during work are
complementary, but that work and the time after work are substitutes. In other words, individuals who work
longer attach a higher utility to the pre-work activity (and reverse), whereas they attach a lower utility to the
after-work activity (and reverse). This finding stresses the importance of allowing for such inter-activity inter-
actions in activity scheduling models.

The parameters describing the time-of-dependent utility of work (bwork,cwork,Vmax,work) are highly signifi-
cant and consistent in models 2 to 4. The parameters suggest that the highest marginal utility of work is
derived at 573 min (9.33 AM) and is lower before and after that time. The shape of the marginal utility curve
is displayed in Fig. 1. It is noted that the time-of-day dependent utility implicitly represents a duration depen-
dency, since a longer engagement in work will result in a higher utility. This may account for the non-signif-
icance of the work duration parameter gwork in models 2 to 4.

As indicated by the SDE and SDL parameters, both early and late schedule delay are valued negatively,
with late schedule delay, surprisingly, being less negative as early schedule delay. These findings are in contrast
with the literature in this area (e.g. Small, 1982; De Jong et al., 2003). It should be noted, however, that when
arriving before bwork (9.33 AM) late schedule delay also leads to an increasing loss in time-of-day dependent
utility, which can possibly explain the discrepancy. In addition, it is noted that the effects of early and late
schedule delay on the after work activity were tested empirically. One would expect that such delays are rel-

Table 2

Likelihood ratio tests of nested models

Model 2/model 1 Model 3/model 2

v2 of likelihood ratio 208.14 533.61

Degrees of freedom 6 3

Significance level <0.01 <0.01
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evant for activities such as collecting children at a day care centre or household obligations. However, these
effects were not found to be significant, possibly due to the fact that the after work activity is a composite of a
wide variety of possible activities. Further research should address potential differences between these activi-
ties with respect to timing and duration preferences.

With respect to travel time parameters (mcar,mPT) and travel cost parameters (lcar,lPT) we find, as expected,
significant negative parameters for car. The parameters for travel time and travel cost of public transport are,
however, not significant. Apparently, the constant disutility of public transport (Dpublic transport) is more impor-
tant than the variable aspects like travel time and costs.

The various time-of-day, duration and schedule delay based utility components together suggest that there
are rather subtle relationships between the various components of the utility of activities and trips, which may
partly overlap and correlate. Based on the estimation results we can conclude, however, that scheduling con-
straints pertaining to the work activity, the time-of-day dependent utility of work, the duration of the pre-work
time and the duration of the post-work time (for males) seem to be the most important determinants in deciding
how to schedule the work tour. In addition, evidence is found for interactions between activities with respect to
the utility derived from activity duration. Travel time seems to be important to the extent that it affects the
involvement in work in the period between 8:30 and 10:30 when the marginal utility of work is highest.

As noted previously, various error components were tested, maintaining only those that are significant. The
final models include error components for Dpublic transport, SDEwork and SDLwork, suggesting a high degree of
unobserved heterogeneity with respect to the associated parameters and preferences. A first conclusion is that
including the error components has a large effect on the goodness-of-fit (Table 2), suggesting that the activity
scheduling process that we are modelling is surrounded by much unobserved heterogeneity. It should be
noted, however, that the experiment we have used is a simplified representation that does not necessarily
include all relevant variables that influence activity scheduling and timing decision in reality. More elaborate
experiments should make clear to what extent the unobserved heterogeneity in this study includes the effect of
omitted variables. For the mode error component fPT (associated with the public transport dummy), the exis-
tence of heterogeneity is in line with findings in other studies indicating that travellers may have intrinsic pref-
erences for a particular mode. In addition, the mode error component seems to affect the alternative specific
constants. The public transport constant is larger (negative), while the early and late rescheduling constants
are not significant in this model. The error components associated with early and late schedule delay, fSDE,work

and fSDL,work, suggest that significant variation exists in the valuation of early schedule delay. Such variation
may be due to differences in the household situation, such as obligations for childcare and serve passenger
trips, differences in commute distances or differences in the flexibility of work hours. This taste variation
may also affect the early and late rescheduling constants. It is also noted that other parameter are affected
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Fig. 1. Time-of-day dependent marginal utility curve.
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by the inclusion of the error components. The valuation of pre-work time (gpre-work) in general, but also by
highly educated travellers (gpre-work,high-educ), suggests that this parameter may capture part of heterogeneity,
but the classification into education strata is not in itself relevant. Finally, the scaling of travel time and cost
parameters seems to be affected by inclusion of the error components.

7. Conclusions

This paper has proposed a utility-theoretic framework for timing and duration preferences embedded in a
multi-dimensional choice model, which can be formulated in a flexible way as an error component logit model.
Doing so, the proposed framework combines a utility-theoretic underpinning with a very flexible formulation
of time and duration preferences, which includes the effect of activity duration, the effect of time-of-day of
activity involvement and the effect of start time of the activity relative to some anchor point. It is noted that
from a theoretical point of view, the time-of-day dependent utility and the valuation of schedule delay overlap
to some extent. It may therefore be difficult to disentangle these effects in empirical studies. The model frame-
work further includes socio-demographic and context variables, that may affect individuals’ valuation of tim-
ing and duration.

The model was tested empirically using a Dutch stated preference data set, accounting for context variables
such as gender and education level. Various model specifications were estimated, differing with respect to the
timing and duration related variables that are included. Some important conclusions can be drawn from the
estimated models. First, the three distinct aspects of utility (duration, time-of-day and schedule delay) all
appear to have some effect on activity scheduling preferences. It should be noted, however, that the aspects
may overlap and may therefore be hard to disentangle. The effects differ between activities. Based on the esti-
mation results we can conclude that scheduling constraints pertaining to the work activity, the time-of-day
dependent utility of work, the duration of the pre-work time and the duration of the post-work time (for males)
seem to be the most important determinants in deciding how to schedule the work tour. Interestingly, we found
support for interactions between activities with respect to duration dependent utility, in the sense that the pre-
work and work activity are complementary and work and after-work appear to be substitutes.

Another important finding is that travel times do not appear significant in the model if time-of-day depen-
dent utility is included in the model. Apparently, travel time primarily seems to be important to the extent that
it affects the involvement in work in the period between 8:30 and 10:30 when the marginal utility of work is
highest. Including error components results in a significant improvement of the model fit, suggesting that the
activity scheduling process that we are modelling is surrounded by much unobserved heterogeneity. The unob-
served heterogeneity is found in the valuation of early and late schedule delay and preference for public trans-
port. It should be noted, though, that the heterogeneity may be partly due to the simplified choice settings
represented to respondents.

In addition, the valuation of activity involvement varies between socio-demographics segments. Without
testing all socio-demographic impacts exhaustively, the results suggest that highly educated individuals value
the pre-work time more highly, and that the post-work period is appreciated more by males.

The reported work provides a starting point for further research in various ways. First, more extensive esti-
mation efforts have to be made, including a broader range of socio-demographic and context variables.

Second, as the activity patterns used in this study only entail timing, duration and mode as choice dimen-
sions, more elaborate models need to be estimated which include additional choice dimensions such as activity
choice and destination choice. More importantly, data collection and estimation procedures need to be devel-
oped that allow for a wider range of activities to be included in the model. This would allow us to estimate
more specific utility function that are able to reduce the large amount of unobserved heterogeneity found
in the present study. Models based on these extended data and estimation procedures will then constitute a
realistic base for the further development of activity-based models.
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