
Modelling the role of contour integration in visual inference

Salman Khan1,2,3*, Alexander Wong2,3, Bryan Tripp1,2,3,

1 Centre for Theoretical Neuroscience, Department of System Design Engineering,
University of Waterloo, Waterloo, ON, Canada
2 Vision and Image Processing Group, Department of System Design Engineering,
University of Waterloo, Waterloo, ON, Canada
3 Waterloo Artificial Intelligence Institute, University of Waterloo, Waterloo, ON,
Canada

* s362khan@uwaterloo.ca

Abstract

Under difficult viewing conditions, the brain’s visual system uses a variety of recurrent
modulatory mechanisms to augment feed-forward processing. One resulting
phenomenon is contour integration, which occurs in the primary visual (V1) cortex and
strengthens neural responses to edges if they belong to a larger smooth contour.
Computational models have contributed to an understanding of the circuit mechanisms
of contour integration, but less is known about its role in visual perception. To address
this gap, we embedded a biologically grounded model of contour integration in a
task-driven artificial neural network, and trained it using a gradient-descent variant. We
used this model to explore how brain-like contour integration may be optimized for
high-level visual objectives as well as its potential roles in perception. When the model
was trained to detect contours in a background of random edges, a task commonly used
to examine contour integration in the brain, it closely mirrored the brain in terms of
behavior, neural responses, and lateral connection patterns. When trained on natural
images, the model enhanced weaker contours and distinguished whether two points lay
on the same vs. different contours. The model learnt robust features that generalized
well to out-of-training-distribution stimuli. Surprisingly, and in contrast with the
synthetic task, a parameter-matched control network without recurrence performed the
same or better than the model on the natural-image tasks. Thus a contour integration
mechanism is not essential to perform these more naturalistic contour-related tasks.
Finally, the best performance in all tasks was achieved by a modified contour
integration model that did not distinguish between excitatory and inhibitory neurons.

Author summary

Deep networks are machine-learning systems that consist of interconnected neuron-like
elements. More than other kinds of artificial system, they rival human information
processing in a variety of tasks. These structural and functional parallels have raised
interest in using deep networks as simplified models of the brain, to better understand
of brain function. For example, incorporating additional biological phenomena into deep
networks may help to clarify how they affect brain function. In this direction, we
adapted a deep network to incorporate a model of visual contour integration, a process
in the brain that makes contours appear more visually prominent. We found that
suitable training led this model to behave much like the corresponding brain circuits.
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We then investigated potential roles of the contour integration mechanism in processing
of natural images, an important question that has been difficult to answer. The results
were not straightforward. For example, the contour integration mechanism actually
impaired the network’s ability to tell whether two points lay on the same contour or not,
but improved the network’s ability to generalize this skill to a different group of images.
Overall, this approach has raised more sophisticated questions about the role of contour
integration in natural vision.

Introduction 1

Deep neural networks (DNN) are often used as models of the visual system [1–6]. It has 2

been argued that they are mechanistic models [6] because some of their computational 3

elements have analogies in the brain. But they lack many other biological mechanisms, 4

which may contribute to differences in representations [5, 7, 8] and behavior [9–15]. In 5

contrast, there are many physiological models of circuits that underlie localized neural 6

phenomena, such as [16–22], but these models tend to be isolated from larger circuits 7

and to have uncertain connections with ethologically important visual tasks. 8

The limitations of both deep networks and isolated circuit models might potentially 9

be addressed by combining them, i.e. incorporating detailed circuit models into deep 10

networks. In this direction, recent studies have incorporated details of interlaminar and 11

interareal connectivity into deep networks [8, 23–25]. Few studies [17,26–29] have 12

incorporated biologically grounded microcircuits into functionally sophisticated deep 13

networks, but doing so may be an important step in understanding how microcircuits 14

contribute to behaviour, and reproducing the superior generalization abilities of the 15

brain [30]. 16

Contour integration [31–34] is a phenomenon in the V1 cortex where stimuli from 17

outside a neuron’s classical receptive field (cRF) modulate its feed-forward responses 18

(Fig. 1). In particular, a neuron’s response is enhanced if a preferred stimulus within 19

the cRF is part of a larger contour. Li et al. [32] found that these elevated V1 responses 20

were highly correlated with contour detectability. Under difficult viewing conditions, it 21

is thought that the that the visual system uses contour integration to pop out smooth 22

contours. Contour integration is mediated by intra-area lateral and higher-layer 23

feedback connections [35,36]. Past computational models [22,37–40] have tested 24

potential mechanisms and successfully replicated neurophysiological data. However, a 25

limitation of all of these circuit models is that they are stand-alone models that do little 26

to clarify the roles of contour integration in natural vision. 27

In this work, we embedded a circuit model of contour integration within a deep 28

network. We used this model to investigate two broad questions. First, we tested 29

whether key characteristics of biological contour integration would emerge as a result of 30

the network learning to identify contours within backgrounds of randomly oriented 31

edges (a kind of stimulus that has often been used to study contour integration). We 32

found that the trained model was consistent with biological data on behaviour 33

(detection of contours), electrophysiology (unit responses versus contour length and 34

contour-fragment spacing), and connectivity (structure of learnt lateral connections). 35

This provides new evidence that these particular circuit characteristics benefit the 36

perception of contours within these synthetic visual stimuli. Second, we used our model 37

to investigate whether contour integration improved performance of two natural-scene 38

tasks. One of these was detection of weak edges in natural scenes, a role that has 39

previously been proposed for contour integration. The second was a new task that 40

required distinguishing connected contours from nearby unconnected contours. In the 41

first task, the contour integration model performed similarly to a parameter-matched 42

feed-forward network. In the second task, surprisingly, the model performed much worse 43
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Fig 1. Contour integration. A: Contour integration has been studied using stimuli
in which line segments form a contour within a larger field of randomly oriented
segments. Subjectively, the contour pops out from the background. B: Contour
integration is thought to be mediated by long range inter-area and feedback connections
from higher layers. The Association Field Model [31] is commonly used to model
intra-area lateral connections. These long-range connections preferentially connect
neurons with co-linear or co-circular orientation preferences. C: Microcircuit
architecture of the circuit model [22] on which our work is based, which focuses on the
role of lateral connections in V1. The outgoing connections of one of the excitatory
nodes are highlighted in blue, while those of its paired inhibitory node are shown in red.
Connections ending in a circle are excitatory while those ending in a bar are inhibitory.

than the control network. However, it generalized better to a variation of the task that 44

it was not trained on. Furthermore, a variation of the model that allowed excitatory 45

neurons to inhibit some of their targets substantially outperformed the control. This 46

suggests that contour integration is relevant to the second task, but the model we 47

adopted was not optimal, either because biological contour integration is not optimal or 48

because important biological elements were missing from the model. 49

Model 50

Contour integration block 51

We adapted an existing circuit model of V1 contour integration and incorporated it into 52

an artificial neural network (ANN). We used the current-based-subtractive-inhibition 53

model of Piech et al. [22]. This model focuses on within-layer lateral interactions 54

between V1 orientation columns (co-located populations of neurons that respond to 55

edges of similar orientations over a small area of visual space). Piech et al. modelled 56

each orientation column using a pair of reciprocally connected excitatory (E) and 57

inhibitory (I) nodes whose temporal dynamics were defined as, 58

dx

dt
=

1

τx

−x+ Jxxfx(x)− Jxyfy(y) + I0e + I +
∑

x′∈ eCRF

Lxx′ fx(x
′)

 , (1)

59

dy

dt
=

1

τy

−y + Jyxfx(x) + I0i +
∑

x′∈ eCRF

Lyx′ fx(x
′
)

 . (2)

Here, x and y are membrane potentials of E and I nodes, Jxx, Jxy, Jyx are E→E (self), 60

I→E and E→I within node-pair connection strengths, respectively, f.(.) is a non-linear 61

activation function that transforms membrane potentials into firing rates, τ. are 62

membrane time constants, I is the external input current to the model, I0. are 63
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background currents and Lxx′ and Lyx′ are strengths of lateral connections from E 64

nodes x
′
in neighboring columns that lie within the extra classical receptive field 65

(e-cRF). 66

An E-I pair of this model and all of its connections are shown in Fig 1C. E nodes 67

process incoming edge extraction responses while I nodes subtractively modulate E node 68

activities. Nodes also receive recurrent inputs from nearby columns via lateral 69

connections. Piech et al. designed these anisotropically distributed connections [41] with 70

connectivity patterns suggested by the Association Field Model [31] (Fig. 1B); each 71

column has the most dense lateral excitatory connections with nearby columns sensitive 72

to edge fragments that are co-linear with the column’s preferred orientation. A similar 73

but orthogonally oriented association field was used to model inhibitory connections. 74

Piech et al. defined the full model over a 2D grid of spatial locations. Each spatial 75

location contained a set of orientation columns with the same frequency selectivities and 76

a range of orientation preferences. The lateral connections of each orientation column 77

were hard-coded. The dynamics of the full model were realized as the joint activities of 78

all columns. 79

We made minimal adaptations to this circuit model to implement it as a trainable 80

block inside a convolutional network. First, we replaced summations over e-cRFs with 81

convolutions. The convolution operates over columns in nearby locations as well as at 82

the same location. It incorporates the excitatory self connection, Jxx, and the lateral 83

connections. Second, we used Euler’s method to express the dynamics as difference 84

equations [28,42]. Third, we defined all model parameters including the lateral 85

connections to be learnable and used task-level optimization to learn their optimal 86

settings. Piech et al. [22] distinguished excitatory and inhibitory neurons in their model, 87

consistent with Dale’s principle [43,44]. In contrast, neurons in convolutional networks 88

typically do not make this distinction, but allow weights to take on whatever values 89

maximize performance. This consistently results in each neuron exciting some of its 90

targets and inhibiting others. To ensure individual nodes were consistent with Dale’s 91

principle, we constrained weights to be positive or negative, as appropriate. For 92

connections between paired excitatory and inhibitory neurons, a logistic sigmoid 93

non-linearity was applied to the learned weight parameter to prevent changes in sign. 94

The same method was used to retain the sign of the model’s time constants. For lateral 95

connection kernels, a positive-only constraint was imposed on each element during 96

training. 97

With these modifications, the activity of an orientation column is expressed as, 98

xt = (1− σ(a))xt−1 + σ(a) [−σ(Jxy)fy(yt−1) + I0e + I +We ⊛ fx(Xt−1)] , (3)
99

yt = (1− σ(b))yt−1 + σ(b) [σ(Jyx)fx(xt) + I0i +Wi ⊛ fx(Xt)] , (4)

where x0 = y0 = 0. 100

Here, x and y are membrane potentials, f.(.) is a non-linear activation function, 101

σ(a), σ(b) are membrane time constants, σ(Jxy), σ(Jyx) are local I → E, E → I 102

connection strengths, σ() is the logistic sigmoid function which constrains time 103

constants and local connection strengths to be positive, We are lateral excitatory 104

connections from E nodes in nearby columns to E, Wi are connections from nearby E 105

nodes to I, fx(Xt) is the output of all modeled nodes at time t, ⊛ is the convolution 106

operator, I is the external input and I0. is a node’s background activity. 107

This final form is a recurrent neural network that can be trained using standard 108

neural network training techniques [42]. Lastly, we included a batch normalization 109

(BN) [45] layers after every convolutional layer to model weak omni-directional 110

inhibition [46]. We refer to this transformed model as the contour integration (CI) block 111

and include it as a whole inside ANNs. Parameters of the CI block and their settings 112

are described in the Methods Section. 113
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Visual inference network 114

The full model is composed of edge extraction, CI and classification blocks (see Fig. 2). 115

For edge extraction, we used the first convolutional layer of a ResNet50 [47] that was 116

pre-trained on the ImageNet [48] dataset. We additionally added BN and max-pooling 117

after the convolutional layer in all tasks other than edge detection in natural images. 118

This helped reduce computational complexity (by reducing the spatial dimensions over 119

which the recurrent CI block acts) and improved performance as well. For the task of 120

edge detection in natural images, only the BN was added. Outputs of the edge 121

extraction block were fed into the CI block. The same CI block was used across all tasks. 122

Outputs of the CI blocks were passed to classification blocks. Classification blocks 123

mapped CI block outputs to required label sizes for each tasks. These blocks had two 124

convolutional layers each. Deeper classification blocks might have allowed better task 125

performance, but we chose shallower classification blocks so that the CI block would 126

play an essential role in network function. Description of each of the classification 127

blocks can be found in the Methods Section. The architectures of the all the models we 128

used are shown in Fig. 2. 129

Feedforward control network 130

We compared our contour-integration model (the visual inference network described 131

above) with a feed-forward control network of matching capacity (number of 132

parameters). Feed-forward networks can be parameterized to match capacity in several 133

different ways [49,50]. Because we were interested in modeling V1 lateral connections, 134

we used convolutional kernels of the same size as the model. Compared to standard 135

convolutional kernels, these were much larger and were specifically designed to model 136

lateral connections, which may spread out up to eight times the cRF of V1 neurons [41]. 137

The control network used the same edge extraction and classification blocks as the 138

model. Only the middle block was different. The control’s middle block used the same 139

convolutional layers as the model’s CI block but ordered them sequentially. Additionally, 140

batch normalization and dropout layers (pdropout = 0.3) were added after every 141

convolutional layer to prevent the control from over-fitting the training data. Finally, no 142

positive-only weight constraint was enforced on the control network. It was free to 143

adopt any weight changes that improved performance. Compared to the control, the CI 144

block does ≈ Niter more computations per image and has a larger inference run time 145

because it is recurrent. However, this is consistent with contour integration in the brain, 146

which affects late-phase responses of V1 neurons rather than their initial responses [32]. 147

Results 148

Contour detection 149

We first trained the networks with stimuli that are typically used to study biological 150

contour integration [31, 32, 51]. These stimuli consist of many small edges, a few aligned 151

to form a contour, and the rest randomly oriented to form the background (see Fig. 3). 152

Li et al. [51] found that macaque monkeys progressively improved at detecting contours 153

and had higher contour-enhanced V1 responses with experience on these stimuli. Hence, 154

contour integration is learnable from these stimuli. 155

We constructed a dataset containing 64,000 training and 6,400 validation images in 156

which contours differed in their locations, lengths lc (number of edge fragments that 157

made up the contour), inter-fragment degree of curvature β, and edges (Gabor functions 158

with different parameters). Details of the full dataset are described in the Methods 159

Section. 160
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Fig 2. Model Architectures. The main component of the model is the contour
integration (CI) block. It consists of a 3D grid of orientation columns and models the
horizontal interactions between them. Each orientation column is modeled by a pair of
excitatory (E) and inhibitory (I) nodes. Each orientation column receives as input the
output of an edge extraction unit at the same spatial location and channel. Horizontal
connections connect orientation columns with other orientation columns at different
spatial locations and channels. These connections are learnt by optimizing performance
on high-level tasks. The full model consists of three main blocks: edge extraction, CI
and classification blocks. Edge extraction and CI blocks are common for all tasks. For
edge extraction, the first convolutional layer of a ResNet50 [47] that was previously
trained on ImageNet [48] was used. Task specific classification blocks (edge detector,
fragments classifier, binary classifier) map contour integration activations to output
labels. For each convolutional (conv) layer, the square brackets specify the number, size,
and stride length of kernels. Batch normalization (BN) layers were typically used after
convolutional blocks. Bi-linear interpolation was used for up-sampling in the edge
detector classification block.

Networks were tasked with identifying fragments that were part of the contour. A 161

fragments classifier block (see Fig. 2) followed the CI block to map its outputs to the 162

desired label size. Details of the training process are described in the Methods Section. 163

Network performances were evaluated using mean Intersection over Union (IoU) scores 164

between predictions and labels (see Methods Section). We refer to this task as contour 165

detection due to its similarity with object detection in computer vision, but note that it 166

differs from the kind of detection used in monkey experiments, which involves two 167

patches of line segments and requires only selection of the patch that contains a 168

contour [51]. 169

Averaged peak IoU scores over training are shown in Table 1. For each network, 170
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A B C D

Fig 3. Contour fragments stimuli. A and B, Example training stimuli. All line
segments are identical Gabor fragments. A few adjacent fragments were aligned to form
a smooth contour (highlighted in red). Remaining fragments were randomly distributed.
Embedded contours differed in their location, length, inter-fragment curvature and their
component Gabors. C and D, Test stimuli use to analyze the impact of length and
inter-fragment spacing. Test stimuli consisted of centrally located straight contours with
different lengths (C) and different spacing between contour fragments (D).

results were averaged over five independent runs that were initialized with different 171

random seeds. The model outperformed the control by ≈ 11% (validation score). 172

Table 1. Peak IoU scores on the contour fragments dataset. Peak values (mean
± 1 SD) were averaged across five independent runs for each network.

Network Train (%) Validation (%)
Model 87.33± 0.28% 84.48± 0.30%
Control 71.62± 0.35% 73.61± 0.38%

Effect of contour length and inter-fragment spacing 173

To determine whether networks learnt to integrate contours in a manner similar to 174

the brain, we analyzed them for consistency with behavioral and neurophysiological 175

data. Li et. al. [32] concurrently monitored behavioral performance and V1 neural 176

responses of macaque monkeys as the length of embedded contours and the spacing 177

between contour fragments were varied. At the behavioral level, contours became more 178

salient as lengths increased. Furthermore, when contours extended in the direction of 179

the preferred orientation of V1 neurons, firing rates monotonically increased. 180

Conversely, when spacing between fragments increased, contours became less salient and 181

V1 firing rates decreased monotonically. 182

In a similar manner, we analyzed trained networks behaviorally at the output of 183

networks and neurophysiologically at the output of centrally located neurons of the CI 184

blocks. For the contour-integration model network, this corresponded to the outputs of 185

E neurons while for the control network it corresponded to the outputs of the second 186

convolutional layer. Behavioural performance was quantified using task-level mean IoU 187

scores. Similar to [32], neurophysiological responses were quantified by the contour 188

integration gain, 189

G(lc, RCD) =
Output(lc, RCD)

Output(lc = 1, RCD = 1)
, (5)

where the relative co-linear distance (RCD) quantifies inter-fragment spacing and was 190

defined as the ratio of inter-fragment spacing to fragment length in pixels. The 191

condition lc = 1, RCD=1 is when a neuron receives its optimal stimulus within its cRF 192

and no neighboring contour fragments align with it. 193

We constructed separate test stimuli (similar to those of [32]) for each recorded 194

neuron. These consisted of centrally located contours of varying length and 195
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inter-fragment spacing, where each contour fragment was a spatially shifted copy of the 196

neuron’s optimal within-cRF stimulus. A detailed description of the test stimuli is given 197

in the Methods Section. Examples are shown in Fig. 3C and D. 198

Average IoU scores as contour length increased are shown in Fig. 4A. Results were 199

averaged over five copies of each network, each trained in the same way but initialized 200

with different random weights. For centrally located straight contours, behavioural 201

performance of both networks was similar. Both the contour-integration model and 202

control networks excelled (≥ 95%) at detecting the absence of contours. There were dips 203

in performance for length-three contours as they were the hardest to detect. For all 204

other lengths, prediction accuracy increased with length with the model outperforming 205

the control at larger contour lengths. 206

Fig 4. Synthetic contour fragments results. A, IoU vs. contour length for straight
contours. Behavioural classification performance of the model and control were similar.
B and C, Population average gains vs. length and vs. fragment spacing, respectively.
Contour lengths are expressed in number of fragments and spacing between fragments
are expressed as relative co-linear distance (RCD). RCD is defined as the ratio between
the spacing between fragments to the length of a fragment. Neurophysiological results
are from Li et al. [32]. The plot shows the weighted average gains from the two monkeys
used in their study. Dark lines show mean values and shaded areas represent unit
standard deviation from means, over neurons from five different training runs for each
model. D and E, Gradients of linear fits of the outputs of individual neurons as contour
length and as inter-fragment spacing were increased. F and G, similar plots as D and E
but for the control. The contour-integration model showed consistent trends with
neurophysiological data while the control behaved differently.

Larger contrasts between the model and control were observed when neural response 207

gains were analyzed. Fig. 4B shows population average gains as contour lengths 208

changed, along with averaged gains from two monkeys in Li et al. [32]. In the 209

contour-integration model network, average gains increased monotonically with contour 210

length, similar to the monkey data. In contrast, average gains in the control network 211

did not change appreciably with contour length. Fig. 4C shows population average 212

gains as the spacing between fragments increased. Model-network gains decreased 213

monotonically with spacing, consistent with the monkey data [32]. Control-network 214

gains, unexpectedly, increased with spacing. 215

To calculate gains in both the model and the control network, we excluded neurons 216

that did not respond to any single Gabor fragment in the cRF (no optimal stimulus). 217

Out of the 320 possible neurons, 188 model and 178 control neurons were retained 218

according to this criterion. Furthermore, for population average gains, neurons that 219

were unresponsive to any contour condition (all zero gains) and those that had outlier 220
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gains (≥ 20) for any contour condition were also removed. Typically, these large gains 221

were seen for neurons that had small responses to lc = 1 contours and small changes in 222

the CI block outputs significantly affected their gains. This resulted in the removal of 223

an additional 36 model and 144 control neurons. Across each population (model and 224

control), there was a wide range of enhancement gains exhibited by individual neurons 225

as shown in the mean ±1 SD shaded area in Fig. 4B. 226

To better understand how responses varied across neuron populations, we plotted 227

histograms of the slopes of linear fits to CI block outputs versus contour length and 228

inter-fragment spacing. This was done for all neurons for which the optimal stimulus 229

was found. Since outputs rather than gains were considered, we included neurons with 230

outlier gains in these histograms. Results of the model network are shown in Fig. 4D 231

and E while those of the control network are shown in Fig. 4F and G. Most model 232

neurons showed positive slopes as contour lengths increased and negative slopes as 233

fragment spacing increased, consistent with trends in the monkey data. In contrast, the 234

slopes of control-network responses versus fragment length and spacing were both 235

clustered slightly above zero. While the task performance of the model and the control 236

networks were similar, they employed different strategies to solve the task, and only the 237

contour-integration model network was consistent with neurophysiological data. 238

Lateral connectivity patterns 239

We also analyzed learnt lateral kernels for consistency with neuroanatomical 240

properties of V1 lateral connections. The model constrained the sign of lateral kernels 241

to be positive, consistent with Dale’s principle and the model of [22]. We used separate 242

kernels to model excitatory connections onto excitatory neurons and inhibitory neurons. 243

As in [22], inhibitory neurons only synapsed onto neurons in the same column. 244

Examples of learnt lateral kernels are shown in Fig.5A and B. A full set of learnt lateral 245

kernels of a trained model is shown in S1 Fig, S2 Fig and S3 Fig. Qualitatively, most 246

excitatory-targeting connections were anisotropically distributed and spread out densely 247

in the preferred orientations of the source neurons, while inhibitory-targeting 248

connections were shorter and more omni-directional. 249

We quantified the spread of lateral connections using a procedure adapted from [52]. 250

Sincich and Blasdel injected axon staining dye into V1 orientation columns, and 251

characterized the staining pattern around each injection with an averaging vector, R⃗. 252

The magnitude, r, indicated the direction selectivity of lateral connections, while its 253

angle pointed in the direction of the densest staining. They also calculated a normalized 254

index of ellipticity rn by normalizing r with the mean length of all lateral connections 255

vectors (see Methods Section for details). A rn of zero indicates an omni-directional 256

spread of lateral connections while a value of one indicates a straight line. Finally, they 257

compared the axes of elongation of lateral connections with orientation preferences of 258

V1 columns. In 11 of the 14 injections sites, a highly elliptical distribution of lateral 259

connections was found (rn = 0.42) as well as a close correspondence between the 260

axis-of-elongation of lateral connections and the preferred orientation of injected V1 261

columns (mean difference of 11◦). 262

We analyzed the directional selectivity and axis-of-elongation of lateral connections 263

in our trained models in a similar manner. Details of how we adapted the analysis for 264

our network kernels are given in the Methods Section. rn distributions for 265

excitatory-targeting and inhibitory-targeting kernels of a trained model are shown in Fig. 266

5C and 5D respectively. The average rn for excitatory-targeting kernels was found to be 267

0.27 while for the inhibitory-targeting kernels it was substantially lower at 0.10. Across 268

the five trained models, we found a population-average excitatory-targeting rn of 0.25 ± 269

0.02 and inhibitory-targeting rn of 0.10 ± 0.01 (mean ± 1 SD). Excitatory-targeting 270

connections were substantially more directed than inhibitory-targeting ones. 271
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Fig 5. lateral kernel analysis results. A and B, Example learnt excitatory (E) and
inhibitory (I) lateral connections. The leftmost subplot shows a kernel in the
feedforward (FF) edge extraction layer. The red line through its center shows its
preferred orientation. The middle subplot shows its corresponding learnt lateral E
connections while the rightmost subplot shows its learnt lateral I connections. Each
lateral kernel had 64 channels. To visualize the kernels, the channel dimension was
summed out. C and D, Histograms of normalized index of ellipticity of lateral E and I
connections respectively. Lateral E connections spread out further and are more
directed than inhibitory connections. C, Axis-of-elongation of lateral connections
plotted against the orientation of their corresponding feedforward edge extraction
kernels. Each point is scaled by its normalized index of ellipticity; larger markers are
more directed kernels. Dashed lines show ±90◦ angular difference. Lateral kernels that
lie on these lines are orthogonal to feedforward kernels.

These rns were lower than those reported in [52]. Two differences in our analysis 272

may contribute to this. First, Sincich and Blasdel were only able to include connections 273

that were outside a radius of 200 µm of the injection location, while we considered all 274

lateral connections. Second, we weighted all lateral connections by their connection 275

strengths so that stronger connections had a greater influence on the averaging vector, 276

while Sincich and Blasdel considered all patch vectors to have equal weight. 277

Orientation differences, θdiff , between neurons’ orientation preferences and axes of 278

elongation of their lateral connections are shown in Fig. 5E for a trained model. Each 279

marker is scaled by the kernel’s normalized index of ellipticity, so that larger markers 280

show more anisotropic connections. Because orientation has a period of ±180◦, angular 281

differences have a potential range of ±90◦. Most neurons’ axes of elongation were close 282

to their feedforward kernel orientations (Fig. 5E; mean excitatory-targeting θdiff=29◦, 283

mean inhibitory-targeting θdiff=31◦). A smaller number of neurons had axes of 284

elongation nearly orthogonal to their preferred orientation. The results were consistent 285

across the 5 independently trained models (population average excitatory-targeting 286

θdiff = 29◦ ± 2◦ and inhibitory-targeting θdiff = 29◦ ± 4◦). The difference in 287
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orientations between lateral connections axis-of-elongation and feedforward orientation 288

preferences was larger than what [52] found, but the trend was similar; most lateral 289

connections project in the same direction as the preferred direction of their associated 290

feedforward kernel. 291

Excitatory lateral connections onto inhibitory neurons in our model have a net 292

inhibitory effect on excitatory neurons in surrounding columns. In previous contour 293

integration models with fixed connection structures [22, 37, 38], typically a similar size is 294

used for both excitatory and inhibitory interactions. Contrastingly, our model learnt 295

smaller and more omni-directional inhibitory-targeting kernels. Moreover, previous 296

models aligned the orientation of lateral inhibition kernels in the 297

orthogonal-to-the-preferred direction of feedforward kernels, consistent with [46]. In 298

contrast, our model learnt inhibitory-targeting connections that were mostly aligned 299

with the preferred orientations of feedforward kernels, but more omnidirectional (Fig. 300

5D). These kernels are consistent with observations that short-range connections in 301

superficial layers of V1 tend to be omni-directional and largely suppressive [53]. They 302

are also related to a recent version of the Associate Field Model [31] that includes 303

short-range omni-directional inhibition [54]. 304

In summary, the lateral kernels in our model were qualitatively realistic in three 305

respects: 1) Degree of elongation; 2) alignment of elongation with neurons’ preferred 306

orientations; 3) relatively omnidirectional short-range inhibitory interactions. Together 307

with realistic responses discussed in previous sections, this indicates that a 308

physiologically realistic contour integration mechanism is consistent with optimization 309

the contour integration network for this contour detection task. 310

Edge detection in natural images 311

Next, we explored whether brain-like contour integration can be learnt from tasks in our 312

natural viewing environment, and whether contour integration is useful in the 313

performance of these tasks. Despite substantial research on the mechanisms of contour 314

integration and the phenomenon of contour pop-out, little is known about the role of 315

contour integration in natural life and survival. Perhaps the most specific proposal to 316

date is that contour integration may enhance detection of parts of a contour with weak 317

local cues, such as poor contrast [22,37]. To test this idea, we trained our network to 318

detect edges in natural images. We used the Barcelona Images for Perceptual Edge 319

Detection (BIPED) dataset [55] as it considers all contours rather than object 320

boundaries only. This is important because our focus is on contour integration in V1, 321

whereas object awareness relies on more abstract representations in deeper layers. The 322

dataset contains 200 train and 50 validation (image, edge map) pairs. It was expanded 323

to 57,600 related training images using data augmentation methods. Sample images and 324

ground-truth labels are shown in Fig. 6A and B. 325

Networks were tasked with detecting all contours in input images. Performance was 326

evaluated using mean IoU scores (see Methods Section) between network predictions and 327

ground-truth labels over all pixels in an image and all images in the dataset. An edge 328

detection block (see Fig. 2) was used to map CI block outputs to the same dimensions 329

as labels. Details of the training process are described in the Methods Section. 330

Example predictions of trained control and model networks are shown in Fig. 6C 331

and D respectively. Visually, differences between their predictions are subtle. Validation 332

IoU scores over the time course of training, for a detection threshold of 0.3 (see Methods 333

Section), are shown in Fig. 7A. Both networks achieved their highest mean IoU scores 334

(0.45) at this threshold. The mean IoU scores of both networks were similar. The CI 335

block had little impact on overall performance, suggesting that the physiology of 336

contour integration may not be essential for reliable detection of a wide variety of edges 337

in natural scenes. To further explore this point, we trained a version of the model in 338
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A B C D
Fig 6. Edge detection in natural image stimuli. A, Example images from the
BIPED [55] dataset. Each row shows a different image. B, Ground truth edge maps for
input images shown in column A. C and D, Corresponding predictions of the control
and contour-integration model, respectively.

which the lateral connections had a much smaller spatial extent: 3× 3 kernels rather 339

than 15 × 15. This model also reached the same peak performance. 340

Weak vs. strong edge pixel detection 341

In natural images, contours have non-uniform strengths and some parts are easier to 342

detect than others. Li [37] and Piech et. al. [22] showed that contour integration can 343

potentially enhance weak contours. However, results were only qualitatively analyzed 344

using a single image. Although we found that contour integration did not improve 345

detection of a wide variety of contours, including weak contours, contour integration 346

may still strengthen low-level responses to weak contours. To investigate this question, 347

we plotted the difference between model and control outputs as a function of the control 348

outputs, pixel-by-pixel. Details of the procedure we used are described in the Methods 349

Section. 350

The results are shown in Fig. 7B for edge pixels and in Fig. 7C for non-edge pixels. 351

On average, the model had higher edge predictions for weaker edges (up to control 352

output 0.3). For stronger edges, the control network responded more strongly on 353

average. For non-edge pixels, model outputs were on average lower than control outputs 354

for all control outputs > 0.2. This shows that model had a lower tendency toward 355

false-positive edge detection. In summary, contour integration strengthened the 356

representation of weak edges, but this had little practical effect on detection of weak 357

edges at the most effective discrimination threshold. 358

Naturalistic contour processing 359

Contour integration may support other kinds of reasoning about contours in natural 360

scenes, for example determining which branch to climb in order to reach some fruit. To 361

investigate this possibility, we devised a new visual perception task. Specifically, we 362

trained the model to detect whether two points in a natural scene were part of the same 363

contour. We placed two markers in each image. In some cases the markers were 364

connected by a single contour in the image, while in others they were placed on different 365

contours. We additionally punctured input images with occlusion bubbles to fragment 366

the contours. This made it difficult to rely solely on edge extraction to solve the task. 367

Example images are shown in Fig. 8C. 368
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Fig 7. Edge detection in natural images. A, Validation IoU scores of the
contour-integration model, control and a model with reduced 3× 3 lateral kernels over
training. All networks had similar performances. B and C, Average prediction difference
between model and control over the validation dataset as a function of prediction
strength. Model and control outputs were compared over the entire validation dataset
pixel-by-pixel. Using a sliding window of width 0.2 and a step size of 0.1, control
predictions within the window were highlighted and compared with corresponding model
predictions. Average differences for edge pixels are shown in B and for non-edges in C.
Positive values indicate higher model predictions compared to control. Solid line shows
mean differences and the shaded area shows unit standard deviation around the mean.

We constructed a dataset of 50,000 training contours and 5000 validation contours 369

that were extracted from the BIPED dataset [55]. Details of the dataset and how it was 370

constructed are described in the Methods Section. A binary classifier block (see Fig. 2) 371

was used to map CI block outputs to binary decisions, i.e. whether the pair of markers 372

in each image was connected by a smooth contour or not. Performance was measured by 373

comparing the accuracy of network predictions with labels. Training details are 374

described in the Methods Section. 375

Table 2 shows peak classification accuracies averaged across five independent runs 376

for all networks. Over the whole dataset, the model performed ≈ 5% worse than the 377

control (validation IoU). 378

Table 2. Peak classification accuracies on the contour tracing in natural
images task. Peak values (mean ± 1 SD) were averaged across five independent runs
for each network. Test column shows results for test stimuli not seen during training
and which had a constant inter-fragment distance of RCD = 1.

Network Train (%) Validation (%) Test (%)
Model 70.52 ± 0.95 77.27 ± 1.55 70.39
Control 77.54 ± 0.44 82.67 ± 0.53 65.65

Effect of inter-fragment spacing 379

We wondered whether this natural-image task might elicit the same kinds of 380

sensitivity to contour fragment spacing as synthetic contours [32], or whether responses 381

to contour spacing were unique to the stimuli used in monkey experiments. We designed 382

a variation of the task that allowed us to investigate this question in the artificial 383

networks. To quantify the effects of inter-fragment spacing, we created new test stimuli 384

in which inter-fragment spacing was changed in a controlled manner; occlusion bubbles 385

were added along contours at fixed intervals. Contours were punctured with bubbles of 386
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A B C D

Fig 8. Contour tracing in natural images stimuli.. A, Sample starting image
from the BIPED dataset [55]. B, Using its edges label, two markers were randomly
placed on edge pixels. C, During training, images were punctured with occlusion
bubbles to randomly fragment all image contours. D, After training, the impact of
fragment spacing was analyzed using test contours with equidistant occlusion bubbles
that were placed along contours with various inter-fragment spacing. The top row shows
an example connected class stimulus, while the bottom row shows an example
unconnected class stimulus.

sizes 7, 9, 11, 13, 15, 17 pixels, corresponding to fragment spacing of [7, 9, 11, 13, 15, 387

17]/7 RCD. An example test stimulus is shown in Fig. 8D. Details of the stimulus 388

construction are described in the Methods Section. Binary classification accuracy was 389

used to quantify behavioural performance while neuron responses were quantified by the 390

contour integration gain for natural images, 391

GNI(rcd) =
CI Output @ RCD = rcd

CI Output @ RCD = 1
, (6)

where CI Output @ RCD = 1 is the output activation of an individual neuron 392

responding to its optimal stimulus within the cRF and with the contour fragmented 393

with gaps the same size as the cRF stimulus, while CI Output @ RCD = rcd is the 394

response of the neuron when the spacing between fragments was changed. 395

When occlusion bubbles were systematically added along contours, rather than 396

randomly placed throughout the image, classification accuracies of all networks dropped 397

even for the smallest bubble size (Table 2 Test column). However the relative drop in 398

performance for the model (≈ 6%) was significantly less than that of the control 399

(≈ 17%), showing that the strategy employed by the model generalized better from the 400

training data to these new stimuli. Fig. 9A shows the results of fragment spacing on the 401

behavioural performance of networks. From the least to the most spacing, model 402

performance monotonically dropped by ≈ 4%, consistent with trends in the synthetic 403

contour detection task. The control on the other hand, was unaffected by inter-fragment 404

spacing. 405

Fig. 9B shows population averaged contour integration gains as inter-fragment 406

spacing increased. Population averages were found by averaging gains of individual 407

neurons for which the optimal stimuli were found and across all five networks (trained 408

from different random initializations) of each type. Model results were averaged across 409

293 neurons while control results were averaged across 120 neurons. Response gains of 410

the control network were similar regardless of spacing, in contrast with their marked 411

increase with spacing in the synthetic contour task. Response gains in the model 412
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Fig 9. Contour tracing in natural images stimuli. A, Classification accuracy of
the model (blue) and control (red) vs. fragment spacing. Dark lines show mean
accuracies and shaded areas shows unit standard deviation around means. Model
performance dropped as spacing increased, consistent with observed behavioural trends.
B, Population average GNI vs. spacing. Gains of both networks dropped with spacing.
C and D, Histograms of gradients of linear fits of gain vs. spacing results for the control
and model respectively. For all networks, gains decreased with spacing. The model was
more sensitive to inter-fragment spacing. Insets show histograms of gradients of CI
block input activations vs. fragment spacing. Input gradients did not change
significantly with spacing, showing that observed trends were learnt by CI blocks.

decreased with increasing fragment spacing, consistent with the synthetic contour task, 413

although the changes were less pronounced in this case. 414

We further analyzed the impact of fragment spacing on output activations using 415

linear fits of output activation vs. fragment spacing of individual neurons. Histograms 416

of the slopes are plotted in Fig. 9C and D for the control and the model networks, 417

respectively. Similar to population averaged gain results, model outputs dropped more 418

sharply while control output activations only dropped slightly as spacing increased. 419

Overall, the model behaved more consistently than the control. Its performance was 420

less affected by new stimuli outside the training distribution, and its responses to 421

fragment spacing were similar with both synthetic contours and natural images. 422

The effect of separating excitation and inhibition 423

Following [22] and consistent with physiology, our model has separate excitatory and 424

inhibitory neurons. This requires a constraint on the synaptic weights that is rarely 425

used in deep learning and may impact performance as well as neuron responses. We 426

created a version of the model without this constraint to test its effects. We refer to this 427

variant as the relaxed-positivity-constraint model (RPCM). In the RPCM, each element 428

of the lateral-connection kernels was allowed to take on any value individually. However, 429

net lateral interactions were still restricted to be positive. This was accomplished with 430

ReLU non-linearities operating on the weighted sums of the lateral inputs to each 431

neuron. This is similar to the approach of [56] to model biologically plausible lateral 432

interactions. However, individual neurons no longer conform with Dale’s 433

principle [43,44] as they can have both excitatory and inhibitory influences on other 434

neurons. With this modification, the membrane potential equations of E and I nodes 435
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were defined as, 436

xt = (1− σ(a))xt−1 + σ(a) [−σ(Jxy)fy(yt−1) + I0e + I +ReLU(We ⊛ fx(Xt−1))] , (7)

437

yt = (1− σ(b))yt−1 + σ(b) [σ(Jyx)fx(xt) + I0i +ReLU(Wi ⊛ fx(Xt))] , (8)

where parameters are defined in the Model Section. 438

On the fragmented contours dataset, the RPCM network outperformed the model by 439

≈ 7% and the control by ≈ 18% (Train IoU = 94.11± 0.05%, Validation IoU = 440

91.40± 0.12%, averaged across three networks), even though it was trained for half the 441

time (see Methods Section). The effect of contour length on behavioural performance is 442

shown in Fig. 10A. For all contour lengths, IoU scores of the RPCM network were 443

higher than those of the model. Moreover, performance monotonically increased for 444

contours of length three or longer, consistent with behavioral data. Neuron response 445

gains also increased monotonically with contour length (Fig. 10B, results averaged over 446

149 neurons from three networks). However, these increases were not as pronounced as 447

those of the model network. Similarly, RPCM neurons responded less to more widely 448

spaced fragments, but the difference was not as pronounced as in the model network 449

(Fig. 10C). 450

On the task of edge detection in natural images, RPCM networks peaked at a mean 451

IoU score of 0.46 and slightly outperformed other networks (see Fig. 10D). Like 452

contour-integration model neurons, RPCM neurons had larger responses to weak edges 453

than control neurons (see Fig. 10E). Relative to control responses, RPCM responses 454

varied in much the same way as model responses, although the variations were 455

somewhat less pronounced. Similar to the contour-integration model, RPCM networks 456

enhanced weaker contours, but this did not substantially affect task performance. 457

There were larger differences between the model and the RPCM on the task of 458

contour tracing in natural images. The RPCM network outperformed the model by 459

≈ 13% and the control by ≈ 8% (Train 92.90 = ± 0.14, Validation = 90.62 ± 0.21). 460

When tested with contours that were fragmented with fixed inter-fragment spacing, 461

RPCM network performance dropped by ≈ 6% (Test = 84.36). The drop was similar to 462

what was observed for the model and was substantially less than that of the control. 463

RPCM networks retained the generalization properties of the model while improving 464

overall performance. Performance also dropped monotonically with inter-fragment 465

spacing (see Fig.10G), similar to the model. Neural response gains in the RPCM also 466

decreased with increasing fragment spacing (Fig.10H, averaged across 257 neurons), 467

intermediate between the model and control gains. 468

In summary, RPCM networks trained more quickly than contour-integration model 469

networks and outperformed both the model and the control on every task. RPCM 470

neurons’ responses to contour length and fragment spacing were intermediate to those of 471

control and model neurons, but qualitatively consistent with monkey data (i.e., stronger 472

responses with longer contours and tighter fragment spacing). Thus, Dale’s principle 473

may have helped to account for monkeys’ neural responses, while at the same time it 474

was functionally counter-productive in these networks and tasks. 475

Despite the separation of excitation and inhibition in the brain, the functional 476

connection from any neuron to another could, in principle, be either excitatory or 477

inhibitory depending on the strengths of direct connections and indirect connections 478

through inhibitory interneurons [57]. We wondered whether there was a similar 479

equivalence in our model network. Analysis of the dynamic equations (see Appendix) 480

indicated that the contour-integration model could become functionally equivalent to 481

the RPCM at steady state. This suggests that functional differences may be due to 482

transient responses and/or the model being more difficult to optimize with standard 483

algorithms in deep learning. 484
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Fig 10. RPCM network results. The RPCM network is similar to the model but
does not use a strict positive-only constraint on lateral kernels. A, IoU vs. contour
length for centrally located straight contours. RPCM network IoU scores were higher
than the models for all contour lengths. B and C, Population average contour
integration gains vs. length and vs. fragment spacing respectively. Similar to the model,
gains monotonically increased with contour length, although they were smaller. For
inter-fragment spacing of up to 1.5 RCD, gains monotonically decreased. For larger
spacing, gains increased slightly. D, Validation IoU scores of the RPCM network on the
edge detection task in natural images. The RPCM network had a slightly higher IoU
score than all other networks. E and F, Average prediction difference between RPCM
and control networks for edges (E) and non-edges (F) as a function of control prediction
strength. Similar to the model, the RPCM network had stronger responses to weak
edges compared to the control network. (G) Classification accuracy of the RPCM
network vs. fragment spacing in the contour tracing in natural images task.
Performance dropped monotonically as inter-fragment spacing increased. (H)
Population average GNI vs. spacing. Neuronal gains dropped more sharply than the
control but not as much as model gains.(I) Histograms of gradients of linear fits of gain
vs. spacing results for the RPCM network. Similar to the model, a range of primarily
negative contour integration gains were observed at the output of the CI block.

Discussion 485

As a category, deep networks are the most realistic models of the brain, in terms of 486

neural representations [5] and behaviour, including near-human performance on a wide 487

range of vision tasks. However, they lack many well-known mechanisms that seem to 488

prominently affect the function of real brains. Local circuit models [18,19,22,37,40] 489

have the opposite limitation. They reflect specific physiological phenomena faithfully, 490
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but lack sophisticated perceptual abilities. Each of these approaches has limitations 491

that might be alleviated by integration with the other, but such integration is rare. 492

Contour integration in particular has been studied extensively, but the scope of its 493

role in visual perception is uncertain. Contour integration in V1 may occur too late [32] 494

to drive core object recognition, which involves selectivity in inferotemporal cortex 495

100ms after stimulus onset [58]. It is not necessary for visual motion perception, which 496

proceeds robustly in the absence of contours [59]. Contour integration may play a role in 497

later stages of object recognition, together with dynamics in higher areas of the ventral 498

stream. It could also bias core object recognition, if inferotemporal neurons learn to 499

predict their future inputs. Such a mechanism might help to account for humans’ 500

greater reliance on contours in object recognition compared with deep networks [9, 60]. 501

Contour integration has been proposed to strengthen the representation of weak edges 502

in complex scenes [22, 37]. It seems also to play a role in perceptual grouping, related to 503

the Gestalt law of good continuation [61]. It may also be involved in segmentation, or in 504

other kinds of reasoning about visual scenes. Integrating local circuit models into a deep 505

networks may help to clarify the plausibility of various potential roles of contour 506

integration in higher-level visual tasks, and may lead to new questions and predictions. 507

Main findings 508

Our integration of a contour integration model with a deep network has produced new 509

insights, discussed below. 510

Realistic physiology emerges from training the model to detect contours in a 511

background of randomly oriented line segments. In contrast with past work, our model 512

was initialized with random synaptic weights, and optimized as a whole to perform 513

various tasks. When we trained the model to perform a contour detection task, which 514

was similar to tasks that have been used to study contour integration in monkeys and 515

humans, the model learned a physiologically realistic local circuit organization. 516

Specifically, neurons in the trained model had local edge responses that were enhanced 517

in the presence of contours, and this enhancement varied with contour length and 518

contour fragment spacing in physiologically realistic ways. Neurons in a similar 519

feedforward network that was trained to perform the same task did not have 520

physiologically realistic contour responses. Their responses did not depend appreciably 521

on contour length, and they increased instead of decreasing with contour fragment 522

spacing. Furthermore, our contour integration model learned excitatory lateral 523

connections that were elongated and largely aligned with neurons’ preferred orientations, 524

as observed in the brain [52]. Past models have already established that such lateral 525

connection patterns can produce realistic contour responses by imposing these 526

connection patterns on the model. Our work reinforces this link by showing that it 527

emerges consistently from an optimization process. In other words, we showed that both 528

the lateral connections and physiological responses associated with contour integration 529

are optimal for detecting contours in these synthetic stimuli, among a fairly generic 530

family of networks with broad lateral connections and separate excitatory and 531

inhibitory neurons. 532

Contour fragment spacing affects response gains similarly in natural and synthetic 533

images. We occluded contours in natural images to test how spacing of visible contour 534

fragments would affect contour gains. We found that greater fragment spacing 535

monotonically reduced response strength. This result was qualitatively similar to the 536

effect of contour spacing in synthetic images, although it was less pronounced. We do 537

not believe that the effect of contour fragment spacing in natural images has been 538

tested in monkeys. This would be informative, because the response patterns observed 539

so far may only occur in response to specialized synthetic images, which would limit 540

their ethological relevance. However, our computational results suggest that the 541
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phenomenon can generalize beyond synthetic images. 542

A contour integration model strengthens representation of edges with weak local cues 543

in natural images. We trained the contour-integration network to detect edges in 544

natural scenes. Compared with a feedforward control network, the contour-integration 545

network responded more uniformly to local edge cues, with stronger responses to weak 546

edges and weaker responses with strong edges. This confirms a suggestion by [22] 547

and [37] that was previously only tested with a single image. However, despite these 548

changes in local edge representation, we did not find that the contour integration model 549

facilitated edge detection overall. The weakest edges were strengthened the most, but 550

not enough that they exceeded the detection threshold. Indeed, because the transition 551

from strengthening to weakening occurred near the detection threshold, and because the 552

differences were not sufficiently pronounced (specifically, the slope in Fig. 7B was 553

> −1), the differences in representation had little effect on edge detection. These results 554

elaborate a previous proposal about the role of contour integration in natural images. 555

However, while the use of natural images goes part of the way toward confronting the 556

role of contour integration in natural life, edge detection per se has limited survival 557

value. It may be fruitful in the future to consider edge representations in service of a 558

higher-level perceptual task. In such a context, effects of contour integration below the 559

edge detection threshold may become more relevant. 560

The contour integration mechanism can impair contour following. When we trained 561

the model to determine whether two points in a natural image belonged to the same 562

contour, the model performed substantially worse than the feedforward control (≈ 77% 563

vs. ≈ 83% correct; chance performance 50%). This outcome was consistent with the 564

impressive performance of standard convolutional networks in a wide range of vision 565

tasks. However, it was unexpected, because the task directly involved contours. This 566

outcome was also complicated by two factors. First, the model was better able to 567

generalize to new stimuli than the control network. Second, the RPCM variation of the 568

model, which did not respect Dale’s principle, outperformed the control (≈ 91% correct). 569

The RPCM appropriately constrains the signs of net lateral influences, and exhibits 570

physiological responses that are more realistic than those of the control network. These 571

results indicate that recurrence in general facilitates this task, and more specifically that 572

recurrence with some physiological properties can be beneficial. Results with the model 573

network also show that contour integration can produce a solution that generalizes well 574

outside the range of prior experience. However, the results do not support our 575

expectation that physiologically realistic contour integration would improve 576

performance of this task. 577

Dale’s principle consistently impaired performance. As a general rule, neurons 578

release the same small-molecule neurotransmitter at each synapse (Dale’s principle), 579

leading to distinct groups of excitatory, inhibitory, and modulatory neurons. 580

Accordingly, our model had separate groups of excitatory and inhibitory neurons. We 581

also tested a variant of the model (the relaxed positivity constraint model, or RPCM) 582

that did not respect Dale’s principle but allowed the optimization process to make any 583

synaptic weight either excitatory or inhibitory. In every task, the RPCM outperformed 584

the more biologically grounded model. This is unsurprising because Dale’s principle 585

amounts to a constraint on the model parameters. It is for this reason that Dale’s 586

principle has not been adopted in deep learning. 587

It is unclear why Dale’s principle has been adopted in the brain, for that matter. 588

Exceptions suggest that it could have been otherwise. For example, glutamate is 589

normally excitatory but has inhibitory effects associated with certain receptors [62]. 590

Some neurons elicit a biphasic inhibitory-excitatory response due to cotransmission of 591

dopamine and GABA [63] or glutamate and GABA [64], and others change from 592

excitatory to inhibitory depending on the presence of brain-derived neurotrophic 593
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factor [65]. So the fact that excitation and inhibition are largely separate in the brain 594

seems to suggest that this separation is consistent with effective information processing 595

in ways that have yet to be exploited in deep networks. 596

The fact that Dale’s principle impaired our model could indicate that it impairs 597

performance of contour-related tasks in the brain, or that our model is missing other 598

factors (e.g. feedback from higher areas, or a different kind of plasticity) that keep it 599

from impairing performance in the brain. Consistent with the former possibility, the 600

model that respected Dale’s principle produced the most physiologically realistic 601

responses. However, there may be another solution that has both realistic physiology 602

and superior task performance. Analysis of the dynamic equations indicates that the 603

model and RPCM can become equivalent in certain conditions. This may suggest that 604

the constrained and unconstrained models could learn similar behavior given suitable 605

learning rules. Related to this, recent work [66] has shown that carefully designed 606

feedforward networks with separate layers of excitatory projection neurons and 607

intermediate inhibitory neurons can learn as well as standard deep networks, and an 608

extension of this approach to recurrent networks was proposed. A related approach was 609

shown to introduce new modes of instability in recurrent networks [67], but this is a 610

promising direction for future work. Alternatively, while our model learned 611

task-optimized lateral connections, unsupervised learning of lateral connections, as 612

in [29], might be more effective. 613

Related work 614

Apart from an earlier version of this work [68], our model is most closely related to the 615

horizontal gated recurrent unit (hGRU) model [28] which similarly embeds a learnable 616

circuit model of a low-level neural phenomenon into a larger ANN. Here we discuss 617

some of the distinctions with that work. First, the objectives were different. Whereas 618

we sought to test a physiologically grounded circuit model within a deep network, the 619

purpose of the hGRU model was to improve task-level performance by using lateral 620

connections to address the inefficient detection of long-range spatial dependencies in 621

CNNs. Many biological constraints were relaxed to achieve higher performance. Second, 622

the two models use different embedded circuit models. The hGRU model uses the 623

circuit model of Mely et al. [40], a model of surround modulation, while our model uses 624

the contour integration circuit model of Piech et al. [22]. Third, recurrent interactions 625

in the hGRU model are derived from gated recurrent unit (GRU) networks [69]. These 626

networks are trainable and expressive, but their internal architectures are complex and 627

difficult to map onto circuits of the brain. Fourth, because we constrained our learnt 628

lateral connections to be positive only, a more detailed analysis and comparison of 629

lateral kernels was possible. In particular, we were able to compare the 630

axis-of-elongation of lateral kernels with orientation preferences. 631

The V1Net model of [70] also incorporates biologically inspired lateral connection 632

into ANNs for contour grouping tasks. The model is similar to hGRU [28] but derives 633

its recurrent interactions from convolutional long-short-term-memory (conv-LSTM) 634

networks [71]. Consistent with the results of the hGRU model, they find that certain 635

recurrent ANNs, especially those with biological constraints, can match or outperform a 636

variety of feedforward networks, including those with many more parameters. Moreover, 637

on these tasks, they train more quickly and are more sample efficient. 638

Conclusion 639

Local circuits are of much interest in neuroscience, but their roles in perception and 640

behavior are mediated by the rest of the brain. Ideas about these relationships can be 641
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tested for plausibility by integrating biologically grounded models of local circuits into 642

functionally sophisticated deep networks. Overall, our work to integrate a contour 643

integration model into a deep network has not supported a role for this circuit in the 644

natural-image tasks we investigated (a contour following task and detection of edges in 645

complex natural images). This may be due to limitations of the model, although the 646

model’s physiologically realistic responses suggest that it has much in common with the 647

brain circuit. More work is needed to determine whether incorporating other 648

physiological factors might produce a model that is more effective (similar to our model 649

variant without constraints on the weight signs) without being less realistic, and to test 650

the role of contour integration in a wider range of tasks. This line of work may be 651

important for understanding the role of contour integration in natural life. 652

Methods 653

Contour integration block parameters 654

The architecture of the model’s contour integration (CI) block is shown in Fig. 2. In the 655

brain, V1 lateral connections of orientation columns are sparse and preferentially 656

connect with other orientation columns with similar selectivities [53]. Furthermore, 657

these connections are long and can extend up to eight times the classical receptive fields 658

(cRF) of V1 neurons [41]. Rather than using hard-coded lateral connections, we 659

connected all columns within a S × S neighborhood and used task-level optimization to 660

learn them. For edge extraction, we used the first convolutional layer of a ResNet50 [47]. 661

It uses 7× 7 kernels and we defined S to be 15× 15. Additionally, a sparsity constraint 662

was used during training to retain only the most important connections (see Training 663

subsection). 664

Incoming feedforward signals iterated through the CI block for Niters steps before E 665

node outputs were passed to deeper layers. We used Niters = 5 which we found to be a 666

good trade-off between performance and run-time. Connection strengths σ(Jxy), σ(Jyx) 667

were initialized to 0.1 while time constants σ(a), σ(b) were initialized to 0.5. Each 668

neuron incorporated a rectified linear unit (ReLU) activation function, except where 669

noted. 670

Classification blocks of the network 671

For the task of detecting fragmented contours, CI block outputs were fed into the 672

fragments classifier block (see Fig. 2). It consisted of 2 convolutional layers. The first 673

convolutional layer contained 16 kernels of size of 3 × 3 and used a stride length of 1, 674

while the second convolutional layer used a single kernel of size 1 × 1. There was a 675

batch normalization layer between the two convolutional layers. The final convolutional 676

layer used a logistic sigmoid non-linearity to generate prediction maps. 677

For the test of edge detection in natural images, CI block outputs were passed to an 678

edge detection block (see Fig. 2). CI block outputs were upsampled by a factor of 4, 679

using bi-linear interpolation, to resize them back to input sizes. Up-sampled activations 680

were passed through two convolutional layers before prediction maps were generated. 681

The first convolutional layer contained 8 kernels of size of 3 × 3 and used a stride length 682

of 1. There was a batch normalization layer after the first convolutional layer. The last 683

convolutional layer contained a single kernel of size 1 × 1, and was used to flatten 684

activations to a single channel. Outputs of the final convolutional layer were passed 685

though a logistic sigmoid non-linearity to generate prediction maps. 686

For the task of detecting whether two markers were connected by a smooth contour, 687

CI block outputs were passed to the binary classifier block (see Fig. 2) that also 688
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consisted of 2 convolutional layers. The first convolutional layer consisted of 8 kernels of 689

size 3×3 and used a stride of 3. As in the other detection blocks, there was a batch 690

normalization layer after the first convolutional layer. The final convolutional layer used 691

a single kernel of size 1 × 1 and used a stride of 1. Finally, a global average pooling 692

layer [72] mapped output activations to a single value that could be compared with 693

image labels. 694

Training 695

Networks were trained to minimize binary cross entropy loss, 696

Hp(q) = − 1

N

N∑
i=n

[p log(q) + (1− p) log(1− q)] , (9)

where p ∈ {0, 1} is the label and q ∈ [0, 1] is the network prediction. Here, N represents 697

the total across all images as well as the total predictions per image. 698

To encourage sparse lateral connections, L1 regularization loss multiplied with an 699

inverted 2D Gaussian mask was applied over excitatory and inhibitory lateral kernels, 700

Lsparsity = |(1−G(σM ))We|+ |(1−G(σM ))Wi|, (10)

where G(.) is a normalized 2D Gaussian mask whose spatial spread, σM , is defined by 701

its standard deviation. The use of the Gaussian mask encouraged a more gradual 702

reduction of connection strength with distance. 703

The total loss was defined as, 704

Ltotal = Hp(q) + λLsparsity, (11)

where λ is a weighting term for sparsity loss. 705

For the sparsity constraint, σM was set to 10 pixels while λ was set to 1e-4. Learnt 706

lateral connections of the model (but not the control) were restricted to be positive-only. 707

After every weight update step, negative weights were clipped to 0. 708

All networks were trained with the Adam [73] optimizer. In the synthetic contour 709

fragments detection and the contour tracing in natural images tasks, both the model 710

and control were trained for 100 epochs with a starting learning rate (lr) of 1e-4 which 711

was reduced by a factor of 2 after 80 epochs. The RPCM network was trained for 50 712

epochs with the same starting lr which was dropped by a factor of 2 after 40 epochs. 713

Trained RPCM networks had fully converged after 50 epochs and did not noticeably 714

improve with additional training. For edge detection in natural images, networks were 715

trained for 50 epochs with a initial lr of 1e-3 which was reduced by a factor of 2 after 40 716

epochs. A fixed batch size of 32 images was used in all tasks. 717

All input images were fixed to a size of 256×256 pixels, resizing images and labels 718

when necessary. Input pixels were preprocessed to be approximately zero-centered with 719

a standard deviation of one on average. Synthetic contour fragment images were 720

normalized with dataset channel means and standard deviations while natural images 721

were normalized with ImageNet values. In the contour tracing in natural images tasks, 722

input images were punctured with occlusion bubbles as described in the Contour tracing 723

in natural images stimuli subsection. 724
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Metrics 725

Mean Intersection-over-Union 726

For tasks with multiple outputs per image, behavioral performance was measured using 727

the mean Intersection-over-Union metric, 728

IoU(A,B) =
N∑

n=1

1

N

(An ∩Bn)

(An ∪Bn)
, (12)

where, N is the number of images in the dataset, and A and B are the per-tile/pixel 729

binary network predictions and labels for image n, respectively. 730

To get binary network predictions for an image, network outputs were passed 731

through a sigmoid non-linearity and thresholded. The intersection with the labels was 732

found by multiplying the predictions with their corresponding labels while the union was 733

found by summing labels and predictions followed by subtracting the intersection of the 734

two. An IoU score of 1 signifies a perfect match between predictions and labels, while 735

an IoU score of 0 means that there is no match between what the network predicted and 736

the label. Mean IoU score was found by averaging IoU scores over all the dataset. 737

For the contour fragments dataset a threshold of 0.5 was used, while for the contour 738

detection in natural images tasks, a value of 0.3 returned the best scores. IoU scores 739

dropped off monotonically as detection threshold deviated away from 0.3 for all 740

networks. 741

Direction selectivity and axis-of-elongation of lateral connections 742

We followed the method of Sincich and Blasdel [52] to quantify the directional 743

selectivity and find the axis-of-elongation of lateral connections. First, Sincich and 744

Blasdel identified locations where stained lateral connections terminated in clusters 745

(patches). Next, they constructed vectors originating at injection site and ending at 746

patch centers. Given a set of patch vectors of a V1 orientation column, an averaging 747

vector R⃗ was computed. Because patch vectors pointing in opposite direction represent 748

lateral connection extending in the same direction, the orientations of individual patch 749

vectors were doubled before computing the vector sum. Consequently, patches that were 750

in opposite directions summed constructively while those that were orthogonal summed 751

destructively. After computing the vector sum, the resultant angle was halved to get the 752

direction of the averaging vector, θ. To quantify directional selectivity, the magnitude of 753

the averaging vector was normalized by the magnitude sum of all patch vectors to get a 754

normalized index of ellipticity rn. 755

Synthetic contour fragments stimuli 756

We used stimuli similar to those of Field et al. [31]. Each input stimulus consisted of a 757

2D grid of tiles that contained Gabor fragments which were identical except for their 758

orientations and positions. The orientations and locations of a few adjacent fragments 759

were aligned to form a smooth contour. The remaining (background) fragments had 760

randomly varying orientations and positions. 761

To construct each stimulus, first, a Gabor fragment, contour length in number of 762

fragments, lc and contour curvature, β, were selected. Each Gabor fragment was a 763

square tile the same size as the cRF (kernel spatial size) of the proceeding edge 764

extracting layer. Second, a blank image was initialized with the mean pixel value of all 765

boundary pixels of the selected Gabor. Third, the input image was sectioned into a grid 766

of squares (full tiles) whose length was set to the pixel length of a fragment plus the 767

desired inter-fragment spacing, dfull. The grid was aligned to coincide the center of the 768
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image with the center of the middle full tile. Fourth, a starting contour fragment was 769

randomly placed in the image. Fifth, the location of the next contour fragment was 770

found by projecting a vector of length dfull ± dfull/8 and orientation equal to the 771

previous fragment’s orientation ±β. The random direction change of β and distance 772

jitter were added to prevent them from appearing as cues to the network. Sixth, a 773

fragment rotated by β, was added at this position. The fifth and sixth steps were 774

repeated until ⌊lc/2⌋ contour fragments were added to both ends of the starting 775

fragment. Seventh, background fragments were added to all unoccupied full tiles. 776

Background fragments were randomly rotated and positioned inside the larger full tiles. 777

Lastly, a binary label was created for each full tile indicating whether it contained the 778

center of a contour fragment. 779

In all training images, inter-fragment spacing and fragment length were equal. A 780

fixed input image size of 256×256 pixels was used. Gabor fragments of size 7×7 pixels 781

and full tile of size 14×14 pixels were used in stimulus construction. This resulted in 782

labels of size 19×19 for each input stimulus. 783

The full dataset contained 64,000 training and 6,400 validation images. In its 784

construction, 64 different Gabors types, lc of 1, 3, 5, 7, 9 fragments and inter-fragment 785

rotations β of 0◦ ± 15◦ were used. Gabor parameters were manually picked with the 786

only restriction that the Gabor fragment visually appear as a well-defined line segment. 787

Each Gabor fragment was defined over three channels and the dataset included colored 788

as well as standard black and white stimuli. lc = 1 stimuli were included to teach the 789

model to not do contour integration when there are no co-aligned fragments outside the 790

cRF. Contour integration requires inputs from outside the cRF and the model had to 791

learn when not to apply enhancement gains. For these stimuli, the label was set to all 792

zeros. An equal number of images were generated for each condition. Due to the 793

random distance jitter, inter-fragment rotations, and the location of contours, multiple 794

unique contours were possible for each condition. Moreover, background fragments 795

varied in each image. 796

Test synthetic contour fragments stimuli 797

We used test stimuli similar to those of Li et al. [32]. These consisted of centrally 798

located contours of different lengths and inter-fragment spacing. Test stimuli were 799

similar to training stimuli except that the starting contour fragment was always 800

centered at the image center. This ensured that centrally located neurons (whose 801

outputs were measures) always received a full stimulus within their cRF. Furthermore, 802

test stimuli were constructed in an online manner whereby the optimal stimulus of each 803

centrally located neuron in each channel was first found by checking which of the 64 804

Gabor fragments elicited the maximum response in the cRF. Next, contours were 805

extended in the direction of the preferred orientations of selected Gabors. The effects of 806

contour length were analyzed using lc = 1, 3, 5, 7, 9 fragments and a fixed spacing of 807

RCD=1 (see Fig. 3C). The effects of inter-fragment spacing were analyzed using RCD 808

= [7, 8, 9, 10, 11, 12, 13, 14] / 7 and a fixed lc = 7 fragments (see Fig. 3D). For each 809

condition, results were averaged across 100 different images. 810

Lateral kernel analysis 811

To find the direction selectivity and axis-of-elongation of lateral kernels of the model, 812

first we found the preferred orientation of source edge extraction neurons. For each 813

kernel in the edge extraction layer, we least-square fit each channel to a 2D Gabor 814

function that was defined by eight parameters: the x and y location of its center, its 815

amplitude, the orientation, wavelength and phase offset of its sinusoid component and 816

the spatial extent and ratio of the spread in the x versus y direction of its Gaussian 817
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envelope. The orientation of the channel with the highest amplitude was selected as the 818

kernel’s preferred orientation. Orientation preferences of the pre-trained edge extraction 819

kernels are shown in S1 Fig. We found Gabor fits for 42 out of the 64 kernels of the 820

edge extracting layer. 821

Next, following the analysis of Sincich and Blasdel [52], the average rn for each 822

lateral kernel of the CI block was found. Excitatory-targeting (S2 Fig) and 823

inhibitory-targeting (S3 Fig) lateral kernels were analyzed separately. Slightly different 824

from the method of [52], individual patch vectors were calculated for every lateral 825

weight. Moreover, as the weights of each connection were available, we weighted 826

individual patch vectors with their connection strengths. Stronger weights contributed 827

more to the average vector compared to weaker ones. Only those lateral kernels for 828

which the orientation of feedforward kernels were found were considered in the analysis. 829

Network predictions strengths comparison in natural images 830

To compare predictions of the model and the control at different edge strengths, first 831

pre-threshold control and model outputs over the entire BIPED validation dataset were 832

collected. Second, a sliding window of size 0.2 was run over control outputs to highlight 833

pixels whose predictions lay within the desired range. Third, corresponding predictions 834

of the model were found. Fourth, the average difference between model and control 835

predictions were calculated. The process was repeated over the full range of predictions 836

(0, 1) by sliding the window at intervals of 0.1. 837

Edge pixels and non-edge pixels were separately analyzed. To extract edge 838

predictions, network outputs were multiplied with the ground truth mask. While to 839

separate non-edge pixels, network outputs were multiplied with the inverted ground 840

truth mask. Considering edge pixels, if the mean difference is above zero, this suggests 841

that the model is better at detecting pixels of the corresponding strength. Considering 842

non-edge pixels, if the mean difference is below zero, then the model has lower tendency 843

for false positives. 844

Contour tracing in natural images stimuli 845

The construction of stimuli for the contour tracing in natural images task required 846

selecting contours in natural images. We randomly extracted a smooth contour C1 from 847

a BIPED [55] image using its edge map. Contours were extracted by first selecting a 848

random starting edge pixel from the edge map. Valid starting pixels had to be part of a 849

straight contour in their 3×3 pixel vicinity, either vertically, horizontally or diagonally. 850

Next, this starting contour was extended at both ends by adding contiguous edge pixels 851

that were at most ±π/4 radians from the local direction of the contour. The local 852

direction of the contour was defined as the angular difference between the last two 853

points of the contour. If there was more than one candidate edge pixel, the candidate 854

with the smallest offset from the contour direction was selected. The process was 855

repeated until there were no more edge pixels at candidate positions or if the selected 856

candidate pixel was already a part of C1 (circular contours). Additionally, once contour 857

length was greater than 8 pixels, a large-scale smooth curvature constraint was applied 858

to check that the angle difference between (n, n− 4) and (n− 4, n− 8) contour points 859

was not greater than π/4 radians, where, n is the last point on the contour. Contour 860

extraction was also stopped if the large-scale curvature constraint was not met. 861

After extracting C1, one of its endpoints was chosen as the position of the first 862

marker, M1. Next, a second edge pixel that did not lie on C1 was randomly selected. 863

To ensure that connected and unconnected stimuli had similar separation distances, the 864

selection process used a non-uniform probability distribution to favor edge pixels that 865

were equidistant with the unselected endpoint of C1. First, distances for all edge pixels 866
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from M1 were calculated. Next, the absolute difference between edge pixels distances 867

and the distance to the unselected endpoint of C1 was calculated. A Softmax function 868

was used to convert negative distances differences to probabilities. Edge pixels that 869

were of a similar distance to the unselected end point of C1 had distance differences 870

close to zero and were more likely to be selected, while edge pixels that were at a 871

different distance had large negative distance differences and were less probable. 872

Given the location of the second edge pixel, a second contour, C2, was extended 873

from it. If any point on C2 overlapped with C1, a new starting edge pixel was selected 874

and the process was repeated until a non-overlapping pair of contours was found. The 875

location of the second marker, M2, was determined by the type of stimulus. For 876

connected stimuli, the opposite end of C1 was selected as M2, while for unconnected 877

stimuli, one of the endpoints of C2 was chosen. Once marker positions were determined, 878

markers were placed at corresponding positions in the input image. Each marker 879

consisted of a bulls-eye of alternating red and blue concentric circles (see Fig. 8B). 880

Markers were added directly to input natural images, and networks were given no 881

information about the selected contours. 882

To fragment contours, occlusion bubbles were added to input images. Following [74], 883

bubbles with a 2D Gaussian profile were used to reduce the impact of bubble edges. 884

Each image was punctured using 200 bubbles of multiple sizes. Bubble sizes were 885

specified by the full-width-half-maximum (FWHM) of 2D Gaussian functions and were 886

chosen to correspond to bubble sizes used to explore the effects of fragment spacing on 887

neurophysiological gains (see subsection Test contour tracing in natural images stimuli). 888

Individual bubbles were defined over a 2×FWHM square area. After randomly selecting 889

bubble sizes and locations, bubbles were placed in a mask which was used to blend the 890

input image with image channel mean values using, 891

imgpunc = mask× img + (1−mask)×meanch. (13)

Within a mask, bubbles were allowed to overlap and a different mask was used for 892

each image. Values in the bubble mask ranged between [0, 1]. Sample input training 893

images for the contour tracing task are shown in Fig. 8C. 894

The train dataset contained 50,000 contours that were extracted from BIPED train 895

images while the validation dataset contained 5,000 contours that were extracted from 896

BIPED test images. Since the BIPED test dataset contains only 50 images, multiple 897

contours per image were extracted. Care was taken to ensure duplicate contours were 898

not selected. Puncturing of input images was done as a pre-processing step during the 899

training loop. Consequently, each exposure of an image to a network was unique. Equal 900

probabilities were used for generating connected and unconnected stimuli. 901

Test contour tracing in natural images stimuli 902

Similar to when the effects of inter-fragment spacing were analyzed using synthetic 903

fragmented contours, the optimal stimuli of target neurons needed to be found. In the 904

synthetic contour fragments dataset, test images were designed to contain the optimal 905

stimuli of monitored neurons. However, for natural images, inputs cannot be defined in 906

a similar way. Therefore, a new procedure was devised. To find the optimal stimulus of 907

an individual channel, multiple unoccluded connected contours were presented to 908

networks (Fig. 8B). For each image, the position of the most active neuron of each 909

channel in the CI block was found. If it was within 3 pixels (the same as the stride 910

length of the subsequent convolutional layer) of the contour, the image as well as the 911

position of most active neuron were stored. he process was repeated over 5,000 contours 912

and the top 50 (contour, most active neuron) pairs were retained for each channel. New 913

random contours were selected from the augmented BIPED train dataset. The train 914
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dataset, as opposed to the test dataset, was used as it contained more images and a 915

larger variety of contours. 916

Given the optimal stimulus for a channel, each input contour was fragmented by 917

inserting occlusion bubbles at specific positions along the contour. Different bubble 918

sizes were used to fragment contours with different inter-fragment spacing. A fixed 919

fragment length of seven pixels, the same size as the cRF of edge extracting neurons, 920

was used. To ensure the cRF of the most active neuron was unaffected by bubbles, first, 921

the position of the closest point on the contour was found. Bubbles were then inserted 922

along the contour at offsets of ± (lfrag+lbubble)/2,±3(lfrag+lbubble)/2,±5(lfrag+lbubble)/2, ... 923

until the ends of the contour. Finally, the blending-in area of bubbles was restricted to 924

FWHM pixels to ensure visible contour fragments were unaffected. 925

Code availability 926

Source code for all networks, experiments and analysis that were performed as well as 927

for generating datasets used in this work is available at 928

https://github.com/salkhan23/contour_integration_pytorch. 929

Appendix: The effect of Dale’s principle on model 930

function 931

The model’s dynamic equations are, 932

xt = (1− σ(a))xt−1 + σ(a) [−σ(Jxy)fy(yt−1) + I0e + I +We ⊛ Fx(xt−1)] , (14)
933

yt = (1− σ(b))yt−1 + σ(b) [σ(Jyx)fx(xt) + I0i +Wi ⊛ Fx(xt)] . (15)

The term inside square brackets in (1) is the drive into x, 934

dxt = −σ(Jxy)fy(yt−1) + I0e + I +We ⊛ Fx(xt−1) (16)

y does not receive inhibitory input, so if I0i is positive then y is positive, and the 935

rectifying function fy can be ignored. Suppose we set σ(Jxy) = 1. Under these 936

conditions d can be simplified to, 937

dxt = −yt−1 + I0e + I +We ⊛ Fx(xt−1) (17)

As yt approaches steady state, 938

y∞ = σ(Jyx)fx(xt) + I0i +Wi ⊛ Fx(xt) (18)

We can set σ(Jyx) = 0 by absorbing this factor into Wi. Then, 939

dx∞ = −I0i −Wi ⊛ Fx(xt−1) + I0e + I +We ⊛ Fx(xt−1) (19)

In summary, Wi and We affect xt in the same way in the following conditions: 1) when 940

y reaches steady state; 2) assuming I0i ≥ 0; 3) σ(Jxy) = 1; 4) σ(Jyx) = 0. So in these 941

conditions, if both matrices were unconstrained and contained both positive and 942

negative values, Dale’s Principle could be re-established by moving the positive values 943

to We and the negative values to Wi, without change of function. 944

More generally, the latter two factors do not have to be enforced. If σ(Jyx) > 0 then 945

it can be moved into the diagonal of Wi. Similarly, if σ(Jxy) = g < 1 then it can be 946

multiplied by 1/g and Wi and I0i multiplied by g, without changing the function. 947

This suggests that differences between model and RPCM are due to transient 948

dynamics and learning dynamics (i.e. the model may be structurally capable of RPCM 949

performance but the solution may not be reachable via backpropagation and Adam). 950
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Supporting information 951

S1 Fig. 952

953

Feedforward edge extraction kernels and their preferred orientations. Each 954

subplot shows one of the 64 kernels of the first convolutional layer of a ResNet50 model 955

that was trained on ImageNet [48]. This served as the main component of the edge 956

extraction block. It contains 64 kernels and each kernel has 3 input channels and a 957

spatial spread of 7×7 pixels. Each kernel was fit to a 2D Gabor function to find its 958

preferred orientation (red lines). The fitting algorithm, was able to find the orientation 959

preferences of 42 kernels. Kernels for whom no fits were found (no red line) were 960

skipped and not used in the analysis. 961
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S2 Fig. 962

963

Learnt lateral excitatory kernels. Each subplot plots one of the 64 learnt excitatory 964

lateral kernels of a model trained on the synthetic contour fragments dataset. Individual 965

kernels had 64 channels and had a spatial spread of 15 × 15. To view the kernels, the 966

channel dimensions were compressed by summing over all channels. Many excitatory 967

kernels appear to be highly directed, spreading out in one dimension more than others. 968
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S3 Fig. 969

970

Learnt lateral inhibitory kernels. Each subplot plots one of the 64 learnt inhibitory 971

lateral kernels of a model trained on the synthetic contour fragments dataset. Individual 972

kernels had 64 channels and had a spatial spread of 15 × 15. To view the kernels, the 973

channel dimensions were compressed by summing over all channels. The spatial extent 974

of inhibitory kernels was less than the spread of excitatory kernels and mostly 975

omni-directional. 976
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