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Modelling the mechanics and hydrodynamics of
swimming E. coli

Jinglei Hu,a Mingcheng Yang,b Gerhard Gomppera and Roland G. Winklera

The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic

simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle

collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical

body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid.

We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement

with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like

pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from

counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and

rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that

counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics

of the bacterium.

1 Introduction

The bacterium E. coli is an example of a widely-studied class

of motile microorganisms that exploit multiple helical flagella

for locomotion.1 Each flagellum is propelled by a reversible

rotary motor anchored in the cell’s membrane.1–3 When all the

motors rotate in the same direction, the flagella form a bundle

and the bacterium swims forward; the so-called ‘run’ phase.

It is interrupted by short periods of ‘tumble’ events, where the

reversal of the motor-rotation direction of some flagella causes

the associated flagella to leave the bundle, thereby inducing

erratic rotation of the cell body.1,4–8 When the reversed motors

switch back to their initial rotation direction, the bundle is reformed

and the bacterium swims in a new direction. The alternating

runs and tumbles allow the bacterium to efficiently execute

a biased random walk toward favorable environments such

as food-concentrated regions by adjusting run and tumble

durations to the environmental conditions.

Numerous experimental, theoretical, and simulation studies

have been performed to unravel the physical aspects of bacteria

locomotion.9 These comprise aspects of the bacteria flagella

such as their polymorphic transformations4,5,10–14 and bundle

formation.15–20 Moreover, bacterial propulsion properties have

been investigated,16,20–23 their run-and-tumble dynamics,16,24 as

well as the influence of hydrodynamic interactions on their motion

adjacent to surface.25–35 In addition, the effects of external flows

on the dynamical behaviors of bacteria suspension have been

addressed36–38 along with their rheological properties.39–41

The complexity of the bundling and swimming processes,

especially near-field hydrodynamics, poses substantial challenges

for an analytical description of bacteria locomotion. Here,

mesoscale hydrodynamic simulations are particularly valuable

to gain insight into the microscopic aspects of swimming,

because they are able to bridge the large length- and time-

scale differences between the bacterium and fluid degrees

of freedom.42,43 The multiparticle collision dynamics (MPC)

method42–44 has proven to be very valuable for the studies of

active systems.9,34,45–53 Specifically, MPC has successfully been

applied to elucidate synchronization between the flagella beat-

ing of nearby swimming sperm,54 as well as bundling of helical

flagella of bacteria.18,19

Valuable theoretical insight into the swimming behavior of

bacteria is achieved by very simplified models. An ellipsoidal or

spherical body is often combined with either a single effective

flagellum attached at one pole,13,35,55 or with several flagella

attached in a more or less random manner.20,24,34 Thereby,

hydrodynamic interactions are typically taken into account by a

hydrodynamic tensor,20,24,35,55 e.g., the Oseen or Rotne–Prager

tensor.56 Such an approach is useful for a moderate number of

hydrodynamically interacting units, typically a single or very

few flagella. In contrast, studies of large systems and collective

phenomena involving multi-flagellated cells require a different

approach. We suggest to exploit the MPCmethod to account for
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fluid hydrodynamics. Moreover, a model for E. coli-type bacteria

that can reproduce experimental results and allows for quanti-

tative predictions of their swimming properties is desirable;

here, only a few modelling studies are available so far.20,24,34

In this article, we present a bacterium model which closely

resembles the geometry, flagellar elastic properties, and rotary

motor torque of E. coli. By MPC simulations, we show that this

model quantitatively reproduces the experimentally measured

properties of E. coli for both the hydrodynamic friction and the

relation between the bacterial swimming speed and flagellar

rotation frequency. We find that the flow field near the model

bacterium is rather complex with two spiral vortices arising

from counterrotation of the cell body and flagella. At larger

distances, the flow field displays a dipole pattern comparable to

that of swimming E. coli. We perform a detailed analysis of the

flow by comparison with the force-dipole and rotlet-dipole

approximations, which enables us to access the force-dipole

and rotlet-dipole strengths, which are essential quantities for

the description of bacterial swimming.

The rest of the manuscript is structured as follows. Section 2

outlines the bacteriummodel and the MPCmethod for the fluid.

Simulation results are presented in Section 3, and Section 4

summaries our findings. Further technical details for the flagellum

modelling are presented in Appendix A, and the analysis of the

flow field for periodic systems in Appendix B, respectively.

2 Simulation model and method
2.1 Bacterium model

The bacterium consists of a body and flagellar filaments, as

shown in Fig. 1, which are composed of point-like particles of mass

M = 10m. The cell body is represented by a spherocylinder of

diameter d = 9a and length lb = 25a, composed of 51 circular

sections of particles with a spacing of 0.5a, see Fig. 2(a). Here,m and

a are mass and length units related to the MPC fluid, as described

in Section 2.2. Both pole sections consist of a single particle only.

In each of the other 49 sections, 60 particles are uniformly

distributed along circles on the spherocylinder surface. To main-

tain the shape of the body, nearest- and next-nearest-neighboring

pairs of particles are bonded by a harmonic potential

Ubd ¼ 1

2
Kbd r� reð Þ2; (1)

where r and re are the distance between the pair and the

preferred value, respectively. Moreover, two particles separated

by 10, 20, and 30 particles along each of the 49 circular sections

are additionally connected via the potential (1) in order to

obtain stable circles. The two pole particles are only bonded to

their 60 nearest neighbors. The bond strength Kbd = 104 kBT/a
2 is

chosen for all bonds, whereas the preferred length re of each

bond is determined by the geometry. Here, kB is the Boltzmann

constant and T the temperature.

A flagellum is described by the helical wormlike chain

model,13,57 with an adaptation suitable for the combination

with MPC. As shown in Fig. 2(b), a helical flagellum consists of

N = 76 segments with a total of 381 particles. In each segment,

six particles are arranged in an octahedron of edge length

a=
ffiffiffi

2
p

, forming 12 bonds along the edges and three along the

diagonals. The preferred bond lengths are re ¼ a=
ffiffiffi

2
p

for edges

and re = a for diagonals. The octahedron construction allows

for a straightforward description of the intrinsic twist of the

flagellum and a coupling of the twist to the forces exerted by the

MPC fluid.

The bonds b3n = rin+1 � rin with n = 1,. . .,N specify the contour

of the flagellum, and, together with b1n = rin+1 � rin+3 and

b2n = rin+2 � rin+4, define orthonormal triads {e1n,e
2
n,e

3
n}, where

ean = ban/|b
a
n| with aA {1,2,3}. Here, the rin denote the positions of

the backbone particles, and the rin+k (k = 1, 2, 3, 4) the positions

of the particles in the plane with the normal e3n.

Fig. 1 Model of E. coli. Bacteria differ in the number of flagella and

arrangement of flagella on the cell body. In a ‘symmetric’ arrangement,

the first contour particle of each flagellum is uniformly distributed along a

circle on the body. In a ‘random’ arrangement, the first contour particle is

randomly located on the body.

Fig. 2 (a) Model of the spherocylindrical cell body of diameter d = 0.9 mm

and length lb = 2.5 mm. It is composed of 51 circular sections of particles,

which are connected by the bond potential of eqn (1). (b) The flagellum, a

three-turn left-handed helix of radius R = 0.2 mm, pitch L = 2.2 mm and

contour length Lc = 7.6 mm (corresponding to the parallel length LJ =

6.6 mm), consists of 76 consecutive segments.
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To characterize the local elastic deformation of a flagellum,

the triad {e1n,e
2
n,e

3
n} is transported to {e1n+1,e

2
n+1,e

3
n+1} along the

chain. This process is performed in two steps: (i) the rotation of

{e1n,e
2
n,e

3
n} around e3n by a twist angle jn, and (ii) the rotation of

the twisted triad {ẽ1n,ẽ
2
n,ẽ

3
n} by a bending angle Wn around the

normal nn = (e3n � e3n+1)/|e
3
n � e3n+1| to the plane defined by the

contour bonds b3n and b3n+1. The elastic deformation energy is then

Uel ¼
1

2

X

3

a¼1

Ka
el

X

N�1

n¼1

Oa
n � Oa

e

� �2
; (2)

where K1
el = K2

el is the bending strength, K3
el the twist strength,

and Xn = O1
ne

1
n + O2

ne
2
n + O3

ne
3
n = Wnnn + jne

3
n the strain vector. We

choose K1
el = K2

el = K3
el = 5 � 104 kBT, corresponding to a bending

stiffness of 2 � 10�23 N m2 for flagellar filaments within the

experimental range of about 10�24–10�21 N m2. The parameters

Oa
e in eqn (2) define the equilibrium geometry of the model

flagellum and are chosen to recover the shape of an E. coli flagellum

in the normal state, i.e., a three-turn left-handed helix of radius

0.2 mm and pitch 2.2 mm.16 See the Appendix A for details.

A flagellum is attached to the cell body by choosing a body

particle as its first contour particle (i1, see Fig. 2(b) for the

notation). The rotation of the flagellum is induced by a motor

torque T decomposed into a force couple F and � F acting on

particles i1 + 2 and i1 + 4 (T = b21 � F with F antiparallel to b11), or

equivalently i1 + 1 and i1 + 3 (T = b11 � F with F parallel to b21).

Hence, there is no net force on the bacterium. We consider

|T| r 1000 kBT C 4100 pN nm, smaller than the stall torque of

approximately 4500 pN nm of the flagellar motor.58 An opposite

torque �T is applied to the body to ensure that the bacterium is

torque-free. We do not explicitly model the hook that connects

a flagellum and the body, in contrast to the model of ref. 20, but

incorporate the physical features of the hook: (i) transmitting

the motor torque to the flagellum for rotation, and (ii) provide

the flagellum the freedom to adopt any orientation relative to the

body. To prevent a flagellum from crossing the cell body or another

flagellum, we use the repulsive Lennard-Jones potential

ULJ ¼
4e ðs=rÞ12 � ðs=rÞ6
� �

þ e; r �
ffiffiffi

2
6
p

s

0; otherwise

8

<

:

(3)

with e = kBT to capture excluded-volume interactions. For flagellum-

body repulsion, r is the distance between a flagellar contour particle

and a body particle, and s = 0.5a is equal to the section spacing of

the body. For flagellum–flagellum repulsion, r is the closest distance

between contour bonds of two flagella, and s = 0.25a is set by

the filament diameter around 25 nm.16

The dynamics of the bacterium is determined by the forces

resulting from the potentials in eqn (1)–(3) and the forces for

generating the torques T and �T, and by the momentum

exchange with the MPC fluid via the collision rule described

by eqn (5) below.

2.2 Fluid model: multiparticle collision dynamics

The MPC fluid is modeled by a collection of point-like particles

of mass m. Their dynamics proceeds by alternating streaming

and collision steps. In the streaming step, the fluid particles

move ballistically and the position ri of particle i with its

velocity vi is updated according to

ri(t + Dt) = ri(t) + vi(t)Dt, (4)

where Dt is the time interval between collisions. In the collision

step, all particles are sorted into cubic cells of length a and the

velocity vi of particle i in cell c is renewed via the collision rule59

v
new

i ¼ vc þ v
ran

i �
X

j2c
mjv

ran

j

,

X

j2c
mj

þ I
�1
X

j2c
mj rj � rc

� �

� vj � v
ran

j

� �

" #

� ri � rcð Þ;

(5)

where vc and rc are the center-of-mass velocity and position of

the particles in c, mj the mass of particle j in c, vranj a random

velocity sampled from the Maxwell–Boltzmann distribution,

and I the moment-of-inertia tensor of all particles in c. The

collision rule (i) conserves both linear and angular momentum

in each cubic cell, (ii) includes thermal fluctuations of the fluid,

and (iii) maintains a constant temperature. To satisfy Galilean

invariance, a random shift of the collision-cell grid is performed

before each collision step.60

2.3 Parameters

The length a of a collision cell, the mass m of a MPC particle,

and the thermal energy kBT define the length, mass, and energy

units in our simulations. Other units are easily derived, e.g., density

r0 = a�3, velocity v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, time t0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

, and

shear viscosity Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p 	

a2.

The simulations are performed in cubic boxes of length up

to L = 250a with periodic boundary conditions. The largest

system contains more than 1.5 � 108 fluid particles. We choose

the collision time step Dt = 0.05t0 and the fluid density r = 10r0,

leading to the fluid viscosity Z = 7.15Z0 and the Schmidt number

Sc = 20, for which the fluid exhibits liquid-like dynamics.61

Newton’s equations of motion for the bacterium model are

integrated with the time step dt = Dt/25 using the velocity-Verlet

algorithm. The Reynolds number Re = drv/Z is within the range

0.01–0.2 for the simulated bacteria with body diameter d = 9a

and swimming speed v = 0.00075–0.0125v0.

Matching the geometry of our model bacteria to E. coli with a

body of length of 2.5 mm and diameter 0.9 mm16 leads to the

physical length a C 0.1 mm of a collision cell. The thermal

energy is kBT C 4.1 pN nm at T = 300 K. A comparison with the

viscosity of water of approximately 9 � 10�4 N s m�2 with Z =

7.15Z0 of the MPC fluid gives the physical time scale t0 C 30 ms.

3 Results and discussion
3.1 Hydrodynamic friction coefficients of the bacterium

3.1.1 Flagellum. The flagellar hydrodynamic coefficients relate

the force F and torque T exerted by the fluid on the flagellar

bundle to its translational velocity v and rotation frequency o

(angular velocity �o by right-hand rule) via
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F = �gtfv + gcf (�o), (6)

T = +gcfv � grf(�o), (7)

where gtf and grf are the translational and rotational friction

coefficients about the helical axis, and gcf is the rotation-

translation coupling coefficient. These coefficients, known as

elements of the propulsion matrix,62 are essential quantities

of bacterial swimming. We determine these coefficients by

simulating a translating non-rotating (o = 0, v a 0) flagellum

and a rotating non-translating (v = 0, o a 0) flagellum in the

absence of the cell body. In the first case, the flagellum is pulled by

a force Fpull along its helical axis, say x-axis, and y-, z-positions of

each of its contour particles are trapped by harmonic potentials.

This yields a confining torque Tconf that prevents the rotation

by counteracting the torque in eqn (7). In the second case, a

flagellum is rotated by a motor torque, and harmonic potentials

are applied on its contour particles that prevent its translation,

but allow for the rotation about the helical axis, causing a

net axial torque Trot and a confining force Fconf opposite to

the force in eqn (6). The two measurements lead to gtf = Fpull/v,

gcf = �Tconf/v, g
r
f = �Trot/o, and gcf = Fconf/o. In the latter

measurement, two no-slip walls63,64 orthogonal to the flagellum

are included to ensure that the flagellar speed v vanishes with

respect to the background fluid at rest. Without such no-slip

walls, the translational speed of the flagellum is still v relative to

the fluid velocity at the boundaries since the rotating flagellum is

constantly pumping fluid backwards. From the results shown

in Fig. 3, we obtain gtf/(m/t0) = 1028 � 2, gc
f

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p

¼ �382� 7,

grf/(kBTt0) = 11 051 � 89, and gc
f

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p

¼ �400� 1. The two

estimates of gcf agree within 5%, confirming the consistency

of our measurements.

3.1.2 Cell body. In a similar way, we measure the translational

and rotational friction coefficients gtb and grb of the cell body by

considering the body under an axial force Fpull or torque Trot. We

obtain gtb =Fpull/v = (1118� 5)m/t0 and grb =Trot/o = (52435� 236)

kBTt0 from simulations with box size L = 12 mm. These values are

consistent with the theoretical values gtb/(m/t0) = 1023 and grb/(kBTt0) =

46618 for a solid spherocylinder of the same size.65,66 The

quantitative agreement confirms that the applied particle-based

mesoscale hydrodynamics model can well capture the no-slip

boundary conditions on the bacterium surface, as already demon-

strated for hard sphere colloids in ref. 67.

3.2 Comparison with experimental results and resistive-force

theory

Table 1 summarizes the hydrodynamic coefficients of the

bacterium body and a flagellum. The values measured for the

system sizes L = 8 and 12 mm differ by at most 10%, implying

that the periodic boundaries in the simulations have a rather small

effect. The experimental values in Table 1 are from measurements

of swimming E. coli21 with an average body length of 3.0 � 0.8 mm,

close to 2.5 mm in our model. The flagellar properties determined

Fig. 3 Results for a single flagellum from simulations in cubic boxes of length L = 12 mm: (a) translational speed v versus axial forceFpull and (b) confining

torqueTconf versus v for a translating nonrotating flagellum; (c) rotation frequency o versus axial torqueTrot and (d) confining forceFconf versus o for a

rotating nontranslating flagellum. The red solid arrows indicate the direction of translation or rotation caused by Fpull or Trot, whereas the red dashed

arrows imply the direction of rotation or translation which would have arisen from the rotation-translation coupling, but are prevented by Tconf orFconf

from the harmonic potentials on the flagellum.
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from experiments are for a bundle with, on average, 3–4

flagella, rather than for a single flagellum. In addition, the cell

body is found to wobble around the swimming axis. Given these

caveats, the hydrodynamic properties of our model flagellum

and cell body are in good agreement with experimental results

for E. coli.

Table 2 compares the friction coefficients with results

obtained by resistive-force theory (RFT).21,22,25,68 We use the

theoretical expressions derived in ref. 68; the terms for the

respective friction coefficients are summarized in Appendix C.

In order to avoid ambiguities by different expressions for the

factors Kn and Kt of eqn (21) and (22), as presented in ref. 21, 25

and 68, we discuss ratios of the various friction coefficients

only. For the theoretical results, we use the pitch angle z = p/6,

the pitch length L = 2.2 mm, and the hydrodynamic radius

r = 0.1 mm of the flagellum string (cf. Appendix C). The ratio

gcf /g
t
f is in close agreement for the various approaches. However,

ratios for the simulation model including grf are about twice

larger than the prediction of RFT or even three times compared

to those determined from experimental results. As far as

the comparison with RFT is concerned, the agreement is

reasonable, considering the fact that the simulation model

uses a discrete representation of the helix, and the ambiguities

in the various parameters of the analytical approach. Here, a

more thorough comparison between theory and simulation,

and between the various theoretical approaches would be

desirable. In experiments, the helical bundle seems to yield

a much smaller rotational fiction coefficient. To which extent

this friction coefficient is affected by the nature of the bundle

and the above mentioned wobbling dynamics needs to be

studied further.

3.3 Swimming speed and flagellar rotation frequency

In Fig. 4(a), the bacterial swimming speed v is displayed as a

function of the rotation frequency o of the flagellar bundle for

our model bacteria of Fig. 1, which differ in the number of

flagella and the arrangement of flagella on the cell body,

ranging from one to eight flagella with symmetric and random

arrangements of the anchoring points. The rotation frequency

of the flagellar bundle is o = 2p/t, where t is the average time

for the helical bundle to complete one revolution. The data

points in Fig. 4(a) are obtained from extensive MPC simula-

tions, where each bacterium travels a distance larger than

its own length of about 10 mm. The solid line in Fig. 4 is a

least-square fit to all data points through the origin, yielding

v/oR = 0.07, comparable to the experimental ratio v/oR = 0.14,16

where R = 0.2 mm is the helix radius of the E. coli flagellum. The

scatter of the data points around the linear relation may arise

from the fact that individual bacteria exhibit different wobbling

amplitudes of the body.

The ratio of swimming speed v to flagellar rotation fre-

quency o can be understood from the hydrodynamic properties

of the bacterium. The force in eqn (6) is balanced by the

translational friction force �gtbv exerted by the fluid on the cell

body, which gives

Table 1 Comparison of hydrodynamic properties for the model bacterium

with experimental results of E. coli.21 gt and gr are the translational and

rotational friction coefficients, and gc is the rotation-translation coupling

coefficient. The subscripts ‘b’ and ‘f’ refer to body and flagellum, respec-

tively. All the coefficients are rescaled by the absolute values of gtb, which

are 1281 and 1118m/t0 from simulations in cubic boxes of lengths L = 8 and

12 mm, and gtb = 1.4 � 10�2 pN s mm�1 from experiments

Model

Exp.L = 8 mm L = 12 mm

grb/g
t
b [mm2] 0.41 0.47 0.30

gtf/g
t
b 0.84 0.88 1.1

grf/g
t
b [mm2] 0.087 0.099 0.050

gcf /g
t
b [mm] �0.032 �0.036 �0.056

Table 2 Comparison of the friction coefficients of a flagellum with

estimates by resistive-force theory (RFT)68 and experimental results of

E. coli.21 The theoretical expressions derived by resistive-force theory are

presented in Appendix C. For the current model, only results for the box

size L = 12 mm are presented

Model RFT Exp.

|gcf /g
t
f| [mm] 0.04 0.04 0.05

grf/g
t
f [mm

2] 0.1 0.05 0.05
|grf/g

c
f| [mm] 2.7 1.3 0.9

Fig. 4 (a) Bacterial swimming speeds v as function of the rotation frequency

o of the flagellar bundle and (b) rotation frequency o as function of the

flagellar motor torque |T| for the model bacteria shown in Fig. 1. The solid line

in (a) is a least-square fit to all data points. The solid lines in (b) are least-square

fits to the data points in the same color.
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v

o
¼ � gc

f

gt
b
þ gt

f

: (8)

We obtain v/oR C 0.1 and 0.13 using the model and experi-

mental values in Table 1, respectively. These ratios are close to

v/oR = 0.07 from the fitted line in Fig. 4(a) and the experimental

ratio v/oR = 0.14. The agreement emphasizes the importance of

hydrodynamic coefficients for a quantitative understanding of

bacterial swimming.

Fig. 4(b) shows that the rotation frequency of a bundle

formed by four flagella near one pole of the cell body (red

points) is larger than that of a single flagellum (black points) at

the same motor torque, e.g., o/2p = 340 Hz versus 223 Hz at

|T| = 500 kBT. This result is consistent with the experimental

observation16 that a flagellar bundle rotates faster than a single

flagellum. The enhanced rotation as a result of the hydro-

dynamic coupling between the flagella has also been found

in simulations of helical bundles,18 where one of the ends of

the helices is fixed in space. We note, however, that such

hydrodynamic enhancement can be outweighed by the flagellum-

body friction, depending on the connection of flagellar filaments

to the body. As shown in Fig. 4(b), the bundle of four flagella with

a ‘symmetric’ arrangement on the body (purple points, Fig. 1(d)),

rotates slower than both a single flagellum (black points, Fig. 1(a))

and the bundle of four flagella near one pole of the body (red

points, Fig. 1(c)) at the same motor torque |T| r 400 kBT. In

E. coli, each flagellum is attached to the body via a flexible hook

of approximately 50 nm length,69 much shorter than the

flagellar helix radius of 0.2 mm. The rotating flagella that form

a bundle spanning over the body are very likely to collide with

the body, contributing to the flagellum-body friction. With

the single-flagellum rotational friction coefficient grf = 11 051

kBTt0, the torque rotating the bundle of four flagella with o/2p =

196 Hz (o = 0.037/t0, see the purple point at |T| = 500 kBT) is

grfo C 409 kBT, only about one-fifth of the total motor torque

2000 kBT, indicating a significant flagellum–flagellum and flagellum-

body friction.

3.4 Flow field

Fig. 5 shows the time-averaged flow field created by a model

bacterium of approximately 8 mm length in a periodic cubic

simulation box of length L = 25 mm. Each of the four flagella is

turned by a motor torque |T| = 1000 kBT, leading to a bundle

with rotation frequency o = 0.074/t0. The bacterial swimming

speed is vC 0.0125v0 and the propulsion force fp = g
t
bvC 0.57 pN

consistent with the experimental values of about 0.4–0.6 pN.21,29

Harmonic potentials are applied to y- and z-positions of

the center-of-mass of the body and flagellar bundle such that

the swimming axis is parallel to the x-axis. The flow field in the

swimming plane, shown in Fig. 5(a), is computed by averaging

Fig. 5 Time-averaged flow field generated by a single swimming bacterium as obtained from simulations: (a) flow field in the swimming plane (b) the

theoretical flow pattern for a finite-distance force dipole as illustrated in Fig. 6(a) as superposition of two Stokeslets within the same periodic box as for

our simulations. (c–g) Flow fields in planes perpendicular to the swimming plane at positions indicated by the white vertical lines in (a). The streamlines

indicate the flow direction, and the logarithmic color scheme indicates the magnitude of the flow speed scaled by the bacterial swimming velocity.
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the velocities of the fluid particles cylindrically symmetrically

around the swimming axis. The flow fields in Fig. 5(c)–(g) are

obtained as time average of the fluid-particle velocities in the

planes perpendicular to the swimming axis at the different

locations indicated by the white vertical lines in Fig. 5(a).

The flow pattern not too close to the bacterium approxi-

mately resembles that of swimming E. coli determined from

experiments (see Fig. 1A in ref. 29). Closer to the bacterium, the

flow field exhibits specific features reflecting the bacterium’s

detailed structure. In particular, the flow field reveals a front-

back asymmetry, since the cell body and flagellar bundle are

physically different units. Along the cell axis, we find low fluid

velocities in front of the cell, behind the cell body as well as in

the middle and behind the flagellar bundle. The flow velocity is

high along the whole cell body, at the flagellar bundle some-

what behind the cell body, and toward the end of the bundle.

The streamlines are closed in Fig. 5(a) as a consequence of the

applied periodic boundary conditions, which implies differ-

ences in the far field compared to experimental observations.

The effect of the boundary conditions is confirmed by the

theoretical flow field for a finite-distance force dipole with

the same boundary condition in Fig. 5(b).

The flow patterns in the planes perpendicular to the swimming

axis illustrate the interplay between the rotating flagellar bundle

and counterrotating cell body. As shown in Fig. 5(c) and (g), the

flow field exhibits two spiral vortices associated with the rotation

of the cell body and flagellar bundle, respectively. In Fig. 5(d), the

fluid follows the clockwise rotation of the flagellar bundle in the

central region, and tends to rotate counterclockwise in the outer

region, implying a strong influence of the cell body. In Fig. 5(f),

the fluid rotates counterclockwise as the body and there is no

significant effect from the flagellar rotation.

The flow field of the discrete-particle bacterium model of

ref. 20, with a triangular-prism body and three flagella, each

composed of 15 beads, involves an infinite fluid domain,

because hydrodynamic interactions are captured by the Rotne–

Prager hydrodynamic tensor. Consistent with this study, we find

spiral and helical flows (Fig. 5(c)–(g)). However, there are also

distinct differences, namely (i) three vortices are predicted in

Fig. 5 of ref. 20, and (ii) fluid flows toward the flagellar bundle

from behind (Fig. 4 and 7) rather than away from the cell as in

Fig. 5. It is not a prior evident where these differences come from.

A reason could be the more detailed modelling of the cylindrical

cell body and the flagella in our approach. Furthermore, in

agreement with our studies, the experimentally determined flow

field presented in ref. 29 shows no indication of a forward flow at

the end of the flagellar bundle.

We analyse next, how well the flow field can be reproduced

by a simplified description in terms of a force-dipole and rotlet-

dipole model. Fig. 6(a) displays the fluid velocity along the

swimming axis both in front of the body and behind the

flagellar bundle. The theoretical result for the force dipole,

with the force fp C 0.57 pN and the length ld = 3.84 mm (see

Appendix B), agrees quite well with the simulation data for

distance r/lb 4 1, i.e., more than one body length away from

the cell. The flow for r/lb 4 3 decays much faster than r�2 due

to the periodic boundary conditions. In this regime, the flow

field is consistent with the result for the finite-distance force

dipole of two Stokeslets with periodic boundary conditions

(cf. Appendix B). In the range 0.8 o r/lb o 1.8, vfluid decreases

approximately as r�3, a dependence previously observed in

ref. 20. Already for r/lb \ 2, our flow field agrees well with

that of the finite-distance force dipole. Hence, up to r/lb t 3�4

the flow field is hardly affected by the boundary conditions. The

asymptotic force-dipole dependence vfluid B r�2 is only reached

for distances r/lb45. Fig. 6(b) displays the flow field in planes

perpendicular to the swimming axis through the center of mass

of the body or flagellar bundle, respectively. The simulation

results for r/lb \ 1 are well described by a superposition of a

force dipole with force fp C 0.57 pN and a rotlet dipole with the

torque NC 80 kBT, one-tenth of the torque rotating the flagellar

bundle grfo C 800 kBT. The rotlet-dipole contribution dominates

at r/lb o 2, whereas the force-dipole contribution dominates at

Fig. 6 The fluid velocity vfluid as a function of distance r to the center of

mass of the body or flagellar bundle (a) along the swimming axis, and (b) in

the planes perpendicular to the swimming axis through the body or

flagellar center of mass, respectively. v is the swimming speed and lb

the body length. In (a), the solid line is the theoretical result for a force

dipole of strength fpld, where fp C 0.57 pN is the bacterial propulsion force

and ld = 3.84 mm the center-of-mass separation between the body and

flagellar bundle. The dashed line is for the force dipole with the same

periodic boundary conditions (PBC) as in simulations. In (b), the red and

green solid lines represent the results for the force dipole as in (a) and the

rotlet dipole with torque NC80 kBT, one-tenth of the torque rotating the

flagellar bundle grfo C 800 kBT. The cyan solid line is the superposition of

the force dipole and rotlet dipole.
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larger distances. This suggests that the counterrotation of cell

body and flagella needs to be taken into account for an appro-

priate description of near-field hydrodynamics of bacteria. Our

result provide the first measurement of the rotlet-dipole strength,

which is important for a quantitative description of near-surface

swimming behaviors of bacteria.34,70 It would be interesting to

compare our predictions with future experimentally determined

rotlet-dipole strengths for flagellated bacteria.

4 Conclusions

We have developed a coarse-grained model for an E. coli-type

bacterium and investigated its swimming behavior by mesoscale

hydrodynamics simulations. The suggested implementation of

octahedron-type segments to construct a model flagellum of

helical structure with bending and torsion elastic energy is

particularly suitable in combination with a particle-based fluid,

because it provides a simple means to capture the twist by the

fluid on a flagellum. The hydrodynamic friction coefficients of

the model bacterium and the relation between its swimming

speed and flagellar rotation frequency both quantitatively agree

with experimental results for E. coli. The flow field created by

the model bacterium exhibits a rather complex pattern adjacent

to the bacterium, with and a two-vortex structure due to the

counterrotation of the cell body and flagellar bundle. From

comparison to theoretical predictions for force dipole and rotlet

dipole, we find the simplified dipole model can well describe the

flow more than one cell-body length away from the bacterium,

and the rotation of the body and flagella makes a dominant

contribution to the near-field flow. We provide the first measure-

ment of the rotlet-dipole strength, an essential quantity for

modeling bacterial motion near surfaces.

The simulations show that our model is very well suited for

theoretical studies of swimming bacteria. By adjusting the geo-

metric parameters, one expects to achieve a similar quantitative

description for other bacteria such as Bacillus subtilis, Saolmonella

typhimurium, Rhodobacter spheroides, and Rhizobium lupini.

Naturally, further aspects of swimming bacteria can be

investigated by our approach. By modifications of the elastic

deformation energy in eqn (2) to account for flagellar polymorphic

transformations13,14 and by implementing reversal of the flagellar

motor torque T, the full run-and-tumblemotion can be addressed.

Since boundaries and external flow are easily implemented in

the MPCmethod, our simulation approach opens an avenue for

detailed studies of confinement effects51 and non-equilibrium

aspects in bacteria locomotion.

Appendix
A Flagellum model

We estimate the bending and twist strength Ka
el of our discrete

flagellum by mapping the elastic energy in eqn (2) to a contin-

uous form.We identify the directions e3n of the bond vectors b3n as

local tangent vectors on the filament. Then, the discrete measure

of the local curvature k = |e3n+1 � e3n|/a = 2 sin(Wn/2)/a turns into

k E Wn/a for small bending angles Wn and the local torsion

becomes t = �|nn+1 � nn|/a = � 2 sin(cn/2)/a E �cn/a for small

torsional angles cn between the normal vectors nn and nn+1,

where nn = (e3n � e3n+1)/|e
3
n � e3n+1|. At small Wn, cn E jn since the

deformation mainly originates from twist. In eqn (2), the

components of the strain vector are

O1

n ¼
�Wn

sinWn
e
2

n � e3nþ1
; (9)

O2

n ¼
Wn

sinWn
e
1

n � e3nþ1
; (10)

O3
n = jn. (11)

Using e3n+1 = sinWn cosfne
1
n + sinWn sinfne

2
n + cos Wne

3
n, where fn

is the azimuthal angle of e3n+1 in the plane defined by e1n and e2n,

expansion of eqn (2) yields

Uel ¼
1

2

X

N�1

n¼1

K1

el
Wn

2 þWe
2� 2WnWe cos fn �feð Þ

� �

þK3

el
jn �jeð Þ2

n o

�1

2

X

N�1

n¼1

K1

el
Wn �Weð Þ2þK3

el
jn�jeð Þ2

h i

�1

2

ðaN

0

K1

el
a k�keð Þ2þK3

el
a t� teð Þ2

h i

ds;

(12)

with the Oa
n of the linearized expressions of eqn (9)–(11) and

for small deviations of fn from its equilibrium value fe. The

integral over the flagellar contour describes the continuous

elastic energy.57

The experimental values for the bending stiffness of bacterial

flagella range from about 10�24 to 10�21 N m2.16,71,72 For

S. typhimurium, K1
ela is estimated as 2–4 � 10�24 N m2 from

quasi-elastic light scattering in ref. 71, consistent with the value

3.5 � 10�24 Nm2 measured from pulling experiments in ref. 16.

In ref. 72, a Young’s modulus of about 10�11 N m�2 has been

determined for S. typhimurium and E. coli from electron micro-

graphs, which yields the approximate bending stiffness 10�21 N m2

given a filament radius of 10 nm. The twist or torsional stiffness

has been generally assumed to be of the same order of magnitude

as the bending stiffness. Our choice K1el = K2
el = K3el = 5 � 104 kBT,

with the physical length scale a E 0.1 mm, corresponds to a

bending stiffness of K1
ela C 2 � 10�23 N m2 well within the

experimental range.

In order to determine the equilibrium parameters Oa
e in

eqn (2), we consider a flagellum in the normal state—a three-

turn left-handed helix of radius 0.2 mm and pitch 2.2 mm. The

bending angle between subsequent discrete bond vectors is

then We = arccos(e3n�e3n+1) = 0.125 for the bond length a = 0.1 mm.

We choose e1n in each segment such that it coincides with nn

after the twist with angle je, i.e., ẽ
1
n = nn. ẽ

1
n is thus invariant in

bending from e3n to e3n+1 around nn by the angle We, hence, e
1
n+1 =

ẽ1n = e3n � e3n+1/sin We. Then, je = � arccos(e1n�e1n+1) = �0.217.

From eqn (9)–(11), we obtain O1
e = 0.122, O2

e = �0.027, and O3
e =

�0.217, which are the values used in our simulations.
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B Force-dipole flow field for periodic boundary conditions

We consider the flow generated by a force dipole as illustrated

by the cartoon in Fig. 6(a). The two point forces f1 = (�fp,0,0)

and f2 = ( fp,0,0) are located at r1 = (�ld/2,0,0) and r2 = (ld/2,0,0),

respectively. The fluid velocity at position r is given by

u(r) = G(r � r1)�f1 + G(r � r2)�f2, (13)

with the Oseen tensor

GðrÞ ¼ 1

8pZjrj 1þ r� r

jrj2

 �

: (14)

To calculate the flow of the force dipole in a cubic box of length

L with periodic boundaries, one can start with the Oseen tensor

in k-space

~GðkÞ ¼ 1

Z kj j2
1� k� k

kj j2

 !

: (15)

The k-space fluid velocity is then

ũ(k) = G̃(k)f̃1(k) + G̃(k)f̃2(k), (16)

with the Fourier-transformed point force ~f iðkÞ ¼
Ð

f id x� rið Þe�ik�xd3x ¼ f ie
�ik�ri , i = 1, 2. Inverse Fourier transfor-

mation for the periodic system yields the flow field

u
0ðrÞ ¼

X

ka0

~uðkÞeik�r (17)

with the three components of k assuming multiples of 2p/L.

C Resistive-force theory for helix

Expressions for the friction coefficients of eqn (6) and (7) for a

helix have been presented in ref. 21, 22, 25 and 68. The original

expressions of ref. 68 are

gt
f
¼ KnLk

e2 þ w
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p ; (18)

gc
f
¼ �KnLkR

eð1� wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p ; (19)

gr
f
¼ KnLkR

2
1þ we2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2
p ; (20)

with w = Kt/Kn, e = tan z, where z is the pitch angle, and

Kn ¼
4pZ

lnðcL=rÞ þ 1=2
; (21)

Kt ¼
2pZ

lnðcL=rÞ: (22)

Here, L is the pitch, r the (hydrodynamic) radius of the flagella

filament, and c = 0.18 a constant.68 For w = 1/2, which corre-

sponds to the ratio of the viscous coefficients of an infinitely

long rod, and c = 2, the eqn (18)–(22) reduce to the definitions

in ref. 25. The viscous coefficients of ref. 21 are somewhat different,

specifically the expression for Kt.
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