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COMMON PERSISTENCE IN CONDITIONAL VARIANCES' 

BY TIM BOLLERSLEV AND ROBERT F. ENGLE 

Since the introduction of the autoregressive conditional heteroskedastic (ARCH) 
model in Engle (1982), numerous applications of this modeling strategy have already 
appeared. A common finding in many of these studies with high frequency financial or 
monetary data concerns the presence of an approximate unit root in the autoregressive 
polynomial in the univariate time series representation for the conditional second order 
moments of the process, as in the so-called integrated generalized ARCH (IGARCH) 
class of models proposed in Engle and Bollerslev (1986). In the IGARCH models shocks 
to the conditional variance are persistent, in the sense that they remain important for 
forecasts of all horizons. This idea is readily extended to a multivariate framework. Even 
though many time series may exhibit persistence in variance, it is likely that several 
different variables share the same common long-run component. In that situation, the 
variables are naturally defined to be co-persistent in variance, and the co-persistent linear 
combination is interpretable as a long-run relationship. Conditions for co-persistence to 
occur in the multivariate linear GARCH model are presented. These conditions parallel 
the conditions for linear co-integration in the mean, as developed by Engle and Granger 
(1987). The presence of co-persistence has important implications for asset pricing 
relationships and in optimal portfolio allocation decisions. An empirical example relating 
to the time series properties of nominal U.S. dollar exchange rates for the deutschemark 
and the British pound provides a simple illustration of the ideas. 

KEYWORDS: Persistence in variance, co-persistence in variance, generalized autoregres- 
sive conditional heteroskedasticity (GARCH), integrated GARCH (IGARCH), factor 
GARCH, asset pricing, exchange rate dynamics. 

1. INTRODUCTION 

THE ECONOMIC THEORY OF BEHAVIOR under uncertainty forms the basis for 
much of modern finance and monetary theory. An agent must make a decision 
based upon the distribution of a random variable some time in the future. In 
many rational expectations models it is simply assumed that only the mean of 
this conditional distribution affects the decision, but for more general utility 
functions and risk averse agents, some measure of the dispersion will also be of 
primary importance. However, until recently conventional econometric methods 
have not been responsive to the need to develop corresponding quantitative 
measures of risk and uncertainty. This is particularly true in the econometric 
analysis of time series, where the convenient but often implausible assumption 

1 This paper supersedes the paper "Integrated ARCH and Co-integration in Variance" circu- 
lated earlier by the first author. Part of the material contained in this paper, has also been discussed 
in the paper "Multivariate GARCH with Factor Structures-Cointegration in Variance" by the 
second author. We are grateful to Frank Diebold, Allan Kleidon, Daniel Nelson, Adrian Pagan, 
Mark Watson, and seminar participants at Duke University, Indiana University, Michigan State 
University, Northwestern University, Penn State University, University of Chicago, University of 
Illinois at Urbana-Champaign, University of Rochester, and at the conference on "Econometric 
Issues in Finance" at Stanford University, "Statistical Models for Financial Volatility" at UCSD, 
"ARCH Models" in Paris, and the Sixth World Congress of the Econometric Society in Barcelona 
for helpful suggestions. Two anonymous referees and the co-editor also made extremely valuable 
comments. Needless to say, we are solely responsible for any errors. The authors would like to thank 
the NSF for financial support. 
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of linear covariance stationary models with finite unconditional second moments 
and time invariant conditional variances and covariances remains prominent. 

To generalize this assumption, Engle (1982) introduced the so-called autore- 
gressive conditional heteroskedastic (ARCH) class of models. In the ARCH 
model the conditional variance is allowed to change through time as a function 
of current and past information. Although this new class of time series models 
allows for a much wider class of nonlinear dynamic econometric models, the 
linear ARCH (q) and the generalized ARCH model in Bollerslev (1986), 
GARCH (p, q), have been found to be particularly useful parameterizations in 
the modeling of monetary and financial data. 

A common finding in most of these studies concerns the presence of an 
approximate unit root in the estimated autoregressive polynomial for the 
conditional second moments, as in the integrated GARCH, or IGARCH, class 
of models proposed in Engle and Bollerslev (1986). In the IGARCH models 
shocks to the variance are persistent in the sense that current information 
remains important for forecasts of all horizons. 

Although many economic or financial time series may exhibit persistence in 
their conditional variances, as previously noted by Engle (1987a, 1987b), a 
nontrivial linear combination of such variables may have no persistence in 
variance. In that situation the variables are naturally defined to be co-persistent 
in variance, and the co-persistent linear combination may be interpreted as a 
long-run relationship. This idea provides a generalization of linear co-integra- 
tion in the mean, as in Granger (1981) and Engle and Granger (1987), to linear 
co-persistence in the variance. From an economic perspective the presence of 
co-persistence is potentially very important in the understanding of many 
modern asset pricing relationships. The price of an asset typically depends on 
the conditional covariance with some benchmark portfolio, so that the pricing of 
long-term contracts may differ radically from that of one-period contracts if 
shocks to the conditional variance or covariance with the benchmark portfolio 
persist. At the same time, the pricing of certain linear combinations of the 
assets, or portfolios, may not be very sensitive to current information if the 
assets involved show co-persistence in variance. 

The plan of the rest of the paper is as follows. The notation is set out in the 
next section, which also briefly motivates the ideas within the context of a 
simple asset pricing paradigm. The statistical concept of persistence in variance 
is formally defined, and discussed in some detail as it relates to the linear 
GARCH (p, q) class of models in Section 3. Building on these results, Section 4 
introduces the concept of co-persistence in variance, together with a set of 
necessary and sufficient conditions for co-persistence to occur in the linear 
GARCH (p, q) model. The empirical relevance of the ideas is illustrated in 
Section 5 by a simple example for the nominal U.S. dollar exchange rate versus 
the deutschemark and the British pound. Whereas the estimated bivariate 
system appears persistent in variance, the conditional variances of the two 
exchange rates are tied together in the long run. In particular, the bilateral 
deutschemark/British pound rate shows no persistence in variance, suggesting 
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that most of the volatility in the nominal U.S. dollar rates may be attributable to 
dollar-related news. Section 6 concludes. 

2. NOTATION AND ECONOMIC MOTIVATION 

Let {ytj denote the N x 1 discrete time vector stochastic process of interest, 
with conditional mean and variance functions: 

(1) Et_(yt) =Mt 
(t = O, 1, . .. ) 

(2) vart- 1 ( yt) = Ht. 

The content of the information set used in forming the conditional moments 
will depend upon the particular application, though often attention will be 
restricted to the past of the process {Yty only. Mt is an N x 1 stochastic vector, 
and the stochastic N x N symmetric covariance matrix Ht is almost surely 
positive definite for all t. Also, let the N x 1 innovation vector or shocks to the 
conditional mean be denoted by 

(3) Et-YtM (t =0,1,...). 

For notational convenience, the dependence on the parameters of the process 
has been suppressed. Of course, if Ht is changing through time, other condi- 
tional moments of the process will likely be time varying also. From an 
economic or financial theory point of view, however, the interest typically 
centers around the first two moments of the process. 

Before proceeding with the technical details defining persistence and co-per- 
sistence in variance, it is helpful to motivate the issues in a financial markets 
context. Suppose that the N x 1 vector of asset excess returns, yt, satisfies a 
strict factor structure, 

K 

Et= E Okkt + "t (t = O, 1 ... 

k=1 

where 

Et -1( 7ktf) = Et-l( ktjt ) = 0 

(k,j= 1,...,K; jok), 
Et1(vt) =Et-1(Vtp7fkt) = 0 

The K factors, 1lkt' are each normalized to have a conditional mean of zero. 
The K N x 1 vectors of factor loadings are denoted ok, while vt is an N x 1 
stochastic vector of idiosyncratic shocks. The factors can be interpreted as the 
news sources common to the returns on all of the N assets. Given this return 
generating structure, the arbitrage pricing theory relates the asset excess returns 
to the factor loadings, so that the total expected excess returns are simply the 
composite of the expected returns for each factor; see Ross (1976). More 
specifically, if the risk premium for factor k at time t is denoted akt, and the 
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idiosyncratic risk is not priced, exact factor pricing predicts that 
K 

Mt= E 8ktOk 
k=1 

If a factor is particularly undesirable for an investor, it is easy to form portfolios 
which have no component of that factor; e.g., W'Ok = 0. Obviously, there are 
many such portfolios. 

Now suppose some or all of the factors have time varying conditional 
variances with 

Vartfl ('7kt) = hkt (k = 1,* . ., K). 

Assuming that the idiosyncratic shocks are uncorrelated across the N assets 
with time invariant variances, the full conditional covariance matrix of the 
returns becomes 

K 

Ht= E ok0 kt +kDt 
k=1 

where D equals the N x N diagonal matrix of asset specific variances. Unless 
there are some redundancies between the factors, every asset which loads onto 
one of the factors with a time varying variance will have a temporally dependent 
conditional variance also. A subset of these factors may have variances which 
are persistent or integrated. As discussed below, these are non-mean reverting 
variance processes that typically have infinite unconditional variances. If the 
number of factors with non-mean reverting variances is less than N, then there 
will always be a portfolio with a nonpersistent variance, however. It is this ability 
to form portfolios from assets with persistent variances which are then nonper- 
sistent, that we define as co-persistence. In our formal discussion of co-per- 
sistence below, the portfolio weights or co-persistent vectors are constrained to 
be time invariant, but the consideration of time-varying portfolio weights would 
certainly be possible. 

Assuming that the market price of risk is determined by a standard capital 
asset pricing model with benchmark portfolio wMyt, it follows that 

K 

Mt =8 Covt 1(Yt w ywt) = 8HtwM = 8 E ok(Ok'wMhkt) + DwM. 
k==1 

If the benchmark portfolio is well diversified, the last term is effectively zero, 
and the risk premium associated with each of the factors is 

=t 8kWMhkf (k = 1,. .., K). 
Even though an agent might choose a portfolio which avoids the persistent 
factors, that is not an obvious choice. Since the persistent variance factors 
generally are more variable, the market will reward investors for bearing that 
risk provided O' WM # 0. The risk premia will be high just when the variance is 
high. The optimal portfolio allocation will depend upon the preference toward 
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risk and may differ radically for short and long-term investment horizons in the 
presence of persistent factor variances. 

Given our main focus of the paper, we shall not pursue this discussion any 
further. It is obvious, however, that to satisfactorily address many of the issues 
related to long-term portfolio allocation decisions in this and more general 
situations with time varying conditional return variances and covariances, a 
formal framework for thinking about and analyzing persistence and co-per- 
sistence in variance is called for. We now turn to the development of such a 
statistical framework. 

3. PERSISTENCE IN VARIANCE 

In order to consider the persistence of the process {yty, define the N x 1 
vector stochastic process 

(4) -M,* (s) -Es(M,) - EO(M,), t > s > O. 

The persistence of a shock to the conditional mean is then naturally thought of 
in terms of the limiting distribution of M,*(s) for t going to infinity. It is 
important to recognize that this notion of persistence is a joint property of the 
underlying stochastic process and the associated information structure. Follow- 
ing standard practice in time series econometrics, we shall assume that the 
information set used in forming the time s conditional moments is based on an 
increasing sequence of sigma algebras generated by {ys, ys - 1.... 1} possibly 
augmented by other random variables known at time s. Shocks to the mean of 
the process may then be characterized as having only transitory effects if 
limsupt, IMt*(s)I = 0 almost surely (a.s.) for all s > 0. Conversely, if 
lim sup, , I{M,*(s)}i I # 0 a.s. for some s > 0 and some i = 1, 2,. . ., N, certain 
shocks will have a permanent effect on the optimal forecast of the process.2 Of 
course, the persistence of the process may be further differentiated depending 
upon whether limsup,, IM,*(s)J is bounded in probability, or Op(1). This 
persistence measure corresponds exactly to the idea of infinite dependence on 
initial conditions, as discussed within the context of linear models by Beveridge 
and Nelson (1981). 

To illustrate, consider the mltivariate ARMA (k, 1) process, 

Mt = ,u + (L)yt + O(L) Et (t = 0, i...), 

with ?(L) and @(L) kth and lth order matrix lag polynomials. Ruling out 
cancellations, it is well known that the persistence of a shock to the mean 
depends upon the roots of the characteristic equation det [I - (A -1)] = O, 
where det[ [] denotes the determinant operator. If all the roots of this determi- 
nant equation lie inside the unit circle, the ARMA process for {yty may be 
represented as a time-invariant, possibly infinite-order moving average of the 

2It is important to recognize that lim sup I (Mt*(s)) I = 0 must hold for all s > 0 and i = 1, 2, . . ., N. 
Consider the univariate process, yt = Yt -2 + Et if t is even and yt = Et if t is odd, where Et is i.i.d. It 
follows directly that Mt*(1) = 0 for all t, while Mt*(2) = 0 for t odd and M*(2) = Y2 - yO for t even. 
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martingale difference sequence {Etj. Thus, 

limsupIMt* (s)l = limsupI etSES + et-s+iEs-i + * * Ot-8 1E 

=0 a.s. 
for all s > 0, where Oi denotes the ith order moving average matrix. This 
definition of transient includes both covariance stationary and strictly stationary 
ARMA processes with finite first, but possibly infinite second order moments. 
On the other hand, if A 2 1 solves the characteristic equation, 
limsupt oI{Mt*(s)}Ij # 0 a.s. for some s > 0 and some i = 1, 2,..., N. Unit root, 
or I(1), processes in which the norm of the largest root(s) equals one have 
recently received a lot of attention in the empirical modeling of macroeconomic 
and financial time series; for a discussion of the theoretical implications and the 
empirical evidence see, for instance, Nelson and Plosser (1982), Watson (1986), 
Baillie and Bollerslev (1989a), and the many references therein. 

Whereas there is little ambiguity about what constitutes persistence in linear 
models, as pointed out by Nelson (1990, 1991), for nonlinear models different 
measures of convergence may give rise to different notions of persistence. This 
is particularly true when describing higher order conditional moments. 

Following the discussion above, a natural characterization of the persistence 
in variance of a process is determined by the influence of the initial conditions 
on the optimal forecasts for the future conditional variances as the forecast 
horizon increases. This notion of persistence is also the motivation behind the 
forecast profiles calculated in Gallant, Rossi, and Tauchen (1992). Thus, in 
analogy to (4) define the N(N X 1)/2 x 1 vector stochastic process 

(S) Ht* (s) -Es (vech ( Ht)) Eo (vech ( Hj) t > s > O, 

where vech(-) denotes the vector half operator that stacks the lower triangular 
elements of an N x N matrix as an N(N + 1)/2 x 1 vector. As for the condi- 
tional mean, if limsuptO IHt*(s)I = 0 a.s. for all s > 0, the influence of a shock 
to the conditional variance may be thought of as having only transitory effects. 
This suggests the following formal definition: 

DEFINITION: The stochastic process {yt} is defined to be persistent in variance 
if limsup t.I{Ht*(s)} I # 0 a.s. for some s > 0 and some i = 1,2, ..., 
N(N+ 1)/2. 

In order to illustrate this definition and the new concepts discussed below, 
explicit reference will be made to the linear GARCH (p, q) class of models. The 
same ideas extend directly to other parametric nonlinear time series models, 
including the exponential GARCH model in Nelson (1991) and the bi- 
integrated processes in Hansen (1989). 

In particular, consider the popular vector GARCH (1, 1) model introduced by 
Bollerslev, Engle, and Wooldridge (1988) with Ho positive definite and 

(6) vech(H) = W+A1vech(Et - E-1c ) +B1vech(Ht) (t= 1,2,...). 
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Conditions on A1 and B1 for H, to be positive definite a.s. for all t ? 1 are 
given in Baba, Engle, Kraft, and Kroner (1990). Let 

(7) A1+B1=QFQ-l 

denote the Jordan decomposition in terms of the (N(N + 1)/2) x (N(N + 1)/2) 
matrices Q and F. If the eigenvalues for A1 + B1 are distinct, F equals the 
diagonal matrix of the N(N + 1)/2 eigenvalues, and Q is given by the corre- 
sponding matrix of right eigenvectors. If some of the eigenvalues coincide, F is 
upper triangular with the eigenvalues along the diagonal, while Q is a nonsingu- 
lar matrix. 

Upon recursive substitution and repeated use of the law of iterated expecta- 
tions, it follows that the optimal forecast for the conditional covariance matrix 
may be written as 

(8) Es (vech (H,)) = W+ (A1 + B1)E, (vech (H,1)) 

= W+ QFQ-'E, (vech(H,1)) 

t-s-2 

=Q E FiQ-lW+QFt-s-lQ-lvech(H+I) 
i=O 

t -1> s>0, 
where F' is equal to the identity matrix by definition. Thus, 

(9) Ht*(s) = QFt-s- Q-1 

x [vech(Hs+l) - (A1 +Bi)svech(Hi) - E (Al +Bi)iW] 
i=O 

Let A denote the eigenvalue for A1 + B1 with the maximum norm. If the 
eigenvalues are distinct and IA I < 1, {Tt} converges to zero element by element. 
For IA I = 1 the norm of the corresponding element in Ft equals unity for all t, 
whereas for IA I > 1 at least one of the diagonal elements in Ft increases 
without a bound for t going to infinity. For a formal discussion of the results 
involving the more general Jordan canonical form in which some of the 
eigenvalues for A1 + B1 coincide, see Andersen (1971). 

For any arbitrary finite first and second moment initialization of vech(H0) 
and Eo respectively, it follows now by analogy to the proof for the univariate 
case in Bollerslev (1986), that the vector GARCH (1, 1) process {Etj is asymptoti- 
cally covariance stationary if and only if IA I < 1. Also, from (8) the optimal 
forecast will approach the unconditional covariance matrix of the process 

lim Es (vech (Ht)) = Q E FiQ-lW= (I -A1 - B1) W, s > 0, 
t-?00 i=O 

and lim sup t . IHt*(s) I = 0 a.s. for all s > 0. 
On the other hand if IA I = 1, shocks to the conditional covariance matrix 

remain important for forecasts of all horizons. In particular, lim sup of Ht*(s) 
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equals the nonzero random vector, 

lim sup IHt* ( s)I 
t X- 0 

- Qe ejQ [vech(Hs+l)-(A +B) svech(H,) 

s-i 

- E (A1 + B1)W] 
u=O 

where e1 refers to the N(N + 1)/2 x 1 vector of zeros except for unity in the jth 
element corresponding to the position of the largest eigenvalue in F. Finally, if 
IA I > 1 it follows that the effect of a shock to the covariance matrix will explode 
over time as lim supt. IHt*(s)I is unbounded in probability. 

These results for the vector GARCH (1, 1) process extend straightforwardly to 
the higher order linear vector GARCH (p, q) class of models, 

q p 
(10) vech (Ht) = W + Ai vech (Et -iE-i) + Bi vech ( Ht_i) 

i=l i=l 

=W+A(fL) vech (EtEt) + B(fL) vech ( Ht) ( t = 1 ,2~ ... 

where W is an N(N x 1)/2 x 1 vector, and the (N(N + 1)/2) x (N(N + 1)/2) 
matrices Ai and Bi are restricted to ensure that Ht is a.s. positive definite for 
all t > 0; see Baba, Engle, Kraft, and Kroner (1990). In particular we have the 
following theorem. 

THEOREM 1: The vector GARCH (p, q) process {Etj defined in (10) is covari- 
ance stationary if and only if, all the roots of the characteristic polynomial, 

(11) det [I -A(A'-) - B(A -')] = 0, 

lie inside the unit circle, in which case limsupt jlHt*(s)I = 0 a.s. for all s > 0. 

PROOF: See Appendix. 

The conditions in terms of the matrix polynomial in (11) for the vector 
GARCH (p, q) process to be covariance stationary provide a generalization of 
the results for the univariate case analyzed in Bollerslev (1986). Interestingly, 
however, in many of the empirical applications with the univariate 
GARCH (p, q) model to financial or monetary data, the estimated values for 
AI + +Aq +BI + * * * +Bp are often found to be very close to one; for a 
recent survey of the extensive literature on ARCH models and their empirical 
applications in finance see Bollerslev, Chou, and Kroner (1992). This pro- 
nounced empirical regularity provides a motivation for the so-called integrated 
GARCH(p,q), or IGARCH(p,q), class of models introduced by Engle and 
Bollerslev (1986). In the univariate IGARCH (p, q) model A1 + . +Aq + 
B1 + - +Bp = 1, and in conformity with the univariate ARIMA(k, 1, 1) class of 
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models for the conditional mean, shocks to the conditional variance will have a 
permanent effect as limsup, jIH,*(s)I # 0 a.s. for some s > 0.3 From Theorem 
1 these results for the univariate IGARCH class of models extends in an 
obvious way to a multivariate framework with IA I = 1. 

As it stands, the unrestricted linear vector GARCH (p, q) model in (10) 
involves a total of N(N + 1)[1 + N(N + l)(p + q)/2]/2 unique parameters, and 
in practice some simplifying assumptions will have to be imposed. For instance, 
in the so-called diagonal GARCH (p, q) model in Bollerslev, Engle, and 
Wooldridge (1988) the Ai and Bi matrices are taken to be diagonal. 

In the K-factor GARCH (p, q) parameterization proposed by Engle (1987a) 
and Engle, Ng, and Rothschild (1990), the conditional covariance matrix H, is 
expressed as a linear combination of past values of E E t-i and Ht__ each 
post- and pre-multiplied by the same rank one matrices, 

q K P K 

(12) Ht =V+ E 2 t E b H (12) Ht= V+ E E aikgkfk--t-i--'-ifkgkf+ E: Eikgkfk t-ifkgfk 
i=l k=1 i=l k=1 

(t= ,2 ...). 

Here aik and bik denote scalar constants, and gk and fk are N x 1 vectors with 
the property that fk gk = 1, and fk gj = 0 for k #j. 

Define the vec 2() operator for the N x 1 vector y by vec 2(y) 
vech(2yy' - diag(y)diag(y)).4 Then for any symmetric N x N matrix Q, 
y'Qy = vec 2(y)' vech (Q). Using this vec 2( * ) operator, the conditional covari- 
ance matrix for the K-factor GARCH (p, q) model in (12) may be written in 
vech () format as 

K K 

(13) vech(Ht) = W- E vech(gkgfk)k + E vech(gkg )hkt 
k=1 k=1 

(t = 1,2, ... 

where W= vech (V) and 

(14) hkt -vec2(fk)'vech (Ht) 
q P 

=Wk+ E a 2k(fkf Et) + Ebik hkt- (t= 1,2,...), 
i=1 i=1 

denotes the conditional variance of {ffk'Et, and Ok vec 2(fk)'W. The optimal 
forecast for the full covariance matrix can be computed from the forecasts of 

3This analogy to the linear ARIMA class of models is not complete. Even though the uncondi- 
tional variance for the IGARCH (p, q) model does not exist, under the additional assumptions of 
conditionally normal errors the process is strictly stationary and ergodic; see Nelson (1990) and 
Bougerol and Picard (1992). 

4 To illustrate, 

vec2((Y1,Y2)') = (y1 2,y2)', and 

vec2((y1,y2,-Y3)') = (1,2Y1Y2,2Y1Y3, X2,2Y2Y3, X)3- 
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the conditional variances for the K univariate processes {fkE,).5 From Theorem 
1, the multivariate K-factor GARCH (p, q) process is covariance stationary if 
and only if all of the univariate processes, {ffkE, are covariance stationary, i.e., 
alk + +a k +bh 2+ +b 2 

<1, in which case limsup, j h *(s)I # 0 a.s. 
for all s > 0 and k = 1,..., K. A similar result holds true for the general 
multivariate factor ARCH model, in which the hkt's need not correspond to the 
variance of a particular linear combination of the process. 

4. CO-PERSISTENCE IN VARIANCE 

Granger (1981) first proposed the concept of co-integration, which has been 
further developed by Engle and Granger (1987) and Granger (1986) among 
others. The basic idea is that two or more time series may show persistence in 
the mean as discussed above, while at the same time certain linear combinations 
of the variables may exhibit no persistence, or be covariance stationary. In this 
case the variables are said to be co-integrated. This implies that long-term 
forecast of the individual series may depend nontrivially on shocks at the 
forecast origin, but for the co-integrating linear combination of the variables, 
the influence of a shock at the forecast origin will vanish asymptotically as the 
forecast horizon increases. In particular, if {ytj is an N x 1 vector I(1) process 
with conditional mean M,, the effect of a shock to the mean is persistent as 
lim supt .IM,*(s) 0 a.s. for some s > 0, whereas for the nonzero co-integrat- 
ing vector 0, 

lim sup I Es(O'M,) -Eo( O'M)I = lim sup I O'Mt* ( s)I =0 
t -00 t-400 

a.s. for all s > 0. If {yt} has finite second order moments, this particular linear 
combination defines a covariance stationary long-run equilibrium relationship 
among the variables. Although the forecasts of the individual elements in {yt} 
diverge, the multivariate long-run forecasts are tied together. 

Similarly, while many financial or monetary time series appear to be persis- 
tent in variance, certain linear combinations of the variables may have no 
persistence, so that the variables exhibit a common long-run component. The 
following definition formalizes this idea. 

DEFINITION: The multivariate stochastic process {yt} is defined to be co-per- 
sistent in variance if there exist a vector y E -RN such that {vec 2(y)}j # 0 and 
limsupt (I{Ht*(s)}iI # 0 a.s. for some s > 0 and some i = 1, 2,..., N(N + 1)/2, 
while 

lim sup IEs(y'Hty) -Eo(y'Hty)I = lim sup Ivec 2(y)'Ht* (s)I =0 
t-o00 t-?00 

a.s. for all s > 0. 

sIn the asset pricing applications in Engle, Ng, and Rothschild (1990) and Ng, Engle, and 
Rothschild (1992), the portfolios defined by fk/(fkfk) are referred to as factor representing 
portfolios. In the K-factor GARCH (p, q) model the conditional covariance between any two factor 
representing portfolios is constant. Also, any portfolio w such that w'gk = 0 for k = 1. K will 
have a constant variance. 
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This definition is analogous to the idea of co-integration in the mean. While 
shocks persist in the optimal forecasts for some of the individual variances and 
covariances of the process, the variances and covariances are tied together in 
the long-run, and for the particular univariate stochastic process defined by the 
linear combination {y'y,}, shocks to the conditional variance have only tempo- 
rary effects. Below we shall refer to y as the co-persistent vector. Of course, y is 
only unique up to scale, and some normalization scheme will have to be 
imposed. Also, the number of such normalized linearly independent co-per- 
sistent vectors might exceed one. 

In analogy to co-integration in the mean, the above definition of co-per- 
sistence in variance is restricted to linear combinations of the variables having 
no persistence. For {y,j a vector of asset returns this corresponds exactly to the 
portfolio with weights y/(y'y) having no persistence. While it is possible that 
limsup, IO'H,*(s)I # 0 for some vector 0 e N(N +1)/2 not of the form 
vec2(y), the interpretation of such relationships are difficult. The concept of 
co-persistence in variances suggested here could also be extended to cover 
common persistence across both means and variances, by considering situations 
where limsup, .I(Mt*(s)', Ht*(s)')'I =A 0, but limsuptjOI0'(Mt*(s)', Ht*(s)')'I = 
O for some 0 E qN+N(N + 1)/2.6 Of course, this would subsume the above 
definition of co-persistence in variance for 0' = (O', vec 2(-y)'), as well as common 
co-persistence in the mean and variance for 0' = (-y', vec 2(y)'). More generally, 
a variable persistent in the mean might enter the conditional variance of some 
other variable and lim sup t 0 '(Mt*(s)', Ht*(sY')'I = 0 without a particular lin- 
ear combination of the variables eliminating this persistence.7 We leave further 
work exploring these more general notions of co-persistence for future work. 

Returning to the definition of co-persistence in variance set out above, the 
univariate IGARCH class of models introduced in Engle and Bollerslev (1986), 
and their multivariate extensions discussed in Section 3, can now be formally 
analyzed in a multivariate context allowing for the possibility of common 
long-run dynamics in second order moments. 

THEOREM 2: Let IA1I 2 ... * * AJ 21 > IAr+iI 2 ... * IA,* I denote the or- 
dered roots from the characteristic polynomial for the vector GARCH (p, q) 
process {ft} in (10), and V1 V21 V.. ., vn the corresponding N(N + 1)/2 x 1 right 
eigenvectors, 

(15) A(A-1)vj+B(A-1)v =vi. 

The process is then co-persistent in variance, if and only if 

(16) vec2(y)'vi = O (i = 1,2 ...r), 

for some nonzero vector y E WN. 

6 We are grateful to a referee for pointing out this possible extension. 
7An interesting empirical illustration of such co-persistence across means and variances is 

provided by Glosten, Jagannathan, and Runkle (1990) where the short term interest rate is found to 
enter significantly in the conditional variance equation for stock returns. Similarly, Lamoureaux and 
Lastrapes (1990a) find that contemporaneous trading volume helps explain stock return volatility. 
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PROOF: See Appendix. 

From the proof of Theorem 2 the univariate stochastic process {ty'Et} iS 

covariance stationary, although in general the conditional variance for {''Et} will 
depend upon past realizations of all the elements in the N x 1 vector stochastic 
process {[s}, as well as past elements in the N X N conditional covariance 
matrices, {Hj}. However, in certain situations {y'Et} reduces to a simple univari- 
ate GARCH (p, q) process. 

LEMMA 1: Linear combinations, {t'Et}, of the vector GARCH(p, q) process in 
(10) will follow a univariate GARCH (p, q) process if and only if for some scalar 
constants a,,..., aq, 31, ...* 1f3P 

(17) vec 2(y)'Ai = ai vec 2(y)' (i = 1,2, ... . q) 

vec 2( zy) 'Bi = Bi vec2(zy ) ' ( i = 1, 2, .. .,p. 

PROOF: See Appendix. 

It follows immediately, that if the vector GARCH (p, q) process is co-per- 
sistent in variance, and {tY'Et} has a univariate GARCH (p, q) representation, 
where -y is a co-persistent vector, the sum of the scalar parameters 
a1,..., aq,,1 ,...,. B3P must be less than one. In particular, for the K-factor 
GARCH (p, q) process, we have the following lemma. 

LEMMA 2: The K-factor GARCH (p, q) process {[s} in (12) with 

q p 

E a2 + E b2k ? 1 (k = 1, ... , r) i k i k= 
- 

and 

q p 

Ea 
2 + Eb 2 <1 (k = r +1 ..... , K) 

i=1 i=1 

is co-persistent in variance, and {fkstJ, k = 1, 2,.. ., K, have univariate 
GARCH (Ip, q) representations with parameters al2k, ...,ak, 2 2pk 

PROOF: Since vec 2(fk)'vech (gjgj) = 0 for k s#j, the lemma follows directly 
from post-multiplication in (13) with vec 2(fk)' for k = r + 1, ... , K. Q.E.D. 

Note, for the 1-factor GARCH (p, q) model, any vector -y such that 

vec2(-y)'vech (g1g') = (-y'g1)2 = 0 

will result in a conditionally homoskedastic process, {ty'Et}. 
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5. EMPIRICAL EXAMPLE 

One of the areas where the ARCH methodology has found the widest use has 
been in the modeling of high frequency foreign exchange rate data. As an 
illustration of the ideas introduced above, we shall here consider a simple 
example based on daily data for the deutschemark (DM) and the British pound 
(BP) exchange rate vis a vis the U.S. dollar. Both the DM and the BP are 
quoted as the number of U.S. dollars per foreign currency. The data cover the 
period January, 1980 until February, 1985, for a total of 1245 observations 
excluding vacations.8 For a more detailed description of the data see Baillie and 
Bollerslev (1989a, 1989b) and Bollerslev (1987), where the same set of data has 
been analyzed from a different perspective. 

Since the appropriate procedures for conducting inference in multivariate 
persistent variance processes have not yet been fully worked out, the empirical 
results discussed below should be interpreted with some caution. As noted in 
Engle and Bollerslev (1986), it is possible that some of the well known difficul- 
ties for conducting inference in I(1) processes carry over to models with 
persistence in variance also. However, the quasi maximum likelihood estimates 
(QMLE), obtained under the assumption of conditional normality, essentially 
do a GLS type correction which might therefore ensure standard asymptotic 
properties of the estimators and associated test statistics; see Hong (1988), Lee 
and Hansen (1991), and Lumsdaine (1990) for a formal treatment of the 
univariate IGARCH(1, 1) model. 

Turning to the data, for neither of the two time series is the null hypothesis of 
a unit root in the autoregressive polynomial in the univariate time series 
representation for the mean rejected at conventional levels;9 see Kim and 
Schmidt (1992) for a discussion of testing for unit roots in the mean in the 
presence of IGARCH type effects. After first differencing, none of the resulting 
return series show any remaining serial correlation. Testing for co-integration in 
the mean between the two rates as in Engle and Granger (1987) also fails to 
reject the null hypothesis of no co-integration. These preliminary tests therefore 
suggest the simultaneous modeling of the mean adjusted logarithmic first 
differences of the two spot rates as a simple bivariate martingale sequence. 
However, from the univariate analysis in Baillie and Bollerslev (1989b) and 
Bollerslev (1987), both the DM and the BP exhibit substantial time variation in 
their conditional variances. For instance, Bollerslev (1987) on estimating a 
univariate GARCH (1, 1) model for each of the two rates finds 6&1 + f81 equal to 
.966 and .971 respectively, and for neither the DM nor the BP is the null 
hypothesis of an IGARCH (1, 1) process, i.e., a1 + f31 = 1, rejected by a conven- 
tional t test. 

8 There is a three year overlap with the sample period used here and the earlier sample for the 
BP studied by Gallant, Hsieh, and Tauchen (1991). However, as the analysis in Baillie and Bollerslev 
(1989b) and Bollerslev (1987) indicate, the BP was merely "recalcitrant" during the 1970's. 

9A more detailed description of the preliminary test results and the model diagnostics discussed 
below is available in the earlier working paper version of this article. 
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Of course, this apparent persistence in the volatility process may very well be 
common to the two series. To further investigate this idea, the conditional 
covariance matrix for the continuously compounded percentage daily rate of 
returns, y, 

= (100 * A log (s M),100 A A log (s B)), is here parameterized as a bi- 
variate GARCH(1, 1) model. In order to ensure that for some nonzero vector 
y E 2, the conditional variance for the scalar stochastic process {y'ytj takes 
the form of a simple univariate GARCH (1, 1) model, the conditions given in 
Lemma 1 were imposed in the estimation. Compared to the unrestricted 
GARCH (1, 1) model in (6), the six nonlinear restrictions, vec 2(y)'AI = 
a1 vec 2(y) and vec 2(y)'B1 = 1 vec 2(y) for some y E C2 and a q, .l E M, 
result in three over-identifying restrictions, leaving 15 as opposed to 18 free 
parameters in A1 and B1 to be estimated. Normalizing the first element in y to 
unity, the QMLE of the model parameters, with asymptotic standard errors in 
parentheses, are'0 

- .048 

(018) +t, 

(.017) 

.009 .068 .000 .024 
(.004) (-) (-) (.009) 

(18 veh(H+,) _-009 + -.048 .161 -.059 vc E ' 
(18) vech(H,?1) = | (1004) + (.013) (-) (.016) |vech(8tE8) 

.015 .048 - .146 .130 
(.005) (.012) (.035) (-) 

.894 .000 .000 

(-) (-) (-) 
+ .123 .709 .092 vech(Ht), 

+(.018) (-) (.027) ~ehH) 

.000 .176 .762 
(-) (.042) (-) 

A 1.000 - 1.176 1' &1= .247, f3= .605. 
L (-) (.058)] (.026) (.034) 

After some preliminary analysis, the nonbinding restrictions {B1}13 = {B1}31 = 0 
were pre-imposed in the estimation of the model in order to guarantee a well 
defined conditional variance process. Also, in the preliminary unrestricted 
estimation the parameters for the covariance terms entering the conditional 
variance equation for the DM, i.e., {A1}12 and {B1}12, were both found to be 
small and insignificant, and were subsequently fixed at zero to ease convergence 
of the numerical optimization algorithm. Indeed, a T R2 type LM test for the 

10 Note, it is not possible to write the model in (18) in the factor GARCH form in equation (12). 
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hypothesis that {A1}12 = =B112 0 takes the value 3.832, which is insignificant at 
conventional levels in the asymptotic chi-squared distribution with two degrees 
of freedom." Similarly, the LM test for the three overidentifying restrictions 
from Lemma 1 imposed in the estimation of (18) equals only 2.488. 

To further check the validity of the model specification, a series of additional 
diagnostic tests were calculated. For instance, the LM test statistic for an 
unrestricted AR(1), or equivalently MA (1), error structure is 4.926, far below 
the five percent critical value in the chi-squared distribution with four degrees 
of freedom. The LM test for additional serial correlation in the second order 
moments in the form of a diagonal ARCH(2) term, i.e., {A2}11 = =A2122= 

{A2133= 0, equals 3.458, again insignificant at conventional levels. Also, the 
Pagan and Sabau (1987) consistency tests based on the regressions of {E^,}i2 on a 
constant and {H}tii result in t statistics for the slope coefficients equal to one of 
1.436 and 1.447, respectively. Thus, subject to the caveats noted earlier, the 
bivariate model in (18) seems to provide a reasonably good description of the 
joint conditional first and second order moments of the two exchange rates. 

Turning to the actual estimation results, the ordered eigenvalues for the 
characteristic polynomial in (11), i.e., det[I-A1A-1 -B1,A-] = 0, equal A1= 
.982, A2 =.889, and A3 =.852 respectively, with corresponding eigenvectors 

= (.629, .575,523), v2 = (=-.283, .394, .874), and 33 = (-.150,-.697, .701). In 
light of the standard errors for the other parameter estimates, and the down- 
ward bias in the univariate estimates for a1 + f31 in the IGARCH (1, 1) model 
documented in Lumsdaine (1991), this implied estimate for IAJ is therefore 
suggestive of a high degree of persistence in the variance for the bivariate 
model; see Theorem 1.12 However, at the same time vec 2(5^)'vi = vec 2(y^)32 v 0, 
and by Theorem 2, the estimation results point to -y as a co-persistent vector for 
the system. 

As noted by a referee, imposing the constraints in Lemma 1 in the estimation 
implies that vec 2(y^)'(A^l + B1) =a + d )vec 2(f^)', and therefore makes 
vec 2( ̂ ) a left eigenvector for A1 + B1. Since the matrix of left eigenvectors is 
equal to the inverse of the matrix of right eigenvectors, it follows by construc- 
tion that vec2(^) must be orthogonal to all but one of the estimated right 
eigenvectors for A1 + Bl. However, nothing in the estimation imposes that 
vec 2( ̂ ) be orthogonal to the right eigenvectors corresponding to the two largest 
eigenvalues; i.e. v1 and V2. 

Thus, whereas the effect of a shock in terms of the optimal forecasts for each 
of the conditional variances and the covariance will persist, or die out very 

1" With conditionally leptokurtic errors, the actual size of the OPG T- R2 LM test exceeds the 
nominal size, yielding even stronger support for the null hypothesis in the absence of a rejection at a 
particular level; see Bollerslev and Wooldridge (1992) for related Monte Carlo evidence. 

12 Of course, when comparing persistence across different models using varying data frequencies 
it is misleading to simply focus on the numerical value of the largest estimated eigenvalue, IA, I 
unless IA, I = 1. In particular, to gain some intuition about the degree of persistence implied by the 
largest root, it is useful to think about the half life of a shock associated with that root; i.e., the 
number k such that A =.5. For A, = .982 the half life is about 38 trading days. The half life 
associated with A3 = .852 is only about four trading days. 
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slowly according to the largest characteristic root IAll =.982, the long-run 
forecasts are tied together.13 In fact, the particular linear combination of the 
two exchange rates defined by the co-persistent vector jy, i.e., {jy'}, follows a 
simple univariate GARCH (1, 1) model with a = .247 and f3 =.605. 

Interestingly, the QMLE for -y is close to (1, - 1). By the absence of triangu- 
lar arbitrage this particular linear combination of the two rates corresponds 
exactly to the logarithmic first difference of the deutschemark/British pound 
exchange rate.'4 Indeed, the t statistic for a, + f31 = 1 in the univariate 
GARCH (1, 1) model for the deutschemark/British pound rate equals 6.033, 
overwhelmingly rejecting the null hypothesis of a persistent variance process for 
the bilateral European rate. This suggest that most of the apparent persistence 
in the volatility in the U.S. foreign exchange market may be attributed to 
dollar-related news. 

6. CONCLUSION 

In this paper a definition of co-persistence in variance was proposed. The 
relevance of this new idea was illustrated by an empirical example for two 
nominal U.S. dollar exchange rates. Similar findings are likely to obtain with 
different foreign currencies and in the study of other related speculative prices. 
This has important implications for many interesting questions in theoretical 
and empirical finance and monetary economics. 

For instance, the finding of a common long-run component in the volatility 
processes may prove helpful in the construction of long-term forecast intervals 
and in the calculation of optimal hedge portfolios. According to modern asset 
pricing theories and in the pricing of derivative assets, the price today is a 
function of the conditional variance of the future asset returns, or the covari- 
ance with some benchmark portfolio(s). If shocks to the conditional variance or 
covariance have only short lived temporary effects, the risk premium associated 
with long term contracts will be affected very little. On the other hand, if the 
conditional variance is persistent, the pricing of long term contracts will be a 
nontrivial function of today's information set. At the same time, if the assets in 
a portfolio are co-persistent in variance with the co-persistent vector propor- 
tional to the vector of asset shares, the risk premium for long term contracts in 
that portfolio will tend to be time invariant. An empirical illustration is provided 
by the factor GARCH model for short term Treasury bills in Engle, Ng, and 
Rothschild (1990), where the estimates are suggestive of co-persistence in 

13As stated by Nelson (1991), "the usual cautions about interpreting a unit root as evidence of 
truly infinite persistence of shocks apply." Any parametric time series model imposes restrictions on 
the relation between the low and high frequencies, so that in practice much of the information 
about the low frequency behavior may implicitly be derived from the behavior at high frequencies. 
Of course, changes in the underlying structure may also result in apparent persistence; see 
Lamoureux and Lastrapes (1990b) and Schwert (1987). 

14Fixing y -(1, - 1), the QMLE for a1 and 81 take the values .256 (.028) and .583 (.040) 
respectively, with corresponding eigenvalues .981, .879, and .839. The quasi likelihood ratio test 
statistic for y = (1, - 1) equals 4.603. 
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variance across the different maturities. Similarly in the factor GARCH model 
for stock returns estimated by Ng, Engle, and Rothschild (1992), the size sorted 
portfolios appear to be co-persistent in variance. We leave further theoretical 
and empirical work exploring these ideas for future research. 
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APPENDIX 

1. PROOF OF THEOREM 1: From the definition of the process, 

q p 

Es (vech (Ht)) = W+ AiE, (vech (Ht-i)) + BiE, (vech (Ht-i)), 
i=l i=l 

where t - s > m -max{p, q}. Stacking vech(Ht+,),...,vech(Ht,+s_m+) as an n x 1 vector, 
vechn (Hd), where n mN(N + 1)/2, this may be written more conveniently in companion first 
order form as 

(Al) Es (vechn (Ht)) = FnW+ CnE, (vechn (Ht_1)), 

where the N(N + 1)/2 x n selection matrix Fn has zeros everywhere except for unity in the (i, i)th 
elements i = 1, 2,..., N(N + 1)/2, and the n x n companion matrix Cn is defined by 

A( +B[ A2+B2 .. Am-l+Bm_j Am+Bm 

I O ... O O 

(A2) Cn= ? I ... O O 

O O . I O 

with Ai 0 for i > q, and Bl 0 for i > p. It follows therefore from the analogy to the GARCH (1, 1) 
model in (8) that the vector GARCH (p, q) process is covariance stationary if and only if all the 
roots of 

(A3) det[AI-Cn]=O 

lie inside the unit circle. Let Ai # 0 denote a characteristic root with corresponding n x 1 character- 
istic vector xi, i.e., 

CnXi = Aixi 

From the structure of C,X xi = (vI,A71vI'. A -m+lvi), where the N(N+ 1)/2x 1 vector vi 
satisfies 

(A4) (Al +Bl)vi + (A2 +B2)A71vi + * +(Am +Bm)A-m+ i- A1vi. 

Dividing through by Ai it follows that det [I - A(A1) B(A 1)] = 0. Q.E.D. 



184 T. BOLLERSLEV AND R. F. ENGLE 

2. PROOF OF THEOREM 2: From (8) and the proof of Theorem 1 it follows that 

t-s-m-1 
(A5) Es (vechn (Ht)) = QPQ1F,W+ QFtSmQlEs(vechn (Hm+s)), 

i=o 

where t - s > m, F refer to the n x n matrix of eigenvalues from (A3), and Q the corresponding 
matrix of right eigenvectors. Note, the first N(N + 1)/2 elements in the jth column of Q is 
proportional to vj, say 8jvj. If vec2(y)'vj = 0 for j = 1, 2,..., r, it follows that 

(A6) E,(y'Hty) = Es (vec2(y)'vech (Ht)) 

= E, (vec2(y)'Fn vechn (Ht)) 
t-s-m-1 

= r (? * ?0.O. r+ I vec 2(y)'Vr+ 1iir+ 1 .... )Q-F1W 
i=O 

. ( ..? r+ vec 2(y)Pr+ Atr m . ..)Q lEs (vechn (Hm+s)). 

Thus, 

lim sup I Es(y'Hty) - Eo(y'Hty)l = lim sup I vec 2(y)'Ht* (s)l = 0 
t-+o t-+o 

a.s. for all s > 0. Conversely, suppose the model is co-persistent in variance. By direct substitution, 

(A7) vec 2(y)'Ht* (1) = vec 2(y)'QFt 

* [r-m-lQ-l(El (vechn (Hm+)) -FnW) 

_-FmQ-lEo (vechn (Hm))] 

= (8 vec2(y)'vlAt,..., Si vec2(y)'viA*,...) 

[rm`1Q-l(El (vechn (Hm+l)) -FnW) 

-F-mQ- Eo (vechn (Hm))], 

and since limsupt xvec2(y)'Ht*(1)I = 0 a.s. it follows that 

vec2(y)'vi = 0 

for all i corresponding to IA i I 2 1. Q.E.D. 

3. PROOF OF LEMMA 1: By direct substitution, 

Et_ 1((7YEt)2) = vec 2(y)'vech (Ht) 
q 

=vec2(y)'W+ j vec2(y)'Aivech(Et_iE'Ei) 
i=l1 

p 

+ E vec2(y)'Bi vech (Ht_i) 
i=1 

q p 

to + E ai(e y _ti)2 + E Bi(Y,Ht_iy), 
i=1 i=1 

where the last equality follows from (17). Conversely, suppose {y'Et} reduces to a univariate 
GARCH(p,q) process with conditional variance {y'Hty} and parameters a1,...,acq, 13l...1,3p. 
Then for all realizations of {Et} and {Ht}, 

vec2(y)'Aivech (Et-iEt-i) = 2i(y Et-i)2 1, 2,. q), 

and 

vec2(y)'Bi vech (Ht-i) =I3j(y'Ht_iy) (i= 1, 2,. p). 
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However, 

oi(y',_i 
= 

oi 
vec2(y)'vech (Et,E ) (i= 1,2,.. ., 

and 

,Bi(y Ht_ ly) =(ii vec 2(y)'vech (Ht-i) ( = 1, 2,..., p), 

and (17) follows immediately. Q.E.D. 
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