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Abstract 

Assessment of a DEM’s quality is usually undertaken by deriving a measure of DEM 

accuracy – how close the DEM’s elevation values are to the true elevation. Measures such as 

Root Mean Squared Error and standard deviation of the error are frequently used. These 

measures summarise elevation errors in a DEM as a single value. A more detailed description of 

DEM accuracy would allow better understanding of DEM quality and the consequent 

uncertainty associated with using DEMs in analytical applications. The research presented 

addresses the limitations of using a single root mean squared error (RMSE) value to represent 

the uncertainty associated with a DEM by developing a new technique for creating a spatially 

distributed model of DEM quality – an accuracy surface. The technique is based on the 

hypothesis that the distribution and scale of elevation error within a DEM are at least partly 

related to morphometric characteristics of the terrain. The technique involves generating a set 

of terrain parameters to characterise terrain morphometry and developing regression models 
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to define the relationship between DEM error and morphometric character. The regression 

models form the basis for creating standard deviation surfaces to represent DEM accuracy. 

The hypothesis is shown to be true and reliable accuracy surfaces are successfully created. 

These accuracy surfaces provide more detailed information about DEM accuracy than a single 

global estimate of RMSE. 

 

Keywords: digital elevation models, quality, error, accuracy, uncertainty 
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1.0 Introduction 

Assessments of the accuracy of DEMs tend to result in a single measure of how closely the 

DEM’s elevation values represent “reality”. Measures such as Root Mean Squared Error and 

standard deviation of the error are frequently used (Carlisle, 2002; Day and Muller, 1988; 

Eklundh and Mårtensson, 1995; Fisher, 1998; Kumler, 1994; Li, 1991; Sasowsky, 1992). These 

measures summarise elevation errors in a DEM as a single value. There is increasing demand 

for more detailed description of spatial data quality (Canters et al., 2002). A more detailed 

description of DEM accuracy would allow better understanding of DEM quality and the 

consequent uncertainty associated with using DEMs in analytical applications. 

 

Anecdotal and empirical evidence shows that DEM error is spatially variable, spatially 

correlated and heteroscedastic, being related to the form of the terrain (Ehlschlaeger and 

Shortridge, 1997; Fisher, 1998; Hunter and Goodchild, 1997; Kyriakidis et al., 1999; Theobald, 

1989; Weibel and Brändli, 1995; Wood, 1994; Zhang and Montgomery, 1994). However, very 

little research has attempted to model this heteroscedasticity. This paper reports on research to 

test the hypothesis that DEM error is related to terrain character and then to develop a more 

detailed description of DEM accuracy by representing the spatial variation in error across a 

DEM as an accuracy surface that is generated from regression modelling of the relationship 

between DEM error and terrain characteristics. The resulting spatially variable accuracy 

surfaces would provide this more detailed description and also give a better representation of 

DEM errors for use in uncertainty modelling using techniques such as Monte Carlo simulation. 

 

The paper begins by reviewing the current state of knowledge of the spatial distribution of DEM 

error and previous work on modelling this distribution. The study areas and data sets used in the 

research presented here are then described. The methods used to model DEM error distributions 
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are then explained in three sections, each section ending with a presentation of the relevant 

results. The three sections are: 

 Examining the relationship between DEM elevation error and terrain characteristics; 

 Developing a model of the relationship between DEM error and terrain characteristics 

to produce spatially variable, spatially correlated, heteroscedastic error surfaces; 

 Assessing the quality of the error surfaces. 

The final sections of the paper discuss the findings of this research and the issues raised and 

draw conclusions. 

 

2.0 DEM Error 

DEM accuracy is a topic that has received considerable attention since DEMs came into 

widespread use in the 1980s. Many studies have sought to quantify DEM accuracy and compare 

the accuracy of DEMs produced using different data sources and production methods. Others 

seek to identify and correct major errors. Relatively little published work addresses the spatial 

distribution of DEM error. Previous studies into the spatial distribution of DEM error are 

reviewed below, followed by work to model this distribution. 

 

2.1 The Spatial Distribution Of DEM Error 

Describing elevation errors in a DEM with a single, global accuracy measure, such as standard 

deviation or RMSE, has advantages. The single value is relatively quick to calculate and easy to 

report. A single value makes comparison of DEMs a simple task. Global accuracy measures 

have also been used to model the influence of DEM error on uncertainty in DEM-based spatial 

modelling outcomes. However, a number of authors recognise that a single global accuracy 

measure has its limitations. Wood (1994) states that any useful study of DEM accuracy must 

investigate the spatial variation of error values. Kyriakidis et al. (1999) describe how a global 
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accuracy statistic does not allow identification of areas where error is greatest and additional 

source data would most benefit DEM quality. Theobald (1989), Zhang and Montgomery (1994) 

and Weibel and Brändli (1995) all recognise that appreciating the spatial variability of accuracy 

is critical to environmental applications. For example, small errors in relatively flat areas will 

have a greater impact on surface run-off and flood modelling than in steeper areas (Burrough 

and McDonnell, 1998). Alternatively, in viewshed analysis, errors in higher, steeper terrain will 

have the greatest impact on results (Fisher, 1991). Ignoring spatial non-stationarity can cause 

serious mis-estimation of error and uncertainty in DEM-based modelling outcomes (Canters et 

al., 2002).  

 

Burrough and McDonnell (1998) state that a single RMSE value implies that error is uniform 

across the DEM. Several authors identify this assumption of stationarity as invalid (Fisher, 

1998; Kyriakidis et al., 1999). In their research, Ehlschlaeger and Shortridge (1997) and Hunter 

and Goodchild (1997) use a spatially uniform model of DEM error, but acknowledge that it is 

actually spatially variable. 

 

It seems intuitive that certain types of terrain will be more suited to creation of accurate DEMs. 

Indeed a number of authors report that the magnitude of DEM error is related to characteristics 

of the terrain. Gao (1997) observes that DEM errors seem lower in less complex terrain. Hunter 

and Goodchild (1997) state that DEM error is probably related to slope steepness. Carrara et al. 

(1997) suggest that DEMs derived from stereo aerial photography could have greater errors on 

steep and shaded slopes. McDermid and Franklin (1995) state that photogrammetrically 

produced DEMs will be most accurate on open flat terrain and least accurate on steep, 

shadowed and vegetated terrain. Slope steepness and other terrain characteristics are spatially 

variable. It therefore follows that DEM elevation errors should also be spatially variable. 
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There are some examples of researchers identifying and quantifying this relationship between 

error and terrain characteristics. Bolstad and Stowe (1994) evaluate the accuracy of elevation 

values for two DEMs. They find that the largest elevation errors tended to occur in the highest 

and lowest parts of the study area. Fisher (1998) finds significant correlation between DEM 

error and slope angle. Ehlschlaeger and Shortridge (1997) report that empirical studies have 

shown DEM error to be related to gradient and propose that it may also be related to other 

elevation derivatives. Kyriakidis et al. (1999) find that DEM error is correlated with terrain 

ruggedness. Guth (1992) finds DEM error to be highly correlated with gradient, aspect and 

satellite image reflectance value.  

 

2.2 Modelling the Distribution of DEM Errors 

There has been little research attempting to model the spatially variable distribution of DEM 

error. A number of the authors mentioned above acknowledge this spatial variation, then 

proceed with their research assuming a uniform DEM error distribution. Ehlschlaeger and 

Shortridge (1997) defend this assumption by stating “modelling elevation data uncertainty is a 

difficult task”. The work that has been done either models the spatial correlation of DEM errors 

or attempts to create an error surface as a model of the distribution of errors. 

 

Simulated DEM error surfaces have been generated from global accuracy measures for use in 

Monte Carlo simulation of the uncertainty associated with using DEMs of limited quality. The 

initially simulated error surfaces consist of a random mixture of error values. However, DEM 

error is spatially correlated (Fisher, 1998; Hunter and Goodchild, 1997; Lopez, 2002). 

Therefore a model of DEM error should not be random, but spatially dependent. Hunter and 

Goodchild (1997) present a spatially autoregressive error model which switches cell values until 
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a spatially correlated error surface is produced, i.e. a surface in which the error values change 

gradually from one cell to the next. However, their work is based on the single global RMSE 

value and the spatially correlated error values only vary within a normal distribution with this 

global RMSE value. 

 

Monckton (1994) reports on his use of Moran’s I to simulate the spatial structure of elevation 

error. This index measures the similarity of values at specific distances (lags). A model of the 

change in spatial correlation with distance can be built up by calculating the index for a number 

of distances. Monckton finds no evidence of spatial autocorrelation in the error distribution of 

his study. However, the results can be considered inconclusive as the sparsity of sample points 

used, spot heights on Ordnance Survey maps, only allowed examination over lags of 250m or 

greater. There may be spatial autocorrelation of elevation error at shorter lags than those he 

used. 

 

Research by Giles and Franklin (1996) used semi-variance analysis to evaluate the periodicity 

of DEM error in the form of random noise. This allowed an optimum sized filter to be 

determined so as to remove the random noise, leaving only the spatially correlated portion of 

the error. However, the research did not proceed to investigating the nature of the remaining 

error, either in terms of the level of spatial autocorrelation or the magnitude of error associated 

with particular terrain characteristics. 

 

These three examples of modelling the spatial correlation of error produce error surfaces that 

are spatially variable and spatially correlated, but homoscedastic. This means error values vary, 

but not in relation to any other variable. The apparent relationship between error and terrain 

means that a DEM error surface should be heteroscedastic. 
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Burrough and McDonnell (1998) favour the use of Kriging interpolation techniques when 

creating a surface from point data, because a second surface is generated which represents the 

predicted accuracy of the interpolated values as spatially distributed standard deviation values. 

A linear spline fitting interpolation technique described by Wood (1994) similarly produces an 

RMSE surface quantifying the accuracy of the interpolated values. These surfaces are 

distributed error models, but they only describe uncertainty in the interpolation estimates and 

therefore show RMSE or standard deviation increasing with increasing distance from the 

original data points. They do not take into account the accuracy of the source data or the 

relationship of error with terrain character. 

 

De Bruin and Bregt (2001) take high accuracy GPS measurements to determine DEM error at a 

set of sample locations, then use kriging to interpolate an error surface. This error surface is 

spatially non-stationary and spatially correlated, but unrelated to other factors such as terrain 

character and is, therefore, homoscedastic. Similarly, Fisher (1998) takes a geostatistical 

approach to modelling DEM error, using conditional simulation to derive multiple realisations 

of error surfaces which are spatially correlated and spatially non-stationary. However, no 

account is taken of the significant correlation he had found between gradient and DEM error. 

Kyriakidis et al. (1999) find a strong correlation between error and terrain ruggedness (ρ = 

0.64), which they quantify using the standard deviation of elevation values within a 3 x 3 

window of each cell. They then proceed to create higher accuracy DEMs by applying co-

kriging to the original DEM, basing new elevation values on distance from high accuracy height 

measurements and the standard deviation of elevation values. This co-kriging is performed in a 

multi-Gaussian framework to create a user-specified number of realisations of this higher 

accuracy DEM. The standard deviation in elevation values at each cell location across the set of 
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multiple DEM realisations gives an estimate of the accuracy of the higher accuracy DEMs in 

the form of an error surface. Potential limitations to this approach can be identified. First, the 

error they calculate and use is the difference between a USGS DEM with a resolution of one 

degree and another USGS DEM with a resolution of 7.5 minutes. They are in effect analysing 

the difference between two models of the terrain surface rather than modelling the accuracy of a 

DEM in relation to the actual on-the-ground elevation. The method is based on the strong 

correlation between error and what they term terrain ruggedness. This correlation may be a 

property of the relationship between the two DEMs rather than a terrain – error relationship. 

This would have to be verified by repeating the technique using different DEMs and a non-

DEM source of higher accuracy elevation measurements. Second, they quantify terrain 

ruggedness as the standard deviation of elevation, which means that it is actually a measure of 

relative relief (Evans, 1972). Their method does not take any account of the reported 

relationship between error and other terrain characteristics, such as aspect and gradient, 

although relative relief is related to gradient. Nonetheless, their research is the only example of 

the creation of a heteroscedastic, spatially correlated error surface and the approach used is 

worthy of further investigation. 

 

Given the influence of terrain character on DEM error, regression modelling would seem to 

offer potential for creating spatially non-stationary, spatially correlated and heteroscedastic error 

surfaces. Ordinary least squares (OLS) regression has been widely used to represent 

relationships between environmental variables, whose value has been measured at a limited 

number of sample locations, and some other more widely measured variable (Foody, 2003). The 

regression model can then be used to predict values of the environmental value at unsampled 

locations. In the context of the work presented here, the independent and widely measured 
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variables are DEM-derived terrain parameters. The dependent, sparsely measured variable is 

DEM error.  

  

3.0 Developing an Error Surface 

The research uses DEMs and terrain parameters from two study areas. These are described 

below.  

 

3.1 Study Areas and Data 

Initial research was based on a 1km x 2km area of Snowdonia, North Wales. DEMs were 

created from Ordnance Survey Landform Profile data. The data represent 1:10 000 scale 

digital contour lines at a 10m vertical interval. Three DEMs were chosen from those 

described in Carlisle (2000; Table 1). Carlisle (2000) produced 20 DEMs using various 

formats of input data and interpolation procedure, then assessed their accuracy. The DEMs 

used here were all produced from the same source data, but the interpolation differs, as 

specified in Table 1. These chosen DEMs provide a range of accuracy. IDW112 is the least 

accurate of Carlisle’s (2000) twenty DEMs. SPTEN12 is the most accurate. IDW512 is of 

intermediate accuracy, but the most accurate of the DEMs produced by inverse distance 

weighting. 

 

<INSERT TABLE 1 APPROXIMATELY HERE> 

 

GPS measurements of elevation, accurate to approximately 1m RMSE, were used to 

determine DEM error at 106 sample points (Carlisle and Heywood, 1996; Carlisle, 2000). A 

DEM-derived estimate of elevation at the location of the GPS sample point was derived by 
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inverse distance weighting interpolation of the four nearest DEM grid nodes. DEM error was 

measured as DEM-derived elevation minus GPS-derived elevation.   

 

Subsequently key stages of the research were reapplied to a 23.5km x 18.1km region of 

Mestersvig, northeast Greenland. The Mestersvig study area has been used to validate that the 

methodology can be usefully applied to another mountain region using a different scale of 

source data and different resolution DEMs. 1:15,000 scale contour maps derived from aerial 

photography were the only available source of elevation data. These maps contained contour 

lines at a 10m vertical interval. In the low-lying coastal zone all contours from 0m to 100m 

above sea level and the 120m contour were manually digitised. In the steeper more 

mountainous areas further inland every fifth contour was digitised. This digitising strategy 

gave the best possible definition of the low lying areas, while avoiding excessive effort 

digitising the uplands. Spot heights, mainly located on summits, were also digitised. Three 

DEMs with a resolution of 10m were generated using the same interpolation techniques as for 

the three Snowdonia DEMs. GPS measurements of elevation were made at 103 sample points. 

 

Both study areas have low arctic or sub-alpine vegetation cover which will have no effect on 

quality of the aerial-photography derived elevation data used to create the DEMs. Both areas 

are mountainous and therefore have highly heterogeneous terrain characteristics.  

 

3.2 Terrain Parameters 

In order to examine and model the relationship between DEM error and terrain morphometry, 

a set of terrain parameters were derived from the DEMs, which gave a comprehensive 

description of terrain form. Evans’ (1972) five geomorphometric parameters that represent a 

comprehensive and non-duplicative quantification of surface form (elevation, gradient, aspect, 



 12 

plan curvature and profile curvature) were derived for each DEM. The circularly scaled aspect 

values were transformed into east-west and north-south component vectors (termed aspect X 

and aspect Y respectively) to allow later manipulations such as averaging. In addition, six 

other terrain parameters were derived which quantify other characteristics of terrain: overall 

curvature, surface heterogeneity (relative relief and texture) and terrain position (mean, 

minimum and maximum extremity). The surface heterogeneity and terrain position 

calculations involved using a neighbourhood of DEM grid nodes. A circular neighbourhood 

of 10 cell radius was used. Relative relief was calculated as the difference between maximum 

and minimum elevation within the neighbourhood. Texture was calculated as the difference 

between maximum and minimum gradient within the neighbourhood. Mean extremity is the 

difference between the elevation of the grid node under consideration and the mean elevation 

within the neighbourhood. Minimum extremity is the difference between the elevation of the 

grid node under consideration and the minimum elevation within the neighbourhood, while 

maximum extremity is the difference with maximum elevation within the neighbourhood. The 

distance from a cell to the nearest contour vertex was also calculated, as it would be expected 

that error is higher for locations that are a greater distance from the source data. Table 2 

describes the twelve parameters. 

 

<INSERT TABLE 2 APPROXIMATELY HERE> 

 

These terrain parameters were calculated and extracted for each DEM at every GPS sample 

point. The grids representing first and second order derivatives of elevation were found to be 

highly variable from grid cell to grid cell. Producing grids showing the average values for a 

grid cell and the neighbouring grid cells within a certain radius by applying a mean filter 

would represent the underlying trends of the terrain parameters. Terrain characteristics are 
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scale dependent (Wood, 1996). Mean filtering with a variety of filter kernel sizes would 

represent these terrain characteristics at a variety of spatial scales. Terrain parameters may 

have a stronger relationship with error at certain scales or the relationship may involve a 

combination of scales. Consequently mean values were derived for the elevation, gradient, 

aspect, plan curvature, profile curvature and overall curvature parameters using circular filter 

kernels of 5, 10 and 20 cell radii.  

 

Relative relief, texture, and the three extremity parameters were initially produced from 

filtering functions, using a circular kernel of 10-cell radius. In accordance with the above 

consideration of scale dependency, values were derived for these parameters using circular 

kernels of 5 and 20 cell radii. 

 

Evans (1972) reports that, in addition to the mean value of a parameter for an area or terrain, 

or in this instance a neighbourhood of grid cells, the standard deviation of values provides 

important information about terrain form. Therefore, the standard deviation of elevation, 

gradient, aspect vectors, plan curvature, profile curvature and overall curvature values within 

circular kernels of 5, 10 and 20 cell radii were calculated. 

 

4.0 The Error – Terrain Character Relationship 

For each DEM, correlation coefficients were calculated for each terrain parameter and 

elevation error to provide a first indication of any relationship between DEM error and terrain 

parameters. Correlation coefficients can only identify linear relationships. It was suspected 

that non-linear relationships between terrain parameters and DEM error might exist. To 

investigate this possibility the correlation between error and the squared and cubed values of 

each parameter were also calculated. 
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It was unlikely that any single terrain parameter would show a strong relationship with DEM 

error. It was expected that a number of terrain parameters acting in combination would 

influence the spatial variation in DEM error. Stepwise selection of variables to include in a 

multivariate ordinary least squares linear regression model was used to identify any such 

multivariate relationship and select the best combination of terrain parameters. Although 

linear regression models were employed, the use of the squared and cubed terrain parameters 

means that the regression models were in effect polynomial. Different regression equations 

were compared by looking at the regression coefficient of the step containing 20 variables. A 

regression equation of 20 variables does not necessarily equate to 20 terrain parameters, as 

some variables may be the square or cube of a parameter. Even though, beyond 20 variables, 

additional variables were still showing statistical significance, this cut-off point was chosen, 

because there appeared to be little increment in adjusted R
2
 values with more than 20 

variables.  

 

4.1 Correlations 

Table 3 summarises results for the correlations of error with all the terrain parameters, giving 

the highest correlation coefficients and the number of pairs of variables that gave a correlation 

that was significant at the 0.05 probability level in a two-tailed test.  

 

<INSERT TABLE 3 APPROXIMATELY HERE> 

 

For Snowdonia, IDW112 shows the strongest correlations with terrain parameters and a high 

number of significant correlations. The spline with tension DEM has the highest number of 

significant correlations with error. IDW512, the lower quality DEM, has weaker correlations 
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with terrain parameters than the other two DEMs. In contrast, of the Mestersvig DEMs, 

IDW512 has the greatest number of significant correlations and all three DEMs have similar 

strongest correlation coefficients. There are also a greater number of significant correlations 

than for Snowdonia. It is interesting to note that the errors in Mestersvig’s two inverse 

distance weighted DEMs are most strongly correlated with elevation, but with opposite signs. 

No explanation for this has been deduced, but it does illustrate how a seemingly slight 

alteration to the interpolation method can cause a considerable change to the DEM’s error 

structure.   

 

The number of moderately strong correlations indicates that there is a relationship between 

DEM errors and terrain characteristics. The Mestersvig correlation coefficients are generally 

higher than for Snowdonia and there are a greater number of significant correlations. 

However, for both areas no single terrain parameter gives a good indication of the amount of 

error, but a combination of parameters could. 

 

Research proceeded with all 6 DEMs. However, for simplicity, only results for the DEMs with 

strongest correlations are given here, i.e. IDW112 for Snowdonia and SpTen12 for Mestersvig. 

See Carlisle (2002) for full details. 

 

4.2 Regression Modelling 

Regression modelling for the Snowdonia data resulted in an adjusted R
2
 value of 0.827 

indicating that elevation error can be modelled by the DEM’s terrain parameters with over 

80% success. For the Mestersvig data the adjusted R
2
 value of 0.902 indicates that elevation 

error can be modelled with a high degree of success. The regression models utilised a wide 

variety of the terrain parameters, including the mean and standard deviation of some 
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parameters, and measured over radii of 5, 10 and 20 cells. Further details of the terrain 

parameters used are given in Table 4. The only parameter not used in either model is the 

distance to the nearest contour vertex. Five parameters are used in both regression models: 

minimum extremity measured over a 10 cell radius neighbourhood; minimum extremity 

measured over a 20 cell radius neighbourhood; the standard deviation of aspect Y over a 5 

cell radius neighbourhood; the average of aspect X over a 20 cell radius neighbourhood; and, 

profile curvature. Aspect parameters are the most common type of parameter in both models, 

but are particularly dominant in the Snowdonia model with 7 parameters. While there are 

similarities between the two models, there is clearly significant difference not only in terms of 

which parameters are used, but which exact form of the parameter is used and their 

coefficients. There is no evidence of a terrain – error relationship common to both sites. 

However, it does seem that a reliable site-specific error model can be constructed from 

regression of DEM error against terrain parameters. 

 

<INSERT TABLE 4 APPROXIMATELY HERE> 

 

5.0 Generating Error Surfaces 

The regression equations with the highest regression coefficients were used to create error 

surfaces. Grids representing the required terrain parameters were derived and multiplied by 

the corresponding coefficients from the regression equation, then added together. This 

produced predicted error values for the entire extent of the DEM. In addition, a mean filter 

was applied to the error values and the local standard deviation of error values and the local 

standard deviation of mean filtered error values were calculated. These three additional grids 

were derived using a circular kernel of 20-cell radius. The grids representing standard 
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deviation of error values are produced to provide a spatially variable estimate of DEM 

accuracy that can be used in stochastic simulation (Carlisle, 2002).  

 

6.0 Model Validation 

The use of multivariate regression of terrain parameters to model DEM error was validated in 

three ways. 

  

First, the GPS measurements were randomly split into three subsets of equal numbers of 

points. A regression equation was determined using two of the point subsets and the terrain 

parameters identified as most effective by the stepwise regression modelling. This regression 

equation was used to predict the elevation error for the third subset of points. This was 

performed three times so that elevation error for each subset of points was predicted. The 

predicted error values were then compared to the GPS-measured error values to assess 

whether the regression equation could be usefully employed to predict error values for the 

entire DEM. 

 

Second, assessing the characteristics of each error surface identified spurious and extreme 

error values and allowed examination of the overall distribution and range of error values. 

This involved calculating summary statistics (minimum, maximum, mean and standard 

deviation) and examining the frequency distribution of error surface values.  

 

Third, the error surfaces and standard deviation of error surfaces were visually assessed by 

examining 2D renderings and orthographic views. This allowed a general check for 

reasonableness in the scale of modelled error values and their spatial distribution. 
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6.1 Model Validation - Predicted Errors 

Values for the minimum, maximum, range, mean and standard deviation of errors at 

Snowdonia’s 106 sample points and Mestersvig’s 103 sample points are given in Table 4. The 

table shows the actual errors and the corrected errors (actual minus predicted error). 

 

<INSERT TABLE 5 APPROXIMATELY HERE> 

 

The regression modelling can be considered successful when the corrected values are less 

than 100% of the actual values as this means the degree of error has been reduced. This does 

not occur for all summary statistics. Snowdonia’s minimum corrected error exceeds the actual 

error. However, the range of corrected errors is lower than the range of actual errors for the 

Snowdonia DEM. Additionally, the standard deviation of corrected errors is lower than the 

standard deviation of actual errors. This indicates that there are a low number of extreme 

corrected errors, but overall the corrected errors are less widely dispersed than the actual 

errors. The spread of error values has been significantly reduced. The mean corrected error is 

near zero indicating that the regression modelling successfully removes a systematic bias. 

 

The prediction success for the Mestersvig DEM is significantly better than for the Snowdonia 

DEM. All measures are much reduced. Mean corrected error is again near zero, indicating 

removal of a systematic bias. All other corrected measures are between 46% to 50% of their 

equivalent actual measures. 

 

6.2 Model Validation - Error Surface Characteristics 

Summary statistics for the error surfaces are shown in Table 5 with corresponding figures for 

the GPS sample points. The minimum and maximum values are clearly extreme. A mean 
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filter of circular 20-cell radius was applied to the error surfaces to reduce this occurrence of 

occasional extreme values. Summary statistics for these mean error surfaces are also given in 

Table 5. 

 

<INSERT TABLE 6 APPROXIMATELY HERE> 

 

The mean values for the Snowdonia surface are slightly higher than the GPS sample mean. 

The mean filter drastically reduces the maxima and minima and consequently brings standard 

deviation closer to the GPS sample standard deviation.  

 

For the Mestersvig surface the mean value is noticeably lower than that of the GPS samples. 

This could be because the distribution of GPS sample points on different terrain types does 

not match the distribution of terrain types for the whole DEM area. It does not necessarily 

mean that the error surfaces are incorrect. As for Snowdonia, the mean filter drastically 

reduces the maxima and minima and consequently brings standard deviation closer to the 

GPS sample standard deviation. However, unrealistically extreme errors remain.  

 

The summary statistics for both locations indicate that prediction of actual errors by means of 

regression modelling is only partially successful. There is uncertainty about the accuracy of 

the error surface. A spatially variable estimate of DEM accuracy could be more appropriate 

than predicting actual error on a cell-by-cell basis. This accuracy estimate could be a surface 

representing the standard deviation of estimated error for a cell and its neighbours. The 

neighbourhood calculations involved in producing such a surface could suppress the extreme 

values. Also, it is an estimate of accuracy that is required as input to models of uncertainty, 
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such as Monte Carlo simulation, whereas a prediction of actual error only allows a corrected 

DEM to be produced.  

 

The standard deviation of error values within a 20 cell circular radius of each cell was 

calculated from both the error surface and the mean error surface for each DEM. Summary 

statistics for these accuracy surfaces are shown in Table 6. 

 

<INSERT TABLE 7 APPROXIMATELY HERE> 

 

The summary statistics of a high quality accuracy surface would show a minimum value close 

to zero, a low maximum value and a mean value similar to the GPS sample’s standard 

deviation. The standard deviation of error surfaces appear reasonable. The standard deviation 

of mean error surfaces have much lower maximum values. However, the mean values are also 

reduced to much less than the GPS samples’ standard deviations. This indicates that accuracy 

is generally underestimated by these surfaces. 

 

6.3 Model Validation - Visual Assessment 

Orthographic views of the standard deviation of error surfaces are shown in Fig. 1.  

 

<INSERT FIGURE 1 APPROXIMATELY HERE> 

 

The orthographic views clearly show that for Snowdonia standard deviation of mean error 

removes the more extreme values and produces a rather spatially invariable accuracy surface. 

The lowest accuracy is found on the central parts of the steepest slopes. Gentle and evenly 

sloping terrain have the highest accuracy. There is a clear variation in the distribution of cells 
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with a standard deviation of less than 4m, no extreme values and only a few cells with a 

standard deviation of above 32m. 

 

For Mestersvig, standard deviation of mean error again removes the more extreme values and 

gives lower standard deviation values. Lowest accuracy is found along ridge tops and peaks, 

unlike Snowdonia where lowest accuracy is found on the central parts of the steepest slopes. 

Accuracy is also lower on southeast facing slopes. As suggested by McDermid and Franklin 

(1995), this could be due to these slopes being in shadow at the time of the aerial photography 

from which the original contour line data were created. There is a clear contrast between the 

accuracy of the flatter coastal areas and the more mountainous interior. Some of the low 

number of extreme accuracy values are found at the edge of the study area. These extreme 

values are probably caused by poor interpolation where there is an inadequate distribution of 

contour vertices and edge effects influencing the derivation of terrain parameters. 

 

7.0 Discussion 

This section considers the hypothesis that DEM error is related to terrain characteristics, 

examines the quality of the DEM error and accuracy surfaces and discusses issues affecting 

the quality of these surfaces. 

 

7.1 The Relationship between DEM Error and Terrain Character 

The research presented in this paper evaluates the hypothesis that the spatial variation in a 

DEM’s error is related to characteristics of the terrain. This hypothesis has been developed in 

response to the anecdotal and empirical evidence of authors such as Guth (1992), Bolstad and 

Stowe (1994), Gao (1997) and Hunter and Goodchild (1997). For both study areas and all six 

DEMs coefficients of up to approximately ρ = 0.5 have been identified for the correlation 
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between DEM error and a number of terrain parameters. These values are lower than the ρ = 

0.64 that Kyriakidis et al. (1999) computed for the correlation between error and standard 

deviation of elevation. Kyriakidis et al. (1999) consider error as the difference between two 

DEMs rather than the difference between a DEM and the elevation of the real terrain. This 

could explain their higher correlation coefficients. The lower correlation coefficients and the 

number of significant correlations found in the work presented here indicates that DEM error 

is related to terrain character, but this relationship is best quantified by multivariate modelling 

of a number of terrain parameters. The high adjusted regression coefficients of approximately 

0.9 and predicted error statistics indicate that the spatial distribution of DEM error can be 

modelled from OLS regression modelling of terrain parameters. 

 

OLS regression is a global technique in that a single regression model is created which best 

fits the whole data set over the entire study area. Given that DEM error is spatially non-

stationary and terrain character is highly variable, most notably in mountain environments as 

studied here, it seems unlikely that the terrain character / DEM error relationship would be 

spatially stationary. The limitations of OLS regression, due to its assumption of spatial 

stationarity, have been identified by several authors in recent years (Cohen et al., 2003; 

Foody, 2003; Fotheringham et al., 2002). Geographically weighted regression (GWR) has 

been developed in response to these limitations. GWR extends OLS regression so that the 

regression parameters can vary locally and thus a non-stationary regression model is produced 

(Fotheringham et al., 2000; Fotheringham et al., 2002). The research presented here has 

shown that DEM error is related to terrain character, but this relationship is different at the 

two study sites, i.e. the relationship is not global, but local. Therefore, GWR is evidently a 

technique offering potential for further development of DEM error modelling. GWR was not 

used in this study for two reasons. First, a major part of the research involved initial 
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identification of a relationship between terrain character and DEM error. Going on to include 

GWR modelling would be beyond the scope of a single paper. Second, the study areas are of 

limited spatial extent and disjunct. Approximately 100 sample points were available at each 

study site. This would probably provide inadequate support for local modelling, especially in 

areas of high frequency change, such as the mountainous environments of the two study sites.  

It was felt that an investigation into the potential of GWR in DEM error modelling was better 

applied to a larger and contiguous study area. Further work is needed in this area.     

 

7.2 The Quality of Error and Accuracy Surfaces 

A new method for creating spatially variable, spatially correlated and heteroscedastic error 

surfaces has been developed and successfully applied to DEMs of the Snowdonia and 

Mestersvig study areas. However, the quality of these error surfaces is variable. Although the 

average value for a whole error surface is usually reasonable, there are extreme maximum and 

minimum values and figures for standard deviation of an error surface indicate that there is an 

unrealistically wide dispersion about the mean. Applying a 20-cell radius mean filter does 

reduce the standard deviation and reduces, but does not remove, the extreme values. A filter 

of sufficiently large kernel size would remove these extreme values. Larger filter sizes (up to 

50 cell radius) were tested. However, extreme values still remained and excessive smoothing 

of non-extreme values was removing local variation in error values. Due to these 

characteristics of the error surfaces they are not suited to correcting a DEM. 

 

Although they are of limited quality, the error surfaces can be used to generate standard 

deviation of error surfaces. These accuracy surfaces estimate error characteristics for 

neighbourhoods of cells and can be used to model the degree of uncertainty in subsequent 
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DEM-based analyses. The more anomalous error values are subdued by the generalisation 

involved in summarising error values for local 20-cell radius kernels. 

 

For both Snowdonia and Mestersvig the accuracy surfaces can be considered of sufficient 

quality for further use. The technique has been demonstrated to work for two areas of 

mountain terrain, modelled at different resolutions using different types of source data. The 

indications are that the technique is broadly applicable. However, there are a number of issues 

to consider, which are discussed below. 

 

7.3 GPS Sample Point Issues 

The error surface technique involves estimating errors at over a million grid cells from 

approximately 100 GPS measurements. The number and location of these sample points will 

influence the quality of the accuracy surfaces.  

 

An appropriate number of GPS measurements was determined by means of equations to 

estimate sample size based on a required accuracy for the mean error estimate and for the 

estimate of the standard deviation of the error  (Li 1991). 100 GPS sample points should give a 

95% reliable estimate of a DEM’s accuracy. However, this relates to the reliability of a global 

accuracy estimate rather than local estimates. Further research is needed to investigate the 

influence of the number and location of sample points on the resulting accuracy surfaces. 

 

Time, accessibility and GPS operational issues mean that the sample points give a limited 

representation of the true variety of terrain characteristics found in a mountain environment. 

There will be terrain that is inaccessible and locations where GPS surveying will not be 

successful due to the obstruction of the sky by the terrain. Both study areas contain steep 
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slopes and near vertical rock faces that cannot be sampled. The coastal region of the 

Mestersvig study area is characterised by near flat terrain traversed by numerous heavily 

braided, often deep and fast flowing channels, which are largely inaccessible. Also, the 

ruggedness of mountain terrain means that there is a high degree of variability in terrain 

character over relatively short distances. An impractically large number of GPS survey points 

would be required to sample all varieties of terrain character. For these reasons a derived 

regression model will give a limited representation of the relationship between terrain 

character and DEM error.  

 

7.4 Choice of Terrain Parameters 

All of the types of derived terrain parameter have been used in at least one regression model. 

Additional parameters that quantify the form of the terrain may be useful. Also, the values of 

derivatives are dependant on the algorithms used (Jones, 1998). Horn’s (1982) and 

Zevenbergen and Thorne’s (1987) algorithms have been used here to derive gradient and 

curvature values. Other algorithms would compute different derivative values that may give a 

better regression model. 

 

The regression models’ inclusion of mean and standard deviation parameters calculated using 

5, 10 and 20 cell radius filter kernels indicates that error is related to terrain characteristics 

measured at various scales. Other filter kernel radii may be more appropriate than those 

chosen for use here. Processing time becomes a limiting factor for filter kernels of greater 

than 20-cell radius, and also when a large number of different sized filter kernels are used. 

However, further research would be beneficial into the influence of choice of filter kernel size 

on the regression modelling results. 
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Squared and cubed terrain parameters have been derived and selected for use in the regression 

models. Other transformations may also be useful. However, the logarithms and exponents of 

Snowdon’s SpTen12 DEM terrain parameters were briefly investigated, but no significant 

correlations with DEM error were found and these parameters were not selected in the 

stepwise regression modelling routine. 

 

Although there are a number of ways in which terrain parameters could be further explored, it 

seems unlikely that the benefit to the regression modelling will be great. High adjusted R
2
 

values of up to 0.9 have already been achieved with the terrain parameters used in this study. 

 

7.5 Quality of Terrain Parameters 

The distribution of error has been modelled from terrain parameters derived from the DEMs, 

rather than from on-the-ground measurement of the true terrain parameters. The DEMs 

contain errors and therefore, the derived terrain parameters will be subject to error. A gradient 

grid will not be a true representation of the real gradient. It is not possible to measure terrain 

parameters in the field with a sufficient degree of accuracy and consistency. This is a prime 

reason for the widespread use of DEMs. Terrain parameters derived from a DEM give the 

best available description of terrain character. It may be that terrain parameters derived from 

an accurate DEM may give a better model of the distribution of error in a lower quality DEM, 

than terrain parameters derived from the lower quality DEM. However, this is not useful 

because, in practice, the DEM in question is almost always the highest quality DEM 

available. The DEM-derived terrain parameters only give an approximation of terrain 

character. Therefore, a fully accurate model of the relationship between terrain character and 

DEM error cannot be achieved by this method. 
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Many of the cells with extreme error values are found towards the boundaries of the study 

areas. This is due to lower quality DEM interpolation and edge effects influencing derivation 

of terrain parameters at these locations. To mitigate these effects, the regression modelling 

should use a DEM that extends more than 20 cells beyond the limits of the study area. 

Subsequently derived error and accuracy surfaces should then be cropped to the extent of the 

study area.  

 

7.6 Differences between the Error and Accuracy Surfaces 

The six regression models all utilise a variety of the terrain parameter types, but they differ in 

the specific terrain parameters used. There is clearly no generic relationship between DEM 

errors and terrain character. This indicates that the nature of the terrain being modelled and 

the method used to generate the DEM influence the distribution of errors, the parameters that 

are most useful to the regression model and how well the model fits the sampled DEM errors. 

 

The correlation coefficients, adjusted R
2
 values and accuracy surface summary statistics 

indicate that the relationship between error and terrain character in the Mestersvig area is 

stronger than for Snowdonia and consequently a better accuracy surface can be created. The 

technique has worked better for the study area with the smaller scale, coarser resolution, and 

lower accuracy DEM. DEM errors can be assumed to have a heteroscedastic element and a 

random element. The heteroscedastic element is related to terrain character and can be 

modelled from DEM-derived terrain parameters. It is likely that the random element is due to 

small variations in the accuracy of elevation measurements and small local variations in the 

elevation of the terrain, for instance individual hummocks or boulders that cannot be captured 

at the DEM scale concerned. The difference between the quality of accuracy surfaces for the 
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two study areas could be because the higher resolution, higher accuracy DEMs reduce much 

of the heteroscedastic component leaving random errors to dominate to a greater extent. 

 

8.0 Conclusions 

The research presented in this paper has shown that the magnitude and distribution of errors 

in a DEM are related to the varying character of the terrain. GPS surveys of elevation error 

and DEM-derived terrain parameters, which quantify terrain character, can be used in 

regression modelling to estimate the distribution of DEM errors in the form of an error 

surface. The nature of the relationship between DEM error and terrain parameters varies 

according to the type of terrain, the resolution of the DEM and the DEM production method. 

 

The quality of the error surface is limited, primarily due to limitations in the size and 

distribution of GPS sample points, the quality of the DEM-derived terrain parameters and the 

presence of non-systematic, non-heteroscedastic error components. A standard deviation filter 

can be applied to the error surface to create an accuracy surface. The filtering process absorbs 

the more spurious error estimates, creating an accuracy surface that gives a much more 

complete description of a DEM’s accuracy compared to the commonly used single, global 

accuracy measure such as the DEM’s RMSE. A future paper will report on work investigating 

the use of such a spatially variable, heteroscedastic representation of DEM accuracy in 

modelling uncertainty in DEM-based analyses. 
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Table 1 Snowdonia DEMs 

DEM Accuracy 

(standard deviation of error) 
Interpolation method 

IDW112 5.11m inverse distance weighting with a weight 

of 1 and a search radius of 12 points 

IDW512 3.96m inverse distance weighting with a weight 

of 5 and a search radius of 12 points 

SpTen12 3.78m ArcView’s “spline with tension” and a 12 

point search radius 
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Table 2 Terrain parameters. 

Parameter Description 

Elevation  

Gradient The first derivative of elevation, also known as slope angle, 

representing the maximum rate of change of elevation 

measured both as degrees and percentage rise over run . 

Aspect The direction of the maximum rate of change in elevation 

expressed as vectors in the X and Y directions. 

Plan Curvature The horizontal component of the second derivative of 

elevation representing the rate of change of aspect. 

Profile Curvature The vertical component of the second derivative of elevation 

representing the rate of change of gradient. 

Overall Curvature The second derivative of elevation representing the surface’s 

degree of convexity or concavity. 

Relative Relief The range of elevation values of all grid cells within a 5-cell 

radius of the grid cell concerned. 

Texture The range of gradient values of all grid cells within a 5-cell 

radius of the grid cell concerned. 

Mean Extremity The elevation of a grid cell minus the mean elevation of all 

grid cells within a 5-cell radius of that grid cell. Indicates the 

vertical position of the grid cell relative to its neighbours. 

Minimum Extremity The elevation of a grid cell minus the lowest elevation of all 

grid cells within a 5-cell radius of that grid cell. A value of 

near zero would indicate that that grid cell is in a pit. 

Maximum Extremity The elevation of a grid cell minus the highest elevation of all 

grid cells within a 5-cell radius of that grid cell. A value of 

near zero would indicate that that grid cell is on a peak. 

Vertex Distance The distance between a grid cell and the nearest of the contour 

vertices from which the DEM was interpolated. 
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Table 3 The most significant correlations and number of significant correlations of 

elevation error with terrain parameters. 

 SNOWDONIA MESTERSVIG 

SpTen12 IDW512 IDW112 SpTen12 IDW512 IDW112 

Coefficient & 

parameter of 

strongest 

correlation 

0.487 

Profile 

curvature 

0.458 

Texture% 

-0.564 

Plan 

curvature 

0.629 

Aspect 

vector X 

-0.597 

Elevation 

0.568 

Elevation 

No. of 

significant 

correlations 

at 0.05 level 

57 42 54 103 125 92 
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Table 4 Regression equation variables (most significant first). 

Snowdonia - 

IDW512 

Mestersvig - 

SpTen12 

where: 

 Z = elevation 

 GP = gradient measured in percent 

 Ax = aspect vector X 

 Ay = aspect vector Y 

 CH = plan (horizontal) curvature 

 CV = profile (vertical) curvature 

 C = overall curvature 

 AvEx = average extremity 

 MaxEx = maximum extremity 

 MinEx = minimum extremity 

 Rel = relative relief 

 TextP = texture measured in percent 

 AV = neighbourhood average 

 SD = neighbourhood standard deviation 

 5, 10 and 20 indicate the radius of neighbourhood 

parameters in number of cells 

 2 and 3 indicate the square and cube of a 

parameter respectively 

Z_SD203 Ax_AV203 

MinEx10 Z_AV202 

CH_SD20 Ax_SD103 

GP3 MinEx103 

GP_AV20 MaxEx10 

CH Ay_SD20 

Ay_AV103 CH_AV52 

Ay_SD5 MinEx203 

Ay_AV202 Rel20 

Ax_AV20 MinEx202 

Ay_SD103 Ay_SD53 

GP_SD20 AvEx53 

CV_SD53 CV 

CH_SD52 Z_AV203 

C3 TextP52 

CV CV_AV10 

MinEx202 Z_AV20 

CH2 TextP20 

Ax_AV5 AvEx52 

Ax_AV52 CH_SD203 
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Table 5 Distribution of actual and corrected errors. 

SNOWDONIA Minimum Maximum Range Mean Standard 

deviation 

Actual errors -6.19 15.33 21.52 -2.72 5.11 

Corrected 

errors 

-11.14 6.71 17.85 -0.14 3.20 

Corrected as 

% of actual 

180% 44% 83% 5% 63% 

MESTERSVIG Minimum Maximum Range Mean Standard 

deviation 

Actual errors -101.02 118.32 219.34 4.90 32.41 

Corrected 

errors 

-42.25 59.56 101.81 0.58 15.41 

Corrected as 

% of actual 

46% 50% 46% 12% 47% 
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Table 6 Summary statistics for error surfaces and mean error 

surfaces. 

SNOWDONIA Minimum Maximum Mean SD 

GPS sample -6.19 15.33 -2.72 5.11 

Error -194 389 -2.26 7.65 

Mean error -17 66 -2.26 3.96 

MESTERSVIG Minimum Maximum Mean SD 

GPS sample -101.02 118.32 4.90 32.41 

Error -166350 56915 -3.95 244.56 

Mean error -214 2057 -3.76 56.77 
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Table 7 Summary statistics for accuracy surfaces. 

SNOWDONIA Minimum Maximum Mean SD 

GPS sample -6.19 15.33 -2.72 5.11 

SD of error 0.02 71.11 2.63 3.84 

SD of mean 

error 

0.03 10.49 0.54 0.71 

MESTERSVIG Minimum Maximum Mean SD 

GPS sample -101.02 118.32 4.90 32.41 

SD of error 0.01 8823 32.39 181.41 

SD of mean 

error 

0.01 276 4.84 9.51 
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a) 

 

b) 

 

 

c)  

 

d) 

 

 

Fig. 1 Standard deviation (SD) surfaces draped over orthographic views of 

the corresponding DEM: a) Snowdonia SD of error; b) Snowdonia SD of 

mean error; c) Mestersvig SD of error; d) Mestersvig SD of mean error. 
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