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Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines work 22 

predominantly by eliciting neutralizing antibodies (NAbs), how the protection they confer 23 

depends on the NAb response to vaccination is unclear. Here, we collated and analysed in 24 

vitro dose-response curves of >70 NAbs and constructed a landscape defining the 25 

spectrum of neutralization efficiencies of NAbs elicited. We mimicked responses of 26 

individuals by sampling NAb subsets of known sizes from the landscape and found that 27 

they recapitulated responses of convalescent patients. Combining individual responses 28 

with a mathematical model of within-host SARS-CoV-2 infection post-vaccination, we 29 

predicted how the population-level protection conferred would increase with the NAb 30 

response to vaccination. Our predictions captured the outcomes of vaccination trials. Our 31 

formalism may help optimize vaccination protocols, given limited vaccine availability.   32 

 33 

Approved SARS-CoV-2 vaccines have shown remarkable but varying efficacies in 34 

clinical trials, reducing the incidence of symptomatic infections by 62-96% (1-4). The 35 

protection has been found to be predominantly due to NAbs elicited by the vaccines; cellular 36 

immunity appeared to play a secondary role (1, 2). The NAb response elicited by primary 37 

SARS-CoV-2 infection is diverse, spanning >1000-fold variation in Ab titres and in vitro 38 

neutralization efficiencies across individuals (5, 6), and appears not to correlate with disease 39 

severity (7). NAb titres following vaccination were comparable to or even lower at times than 40 

those from convalescent patients (1, 2, 8). The protection accorded by the vaccines is thus 41 

surprising. It is possible, based on animal studies (9), that lower NAb titres are protective at the 42 

time of challenge than post infection. Knowledge of how the level of protection depends on the 43 
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NAb titres and their neutralization efficiencies is lacking. This knowledge gap hinders rational 44 

optimization of vaccination protocols, which is important today given limited vaccine supplies 45 

(10). Here, we developed a mathematical model that quantitatively predicts the population-46 

level protection conferred by vaccines as a function of the NAb responses they elicit. 47 

A major challenge to describing the effects of vaccination is the diversity of the NAb 48 

responses elicited; no formalism exists to predict the diversity or its effects on protection. We 49 

addressed this challenge by adapting the classic idea of shape space, which has aided 50 

quantification of the immune repertoire (11), for characterizing NAbs. Accordingly, we sought 51 

features, also termed shape parameters, of the NAbs that would predict their neutralization 52 

efficiencies. Numerous studies have isolated individual NAbs from patients and assessed their 53 

neutralization efficiencies in vitro, with the aim of developing NAbs for therapeutic 54 

applications. We compiled dose-response curves (DRCs) of >70 NAbs thus isolated and fit 55 

them using the standard sigmoidal function as well as the median-effect equation (12) 56 

(materials and methods, fig. S1, table S1). The equations fit the data well (Fig. 1A, and figs. 57 

S2 and S3), indicating that two parameters, the 50% inhibitory concentration, IC50, and the 58 

slope, m, of the DRC, were sufficient to characterize the neutralization efficiency of the NAbs 59 

(Fig. 1A and table S1). The best-fit IC50 and m varied widely across NAbs (Fig. 1B). IC50 60 

ranged from ~10-3 µg/ml to ~140 µg/ml (Fig. 1B), in close agreement with reported estimates, 61 

giving us confidence in the fits (fig. S4A and table S1). m, the importance of which has been 62 

recognized with HIV-1 and hepatitis C (12, 13) but has not typically been reported for SARS-63 

CoV-2, spanned the range of ~0.2 to 2 (Fig. 1). This variability in IC50 and m was not restricted 64 

 65 
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 66 

 67 
 68 

Figure 1. Analysis of dose-response curves of SARS-CoV-2 NAbs. (A) Fits (lines) of the 69 

standard sigmoidal equation and the median-effect equation (inset) to published experimental 70 

data (circles) of the fraction of infection events blocked, fu, as a function of NAb concentration, 71 

shown for two NAbs, BD-236 (left) and 47D11 (right). Experimental data points with 1% < fu 72 

< 99% (filled circles) were considered for parameter estimation. Fits for the remaining NAbs 73 

are in figs. S2 and S3. The best-fit estimates of (B) IC50 and (C) m for all the NAbs analysed.  74 

  75 

to a particular pseudotyped virus construct or backbone used (fig. S4, B and C), the cell line 76 

used (fig. S4, D and E), or assay conditions, which could vary across studies (fig. S4, F and G). 77 

The variability was thus intrinsic to the NAbs, indicating the spectrum of NAbs elicited. 78 

Furthermore, akin to HIV-1 antibodies (12), the variations in IC50 and m of the SARS-CoV-2 79 

NAbs appeared independent. For instance, the NAbs BD-361 and REGN10954 had similar IC50 80 

(both ~0.04 µg/ml), but vastly different m (~0.7 and ~1.5, respectively), whereas the NAbs 81 

CC12.3 and 515-5 had vastly different IC50 (~0.02 µg/ml and 1.6 µg/ml, respectively), but 82 
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similar m (both ~1). IC50 and m were thus not only sufficient but also necessary for quantifying 83 

the neutralization efficiencies of NAbs. We therefore employed IC50 and m as the required 84 

shape parameters. Plotting the NAbs on an IC50-m plot, we identified the NAb shape space 85 

(Fig. 2), which, because of its two-dimensional nature, we termed the ‘landscape of SARS-86 

CoV-2 NAbs’. 87 

 88 

 89 
Figure 2. The landscape of SARS-CoV-2 NAbs. (A) SARS-CoV-2 NAbs analysed in Fig. 1 90 

depicted on an IC50-m plot. Each dot represents a NAb. 8 NAbs that have multiple neutralisation 91 

curves reported are represented multiple times (table S1). Solid lines are loci of points 92 

corresponding to fixed IIP values computed at 100 µg/ml. The ellipse (blue dashed line) 93 

circumscribes the landscape of SARS-CoV-2 NAbs elicited. (B) The distribution of IIP100 94 

values of NAbs. Average IIP100 values are used for the 8 NAbs mentioned above. 95 

 96 

The landscape contains potent NAbs, with low IC50 and high m, as well as weak NAbs, 97 

with the opposite traits. To compare the NAbs, we employed the instantaneous inhibitory 98 

potential (IIP), a composite metric of IC50 and m (12-14). IIPD represents the log10 decline in 99 

viral load in a single round infection assay due to the NAb present at concentration D. Thus, 100 

the higher is the IIPD, the more potent is the NAb at concentration D. NAbs displayed a wide 101 

distribution of IIP100 values (Fig. 2B and table S1): We found that 5 NAbs had the highest IIP100  102 
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 103 
Figure 3. NAb landscape and patient responses. (A) Schematic of the procedure to predict 104 

plasma dilution curves. We represent an individual’s plasma by a sample of NAbs from the 105 

landscape. We predict the fraction of infection events unaffected by NAbs, fu, at a given plasma 106 

dilution in in vitro pseudovirus neutralization assays and repeat this at different dilutions to 107 

obtain the dilution curve. (B) Representative plasma dilution curves obtained as fits (lines) of 108 

the equation f
u

= (g)n

(g)n + (NT
50

)n
 to reported data (circles) from three patients (15), where n is 109 

the Hill coefficient,  is the plasma dilution and NT50 is the half-maximal inhibitory plasma 110 

neutralizing titre. Experimental data points with 1% < fu < 99% (filled circles) were considered 111 

for parameter estimation. (C) Predictions (lines) of plasma dilution curves. We assumed ten 112 

NAbs per patient. Blue lines are fits shown in B.  D0 = 30 µg/ml. (D) Half-maximal inhibitory 113 

plasma neutralizing titre, NT50, as a function of total NAb concentration. Blues circles are 114 

reported estimates from convalescent patients. Red squares and orange circles are the mean of 115 

NT50 values predicted from 100 virtual patients at each NAb concentration using Bliss 116 

independence and Loewe additivity, respectively. The error bars are standard deviations. 117 
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values, >5, and 9 had the least, <1 (D = 100 µg/mL) (Fig. 2B and table S1). This distribution 118 

of IIP100 values demonstrated further the wide spectrum of neutralization efficiencies of NAbs. 119 

The landscape established bounds on the neutralization efficiencies of the NAbs elicited. 120 

We reasoned next that the diversity of the NAb responses across individuals would arise from 121 

the way NAbs are sampled from the landscape. Although a large number of NAbs can be 122 

isolated from individuals, studies of convalescent patient plasma (5, 6, 16-18) as well as on 123 

NAb epitope profiling (19) have argued that the NAb response of an individual can be attributed 124 

to a small subset of 5-10 distinct NAbs. Furthermore, while some epitopes on the SARS-CoV-125 

2 spike protein, S, are targeted more than others by NAbs, the collection of NAbs produced 126 

differs substantially across individuals (20). We therefore assumed that the response elicited 127 

by an infected individual would be a small, random subset of the landscape. We analysed DRCs 128 

of NAbs isolated from individual patients and found that they indeed constituted such random 129 

subsets in the landscape (fig. S5). Accordingly, we sampled random combinations of 10 NAbs 130 

each, each combination representing the response of an individual. We let NAb concentrations 131 

vary across individuals, to mimic the observed variation of the NAb titres (16-18). We 132 

quantified the neutralization efficiency of the NAb response by simulating standard plasma 133 

dilution assays (materials and methods, Fig. 3A). We let the NAbs exhibit Bliss independence 134 

or Loewe additivity, the former representing NAbs targeting distinct, non-occluding epitopes 135 

and the latter the same or occluding epitopes (21). Our simulations recapitulated the dilution 136 

curves associated with patient plasma (Fig. 3, B and C). The values of NT50, the dilution at 137 

which the neutralization efficiency of the plasma decreases by 50%, were in agreement with 138 

experimental observations (17) (Fig. 3D). The data was described better by Bliss independence 139 
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at low NAb titres and Loewe additivity at high titres. This is expected because at low titres, the 140 

NAbs are unlikely to interact with each other and would thus follow Bliss independence, 141 

whereas at high titres, they may compete for binding sites on S or occlude each other and thus 142 

exhibit Loewe additivity (21). At any NAb titre, there existed substantial variation in NT50, 143 

attributed to the random combinations of NAbs sampled. The variation, however, was 144 

outweighed by the overall rise of NT50 with the NAb titre, consistent with patient data (Fig. 145 

3D). For instance, the NT50 was 17±13 at the IgG titre of 0.1 µg/ml and 1300±1000 at 10 µg/ml. 146 

Sampling from the NAb landscape thus successfully recapitulated patient responses. We were 147 

able to describe the diversity of the NAb responses elicited across patients. Armed with this 148 

description, we examined next the protection accorded by vaccines in clinical trials.  149 

Following vaccination, NAb titres rise and are expected to remain stable (or decay 150 

slowly) over weeks to months (22), protecting individuals who might get exposed to the virus 151 

during this period. Individuals were assumed to be protected if they did not report symptomatic 152 

infection; loss of protection involved symptoms and a positive result on a nucleic acid 153 

amplification test (1, 2). Protection with NAbs is expected not to be sterilizing, as suggested 154 

by animal studies (9); NAbs help suppress the peak in viremia, thereby reducing symptoms, 155 

and facilitate more rapid clearance of the infection. If the peak is sufficiently suppressed, no 156 

symptoms may result, as is the case with the ~40% of natural infections that remain 157 

asymptomatic (7). Here, we assumed that an individual would be detected as symptomatically 158 

infected if the viral load rose above a threshold during the infection.  159 

To estimate the peak viral load, we developed a mathematical model of the early time 160 

course of the infection, where the viral load typically rises, attains a peak, and declines (23),  161 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.16.21253742doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253742


9 

 

 162 

Figure 4. SARS-CoV-2 dynamics and protection post-vaccination. (A) Schematic of the 163 

model of within-host SARS-CoV-2 dynamics post-vaccination depicting the interactions 164 

between target cells, T, infected cells, I, refractory cells, R, virions, V, innate immune response, 165 

X, and pre-existing NAbs, sampled from the landscape. (B) Predictions of viral load in non-166 

vaccinated (black line) and vaccinated (coloured lines) individuals with different fixed 167 

efficacies of NAbs indicated. Inset: Predicted peak viral load at different efficacies. (C) 168 

Predictions of peak viral load at different NAb titres. Each dot represents a patient. (D) Model 169 

predictions of the relationship between mean protection and NT50 (solid line) compared with 170 

data from vaccination trial (symbols). The number of doses of the vaccine administered is 171 

mentioned in brackets. The error bars (dashed lines) in the protection curve are the standard 172 

deviation from 5 realizations of in silico patient populations. The data from the trials used is 173 

summarized in table S3. The model equations and simulation procedure are described in 174 

materials and methods. 175 

 176 

and applied it to describe the effect of vaccination (Fig. 4A, table S2, materials and methods). 177 

The structure of the model mimics recent models that have captured patient data of viral load 178 

changes following primary infection (24, 25) (see Fig. 4B, =0). In addition, we assumed that 179 
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NAbs generated following vaccination would exist at the start of infection and neutralize free 180 

viruses, effectively reducing viral infectivity. The greater the reduction in infectivity, the lower 181 

the peak viral load (Fig. 4B, >0). Significant de novo NAb production post-infection typically 182 

occurs after the peak in viremia (7). We therefore considered pre-existing NAbs as responsible 183 

for protection and assumed their titres not to vary substantially during the course of the 184 

infection, given the typically short course of the infection and the much longer durability of the 185 

NAb response to vaccination (22). (Our model is not applicable to natural infection before 186 

vaccination; no models are currently capable of correctly describing NAb responses following 187 

primary infection.) We let the pre-existing NAbs be drawn as random subsets from the 188 

landscape, as we did above. The NAbs neutralized free viruses with an efficiency that we 189 

estimated using Loewe additivity between the individual NAbs (Fig. 4). NAb titres in the lung 190 

airways are expected to be similar to those in the blood given the close coupling between the 191 

lungs and the circulatory system (7). We simulated a virtual patient population of 3500 192 

individuals, on the order of the number of individuals infected in the placebo arms of clinical 193 

trials. The individuals all had distinct viral dynamics parameters drawn from known ranges 194 

(table S2), to mimic interpatient variability in addition to the variability arising from NAb 195 

sampling from the landscape. Our model predicted wide variability in the peak viral load (Fig. 196 

4C). At low pre-existing NAb concentrations (0.01 µg/mL), indicative of the scenario without 197 

vaccination, the predicted peak viral load ranged from ~103 to 109 copies/ml, consistent with 198 

the range in symptomatic individuals (26). The peaks declined as NAb titres increased. The 199 

limit of detection is ~102 copies/ml (27), which we set as the threshold for symptomatic 200 
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infection that would be detected in trials. The fraction of individuals with peaks below detection 201 

would indicate the level of protection due to the vaccine.  202 

To quantify the mean level of protection and test it against data from clinical trials, we 203 

used viral dynamics parameters representative of symptomatic infections (24, 25) (table S2) 204 

and simulated the dynamics in 5 cohorts of 2000 infected individuals each. Vaccination studies 205 

report the NT50 values of the NAb responses elicited and the associated mean protection level, 206 

or efficacy (table S3). We binned the different individuals into narrow NT50 bands and 207 

calculated the mean protection in each band. We found that the mean protection was low for 208 

NT50~1. It increased in a sigmoidal manner to 50% at NT50~20 and asymptotically reached 209 

100% at NT50~200. Remarkably, the data for nearly all approved vaccines fell on this 210 

‘protection curve’, explaining the protection they confer (Fig. 4D). Thus, for instance, a single 211 

dose of the vaccine BNT 162b2 elicited NAbs with NT50 of 14 and accorded 49% protection. 212 

Following two doses, the corresponding values were 361 and 94%, respectively. These values 213 

as well as those for other vaccines were captured accurately by our model predictions. The only 214 

exception was ChAdOx1 nCoV-19, which had a lower protection than predicted, the reasons 215 

for which remain to be elucidated. 216 

 Our study provides the first conceptual, mechanistic and quantitative understanding of 217 

the protection conferred by COVID-19 vaccines. Our findings would inform strategies for 218 

optimal vaccine deployment. With limited vaccine availability, it would be useful to estimate 219 

the protection realizable by a single dose of a prime-boost vaccine, especially in younger, less 220 

vulnerable adults (10). Our formalism would enable this estimation: measurements of 221 

corresponding NT50 values would allow reading off the expected protection levels from our 222 
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protection curve. Similarly, using measurements of the waning of NAb titres post-vaccination, 223 

how the population-level protection due to pre-existing NAbs would fade could be predicted. 224 

Protection would then rely on memory B cell responses, which are yet to be fully understood 225 

(28), or indicate the need for revaccination. Our study did not consider viral mutations because 226 

with 5-10 NAbs active, viral escape from NAb responses is expected to be unlikely (19, 29). 227 

With the new circulating strains (30), however, the NAb landscape may have to be 228 

reconstructed. Future studies may report DRCs of NAbs against the new strains, facilitating 229 

such reconstruction.                   230 

 231 
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