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Abstract

There is an increasing interest in iterative reconstruction (IR) as a key tool

to improve quality and increase applicability of x-ray CT imaging. IR has

the ability to significantly reduce patient dose; it provides the flexibility to

reconstruct images from arbitrary x-ray system geometries and allows one to

include detailed models of photon transport and detection physics to accurately

correct for a wide variety of image degrading effects. This paper reviews

discretization issues and modelling of finite spatial resolution, Compton scatter

in the scanned object, data noise and the energy spectrum. The widespread

implementation of IR with a highly accurate model-based correction, however,

still requires significant effort. In addition, new hardware will provide new

opportunities and challenges to improve CT with new modelling.

S Online supplementary data available from stacks.iop.org/PMB/58/R63/mmedia

1. Introduction

Computed tomography (CT) was introduced as a clinical imaging tool in the 1970s. Since then,

it has seen impressive improvements in hardware and software. Over the last few decades,

the number of detector rows has increased continuously, effectively turning multi-detector

row CT systems into cone-beam CTs (CBCTs). To increase the scanning speed, the rotation

time has been reduced, reaching values below 300 ms per rotation, and the original approach

of sequential circular scanning has been replaced by helical (spiral) orbits (Kalender 2006).

In the last 20 years, flat-panel detectors have been introduced for planar and tomographic
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x-ray imaging (Kalender and Kyriakou 2007). These detectors are being used in dedicated CT

applications, such as flexible C-arm CT systems for angiography and cardiac imaging, digital

tomosynthesis for mammography and high-resolution dental imaging. This evolution of the

hardware was parallelled by new developments in image reconstruction software. New ‘exact’

analytical reconstruction algorithms have been derived for CT with 2D detectors, moving

along helical (Katsevich 2002, Noo 2003) and other more exotic acquisition trajectories (Pack

et al 2004). In addition, as a side effect of these developments, new insight has been gained in

the reconstruction from truncated projection (Clackdoyle and Defrise 2010).

Although analytical reconstruction algorithms usually produce excellent images, there

is a growing interest in the iterative reconstruction (IR). One important reason for this is a

growing concern about the radiation doses delivered to the patients. Another reason is the

higher flexibility and robustness of iterative algorithms, which will allow new CT designs that

would pose problems for analytical reconstruction algorithms.

In IR, one models the fact that there are a finite number of measured rays, whereas

analytical methods are derived assuming a continuum of rays. In contrast to analytical

reconstruction, iterative methods assume right from the start that the image to be reconstructed

consists of a finite number of samples too. This is obviously an approximation, but it allows

application of numerical methods to solve the reconstruction problem. The algorithms can

be considered as a feedback mechanism, with a simulator of the CT-physics (re-projection)

in the feedback loop. The feed forward loop updates the reconstruction image, based on

deviations between the measured and simulated scans (this usually involves a backprojection).

The output of the algorithms is very sensitive to the CT simulator in the feedback loop; for

accurate results, it is essential to use a sufficiently accurate simulator. There is more freedom

in the feed forward loop, which can be exploited by algorithm designers to improve the (local

or global) convergence properties (De Man and Fessler 2010).

This paper discusses the physics models that are used in the feedback loop. The basic

model that is often used can be written as follows:

Yi = bi e−
∑

j li jµ j + si + ni, (1)

where Yi is the measured transmission sinogram value along the projection line i, bi is the

corresponding value that would be measured in the absence of attenuation (blank or air

calibration scan), µ j is the linear attenuation coefficient at voxel j, li j represents the effective

intersection length of the projection line i with voxel j and si represents possible additive

contributions, such as Compton scatter. The model is completed by assuming a probability

distribution for the noise ni. The index i combines all dimensions of the sinogram (including

axial and transaxial detector positions, view angle); the index j typically represents the three

dimensions of the reconstruction volume. An alternative representation is

yi = ln

(

bi

Yi − si

)

=
∑

j

li jµ j + n′

i, (2)

which takes the log-converted data as the input. A noise model for n′

i can be obtained by

propagating the noise model for (1) through the logarithm. Many analytical algorithms and

some iterative ones, such as the well-known simultaneous algebraic reconstruction (SART)

algorithm (Andersen and Kak 1984, Byrne 2008), use the same weight for all data during the

computations. This corresponds to assuming that n′

i is independent of i.

The models (1) and (2) have several limitations. They assume a monochromatic

transmission source, prior knowledge of the scatter contribution and no detector crosstalk.

They cannot accurately account for the finite sizes of the transmission source and the detector

elements and cannot model blurring effects due to a continuous gantry rotation. Although
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these approximations are acceptable in many applications, there are also many cases where

better models have significantly improved the final reconstruction.

Below, we discuss various aspects of the physics model in the iterative CT reconstruction.

Section 2 discusses problems and opportunities of the discretization and section 3 shows

how the models can be extended to take into account effects limiting the spatial resolution.

Compton scatter in the scanned object is discussed in section 4. Section 5 analyses the complex

noise characteristics of data from the energy-integrating x-ray detectors and presents ways to

approximate it. Section 6 briefly discusses the incorporation of the energy spectrum and

section 7 shows how artefacts due to motion can be reduced or eliminated.

2. Discretization

Any practical IR algorithm needs to make accurate approximations of the true, continuous

nature of the object. Typically, the reconstructed object is represented as a weighted sum of

a finite set of spatial basis functions, with a grid of cubic, uniform, non-overlapping voxels

covering the reconstructed field of view (FOV) being perhaps the most common and intuitive

example of such a basis set. The reconstruction algorithm solves for the coefficients of this

expansion, i.e., the attenuation (or density in polyenergetic reconstruction) of each uniform

voxel in the grid. An alternative, but closely related expansion replaces the voxels with a

set of spherically symmetric Kaiser–Bessel functions, known as ‘blobs’ (Lewitt 1990, Matej

and Lewitt 1996, Ziegler et al 2006, Carvalho and Herman 2007). During the reconstruction,

projections of the object are simulated either by tracing rays and computing intersection

lengths with each basis function (for voxels, common choices are the ray-tracing algorithms

of Siddon (1985) or Joseph (1982)), or by a ‘footprint’-based approach (De Man and Basu

2004, Ziegler et al 2006, Long et al 2010). Note that the system model assumed in IR

(involving discretized object and detectors) is fundamentally different from the one used

in the derivation of analytical algorithms (where the object is assumed continuous). This

indicates that notions such as sufficient sampling (e.g., in the case of sparse acquisitions)

may not directly translate from the analysis of analytical reconstruction to IR, as discussed in

Bian et al (2013).

A host of new considerations for object discretization is likely to arise with the growing

interest in the application of IR to time-resolved CT imaging, such as in motion-compensated

cardiac reconstruction (Isola et al 2010, Isola et al 2008) or perfusion imaging on slowly

rotating cone-beam systems (Neukirchen et al 2010). In motion-compensated reconstruction,

a new strategy for the computation of basis footprints to account for changes in sampling due

to the motion field was shown to be necessary and developed for the blob-based representation

(Isola et al 2008). Examples from cardiac emission tomography suggest that other object

representations such as deformable meshes (Brankov et al 2004, 2005) could provide an

interesting alternative to conventional discretization with voxels or blobs for modelling motion

in IR. In perfusion imaging and other applications involving tracking contrast enhancement,

IR is enabled by representing the time-varying attenuation (or density) at each location in

the object as a superposition of a finite number of temporal basis functions (e.g., gamma-

variate distributions) and then solving for the coefficients of this expansion (Neukirchen et al

2010, Johnston et al 2012). This essentially means that the reconstruction problem is now

decomposed into a set of spatiotemporal basis functions, instead of the purely spatial basis

functions discussed above. More details on the dynamic aspects of IR are given in section 7.

Here, we discuss some considerations regarding object discretization in IR that arise

regardless of the chosen method of re-projection. In particular, we will review the following:

(i) artefacts due to inconsistencies caused by the discrete approximation of true continuous
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(A) (B) (C)

Figure 1. (A) FBP reconstruction from simulated projections of a digital abdomen phantom.

Simulations were performed on a very fine (4096×4096) grid with 0.125 mm voxels and 16 rays

traced per 2 mm detector bin. All reconstructions are presented on a 512×512 grid of 1 mm voxels

(‘natural’ voxel size for this geometry with the magnification of 2). The iterative unregularized

ordered subset convex (OSC) reconstruction on the 512×512 grid is shown in (B) at a noise

level matching the FBP image (accomplished by low-pass filtering). Despite better resolution

(FWHM of the line pattern), the OSC image is plagued by edge and aliasing artefacts caused by

object discretization. Artefacts are indicated by arrows; in each case, an image of a section of the

phantom is also shown using a compressed greyscale to better visualize the artefacts. The OSC

reconstruction on a fine grid (1024×1024) followed by downsampling to the same grid as used for

FBP is illustrated in (C). The greyscale range is 0.9–1.1 g cm−3 for full images and 1.0–1.02 g cm−3

for image details. Figure taken from Zbijewski and Beekman (2004a). Copyright IOP Publishing

2004.

physical objects, (ii) region-of-attention strategies to reduce the computational burden of using

finely spaced basis functions and (iii) issues related to the use of discrete object and detector

models in simulation studies of algorithm performance.

2.1. Discretization artefacts in IR

The very fact that the object is discretized into a finite number of basis functions inherently

leads to discrepancies between the measured projection data and the simulated re-projections

estimated during the reconstruction (Zbijewski and Beekman 2004a, Pan et al 2009, Herman

and Davidi 2008). The finite-dimensional object representation is thus both a crucial enabler

and a potential source of significant errors in reconstruction, as discussed in the general

context of (linear) statistical inverse problems in Kaipio and Somersalo (2007). As presented

in Zbijewski and Beekman (2004a) for cubic voxels, even in the case of ‘ideal’ discretization

where each voxel represents the average attenuation (or density) of the continuous object

within its volume, the simulated re-projection of such a representation will be mismatched

with the measured projections in areas corresponding to interfaces between tissues. Because

IR algorithms seek to maximize the agreement between the re-projections and the measured

data, these unintended mismatches may cause artefacts. Typically, such artefacts are most

pronounced around sharp material boundaries and appear as edge overshoots and aliasing

patterns. Figure 1 illustrates these effects for a simulation of a clinical fan-beam CT

scanner. No artefacts attributable to object discretization are present in the analytical (filtered

backprojection or FBP) reconstruction onto a grid of ‘natural’ voxels, given by de-magnified

detector pixel size (figure 1(A)). Figure 1(B) shows the result of IR onto the same object grid,

exhibiting the edge and aliasing artefacts explained above.

Intuitively, using many basis functions to represent the object (e.g., smaller voxels) should

alleviate such discretization-induced artefacts, as has been shown by Zbijewski and Beekman

(2004a). In particular, it was demonstrated that while the statistical reconstruction onto a

voxel grid typical for analytical reconstruction results in severe edge artefacts (figure 1), the
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reconstruction on twice as fine a grid followed by binning back onto the ‘natural voxels’ is

sufficient to remove most of the artefacts (figure 1(C)). The binning step mitigates the increased

noise in the finely sampled reconstruction; this approach has been shown to outperform simple

post-smoothing of the low-resolution reconstructions in terms of the tradeoff between artefact

reduction and resolution (Zbijewski and Beekman 2004a). The reconstruction using a finely

sampled voxel basis has also been demonstrated to outperform an approach based on smoothing

the measured projections (Zbijewski and Beekman 2006a), which intends to compensate for

the blur introduced by discretization and improve the match between measured and simulated

projections (Kunze et al 2005). Finally, even though basis functions such as the blobs are

expected to show slightly less-pronounced edge artefacts than square voxels (Matej and Lewitt

1996), such artefacts have still been observed in blob-based CT reconstructions (Ziegler et al

2006). It has also been shown that, at least in some cases, the voxel-based reconstruction on a

fine grid outperforms the blob-based reconstruction on a coarser grid in terms of edge artefact

reduction (Zbijewski and Beekman 2006a). Some projection operators were demonstrated

to be more immune to such artefacts than others (e.g., the trapezoidal separable footprint

outperformed a distance-driven projector in Long et al (2010) in this respect), but in general,

the root cause of the problem is using a finite number of basis functions to represent a

continuous object (Pan et al 2009), regardless of the particular form of the basis functions

or projection operator. IR is thus likely to typically require finer object discretizations than

analytical reconstruction to minimize edge artefacts. Note that using more basis functions

may degrade the conditioning of the reconstruction problem, so that a judicious choice of

regularization may become increasingly important in constraining the solution. Furthermore,

the edge and aliasing artefacts due to discretization may occur alongside similar artefacts

caused by the Gibbs phenomenon, where the reconstruction algorithm attempts to recover

high frequencies lost in the detection process, compound by mismatches between the true

blurring in the system and its model used by the reconstructor, as described in Snyder et al

(1987) for emission tomography.

2.2. Non-uniform discretization and other region-of-interest (ROI) techniques

Using fine discretizations to reduce edge artefacts (or for any other purpose) may pose practical

problems because the reconstruction time increases with the size of the basis set used to

represent the object (the number of elements in the reconstruction grid). This increase could

be partly mitigated if computations on a fine reconstruction grid could be restricted only to

those areas of the object where the improved discretization is most likely to be beneficial

(ROI). One example where this approach could be applied is in the reduction of nonlinear

partial volume effect (NLPV, also known as edge-gradient effect (De Man 2001)), in particular

around metallic implants. NLPV is caused by inconsistencies in projection data arising from

attenuation gradients occurring within the FOV of a single detector cell due to the logarithmic

relationship between attenuation and measured intensity (Glover and Pelc 1980, Joseph and

Spital 1981). NLPV is therefore an unavoidable result of using finite detector apertures, but

can be alleviated if the reconstruction accounts for the process of formation of this artefact by

finely discretizing the object space (to better capture the image gradients) and by subsampling

the detector cells (to capture the averaging of detected intensities across image gradients)

(Stayman et al 2013, Van Slambrouck and Nuyts 2012). Since the NLPV artefacts are most

pronounced around high-intensity image gradients, e.g., around metallic implants, strategies

where the object discretization is made finer only in the vicinity of such structures were

proposed (Stayman et al 2013, Van Slambrouck and Nuyts 2012). In Van Slambrouck and

Nuyts (2012), the grouped coordinate ascent is employed to allow for a sequential update
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(and associated faster convergence) of image regions with different discretization. In Stayman

et al (2013), a non-uniform reconstruction grid is applied within an algorithm where prior

knowledge of the shape and composition of the implant (e.g., a CAD model) is used to recast

the reconstruction objective function as the estimation of the underlying anatomy and the

registration of the known implant. The discretization of the known implant model is now

easily decoupled from the discretization on the underlying volume, allowing for significant

upsampling of only the implant without incurring large computational cost.

The examples discussed above considered spatial basis functions that are most commonly

used in IR of x-ray CT data, i.e., cubic voxels and blobs. Non-uniform discretization could

perhaps be achieved more naturally when using a polygonal mesh to represent the object

(similar to a finite-element analysis), as shown for emission tomography in Brankov et al

(2004). The mesh is defined by its vertices, whose density is varied throughout the space based

on the level of local image detail. This focuses the computations on the regions of highest

detail, while also benefitting from a likely more compact object representation than in the

case of voxel basis. It remains to be seen whether this approach could benefit IR in x-ray CT,

where the image resolution and spatial detail in the reconstructed distributions are significantly

higher than in emission tomography and the spectrum of detection and estimation tasks differs

from those in emission tomography.

Another application benefitting from selective use of fine object discretization is high-

resolution imaging of large body sites, such as the heart. In this case, the high-resolution

representation of only a selected ROI (e.g., the heart itself) is likely sufficient for diagnosis.

Restricting the finely sampled IR only to this ROI would reduce computation, but cannot be

achieved with standard IR algorithms because re-projections of the complete FOV are needed

to compute the objective function. In Ziegler et al (2008), this limitation is overcome by

using an initial analytical high-resolution reconstruction of the complete volume (relatively

computationally inexpensive) to compute projections of the volume without the ROI (masked

out from the analytical reconstruction), which are then subtracted from the original data to yield

projections of the ROI only, which are subsequently reconstructed with IR at high resolution.

Related approaches using IR with two different voxel grids were proposed by Hamelin et al

(2007, 2010).

A situation where the complete object fills only a relatively small volume within the FOV

could also benefit from an approach that exploits ROI discretization. If the area of the FOV

that does not contribute to the projections (i.e., air surrounding the object) can be identified

inside the discretized volume through image processing techniques, the forward projection

and backprojection could be limited only to those spatial basis functions that cover the object

(attenuator), saving memory and computation time, especially if the forward projector and

backprojector utilize pre-computed voxel footprints (Benson and Gregor 2006).

2.3. Discretization in simulation studies

Development of reconstruction algorithms usually heavily relies on simulation studies, where

projections of digital phantoms are computed and then reconstructed. Such simulation studies

frequently rely on discrete representations of the object and the detector, mainly because of

the flexibility of this approach in capturing the complexities of real anatomy compared to

the alternative approach of analytical modelling. The assessment of reconstruction algorithms

based on the results of such numerical simulations can however be biased due to the choice of

the basis set used in the discretization.

In Goertzen et al (2002), several phantoms were simulated using the Siddon ray-tracing

algorithm (Siddon 1985) and voxel image representation for a range of numbers of rays per
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projection pixel and voxel sizes. FBP reconstructions of these simulations were performed onto

a voxel matrix of fixed sampling distance and examined for discretization-induced artefacts. It

was shown that to reduce discretization-induced artefacts in the reconstructions of simulated

data with realistic amounts of noise, the simulation grid sampling should be at least half of

that of the reconstruction grid, and at least four rays should be traced per detector pixel (for

the clinical CT system geometry with 1 mm). Note that the applicability of these criteria to

more accurate CT simulators that include blurs due to detector aperture, focal spot size and

source-detector motion has not yet been explored in the literature.

Another form of bias caused by using discrete object and system models in the numerical

assessment of IR algorithms may arise from simply employing the same discretization in

the simulation of the test projection data as in the subsequent reconstructions, regardless of

how fine that discretization is. Having such a perfect match is sometimes referred to as the

‘inverse crime’ (Herman and Davidi 2008, Kaipio and Somersalo 2007, Bian et al 2013). While

‘inverse crime’ simulations are sufficient for investigating stability, upper performance bounds

and theoretical aspects of a reconstruction algorithm (Bian et al 2013, Sidky and Pan 2008),

they are likely to overestimate an algorithm’s performance compared to its behaviour with real

data (Kaipio and Somersalo 2007). As mentioned above, such an overestimation can be avoided

when the discretization in the simulation is finer than that assumed by the reconstructor, which

usually involves a denser voxel grid, but often also denser detector sampling, depending on

the chosen mechanism for forward projection (De Man et al 2000, De Man et al 2001, Nuyts

et al 1998, Zbijewski and Beekman 2004a, Elbakri and Fessler 2003a).

2.4. Summary

Discretization of the object is an approximation that may significantly affect the output

of simulations and IR algorithms. Artefacts are reduced by using finer discretizations, but

the computation time increases accordingly. This can be mitigated by using non-uniform

discretizations, using the finer grids only at the locations where it matters most. For realistic

simulations, one should avoid committing the ‘inverse crime’.

3. Finite spatial resolution

Ignoring finite spatial resolution effects due to detector size, focal spot size, motion of the CT

gantry, crosstalk and/or afterglow will result in the loss of resolution because the blurring of

the data will propagate unhampered into the final reconstruction.

The implementation of a forward projection and backprojection often involves some

interpolation, which in turn can yield some blurring effects. In the analytical reconstruction,

this causes a blurring of the reconstructed image, unless it is compensated by adjusting the

ramp filter. In contrast, in IR, the blurring will be iteratively inverted, resulting in a sharper

image. However, the true blurring is usually more severe than the blurring due to interpolation,

and additional work is needed for a proper compensation.

3.1. Stationary point spread function (PSF)

An easy model is to assume a stationary PSF, which is modelled either as a convolution in

the projection domain (typically blurring the views, but not along the angles) or as a 3D

convolution in image space. The blurring kernel is typically chosen to be Gaussian, with a

different standard deviation in axial and transaxial directions. This model has been applied also

as a sinogram pre-correction method (Carmi et al 2004, Rathee et al 1992) and as a correction
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applied after the reconstruction (Rathee et al 1992, Wang et al 1998). The pre-correction

method has the advantage that the known noise properties of the data can be taken into account

(La Rivière 2006).

3.2. Voxel footprints

As mentioned above, a voxel footprint is the (position-dependent) projection of a voxel on

the detector. Projectors based on such a footprint usually take into account the geometry

of the divergent beam and the finite detector size. Doing so, they account for the related

blurring, which would be ignored when simple ray tracing was used. An additional advantage

of footprint-based (back)projectors is that they avoid the creation of Moiré patterns which are

often produced by algorithms derived with straightforward discretization (De Man and Basu

2004).

The footprint depends on the basis function assumed for the voxel. For traditional pixels,

De Man and Basu (2004) proposed the ‘distance-driven projector’, where the projection of a

voxel is approximated with a rectangular profile both in transaxial and axial directions. Long

et al (2010) extended this to a trapezoidal shape, which enables more accurate modelling for

projection lines obliquely intersecting the voxel grid. Examples of other basis functions are

the blobs (Lewitt 1992) discussed above and a related approach using Gaussian blobs, also

called ‘sieve’, as proposed by Snyder and Miller (1985). Matej and Lewitt (1996) reported

that the use of blobs results in less noisy images when compared to the traditional pixel grid.

However, the width of the blob should be less than the spatial resolution of the data; otherwise,

overshoots near the edges are created. In these approaches, the blob or sieve could be regarded

as a stationary resolution model, while the reconstructed image converges to the ideal image,

convolved with the PSF.

3.3. Detector crosstalk and afterglow

Detector crosstalk results in a blurring of adjacent detector signals within the same view.

Detector afterglow causes blurring from the detector signal of a particular view into the

signal of the same detector in the next view(s). It seems relatively straightforward to extend

the footprint approach, which already models the finite detector size to model the crosstalk

between adjacent detectors as well. One can either convolve the computed sinogram views

with a convolution kernel (Thibault et al 2007) or enlarge the detectors into overlapping virtual

detectors (Zeng et al 2009b) during the footprint computation. These techniques correspond

to the following model (ignoring scatter, i.e. si = 0; see (2)):

Yi = bi e−
∑

d gid

∑

j ldjµ j , (3)

where g represents the crosstalk kernel. This involves an approximation because the blurring

due to crosstalk and afterglow is between the detected photons and not between the attenuation

values. Extending (1) with the crosstalk smoothing kernel g yields

Yi =
∑

d

gid bd e−
∑

j ldjµ j . (4)

A maximum-likelihood (ML) algorithm for this model has been proposed by Yu et al (2000)

and was used in Feng et al (2006) and Little and La Rivière (2012). In this last paper, the

reconstruction based on the nonlinear model (4) did not outperform the reconstruction using

the linear model (3) in simulations with the FORBILD phantom. The kernel g can represent

the detector crosstalk as well as the effect of detector afterglow. However, because afterglow

involves adjacent views, modelling it as blurring over angles is not compatible with the ordered
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subsets approach. Forthmann et al (2007) discuss issues about the correct definition of kernel

g for afterglow correction in dual focal spot CT systems.

Note that ML algorithms assume that Yi in (4) is Poisson-distributed. However, the

afterglow and (at least part of) the crosstalk occur after the x-rays interacted with the detector,

and therefore they cause noise correlations. It would be more accurate to assume uncorrelated

noise before the smoothing kernel g is applied (La Rivière et al 2006).

3.4. Finite source size

The finite size of the focal spot of the x-ray tube can be modelled by subsampling, i.e., by

representing the source as a combination of point sources. Applying that to (4) results in

Yi =
∑

d

gid Y ′

d with Y ′

i =
∑

s

bis exp



−

∑

j

ls
i jµ j



 , (5)

where bis represents the x-rays sent from the source in position s to detector i, and ls
i j is the

beam geometry for that particular point source. Based on this model, reconstruction algorithms

for ML (Browne et al 1995, Yu et al 2000, Bowsher et al 2002, Little and La Rivière 2012)

and SART (Yu and Wang 2012) have been proposed. Browne et al (1995) did not use a

footprint approach, but represented the detectors by subsampling those as well, using ray

tracing between all detector points and source points. Note that the apparent focal spot size

may be different for different positions on the detector due to the anode angulation (La Rivière

and Vargas 2008).

Because each point source has its own projection matrix, algorithms based on these

models need to compute forward projection and backprojection for every point source in every

iteration. For that reason, some authors use a simpler model, like (4), with a kernel g that

is designed to include effects of the finite focal spot size as well (Feng et al 2006). In 2D,

this can be a good approximation if there are many views and small detectors because then

eccentric point source positions in one view will correspond with good accuracy to a central

point source position in another view (La Rivière and Vargas 2008).

3.5. Fit a model to known resolution loss

Instead of modelling the physics accurately, some authors prefer to create a model that

accurately mimics the effective resolution loss. One advantage is that this can be tuned with

measurements or Monte Carlo (MC) simulations, including all possible effects contributing to

resolution loss.

Feng et al (2006) used the model of (4) for SPECT transmission scanning with sources

of finite size. Michielsen et al (2013) used a position-dependent version of (4) to compensate

for resolution loss due to tube motion in tomosynthesis. Zhou and Qi (2011) proposed to

accurately measure the projection matrix and then model it as a combination of sinogram

blurring, ideal projection and image blurring. The combination of these three operators offers

enough flexibility to obtain a good fit, while their sparsity allows fast computation times.

3.6. 2D simulation

A 2D CT acquisition was simulated, assuming a perfect point source and detectors with finite

width suffering from significant cross talk: each detector detected 11.3% from the x-rays

arriving in its neighbours. The focus-detector distance was 100 cm, the distance between

focus and rotation centre was 55 cm and there were 300 detectors with a size of 1.5 mm. The
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Figure 2. An example from the 2D simulation showing the true attenuation image and the

reconstruction from FBP and from ML with resolution recovery in the presence of noise.

Figure 3. The noise versus bias for FBP, MLTR and MLTR with resolution recovery. The curves

are generated by varying the number of iterations for MLTR and by varying the width of a Gaussian

post-smoothing filter. RMS bias and noise are expressed as % of the background attenuation.

acquisition consisted of 1000 views, with monochromatic 70 keV x-rays and 40 000 photons

sent to every detector. The object was a disk consisting of fat, containing 35 rings with

soft tissue attenuation and two disks consisting of bone. To avoid the ‘inverse crime’ during

simulation, the object was represented in a matrix of 1952 × 1952 (pixel size 0.125 mm), and

five rays per detector element were computed. The resulting sinogram was reconstructed in

a matrix of 488 × 488 (pixel size 0.5 mm) with three algorithms: FBP, an ML algorithm for

transmission tomography without (MLTR) and with (MLTR-resol) resolution recovery using

(4). The ML algorithms did not use regularization, and up to 40 iterations with 50 subsets each

were applied. Simulations with and without Poisson noise were done. The phantom and two

noisy reconstructions are shown in figure 2. The bias was estimated as the square root of the

mean squared difference (RMS) between the noiseless images and the true object. The noise

was estimated as the RMS between the noisy and noise-free images for each algorithm. A

bias-noise curve was obtained by post-smoothing the FBP image with a Gaussian kernel with

varying width and by varying the iteration number for MLTR. The result is shown in figure 3.

When compared to FBP, MLTR obtains lower bias for the same noise level, thanks to its more

accurate noise model. Incorporation of the resolution model yields a further improvement.
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The iterative algorithms can reach lower bias levels than FBP, in particular when the finite

resolution is modelled.

3.7. Summary

Accurate modelling of the finite resolution effects increases the computation time because it

requires multiple samples over the detectors and the focal spot. However, good results have

been reported with approximate models that basically replace increased sampling with well-

chosen smoothing operations during the computations. The use of such models improves the

achievable tradeoff between bias and noise.

4. X-ray scatter

The detection of x-rays that have scattered in the object to be reconstructed can result in

significant image quality degradation. Both management of scatter and correction of scatter-

induced artefacts have been steadily growing in importance in x-ray CT. This is due to

continuing increase of the axial coverage of modern multi-detector CT scanners and, perhaps

more significantly, due to the introduction of large area digital solid-state detectors (e.g. flat-

panel detectors, CCD cameras) for x-ray tomography and the rapid proliferation of such CBCT

devices in clinical, pre-clinical and material testing applications. Deleterious effects of x-ray

scatter in CT reconstructions include cupping and streak artefacts, decreased contrast and

resolution and decreased image contrast-to-noise (Johns and Yaffe 1982, Joseph and Spital

1982, Glover 1982, Endo et al 2001, Siewerdsen and Jaffray 2001, Kyprianou et al 2005,

Colijn et al 2004, Zbijewski and Beekman 2006b).

While scatter can be partially mitigated by judicious selection of imaging geometry, e.g.

by using long air gaps (Neitzel 1992, Siewerdsen et al 2004) or by the direct rejection with

anti-scatter grids, the level of achievable scatter removal is often limited by other image quality

considerations (e.g. the increase in dose needed to compensate for primary attenuation in a

grid while maintaining full spatial resolution (Siewerdsen et al 2004, Neitzel 1992, Kwan et al

2005)), design constraints and cost of devices (e.g. need of larger detectors and gantry when

using gaps) and thus many volumetric CT systems will require additional software scatter

correction.

In iterative statistical reconstruction, scatter is often included in the measurement model as

an additive, known as a priori term representing the mean amount of scatter per detector pixel

(si in equations (1) and (2)). While accounting for the scatter is straightforward (especially for

the Poisson noise model (1), where the projection data are never log-corrected, and thus the

additive nature of scatter is maintained throughout the reconstruction), estimating the required

mean scatter background accurately and efficiently remains challenging. A variety of scatter

estimation techniques have been developed to aid correction in radiography and in analytical

CT reconstruction, where a scatter estimate is typically subtracted from measured projections

as a pre-processing step (Glover 1982). Iterative (statistical) methods have the potential to

improve over simple subtraction-based scatter pre-correction because (i) they inherently better

handle projection noise (and negative projection values) for cases with high scatter-to-primary

ratios and low signal levels, and (ii) by its design, the statistical reconstruction process consists

of iterative computation of image estimates and their re-projections, which can be readily

modified to incorporate simulation of scatter contribution from the latest image estimate

instead of using a fixed guess for the scatter term. Despite these potential advantages, only

few papers to date report on the inclusion of scatter estimates in IR (Elbakri and Fessler

2003a, Zbijewski and Beekman 2006b, Jin et al 2010, Wang et al 2010, Evans et al 2013),
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and future research is needed to evaluate the gains in image quality and identify clinical

applications most likely to benefit from this approach. The following review summarizes

scatter estimation methodologies currently in use in CT imaging (a recent, more in-depth

survey of scatter correction methodologies can be found in Ruhrnschopf and Klingenbeck

(2011a, b), recognizing that all of them could potentially be implemented in the iterative

framework, but only a small subset has already been applied and validated in this context.

Three broad categories of methods are considered: (i) scatter measurement techniques, (ii)

analytical methods for estimating scatter from projection data and (iii) simulation of the

scatter component from an (intermediate) object/patient representation. The approaches in the

first two categories are employed as pre-correction in analytical CT reconstruction, but could

also provide a fixed scatter guess for the statistical reconstruction. The approaches in the third

category naturally fit in IR: the scatter estimates will improve with the improving quality of the

successive image estimates. Considering also that very accurate simulation techniques exist

(e.g. MC), the combination of IR with scatter simulation is an attractive avenue for scatter

correction.

4.1. Physical scatter measurements

Typically, experimental measurements of x-ray scatter exploit some form of beam blockers

placed in front of the x-ray source and before the object. Detector signals directly behind

the blocker are assumed to be mainly scattered photons (neglecting effects such as off-focal

radiation and blocker penetration). Various experimental designs have been proposed, ranging

from extrapolation of measurements in the shadow of tube collimators (Siewerdsen et al

2006) to beam blocker arrays extending across the projection image. In the latter case, the

main practical concern is to alleviate the need for a double scan (one with the blocker array

to estimate scatter, one without the blocker array to measure the total signal everywhere in

the detector plane). This can be achieved through the acquisition of only a small subset of

projections with the blocker in place and the computation of the global scatter estimate by the

interpolation (Ning et al 2004), by using blockers only in a first sequence of scans (prior scan,

e.g. in the monitoring of radiation therapy treatment) (Niu et al 2012), by employing moving

blockers (Liu et al 2005, Zhu et al 2005, Jin et al 2010, Wang et al 2010), or by exploiting

data redundancy in the design of blocker pattern (Niu and Zhu 2011, Lee et al 2012). Novel

variations on the concept of beam blocker measurements include a complementary method

where a collimator (beam pass) creates pencil beams at the entrance of the object that induces

negligible scatter and thus provides estimates of primary signal (Yang et al 2012, Sechopoulos

2012), or using an array of semi-transparent (instead of opaque) blockers that modulate the

primary distribution so that Fourier techniques can be used to separate scatter and primary

signals (Zhu et al 2006).

Scatter estimates obtained through the experimental methods described above can be

included in the statistical reconstruction as the background scatter term, which in this case

remains fixed throughout the iterations. In addition, since IR methods are inherently better

suited to handling scanning geometries with missing data (Zbijewski and Beekman 2004b,

Bian et al 2010), they could potentially be applied to projections obtained with beam blockers

without the need for the interpolation in blocker shadows, such as presented in Jin et al (2010)

and Wang et al (2010) for the case of full rotation CBCT with a moving beam stop array.

Furthermore, statistical reconstruction methods can somewhat mitigate the increase in image

noise that accompanies correction by simple subtraction of measured scatter estimates (Wang

et al 2010).
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4.2. Analytical scatter models

Scatter estimation by means of computational models provides an alternative to direct physical

measurements in that it does not require modifications to scanner equipment or increase in

imaging dose. In their simplest form, such computational models represent the scatter fluence

as a constant across the projection plane, assuming the same value for entire scan (Glover

1982) or different values for individual views (Bertram et al 2005). A potentially more

accurate approach models the scatter as a PSF (kernel) applied to primary fluence and tries

to estimate the scatter from projection data (scatter+primary) by deconvolution (Love and

Kruger 1987, Seibert and Boone 1988). The knowledge of the scatter kernel is essential for

this deconvolution; the kernels are usually assumed to depend on object thickness (estimated

locally based on water equivalent projections) and are either measured (Li et al 2008) or pre-

simulated with MC methods (Maltz et al 2008, Sun and Star-Lack 2010). A somewhat related

analytical model (Yao and Leszczynski 2009) separates the scatter distribution into object-

dependent terms that are captured by the primary intensity, and terms which are independent

of the object and thus can be pre-computed; primary is iteratively estimated from measured

projection using this model. Other possible analytical approaches involve approximating the

object by a simple ellipsoid for which scatter can be either pre-computed or estimated at

relatively low cost using MC simulations (Bertram et al 2006), a hybrid method combining

this approach with scatter kernels (Meyer et al 2010) and algorithms utilizing calibration scans

to establish relationships between scatter properties of typical objects (e.g. spatial distribution

of scatter-to-primary ratio) and some basic parameters accessible in projection images or raw

reconstructions (e.g. local breast diameter) in a manner allowing for the interpolation of a

scatter estimate for any new projection dataset (Cai et al 2011).

4.3. Iterative scatter estimation from reconstructions: MC methods

Both the experimental and computational methods of scatter estimation described above suffer

from a number of simplifying assumptions and thus yield approximate results. Despite this,

remarkably accurate scatter correction can usually be achieved with such methods, largely due

to the often smooth, slowly varying nature of scatter distributions. There is however growing

evidence that under certain imaging conditions (e.g. high scatter-to-primary ratio, presence of

an anti-scatter grid, or metal objects in the patient), significant heterogeneity may be introduced

into the scatter distribution and thus more accurate scatter estimates may be needed to achieve

complete artefact correction and maximize improvement of quantitative accuracy (Mainegra-

Hing and Kawrakow 2010, Zbijewski et al 2012). MC simulations are a likely candidate to

provide such high-fidelity estimates although computational load of calculations used to be a

limitation. Compared to the analytical methods described above, MC-based approaches utilize

reconstructed images or image estimates during IR instead of projections to compute scatter.

Initial reconstruction is computed from scatter-contaminated data, segmented and employed

for MC simulation of scatter (re-projection). The thus obtained scatter estimate is used to

compute a new reconstruction with a reduced level of scatter-induced artefacts and the process

of MC scatter computation and reconstruction can be iterated until satisfactory correction has

been obtained. This framework readily fits into the statistical reconstruction process, where

image estimates are also obtained iteratively and the computation of successive image updates

(that can be used as input for MC scatter simulation) is an inherent part of the algorithm.

Until recently, the long computation times associated with low noise MC simulations

remained the major limitation of MC-based scatter correction. Encouraging developments in

MC acceleration suggest however that the practical implementation of MC scatter estimation is
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achievable. One approach to MC acceleration involves the application of the so-called variance

reduction techniques (e.g. forced detection, Woodcock tracking, interaction splitting), which,

when optimized for simulation of x-ray scatter, can potentially result in 10–100× reduction

of computation time necessary to reach a given level of noise (Mainegra-Hing and Kawrakow

2010). Such methods can be further supplemented by techniques that exploit the smoothness

of x-ray scatter fields (to the extent that the particular imaging scenario supports such an

assumption) to simplify or de-noise the MC simulations. For example, one can reduce the

number of simulated photons and rely on either (i) model-based fitting of smooth surfaces in

the projection plane to reduce the noise in the resulting scatter estimates (Colijn and Beekman

2004, Jarry et al 2006), or on (ii) forcing the photons from each interaction to a fixed, small

number of nodes in the projection plane and interpolating between them to obtain the complete

distribution (Poludniowski et al 2009). Furthermore, since the scatter varies slowly between

the projections (angularly), one could either combine these approaches with simulating only

a subset of projections or exploit this angular smoothness by further reducing the number

of tracked photons and fitting a smooth three-dimensional scatter distribution to the stack

of noisy MC-simulated projections (Zbijewski and Beekman 2006b, Bootsma et al 2012).

In Zbijewski and Beekman (2006b), a 3D fit that included the angular dimension-reduced

simulation time by three to four orders of magnitude (depending on the desired simulation

error) compared to fitting only in the projection plane; this level of acceleration may be difficult

to achieve by methods that rely only on reducing the number of simulated projection angles.

The polyenergetic statistical reconstruction (Elbakri and Fessler 2003a) was combined with

accelerated MC utilizing a combination of variance reduction, and de-noising by means of

a three-dimensional Richardson–Lucy fit (Richardson 1972, Lucy 1974) to provide scatter

correction for cone-beam micro-CT (Zbijewski and Beekman 2006b). The estimation of water

density was improved from 12% to 1% after two cycles of MC scatter correction. Another

recently proposed acceleration strategy combines an analytical model of first-order scatter

with a coarse MC simulation of the typically homogeneous higher order scatter (Kyriakou

et al 2006). Advances in computer hardware are also likely to play an important role in

reducing the computation times of MC scatter estimation to levels acceptable in clinical

practice. One important recent development is the implementation of MC simulation of x-

ray photon propagation on graphics processing units (Badal and Badano 2009). A 27-fold

acceleration over a single-CPU implementation has been reported, indicating the potential for

fast simulation environment within a standard desktop PC.

It is possible to combine some of the above-mentioned methods to enable additional

speedups of scatter re-projection. Also, several very fast scatter estimation methods have

been proposed for emission tomography that have not been tested yet in transmission CT.

Potentially interesting are methods to accurately model effects of object non-uniformity on

scatter re-projection Snu when low noise scatter projections of uniform objects Su are already

known or can be calculated quickly and accurately with e.g. the above-mentioned analytical

methods (Li et al 2008, Maltz et al 2008, Sun and Star-Lack 2010, Bertram et al 2006). Using

correlated MC methods (Spanier and Gelbard 1969), such a scatter estimate can then be rapidly

transformed to the scatter projection of a non-uniform object by scaling it with a ratio of MC

simulations of the non-uniform object Snu
MC and the uniform object Su

MC, both obtained with

only a very low number photon tracks (Snu = Su
× Snu

MC/Su
MC), but in which correlated noise

partly cancels out during division, as has been shown for SPECT scatter modelling (Beekman

et al 1999).

All scatter correction methods that are based on simulation of scatter from the

reconstruction (re-projection) are potentially prone to errors due to the truncation of the

true object volume caused by limited FOV of the system, cone-beam artefacts and the choice
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of the reconstructed ROI. While some authors have shown that restricting the MC simulation

only to the region of the object directly illuminated by the x-ray beam is sufficient for achieving

accurate scatter estimates (Zbijewski and Beekman 2006b), there may be circumstances when

significant portions of this irradiated volume cannot be reconstructed, e.g. for interventional

C-arm systems which often exhibit lateral truncation. In such cases, a likely solution is some

form of model-based, virtual ‘extension’ of the reconstructed object during the MC simulation

(Bertram et al 2008, Xiao et al 2010).

4.4. Summary

Modelling the scatter contribution is becoming more important due to the increasing detector

size, and in particular for cases where no anti-scatter grids can be used. Ingenious hardware

modifications have been invented for measuring the scatter. Analytical models have been

proposed as well, and due to software and hardware improvements, it becomes feasible to

estimate the scatter with accurate MC simulation techniques during IR. Further improvements

of accuracy and computation times are possible by combining complementary existing methods

and by better exploiting the potential of IR.

5. Noise models and the energy spectrum

Noise models for x-ray CT measurements are important (Whiting 2002, Whiting et al 2006)

for statistical image reconstruction methods (particularly for low-dose scans), for performing

realistic simulations of CT scans, for adding noise to CT measurements to ‘synthesize’ lower

dose scans and for designing sinogram data compression schemes (Bae and Whiting 2001). For

photon counting detectors, the measurements have simple Poisson distributions provided dead-

time losses are modest (Yu and Fessler 2000, Yu and Fessler 2002), although pulse pileup can

complicate modelling for detectors with multiple energy bins (spectral CT) (Taguchi et al 2012,

Srivastava et al 2012, Heismann et al 2012). However, for transmission imaging systems that

use current integrating detectors, such as current clinical x-ray CT systems, the measurement

statistics are considerably more complicated than for the ideal photon counting case. There are

numerous sources of variability that affect the measurement statistics, including the following.

• Usually, the x-ray tube current fluctuates slightly (but notably) around its mean value.

• For a given x-ray tube current, the number of x-ray photons transmitted towards a given

detector element is a random variable, typically modelled by a Poisson distribution around

some mean.

• The energy of each transmitted photon is a random variable governed by the source

spectrum.

• Each transmitted photon may be absorbed or scattered within the object, which is a random

process.

• X-ray photons that reach a given detector element may interact with it or may pass through

without interacting.

• An x-ray photon that interacts with the detector can do so via Compton scattering and/or

photoelectric absorption.

• The amount of the x-ray photon’s energy that is transferred to electrons in the scintillator

is a random variable because the x-ray photon may scatter within the scintillator and then

exit having deposited only part of its energy,

• The energized electrons within the scintillator produce a random number of light photons

with some distribution of wavelengths.
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• The conversion of light photons into photoelectrons involves random processes.

• Electronic noise in the data acquisition system, including quantization in the analogue-to-

digital (A/D) converters that yield the final (raw) measured values, adds further variability

to the measurements.

The following diagram summarizes most of these phenomena.
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The overall effect of all these sources of variability is that (i) the raw data variance is not

equal to the mean, and (ii) there can be negative apparent transmission values (after correcting

for ADC offset and dark current) for low x-ray intensities. Both these properties differ from the

Poisson variates associated with counting statistics. We now examine these random variations

in more detail to help develop statistical models for x-ray CT. (See also Lei (2011), chapter

5.2.) For simplicity, we focus on the situation where the x-ray source does not move but where

we acquire repeated scans of an object. This scenario is useful for validating statistical models

experimentally.

5.1. X-ray tube current fluctuations

Often, x-ray CT systems include deliberate tube current modulation to reduce x-ray dose while

maintaining image quality (Gies et al 1999, Kalender et al 1999, Greess et al 2000, Hurwitz

et al 2009, Angel et al 2009) . In addition to these intentional changes in tube current, in practice

the x-ray tube current fluctuates continuously like a random process. Therefore, the number

of transmitted photons fluctuates between projection views more than as would be predicted

by Poisson statistics alone. This fluctuation affects the entire projection view, leading to slight

correlations between the measurements in a given view, even after correction using reference

measurements. In contrast, most of the other random phenomena are independent from view

to view and even from ray to ray, consistent with the usual assumption of independence

used by image reconstruction algorithms. (The mean effect of these fluctuations can also be

corrected using suitable statistical image reconstruction methods (Thibault 2007, Nien and

Fessler 2013).) Much of the literature on noise statistics in x-ray imaging has been focused

on radiography where there is only a single exposure, so tube current fluctuations have been

unimportant. For conciseness, we also ignore these fluctuations here, though they may be

worth further investigation in future work.

5.2. Transmitted photons

For a given tube current, the number of photons Ni transmitted towards the ith detector element

is a random variable having a mean N̄i that is proportional to the tube current. The mean N̄i

is ray-dependent due to the geometrical factors relating emission from the x-ray source to

the detector position including x-ray tube angulation and detector solid angle, as well as

bowtie filters and the heel effect (Whiting et al 2006). For a given tube current, it is widely

hypothesized that the number of transmitted photons has a Poisson distribution, i.e.,

Ni ∼ Poisson{N̄i}, i.e., P{Ni = ni} = e−N̄i (N̄i)
ni/ni!, ni = 0, 1, . . . . (6)

The variance of Ni equals its mean: Var{Ni} = N̄i. It is also reasonable to assume that {Ni} are

all statistically independent for a given tube current.
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5.3. X-ray photon energy spectra

For practical x-ray sources, the transmitted photons have energies E that are random variables

governed by the source spectrum. Because of geometrical effects such as anode angulation

(La Riviére and Vargas 2008) and bowtie filters (Toth et al 2005), the x-ray photon energy

distribution can be different for each ray. Let pi (E ) denote the energy distribution for the

ith ray, which has units of inverse kiloelectron volts. This distribution depends on the x-ray

source voltage, which we assume to be a fixed value such as 120 kVp. (For certain scans

that use fast kVp switching, the spectrum varies continuously (Zou and Silver 2008, Xu et al

2009) and it can be important to model this effect.) The energy of each Ni x-ray photon that

is transmitted towards the ith detector is drawn independently (and identically for a given i)

from the distribution pi (E ).

5.4. X-ray photon interactions in the object

For an x-ray photon with energy E that is transmitted towards the ith detector element, the

survival probability that the photon passes through the object without any interactions in the

object is given by the Lambert–Beer law:

e
−

∫

Li
µ(!x,E ) d!

, (7)

where the line integral is along the path Li between the x-ray source and the ith detector

element, and µ(!x, E ) denotes the linear attenuation coefficient of the object at position !x and

for energy E . The survival events for each photon are all statistically independent. Let Mi

denote the number of x-ray photons that reach the ith detector element without interacting

within the object. For a given tube current, {Mi} are statistically independent Poisson random

variables with mean

Eµ[Mi] = N̄iρi(µ), (8)

where the survival probability of an x-ray photon is

ρi = ρi(µ) =

∫

Emax

0

e
−

∫

Li
µ(!x,E ) d!

pi (E ) dE . (9)

For a polyenergetic source, we must consider the x-ray source spectrum because photons of

different energies have different survival probabilities.

5.5. X-ray photon interactions in detector, scintillation and photo-conversion

The ideal photon counting x-ray detector would count every (unscattered) x-ray photon that

is incident on it, i.e., the recorded values would be {Mi}. In practice, when an x-ray photon

is incident on a detector element, there are several possible outcomes. The photon may pass

through the detector without interacting and thus fail to contribute to the recorded signal.

Similar to (7), the probability of failing to detect is e−dsµs(E ) where ds denotes the scintillator

thickness and µs denotes its (usually large) linear attenuation coefficient. The scintillators used

in x-ray detectors are usually high-Z materials, so it is likely that the x-ray photon will transfer

all its energy to an electron in the scintillator by photoelectric absorption. It is also possible

for the x-ray photon to undergo one or more Compton scatter interactions and then either exit

the detector element or deposit its remaining energy in a final photoelectric absorption. These

interactions are random phenomena and their distributions depend on the x-ray photon energy.

For example, higher energy photons are more likely to escape the detector element without

interacting.
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For an incident x-ray photon of energy E , the amount of its energy deposited within the

detector is a random variable having a quite complicated distribution over the range from 0

to E . The electrons that are energized by the x-ray photon can release their energy in several

ways including emitting light photons and by interacting with other electrons, some of which

in turn produce light photons. The number of light photons produced and the wavelengths of

those photons depend on the type of electron interactions. Although it may be convenient to

approximate the number of light photons as having a Poisson distribution, e.g., Elbakri and

Fessler (2003b), this can be only an approximation because the number of light photons has a

maximum value that depends on E .

Some of the light produced in a scintillator will reach the photosensitive surface of the

photosensor (typically a photodiode (Boyd 1979, Takahashi et al 1990)). Depending on the

quantum efficiency of the photosensor, some fraction of these light photons will produce

photoelectrons that contribute to the recorded signal.

Ideally, each x-ray photon interaction in a detector element would produce the same

number, say K, photoelectrons (De Man et al 2007, Iatrou et al 2007); these would then

be recorded with additional electronic noise, and (ignoring A/D quantization) a reasonable

measurement model would be the popular ‘Poisson+Gaussian’ model (Snyder et al 1993,

1995, Ma et al 2012):

Y raw
i ∼ K Poisson{Eµ[Mi]} + Nµεi

, σ 2
εi
, (10)

where µεi
represents the dark current of the ith channel and σ 2

εi
the electronic noise variance.

In this case, we correct the measurements for the dark current and gain K:

Yi
&

=
(

Y raw
i − µεi

)

/K

for which the moments are

E[Yi] = Eµ[Mi], Var{Yi} = Eµ[Mi] + σ 2
εi
/K2.

The dispersion index of the corrected measurement Yi, the ratio of its variance to its mean,

would be

Var{Yi}

E[Yi]
= 1 +

σ 2
εi

K2Eµ[Mi]
.

Being larger than unity, this is called over dispersion.

In practice, the number of photoelectrons produced by an x-ray photon is a random variable

whose distribution depends on E . When Mi x-ray photons are incident on the ith detector

element, let Kim denote the number of photoelectrons produced by the mth x-ray photon, for

m = 1, . . . , Mi. We assume that {Kim} are statistically independent random variables with

distributions

Pµ{Kim = k} =

∫

Emax

0

P{Kim = k | Eim = E}qi(E;µ) dE, (11)

where Eim denotes the energy of the mth x-ray photon incident on the ith detector element and

the energy distribution of x-ray photons that passed through the object without interacting is

qi(E;µ) =
pi (E ) e

−
∫

Li
µ(!x,E ) d!

∫

Emax

0
pi (E ′) e

−
∫

Li
µ(!x,E ′ ) d!

dE ′
=

pi (E ) e
−

∫

Li
µ(!x,E ) d!

ρi(µ)
, (12)

where ρi was defined in (9). The total number of photoelectrons produced in the ith photosensor

is

Ki =

Mi
∑

m=1

Kim, i = 1, . . . , nd. (13)
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The ideal electronic readout system would record the value of Ki for each detector element.

One can show that the moments of Ki are

Eµ[Ki] = Eµ[Mi]Eµ[Kim] (14)

Varµ{Ki} = Eµ[Mi]Eµ[K2
im]. (15)

Rearranging yields the following nonlinear relationship between the variance and the mean

of Ki:

Varµ{Ki} = Eµ[Ki]

(

Eµ[K2
im]

Eµ[Kim]

)

. (16)

The parenthesized ratio quantifies the dispersion due to variability in the number of

photoelectrons produced by each x-ray photon. This ratio is related to the reciprocal of the

‘statistical factor’ or the Swank factor derived in Swank (1973) and investigated in Ginzburg

and Dick (1993) and Blevis et al (1998). The reciprocal is also related to the noise equivalent

quanta (Whiting 2002, equation (6)).

The sum (13) greatly complicates statistical modelling of x-ray CT measurements, both

because the number Mi of elements in the sum is a (Poisson) random variate and the distribution

of Kim is quite complicated. This makes it essentially intractable to find realistic log-likelihoods,

even in the absence of electronic noise and quantization. The value of Kim depends on how the x-

ray photon interacts with the detector (photoelectric absorption, or one or more Compton scatter

events or combinations thereof) and depends also on the energy E . Thus, the distribution of Kim

is a mixture of numerous distributions. One simple model assumes that every (recorded) x-ray

photon has a single complete photoelectric absorption, and that the number of photoelectrons

produced has a Poisson distribution whose mean is γ E for some gain factor γ . Under this

model, (11) ‘simplifies’ to the following mixture distribution:

Pµ{Kim = k} =

∫

Emax

0

1

k!
(γ E )k e−γE

(

1 − e−dsµs(E )
)

qi(E;µ) dE, (17)

where ds and µs (E ) denote the thickness and linear attenuation coefficient of the scintillator.

This model leads to the compound Poisson distribution considered in Whiting (2002) and

Elbakri and Fessler (2003b). Even though this model is already complicated, it is still only an

approximation because it ignores many effects; for example, lower energy x-ray photons are

more likely to interact near the entrance surface of the scintillator, which is usually farthest

from the photosensor, so the optical gain is lowest. This depth dependence implies that the gain

parameter γ should be a function of E . Accurate modelling usually involves MC simulations

(Badano and Sempau 2006).

As a more tractable approach, Xu and Tsui (2007, 2009) proposed an exponential

dispersion approximation (Jorgensen 1987) for which Var{Ki} = φ(Eµ[Ki])
p, where p > 1

and φ > 0 is the dispersion parameter.

5.6. Electronic readout noise

Fluctuations in the leakage current of the photosensor and noise in the preamplifier input

(Knoll 2000, p 288), often called electronic noise, add additional variability to the recorded

values. A reasonable model for the raw recorded values is

Y raw
i = αi(Ki + ε̃i),

where αi is a scale factor that depends on the gain of the preamplifier and A/D converter, and

ε̃i s modelled as additive white Gaussian noise with mean ε̄i and standard deviation σε. The

mean ε̄i is related to the mean dark current of the photosensor and to the offset of the A/D
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converter; these factors can be calibrated, so we assume that ε̄i is known. Similarly, we assume

that the gain αi is known through a calibration process. We correct for these deterministic

factors as follows:

Yi
&

=
1

αi

Y raw
i − ε̄i = Ki + εi, (18)

where now the (scaled) electronic noise is zero mean: εi ∼ N
(

0, σ 2
i

)

and the standard deviation

σi = σε/αi has units of ‘photoelectrons’. Clearly, the statistics of Yi are at least as complicated

as those of Ki.

5.7. Post-log statistics

FBP and PWLS image reconstruction methods use the logarithm of the offset-corrected data

(18):

yi = log

(

bi

Yi

)

, (19)

where

bi = E[Ni]E0[Kim] (20)

comes from an air scan or blank scan with no object present, with a high x-ray flux so that the

SNR is large, and where E0 denotes expectation when µ = 0. For a polyenergetic spectrum,

one must correct yi for beam hardening.

Using a first-order Taylor expansion, the variance of the log sinogram yi is approximately

Var{yi} ≈
1

Ȳ 2
i

Var{Yi},

where Ȳi
&

= Eµ[Yi]. If Yi had a Poisson distribution, then Var{Yi} = Ȳi and Var{yi} ≈ 1/Ȳi. More

realistically, from (18) and (16),

Var{Yi} = Var{Ki} + σ 2
i = Eµ[Ki]

(

Eµ[K2
im]

Eµ[Kim]

)

+ σ 2
i = Ȳi

(

Eµ[K2
im]

Eµ[Kim]

)

+ σ 2
i .

A PWLS formulation should use weights that are the reciprocal of the variance of the log

data:

wi =
1

Var{yi}
≈

Ȳ 2
i

Var{Yi}
=

Ȳ 2
i

Ȳi

(

Eµ[K2
im]

Eµ[Kim]

)

+ σ 2
i

. (21)

For a counting detector, the parenthesized term in the denominator is unity and there is no

electronic noise (σ 2
i = 0), so the data-based weighting wi = Ȳi ≈ Yi is often used (Sauer

and Bouman 1993). When electronic noise is important, often the parenthesized term in the

denominator is ignored or assumed to be unity, leading to the weighting (Thibault et al 2006

equation (18)):

wi =
Ȳ 2

i

Ȳi + σ 2
i

≈
Y 2

i

Yi + σ 2
i

. (22)

5.8. Other considerations

5.8.1. Compton scatter in object. The analysis above ignored the effects of x-ray photons that

undergo Compton scatter within the object and reach the detector and are recorded. This effect

positively biases the recorded values. It also affects the variance of the measurements, leading

to further object-dependent nonlinearities in the relationship between mean and variance, even

after correcting for scatter as described in section 4.
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5.8.2. Quantization noise. CT measurements are recorded by A/D converters with finite,

discrete levels, so there is also quantization noise in the measurements (Whiting 2002, De

Man et al 2007), as well as a finite dynamic range leading to the possibility of overflow. The

variance due to quantization noise can be absorbed in the electronic noise variance σi in (18).

However, quantization noise does not have a Gaussian distribution, so developing an accurate

log-likelihood is challenging (Whiting 2002).

5.8.3. Detector size. X-ray detectors have finite width, so the infinitesimal line integral in

(7) is an approximation. The exponential edge-gradient effect (Joseph and Spital 1981) affects

not only the mean recorded signal as described in section 3, but also its variance. Hopefully,

this effect on the variance is small because accounting for it seems to be challenging.

5.8.4. X-ray noise insertion and related work. Using a variety of simplified noise models,

numerous methods have been proposed for adding ‘synthetic’ noise to x-ray CT sinograms

to simulate lower dose scans (Mayo et al 1997, Frush et al 2002, Karmazyn et al 2009,

Massoumzadeh et al 2009, Benson and De Man 2010, Wang et al 2012, Zabic et al 2012).

5.9. Summary

The statistical phenomena in x-ray CT measurements are so complex (Siewerdsen et al 1997)

that it is unlikely that a highly accurate log-likelihood model will ever be practical. Instead,

the field seems likely to continue using simple approximations such as the Poisson+Gaussian

model (10) or the standard Poisson model (Lasio et al 2007) for the pre-log data, or a WLS data-

fit term (Gaussian model) with data-dependent weights (22) for the post-log data. Apparently,

these models are adequate because the Swank factors and the polyenergetic spectra often have

fairly small effects on the statistics in practice. A model like (16) could be the basis for a

model-weighted least-squares cost function that has a weighting term that is a function of µ

rather than a weighting term that is pre-computed from the data as used in much previous work

such as Sauer and Bouman (1993) and Fessler (1994). It is rather uncertain whether further

refinements in statistical modelling could lead to notably improved image quality. Possibly, the

most important question is whether it would be beneficial to work with the raw measurements

{Yi} in (18) rather than the log measurements considered in Sauer and Bouman (1993). The

logarithm could become problematic at very low doses where the Yi values can be very small

or even non-positive due to photon starvation and electronic noise.

6. The energy spectrum

The polychromatic nature of standard x-ray sources not only complicates the noise statistics,

if uncorrected it also leads to beam hardening and image artefacts (cupping and shadows)

(McDavid et al 1975, Brooks and Chiro 1976). Assuming that the scanned object consists

of a single material with position-dependent density (which can be zero to represent air), the

monochromatic measurements (acquired at energy Ẽ) can be modelled as

Y m
i = bẼi exp

(

−µ
Ẽ

∫

Li

ρ(!x) dl

)

and ym
i = ln

bẼi

Y m
i

(23)

whereas for the polychromatic measurements, one has

Y
p

i =

∫

E

bEi exp

(

−µE

∫

Li

ρ(!x) dl

)

dE and y
p

i = ln

∫

E
bEi

Y
p

i

(24)
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where ρ(!x) is the position-dependent density of the material, µE is the mass attenuation

coefficient at energy E , bẼi is the monochromatic blank scan and bEi represent the polychromatic

distribution of blank scan photons. Whereas ym
i is a linear function of the line integral

∫

Li
ρ(!x) dl, y

p

i is a nonlinear, but monotone, function of that integral, so one can derive

analytically (if the spectrum is known) or with calibration measurements a function to convert

y
p

i to ym
i . This is the basis of the so-called water correction (Herman 1979); (24) can also be

used to implement a simple polychromatic projector, consisting of a single forward projection

followed by a simple sinogram operation (Van Slambrouck and Nuyts 2012). When multiple

materials are present, (24) can be extended by summing over all materials ζ :

Y
p

i =

∫

E

bEi exp



−

∑

ζ

µ
ζ

E

∫

Li

ρζ (!x) dl



 dE, (25)

where ρζ denotes the density map of the ζ th material. In CT, the attenuation by a material

is dominated by the Compton effect and photoelectric effect, and the energy dependence of

these two functions is (almost) independent of the material. Consequently, the attenuation

of a material as a function of the energy can be well modelled as a weighted combination

of Compton scatter and photoelectric, or a set of two materials with sufficiently different

behaviour (Alvarez and Macovski 1976). Thus, the sum in (25) can be restricted to the chosen

pair of base materials.

If the material densities are known or can be estimated (e.g. from a first reconstruction),

then (25) can be computed for the spectrum of the scanner and also for an ideal monochromatic

beam, to estimate and correct for the beam hardening artefact. Alternatively, by putting

constraints on the possible material combinations, the number of unknowns can be reduced

to one value per image pixel, allowing direct reconstruction of ρζ (!x), ζ ∈ {1, 2} from single

energy data. Of course, less constraining is needed for dual-energy CT data. Based on these

ideas, numerous correction methods for analytical reconstruction have been proposed (Joseph

and Spital 1978, Herman 1979, Herman and Trivedi 1983, Joseph and Ruth 1997, Hsieh

et al 2000, Yan et al 2000, Kyriakou et al 2010, Liu et al 2009). Naturally, the models and

methods depend on whether the detector is current integrating or photon counting (Shikhaliev

2005). Other researchers have combined a model for the polyenergetic spectrum with the other

models described above (object discretization, detector resolution and measurement statistics)

to develop model-based image reconstruction methods that ‘correct’ for the polyenergetic

spectrum during the iterations (De Man et al 2001, Elbakri and Fessler 2002 and 2003a,

O’Sullivan and Benac 2003, Lasio et al 2007).

Alternatively, the polyenergetic spectra can be viewed as providing an opportunity to

estimate object material properties, particularly when combined with multiple measurements,

such as dual-energy scans (Alvarez and Macovski 1976, Clinthorne 1994, Sukovic and

Clinthorne 2000, Fessler et al 2002, O’Sullivan and Benac 2007, Maass et al 2011, Semerci

and Miller 2012) or detectors with multiple energy bins (‘spectral CT’) (Xu et al 2007, Xu

et al 2012). By using constraints, one can estimate more materials than measured energy bins

(Mendonca et al 2010, Long et al 2011, Depypere et al 2011, Long and Fessler 2012). This is

an active area of research that will continue to spawn new models and image reconstruction

methods as the detector technology evolves.

6.1. Summary

The energy dependence of photon attenuation makes pre-correction or modelling of the energy

spectrum necessary to avoid beam hardening artefacts. However, it also creates opportunities

for contrast enhancement and improved material identification.
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(a) (b)

Figure 4. (a) Motion-induced streaking artefacts in a 0.35 s CT scan of a coronary artery. Courtesy

of Jed Pack (GE Global Research). (b) The Tam window defines the minimum data required for

accurate helical cone-beam reconstruction.

7. Motion

In this section, we focus on the specific challenge of performing IR in the presence of motion.

While we describe most techniques in the context of the beating heart, many of them can also

be applied to other types of motion, including breathing, contrast agent flow, peristaltic motion

and involuntary patient motion.

Motion during a CT scan typically causes motion blur or degrades spatial resolution.

Cardiac motion can have speeds on the order of 7 cm s−1 (Ritchie et al 1992). State-of-the-

art CT scanners acquire cardiac CT data over time intervals on the order of 100 ms. This

corresponds to displacements as high as 7 mm, which may lead to unacceptable blur of

the sub-millimetre resolution images. In addition, motion during the scan causes mutually

inconsistent projection measurements, resulting in streak artefacts. Figure 4 shows a typical

motion-induced streak artefact for a coronary artery. In the next sections, we will loosely use

the term motion artefacts to include real artefacts as well as motion blur. Fast scanning offers

the opportunity to image the heart at multiple time frames, providing functional information

about wall motion, valves, ejection fraction, etc. This 4D imaging task has specific implications

for the reconstruction algorithm, as will be discussed later.

The most fundamental way to avoid motion artefacts is to prevent or minimize motion.

Beta-blockers are commonly administered prior to cardiac CT to reduce the heart rate and

make the heart beat more regular. ECG gating is used to select the cardiac phase with least

motion. ECG gating can be prospective: only a particular phase is scanned, or retrospective:

only a specific phase is used for reconstruction. Depending on the heart rate and the specific

part of the heart or coronary of interest, the end-diastolic or the end-systolic phase may be

preferred.

CT technology has evolved dramatically in terms of scanning speed. State-of-the-art CT

scanners have gantry rotation times in the range of 0.27–0.35 s. A half-scan reconstruction

interval is about 200 ms. Dual-source CT and multi-sector CT are two techniques to cut this

interval in half, resulting in about 100 ms effective acquisition interval. Reducing the rotation

time even further is mechanically very challenging, given that a typical CT gantry weighs

almost 1 ton; hence, less costly algorithmic approaches are preferable if they can be effective.

In the next sections, we will discuss IR methods to minimize motion artefacts and

maximize temporal resolution, by reducing the used temporal data interval or by modelling

the motion.
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7.1. Use as little data as possible

CT measurements often have significant redundancy. In 2D, a half-scan (a scan with a view

interval of 180◦ + fan angle) is sufficient to accurately reconstruct a slice. A full-scan (a scan

with 360◦ worth of data) has a number of conjugate rays that are not theoretically required, but

contain useful information for noise reduction and resolution enhancement. Similarly in 3D

helical scans, all measurements outside the Tam–Danielsson window (Tam et al 1998) are not

required for exact reconstruction but still contain useful information. In FBP, redundant data are

handled by a projection domain or image domain weighting factors, such as Parker weighting

(Parker 1982) and helical weighting (Wang et al 1993). IR typically uses either no preferential

weights (such as in ART-type algorithms (Gordon et al 1970)), treating all measurements

equally, or statistical weights (such as in ML-type algorithms (Lange and Carson 1984, De

Man et al 2000) or weighted least-squares approaches (Sauer and Bouman 1993, Sukovic and

Clinthorne 2000)), emphasizing more reliable data and de-emphasizing less reliable data.

A straightforward extension to the traditional weighting approaches is to include a

temporal weighting factor. The statistical weighting factors can be modulated based on the

cardiac phase, such that data closer to the temporal phase of interest receive a higher weight,

and data further from the temporal phase of interest receive a lower weight. The phase-weighted

WLS cost function for example then becomes

PW-WLS =
∑

i

P(ti, t0) Wi(yi − [Aµ]i)
2 (26)

where (pre-corrected and log-converted) measurement yi occurs at time ti and has statistical

weight Wi, A is the projection matrix and µ the image, represented as a column matrix. The

temporal weighting function P(ti, t0) can be made aggressive to completely eliminate the

contribution of data that is far from the phase of interest and not required for reconstruction.

This concept was successfully applied to a helical scan trajectory (Zeng et al 2009a). The

concept of the Tam window, originally invented in the context of analytic reconstruction, is

applied to IR. Setting the weights to zero outside the Tam window (figure 4(b)) can dramatically

reduce motion artefacts.

Using IR, one can go a step further and reduce the data usage below the minimum amount

needed for exact reconstruction. In Tang et al (2010), IR is performed based on a 90◦ view

interval. However, to avoid image artefacts induced by the incomplete data, the authors use the

half-scan FBP image as prior information and suggest that the final image should only sparsely

differ from this prior image. The temporal resolution improvement prior image constrained

compressed sensing (TRI-PICCS) weighting scheme is shown schematically in figure 5(a).

The corresponding optimization problem is given by

PICCS: min(α||∇(µ − FBP)||1 + (1 − α)||∇(µ)||1) subject to |y − Aµ| < ε. (27)

Figure 6(a) shows results for an in vivo animal dataset reconstructed with FBP showing

significant motion artefacts and figure 6(b) shows the corresponding PICCS reconstruction,

reducing motion artefacts.

An earlier attempt to improve temporal resolution using sparse view sampling was

proposed by De Man et al (2003, 2005). The main idea is to use a slow gantry rotation,

during which multiple cardiac cycles are acquired. Each cardiac phase then corresponds to a

small number of views distributed across the full 360◦. Using only the phasic data would result

in very sparse view sampling, which would lead to severe view aliasing artefacts. Using all

views would result in a blurred, not phase-specific image. Instead, an initial reconstruction was

based on all views, ignoring phase information. An incremental image was then computed

in the ML/MAP framework and modulating the weights based on the phase of interest.
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Figure 5. (a) The PICCS uses a short-scan FBP reconstruction as prior information for the IR based

on only a portion of the short scan. (b) In phase-weighted IR, image increments are computed

relative to FBP using increased statistical weights for the views corresponding to the phase of

interest.

(a) (b)

Figure 6. In vivo animal dataset scanned with GE 64-slice scanner (a) reconstructed with FBP

from a short-scan interval and (b) reconstructed with TRI-PICCS. Reproduced with permission

from Tang et al (2010). Copyright AAPM 2010.

That is, the air scan and the transmission scan were both artificially modulated, resulting in

phase-specific low-artefact reconstructions. This process was repeated for 50 different cardiac

phases resulting in a movie of a beating heart. Corresponding movies are downloadable from

the movie, see supplemental data, available from stacks.iop.org/PMB/58/R63/mmedia. While

noisy, this 4D dataset can serve as an input for some of the approaches described in the next

section. More recent compressed sensing technique (Sidky et al 2006) may be better suited to

deal with sparse view sampling and further enhance these results.

7.2. Motion modelling

The previous section described how to perform independent phasic reconstructions based on

the smallest possible temporal interval. We now give an overview of methods that explicitly

model the temporal variations in the reconstructed images.

The most basic approach is to reconstruct multiple frames and either constrain the

relationship between consecutive frames using temporal basis functions or regularize

the differences between consecutive frames using temporal neighbourhood priors. Since

http://stacks.iop.org/PMB/58/R63/mmedia
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Figure 7. Clinical lung CT scan reconstructed with FBP and KPIR (Courtesy of Zhou Yu (GE

Healthcare)): the conventional FBP reconstruction (left) shows a ghosting artefact near the heart

wall and blurred vessels due to cardiac and respiratory motion. These artefacts are significantly

reduced by KPIR (right).

the difference between consecutive frames may be sparse, a sparsifying norm on this difference

such as an L1 norm is a good candidate to incorporate in the cost function:

Temp-WLS =
∑

t

∑

i

Wi(yi − [Aµ(t)]i)
2 +

∑

t

ϕ(µ(t)
− µ(t+1)) (28)

where µ(t) is the image of frame t and ϕ can be any type of penalty function. In the kinetic

parameter iterative reconstruction (KPIR) (Yu et al 2011), the reconstructed images are

described by a kinetic model and the parameters of the kinetic model become unknown

in the reconstruction process. A second-order model is given by

µ(!x, t) = µ(!x, t0) +
dµ(!x, t)

dt

∣

∣

∣

∣

t=t0

(t − t0) +
d2µ(!x, t)

dt2

∣

∣

∣

∣

t=t0

(t − t0)
2

2
, (29)

where µ(!x, t0), dµ/dt and d2µ/dt2 are the parameters to be estimated for every voxel !x.

Figure 7 (left) shows a conventional IR with significant motion artefacts and figure 7

(right) shows a reconstruction based on the KPIR method with a second-order motion model

with significantly reduced motion artefacts. While this method does model the change in

attenuation over a time of a given voxel, it does not explicitly model object motion.

The most realistic approach is to estimate the actual motion of the object, i.e. to compute

motion vectors at every location and incorporate these motion vectors in a joint time-resolved

reconstruction. This is usually performed in three stages: first-pass reconstruction, motion

vector estimation and time-resolved reconstruction. This was demonstrated for rigid head

motion in Bodensteiner et al (2007) and Nuyts et al (2011). When performing the motion-

compensated image reconstruction for non-rigid motion models, regularization designs should

consider resolution and noise effects (Chun and Fessler 2009, 2012).

7.3. Summary

While many groups have researched the combination of motion and CT IR, this area still has a

long way to go to completely eliminate motion artefacts, improve robustness, minimize dose

and overcome computational hurdles.
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8. Supplemental data

Two movies are provided illustrating motion correction with phase weighting:

(i) Movie of a rabbit heart scanned with a flat-panel VCT system using an 18 s gantry

period and reconstructed with the phase-weighted iterative reconstruction (PW-MLTR).

An entire cardiac cycle is shown for each transaxial cross-section. This is repeated for

a stack of transaxial cross-section at consecutive longitudinal positions. (available from

stacks.iop.org/PMB/58/R63/mmedia)

(ii) Movie of a rabbit heart scanned with a flat-panel VCT system using an 18 s gantry period

and reconstructed with PW-MLTR. An entire cardiac cycle is shown for each longitudinal

cross-section. This is repeated for all longitudinal cross-sections containing the rotation

axis at consecutive angles. (available from stacks.iop.org/PMB/58/R63/mmedia)
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La Riviére P J and Vargas P 2008 Correction for resolution nonuniformities caused by anode angulation in computed

tomography IEEE Trans. Med. Imaging 27 1333–41

Lasio G M, Whiting B R and Williamson J F 2007 Statistical reconstruction for x-ray computed tomography using

energy-integrating detectors Phys. Med. Biol. 52 2247–66

Lee H, Xing L, Lee R and Fahimian B P 2012 Scatter correction in cone-beam CT via a half beam blocker technique

allowing simultaneous acquisition of scatter and image information Med. Phys. 39 2386–95

Lei T 2011 Statistics of Medical Imaging (Boca Raton, FL: Chapman and Hall/CRC)

Lewitt R M 1990 Multidimensional digital image representations using generalized Kaiser–Bessel window functions

J. Opt. Soc. Am. A 7 1834–46

Lewitt R M 1992 Alternatives to voxels for image representation in iterative reconstruction algorithms Phys. Med.

Biol. 37 706–16

Li H, Mohan R and Zhu X R 2008 Scatter kernel estimation with an edge-spread function method for cone-beam

computed tomography imaging Phys. Med. Biol. 53 6729–48

Little K J and La Rivière P J 2012 An algorithm for modeling non-linear system effects in iterative CT reconstruction

IEEE Nucl. Sci. Symp. Med. Imaging Conf. Rec. pp 2174–7

Liu X, Shaw C, Altunbas M and Wang T 2005 A scanning sampled measurement (SSM) technique for scatter

measurement and correction in cone beam breast CT Med. Phys. 32 2093

Liu X, Yu L, Primak A N and McCollough C H 2009 Quantitative imaging of element composition and mass fraction

using dual-energy CT: three-material decomposition Med. Phys. 36 1602–9

Long Y and Fessler J A 2012 Multi-material decomposition using statistical image reconstruction in x-ray CT Proc.

2nd Int. Mtg. on image formation in X-ray CT pp 413–6

Long Y, Fessler J A and Balter J M 2010 3D forward and back-projection for x-ray CT using separable footprints

IEEE Trans. Med. Imaging 29 1839–50

http://dx.doi.org/10.1109/TMI.1982.4307572
http://dx.doi.org/10.1118/1.597970
http://dx.doi.org/10.1097/00004728-197801000-00017
http://dx.doi.org/10.1088/0031-9155/26/3/010
http://dx.doi.org/10.1118/1.595111
http://dx.doi.org/10.1016/j.cam.2005.09.027
http://dx.doi.org/10.1088/0031-9155/51/13/R03
http://dx.doi.org/10.1007/s00330-007-0651-9
http://dx.doi.org/10.1118/1.598738
http://dx.doi.org/10.2214/AJR.08.1391
http://dx.doi.org/10.1088/0031-9155/47/15/302
http://dx.doi.org/10.1118/1.1954908
http://dx.doi.org/10.1118/1.1844151
http://dx.doi.org/10.1118/1.3477088
http://dx.doi.org/10.1088/0031-9155/51/18/008
http://dx.doi.org/10.1109/TMI.2006.875429
http://dx.doi.org/10.1109/TMI.2008.923639
http://dx.doi.org/10.1088/0031-9155/52/8/014
http://dx.doi.org/10.1118/1.3691901
http://dx.doi.org/10.1201/CHINTSTASER
http://dx.doi.org/10.1364/JOSAA.7.001834
http://dx.doi.org/10.1088/0031-9155/37/3/015
http://dx.doi.org/10.1088/0031-9155/53/23/006
http://dx.doi.org/10.1118/1.1998386
http://dx.doi.org/10.1118/1.3097632
http://dx.doi.org/10.1109/TMI.2010.2050898


Topical Review R93

Long Y, Fessler J A and Balter J M 2011 Two-material decomposition from a single CT scan using statistical image

reconstruction Proc. Joint AAPM Conf. Meeting p 3810

Love L A and Kruger R A 1987 Scatter estimation for a digital radiographic system using convolution filtering Med.

Phys. 14 178–85

Lucy L B 1974 An iterative technique for the rectification of observed distributions Astron. J. 79 745–54

Ma J, Liang Z, Fan Y, Liu Y, Huang J, Chen W and Lu H 2012 Variance analysis of x-ray CT sinograms in the

presence of electronic noise background Med. Phys. 39 4051–65

Maass C, Meyer E and Kachelriess M 2011 Exact dual energy material decomposition from inconsistent rays (MDIR)

Med. Phys. 38 691–700

Mainegra-Hing E and Kawrakow I 2010 Variance reduction techniques for fast Monte Carlo CBCT scatter correction

calculations Phys. Med. Biol. 55 4495–507

Maltz J S, Gangadharan B, Bose S, Hristov D H, Faddegon B A, Paidi A and Bani-Hashemi A R 2008 Algorithm for x-

ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage)

cone beam CT IEEE Trans. Med. Imaging 27 1791–810

Massoumzadeh P, Don S, Hildebolt C F, Bae K T and Whiting B R 2009 Validation of CT dose-reduction simulation

Med. Phys. 36 174–89

Matej S and Lewitt RM 1996 Practical considerations for 3-D image reconstruction using spherically symmetrical

volume elements IEEE. Trans. Med. Imaging 15 68–78

Mayo J R, Whittall K P, Leung A N, Hartman T E, Park C S, Primack S L, Chambers G K, Limkeman M K, Toth T L

and Fox S H 1997 Simulated dose reduction in conventional CT: validation study Radiology 202 453–7

McDavid W D, Waggener R G, Payne W H and Dennis M J 1975 Spectral effects on three-dimensional reconstruction

from x-rays Med. Phys. 2 321–4

Mendonca P R S, Bhotika R, Thomsen B W, Licato P E and Joshi M C 2010 Multi-material de-composition of

dual-energy CT dataProc. SPIE 7622 76221W

Meyer M, Kalender W A and Kyriakou Y 2010 A fast and pragmatic approach for scatter correction in flat-detector

CT using elliptic modeling and iterative optimization Phys. Med. Biol. 55 99–120

Michielsen K, Van Slambrouck K, Jerbko A and Nuyts J 2013 Patchwork reconstruction with resolution modeling

for digital breast tomosynthesis Med. Phys. 40 031105

Neitzel U 1992 Grids or air gaps for scatter reduction in digital radiography: a model calculation Med. Phys. 19 475–81

Neukirchen C, Giordano M and Wiesner S 2010 An iterative method for tomographic x-ray perfusion estimation in a

decomposition model-based approach Med. Phys. 37 6125–41

Nien H and Fessler J A 2013 Splitting-based statistical x-ray CT image reconstruction with blind gain correction

Proc. SPIE. 8668 8668–53

Ning R, Tang X Y and Conover D 2004 X-ray scatter correction algorithm for cone beam CT imaging Med.

Phys. 31 1195–202

Niu T, Al-Basheer A and Zhu L 2012 Quantitative cone-beam CT imaging in radiation therapy using planning CT as

a prior: first patient studies Med. Phys. 39 1991–2000

Niu T and Zhu L 2011 Scatter correction for full-fan volumetric CT using a stationary beam blocker in a single full

scan Med. Phys. 38 6027–38

Noo F, Pack J and Heuscher D 2003 Exact helical reconstruction using native cone-beam geometries Phys. Med.

Biol. 48 3787–818

Nuyts J, De Man B, Dupont P, Defrise M, Suetens P and Mortelmans L 1998 Iterative reconstruction for helical CT:

a simulation study Phys. Med. Biol. 43 729–37

Nuyts J, Kim J and Fulton R 2011 Iterative CT reconstruction with correction for known rigid motion 11th Int.

Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine pp 132–35

O’Sullivan J A and Benac J 2003 Alternating minimization multigrid algorithms for transmission tomography Proc.

SPIE 5299 216–21

O’Sullivan J A and Benac J 2007 Alternating minimization algorithms for transmission tomography IEEE Trans.

Med. Imaging 26 283–97

Pack J D, Noo F and Kudo H 2004 Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

Phys. Med. Biol. 49 2317–36

Pan X, Sidky E Y and Vannier M 2009 Why do commercial CT scanners still employ traditional, filtered back-

projection for image reconstruction? Inverse Problems 25 123009

Parker D L 1982 Optimal short scan convolution reconstruction for fanbeam CT Med. Phys. 9 254–7

Poludniowski G, Evans P M, Hansen V N and Webb S 2009 An efficient Monte Carlo-based algorithm for scatter

correction in keV cone-beam CT Phys. Med. Biol. 54 3847–64

Rathee S, Koles Z J and Overton T R 1992 Image restoration in computed tomography: the spatially invariant point

spread function IEEE Trans. Med. Imaging 11 530–8

http://dx.doi.org/10.1118/1.596126
http://dx.doi.org/10.1086/111605
http://dx.doi.org/10.1118/1.4722751
http://dx.doi.org/10.1118/1.3533686
http://dx.doi.org/10.1088/0031-9155/55/16/S05
http://dx.doi.org/10.1109/TMI.2008.928922
http://dx.doi.org/10.1118/1.3031114
http://dx.doi.org/10.1109/42.481442
http://dx.doi.org/10.1118/1.594200
http://dx.doi.org/10.1117/12.844531
http://dx.doi.org/10.1088/0031-9155/55/1/007
http://dx.doi.org/10.1118/1.4789591
http://dx.doi.org/10.1118/1.596836
http://dx.doi.org/10.1118/1.3495818
http://dx.doi.org/10.1118/1.1711475
http://dx.doi.org/10.1118/1.3693050
http://dx.doi.org/10.1118/1.3651619
http://dx.doi.org/10.1088/0031-9155/48/23/001
http://dx.doi.org/10.1088/0031-9155/43/4/003
http://dx.doi.org/10.1117/12.537508
http://dx.doi.org/10.1109/TMI.2006.886806
http://dx.doi.org/10.1088/0031-9155/49/11/014
http://dx.doi.org/10.1088/0266-5611/25/12/123009
http://dx.doi.org/10.1118/1.595078
http://dx.doi.org/10.1088/0031-9155/54/12/016
http://dx.doi.org/10.1109/42.192688


R94 Topical Review

Richardson W H 1972 Bayesian-based iterative method of image restoration J. Opt. Soc. Am. 62 55–59

Ritchie C J, Godwin D, Crawford C R, Stanford W, Anno H and Kim Y 1992 Minimum scan speeds for suppression

of motion artifacts in CT Radiology 185 37–42

Ruhrnschopf E P and Klingenbeck K 2011a A general framework and review of scatter correction methods in x-ray

cone-beam computerized tomography: part 1. Scatter compensation approaches Med. Phys. 38 4296–311

Ruhrnschopf E P and Klingenbeck K 2011b A general framework and review of scatter correction methods in cone

beam CT: part 2. Scatter estimation approaches Med. Phys. 38 5186–99

Sauer K and Bouman C 1993 A local update strategy for iterative reconstruction from projections IEEE Trans. Signal

Process. 41 534–48

Sechopoulos I 2012 X-ray scatter correction method for dedicated breast computed tomography Med.

Phys. 39 2896–903

Seibert J A and Boone J M 1988 X-ray scatter removal by deconvolution Med. Phys. 15 567–75

Semerci O and Miller E L 2012 A parametric level set approach to simultaneous object identification and background

reconstruction for dual energy computed tomography IEEE Trans. Image Process. 21 2917–34

Shikhaliev P M 2005 Beam hardening artefacts in computed tomography with photon counting, charge integrating

and energy weighting detectors: a simulation study Phys. Med. Biol. 50 5813–28

Siddon R L 1985 Fast calculation of the exact radiological path for a three-dimensional CT array Med. Phys. 12 252–5

Sidky E Y, Kao C-M and Pan X 2006 Accurate image reconstruction from few-views and limited-angle data in

divergent-beam CT J. X-Ray Sci. Technol. 14 119–39

Sidky E Y and Pan X 2008 Image reconstruction in circular cone-beam computed tomography by constrained,

total-variation minimization Phys. Med. Biol. 53 4777–807

Siewerdsen J H, Antonuk L E, El-Mohri Y, Yorkston J, Huang W, Boudry J M and Cunningham I A 1997 Empirical

and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers

(AMFPIs) for diagnostic radiology Med. Phys. 24 71–89

Siewerdsen J H, Daly M J, Bakhtiar B, Moseley D J, Richard S, Keller H and Jaffray D A 2006 A simple, direct method

for x-ray scatter estimation and correction in digital radiography and cone-beam CT Med. Phys. 33 187–97

Siewerdsen J H and Jaffray D A 2001 Cone-beam computed tomography with a flat-panel imager: magnitude and

effects of x-ray scatter Med. Phys. 28 220–31

Siewerdsen J H, Moseley D J, Bakhtiar B, Richard S and Jaffray D A 2004 The influence of antiscatter grids on

soft-tissue detectability in cone-beam computed tomography with flat-panel detectors Med. Phys. 31 3506–20

Snyder D L, Hammoud A M and White R L 1993 Image recovery from data acquired with a charge-coupled-device

camera J. Opt. Soc. Am. A 10 1014–23

Snyder D L, Helstrom C W, Lanterman A D, Faisal M and White R L 1995 Compensation for readout noise in CCD

images J. Opt. Soc. Am. A 12 272–83

Snyder D L and Miller M I 1985 The use of sieves to stabilize images produced with the EM algorithm for emission

tomography IEEE Trans. Nucl. Sci. NS-32 3864–72

Snyder D L, Miller M I, Thomas L J and Politte D G 1987 Noise and edge artifacts in maximum-likelihood

reconstructions for emission tomography IEEE Trans. Med. Imaging 6 228–38

Spanier J and Gelbard E M 1969 Monte Carlo Principles and Neutron Transport Problems (Reading, MA: Addison-

Wesley)

Srivastava S, Cammin J, Fung G S K, Tsui B M W and Taguchi K 2012 Spectral response compensation for photon-

counting clinical x-ray CT using sinogram restoration Proc. SPIE 8313 831311

Stayman J W, Dang H, Otake Y, Zbijewski W, Noble J, Dawant B, Labadie R F, Carey J P and Siewerdsen J H 2013

Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants Proc.

SPIE 8668 86681L

Sukovic P and Clinthorne N H 2000 Penalized weighted least-squares image reconstruction for dual energy x-ray

transmission tomography IEEE Trans. Med. Imaging 19 1075–81

Sun M and Star-Lack J M 2010 Improved scatter correction using adaptive scatter kernel superposition Phys. Med.

Biol. 55 6695–720

Swank R K 1973 Absorption and noise in x-ray phosphors J. Appl. Phys. 44 4199–203

Taguchi K, Srivastava S, Tang Q, Caffo B S, Iwanczyk J S, Hartsough N E, Barber W C and Cammin J 2012

Pulse pileup statistics for energy sensitive photon counting detectors with pulse height analysis Proc.

SPIE 8313 83130Z

Takahashi T, Itoh H, Shimada T and Takeuchi H 1990 Design of integrated radiation detectors with a-si photodiodes

on ceramic scintillators for use in x-ray computed tomography IEEE Trans. Nucl. Sci. 37 1478–82

Tam K C, Samarasekera S and Sauer F 1998 Exact cone beam CT with a spiral scan Phys. Med. Biol. 43 1015–24

Tang J, Hsieh H and Chen G-H 2010 Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS):

performance studies Med. Phys. 37 4377–88

http://dx.doi.org/10.1364/JOSA.62.000055
http://dx.doi.org/10.1118/1.3599033
http://dx.doi.org/10.1118/1.3589140
http://dx.doi.org/10.1109/78.193196
http://dx.doi.org/10.1118/1.4711749
http://dx.doi.org/10.1118/1.596208
http://dx.doi.org/10.1109/TIP.2012.2186308
http://dx.doi.org/10.1088/0031-9155/50/24/004
http://dx.doi.org/10.1118/1.595715
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1118/1.597919
http://dx.doi.org/10.1118/1.2148916
http://dx.doi.org/10.1118/1.1339879
http://dx.doi.org/10.1118/1.1819789
http://dx.doi.org/10.1364/JOSAA.10.001014
http://dx.doi.org/10.1364/JOSAA.12.000272
http://dx.doi.org/10.1109/TNS.1985.4334521
http://dx.doi.org/10.1109/TMI.1987.4307831
http://dx.doi.org/10.1117/12.911394
http://dx.doi.org/10.1117/12.2007945
http://dx.doi.org/10.1109/42.896783
http://dx.doi.org/10.1088/0031-9155/55/22/007
http://dx.doi.org/10.1063/1.1662918
http://dx.doi.org/10.1117/12.911365
http://dx.doi.org/10.1109/23.57404
http://dx.doi.org/10.1088/0031-9155/43/4/028
http://dx.doi.org/10.1118/1.3460318


Topical Review R95

Thibault J-B, Bouman C A, Sauer K D and Hsieh J 2006 A recursive filter for noise reduction in statistical iterative

tomographic imaging Proc. SPIE 6065 60650X

Thibault J B, Sauer K D, Bouman C A and Hsieh J 2007 A three-dimensional statistical approach to improved image

quality for multislice helical CT Med. Phys. 34 4526–44

Thibault J-B, Yu Z, Sauer K, Bouman C and Hsieh J 2007 Correction of gain fluctuations in iterative tomographic

image reconstruction Proc. Int. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and

Nuclear Medicine pp 112–5

Toth T L, Cesmeli E, Ikhlef A and Horiuchi T 2005 Image quality and dose optimization using novel x-ray source

filters tailored to patient size Proc. SPIE 5745 283–91

Van Slambrouck K and Nuyts J 2012 Metal artifact reduction in computed tomography using local models in an

image block-iterative scheme Med. Phys. 39 7080–93

Wang A S, Feng C and Pelc N J 2012 Image-based synthetic CT: simulating arbitrary low dose single and dual energy

protocols from dual energy images Proc. SPIE 8313 83131G

Wang G, Lin T-H and Cheng P C 1993 A general cone-beam reconstruction algorithm IEEE Trans. Med.

Imaging 12 486–96

Wang G, Vannier M W, Skinner M W, Cavalcanti M G P and Harding G W 1998 Spiral CT image deblurring for

cochlear implantation IEEE Trans. Med. Imaging 17 251–62

Wang J, Mao W and Solberg T 2010 Scatter correction for cone-beam computed tomography using moving blocker

strips: a preliminary study Med. Phys. 37 5792–800

Whiting B R 2002 Signal statistics in x-ray computed tomography Proc. SPIE 4682 53–60

Whiting B R, Massoumzadeh P, Earl O A, O’Sullivan J A, Snyder D L and Williamson J F 2006 Properties of

preprocessed sinogram data in x-ray computed tomography Med. Phys. 33 3290–303

Xiao J, Verzijlbergen F J, Viergever M A and Beekman F J 2010 Small field-of-view dedicated cardiac SPECT

systems: impact of projection truncation Eur. J. Nucl. Med. Mol. Imaging 37 528–36

Xu D, Langan D A, Wu X, Pack J D, Benson T M, Tkaczky J E and Schmitz A M 2009 Dual energy CT via fast kVp

switching spectrum estimation Proc. SPIE 7258 72583T

Xu J, Frey E C, Taguchi K and Tsui B M W 2007 A Poisson likelihood iterative reconstruction algorithm for material

decomposition in CT Proc. SPIE 6510 65101Z

Xu J and Tsui B M W 2007 A compound Poisson maximum-likelihood iterative reconstruction algorithm for x-ray

CT Proc. Int. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

pp 108–11

Xu J and Tsui B M W 2009 Electronic noise modeling in statistical iterative reconstruction IEEE Trans. Image

Process. 18 1228–38

Xu Q et al 2012 Image reconstruction for hybrid true-color micro-CT IEEE Trans. Biomed. Eng. 59 1711–9
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