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Capsule Spatial environmental modelling well predicted nesting distribution of the White stork in Southeast
Europe and can be used in conservation planning with respect to climate change.
Aims To create spatial models for predicting White Stork presence and densities in the Southeast Europe to
identify areas of suitable habitat for White Storks.
Methods We quantified the habitat used by nesting White storks in Southeast Europe. Using spatial
modelling, we defined a set of free and available online environmental variables that predict the
breeding localities of the species. We employed pseudo-absences and the kriging of the residuals in
order to create predictive models of nest presence and density.
Results The presence–absence model was found to be precise in predicting the presence of nests. Both
density and presence of breeding pairs were best explained negatively by elevation, slope, minimum
temperature during May, and distance to the nearest human settlement and positively by topographic
wetness index, total area of human settlement and spring precipitation.
Conclusion Our robust and easily repeatable models offer a conservation tool to reveal suitable but
unoccupied localities for breeding White Storks pairs which may inform our understanding of how
climate change might affect the species’ distribution in the future. For example, protecting White Storks
on the Dalmatian coast may become even more significant in the future, because the Dalmatian coast is
predicted as the only suitable breeding area in Croatia later this century.

The White Stork is a summer visitor breeding in

temperate and warm areas of the Palaearctic

(Hagemeijer & Blair 1997) and its breeding range

covers large parts of the European continent (BirdLife

International 2004). It is a flagship species indicating

farmland bird diversity (Tobolka et al. 2012), but it has
experienced a steep population decrease up until the

1980s. During last few decades the White Stork

population has begun to recover, leading to its current

conservation status as least concern according to

International Union for Conservation of Nature

criteria (BirdLife International 2013).

The ecology and breeding behaviour of the White

Stork Ciconia ciconia have been intensively studied

(Vergara et al. 2006, Itonaga et al. 2011). Overall, the

population dynamics of White Storks is complex,

affected by a combination of factors such as rainfall in

the wintering areas in Africa (Kanyamibwa et al.
1993), food resource decline on the wintering grounds

(Schaub et al. 2005), local climate conditions in the

breeding areas just before arrival or in the late breeding

season (Saether et al. 2006) or even natural disasters

(Tryjanowski et al. 2009). Historical declines in Europe

have been associated with habitat destruction and

changes in agricultural practices (Carrascal et al.
1993), habitat alterations including drainage of wet*Correspondence author. Email: andreja.radovic100@gmail.com
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meadows (del Hoyo et al. 1992), prevention of flood

wetland drainage (60% loss in Europe) (EEA 2010),

conversion of foraging areas, development,

industrialization and intensification of agricultural

production (BirdLife International 2013). However,

some recent research has found that local population

dynamics were much less affected by the availability of

suitable and stable habitats (pastures, meadows and

wetlands) than expected (Tryjanowski et al. 2005b).
Climate is considered to be another important factor

shaping the breeding distribution of the White Stork

population in Europe, particularly in the light of future

climate change where a significant part of current

breeding areas in South-eastern Europe are predicted

to become unsuitable (Huntley et al. 2007) and where

movement of nesting habitat towards higher altitudes

is expected (Tryjanowski et al. 2005c). Although

habitat preferences of the White Stork are well-studied

(Carrascal et al. 1993, Pleym 1995, Latus et al. 2000;
Olson & Rogers 2009), few papers examine spatially

related variation in breeding densities (Carrascal et al.
1993, Olson & Rogers 2009, Wickert et al. 2010).

Such spatial information concerning habitat

requirements is essential for species such as the White

Stork, which have large home ranges and complex

habitat needs, in order to be able to predict how

population dynamics might be affected by habitat

change, particularly with respect to climate change.

Here we investigate the factors determining large-

scale distribution of White Storks in a region of

Europe where climate change is expected to severely

modify habitat availability for the species. We

modelled the potential habitat distribution of the

White Stork breeding population across three South-

eastern European countries using nest sites and

generated pseudo-absence locations. Pseudo-absence

locations are necessary for using any of advanced

discriminant analysis techniques such as generalized

linear models (GLMs), (Guisan & Zimmermann 2000,

Zaniewski et al. 2002, Engler et al. 2004). Discriminant

analysis techniques are widely used in modelling

habitats for diverse plant and animal species (Engler

et al. 2004, Chefaoui & Lobo 2008). Such techniques

are potentially more useful than less accurate profile

modelling techniques, which only require presence

data. Pseudo-absence locations are needed for large-

scale predictions because presence points only reflect

the realized environmental conditions of species but

not their potential distribution (Lobo et al. 2010). Our

study therefore also aimed to investigate the effect of

the differences in scale of these two modelling

approaches: the distribution area of the species

(presence-only density data) and when considering a

larger scale (presence and pseudo-absence data). We

determined the set of environmental variables that

determine breeding habitat suitability (that predicted

nest density and nest probability of occurrence) at two

different scales so as to construct a spatially explicit

model of potential White Stork breeding sites in the

Southeast Europe, to identify expected changes due to

global warming.

METHODS

We recorded a set of 11 environmental variables at a

1-km grid scale for the study area which included

Slovenia, Croatia and Bosnia and Herzegovina

(128000 km2). Variables measured were topography,

climate, water presence, land use and human presence

(Table 1) that are expected to influence White Stork

presence (Alonso et al. 1991, Carrascal et al. 1993,

Wickert et al. 2010). We extracted topographic and

climatic variables using an open access digital elevation

model of 30 m resolution (http://www.gdem.aster.

ersdac.or.jp), and the open access global climate

database, respectively (WorldClim; average values for

1950–2000) (Hijmans et al. 2005). We also calculated

the cover of different land uses at the grid scale, using

the Corine open access database (http://www.eea.

europa.eu/data-and-maps/data/). We assigned a different

weight to the different land types recorded in terms of

their importance as feeding habitats for White Storks,

so as to give greater weight to non-irrigated arable land

and natural grassland (4), less to permanently irrigated

land (3), even less to pasture (2) and none for forest

types (1). We finally calculated forest cover, as well as

a weighted open land type index to account for

availability of suitable land types at grid scale, as a sum

of the products of each land type cover with its weight

(Table 1). All analysis was performed with the help of

SAGA software in R (‘RSAGA package’: Brenning

2008).

We compiled a regional data set of White Stork

breeding pairs, fully covering Slovenia and Croatia and

partially Bosnia and Herzegovina. The Slovenian data

set originated from a systematic national monitoring

project (350 nests, survey in 2009, Denac 2010), while

the Croatian data set merged data from several

national and local monitoring projects (1240 nests;

2004–2009 surveys). We also collected data for Bosnia

and Herzegovina, taking into consideration former

known breeding sites (52 nests, 2005–2010 surveys,
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Kotrošan 2005, 2006, Kotrošan et al. 2006). The

accuracy of information on nesting sites differs slightly

among countries. For Slovenia we have assumed that

all nests were known. In Croatia, we believe that

approximately 95% of nests were detected, covering

the whole breeding range, while for Bosnia and

Herzegovina approximately 85% of nests were detected

and the same percentage area of the country covered.

Nest distribution structure

We calculated the area including all observed nests,

using a convex hull procedure, in order to calculate

the proportion of the study area where nesting

occurred. To investigate the structure of nest

distribution patterns, we first generated a simple

random point pattern (rpoint function from ‘spatstat’

package: Baddeley 2008). We then calculated the

nearest neighbour distance (nndist function, ‘spatstat’

package) between observed nests and distances

between random points.

Pseudo-absence data set

We generated the same number of pseudo-absences as

number of presences (n = 1642) (see Hengl 2009).

First, we employed Ecological Niche Factor Analysis

(ENFA) (Hirzel et al. 2002), in order to reduce our

environmental variables into a few uncorrelated factors

that pinpointed the difference of the specific

environmental conditions prevailing at White Stork

nests from the average conditions in the study area. To

do so we used the enfa function (‘adehabitatHS’

package in R software: Calenge 2006, 2007), in order

to produce a habitat suitability score for each 1 km

grid, ranging from 0 to 100, from least to most suitable

habitats (habitat suitability index (HSI)). We adopted

a random stratified procedure for the selection of

pseudo-absence localities, by applying a random

algorithm (rpoint function from ‘spatstat’ package:

Baddeley 2008) so that pseudo-absences had a greater

probability of being (a) away from suitable habitats

and (b) away from areas with highest nest density. To

do so, we assigned to each grid an inadequacy

probability index (range up to 64), calculated as the

product of the HSI (values from 1 to 4, see below)

with a nest density index from high to low nest density

zones (values from 1 to 4, see below) (Fig. 1). To

extract the four habitat suitability zones, we used the

output of the habitat suitability map and we

reclassified grids into three habitat suitability zones in

decreasing order (zone 1: HSI≥ 75.1, zone 2: 50.1 <

HSI < 75, zone 3: 25 < HSI < 50): no grids were left

within the class of HSI under 25. To extract the nest

density zones, we used the nest density database and

assigned a nest density score to each grid, using the

smoother intensity technique (Kernel density

estimator > 75% nearest neighbour distance) (function

density.ppp; package ‘Spatstat’, R). We then

reclassified grids into four zones (quartiles) from the

highest to the lowest nest density zone. As a result, the

data set of pseudo-absences was randomly generated,

but under a rule giving higher probabilities for pseudo-

absence points to be generated in grids with a greater

inadequacy probability index. With this procedure, our

data set (presences and pseudo-absences) covered a

Table 1. Environmental variables recorded, mean,minimum andmaximum values for the study area and for the nest sites (1 km grid scale). Codes
in parentheses refer to land use types (http://www.eea.europa.eu/data-and-maps/data/). 211: non-irrigated arable lands, 212: permanently
irrigated lands, 231: pastures, 311: broad-leaved forest, 312: coniferous forest, 313: mixed forest, 321: natural grasslands, 511: permanent
running water and 512: water bodies.

Environmental variables Study area Nest sites

Type Code Description Mean Min–Max Mean Min–Max

Topography elev Mean elevation (m) 491 0–2535 130 67–751
slope Mean slope (%) 16.7 0–69 5 0–30

Climate precip Total spring precipitation during the breeding season (April–July) (mm) 370 189–490 322 231–432
temp Minimal temperature in May (oC) 8.5 1.5–13.9 8.4 6.3–11.1

Water presence a_water Proportion of water cover in grid cell (%) 0.4 0–100 3 0–60
d_water Distance to the nearest permanent water (511, 512) (m) 19,000 0–108,260 11,541 0–48,374
wet Mean topographic wetness index 19.6 14.6–29 23.7 17.4–28.9

Land use forest Proportion of forest cover (311, 312, 313) (%) 42 0–100 7 0–100
w_open Weighted open land type index = [area of (211+ 321)*4]+

[area of (212)*3]+[area of (231)*2]
0.36 0–4 0.58 0–4

Human presence a_settl Proportion of settlement area (%) 2 0–100 17 0–100
d_settl Distance to the nearest settlement (m) 4731 0–26,400 800 0–9849
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greater spectrum of environmental conditions in the

region. At the same time, pseudo-absence data are not

all placed in extremely unsuitable areas, but along

environmental gradients with more of them placed in

less suitable areas. By covering a broader spectrum of

environmental conditions than the species already uses

(its realized niche) we can potentially better detect

those environmental variables that limit its distribution.

Model construction

We used a data set of equal number of presences and

randomly generated pseudo-absences (n = 3284) in the

modelling procedure. First, we modelled White Stork

nest density in terms of nest density score in each grid,

at two scales: (a) at the scale of current distribution,

including only grids with nest presence and (b) at a

larger scale, including presences and pseudo-absences

points in the whole study area. In both cases, we

constructed the model using a backward stepwise

procedure (Akaike information criterion for variable

selection), using a multivariate linear model. For the

model using presences and pseudo-absences, we dealt

with autocorrelation in the following way. We

modelled the residuals (observed densities and

predicted densities), using the fit.variogram method

(‘gstat’ package) (Pebesma 2004) and we then

performed a regression kriging technique, by

interpolating the residuals via kriging (krige from the

‘gstat’ package) (Pebesma 2004, Bivand et al. 2008).
The final model was constructed by summing the

predictions of the linear model and interpolated

residuals (Hengl 2009). We assessed the performance

of both nest density models as the proportion of the

overall variation explained, using the normalized root

mean square error (RMSEr) and model accuracy

(1 − RMSEr2). As a rule of thumb, an RMSEr below

40% (i.e. smaller is better) is considered to give a fairly

accurate prediction assessed on the validation points

(accuracy > 85%) (Hengl 2009).

Second, we modelled the presence of White Stork

nests at the larger scale, considering both presences

and pseudo-absences, using a GLM with a binomial

link function. The optimal environmental predictor set

was selected using the backward stepwise procedure

(Akaike information criterion). We assessed the

performance of the presence model using 70% of the

data set for model construction and 30% for model

validation (random selection and ten permutations).

We assessed its performance in terms of the receiver

operating curve (ROC) and the area under the curve

(performance function in ‘ROCR’ package). We

considered particularly the results that validated the

prediction of presence of White Stork nests (precision

and positive predictive value).

RESULTS

Nest distribution structure

We recorded 52 nests in Bosnia and Herzegovina, so the

total number of known breeding sites of White Storks in

Figure 1. (a) Result of ENFA algorithm – HSI for White Stork breeding in the Southeast Europe. Darker areas stand for more suitable areas and (b)
resulting grid used for generating pseudo-absence data with pseudo-absence locations superimposed.
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the region was 1642 nests. They were aggregated to the

north and north-eastern part of the study area, covering

an area of 42 049 km2 (33% of the study area) (Fig. 2).

The average nest density within the current

distribution area was 0.04 nests/km2, ranging from 1 to

25 nests/km2 for grids with nest presence (mean value

3.63). We found a clustered nest distribution pattern

although this included several isolated nests; distances

between neighbouring nests were significantly smaller

when compared with the random pattern (one-way

Welch test, F1,2960 = 2227.5; P < 0.0001)(Fig. 3).

Nest distribution model

We found that the topographic and climatic variables

were among the most important factors predicting the

distribution pattern of White Stork breeding pairs,

either considering the larger spatial scale (presence–

absence models where all of the study area was

considered) or the smaller scale (presence-only model,

nest density). In all cases, the increase in minimum

May temperature negatively affected nest presence and

density, and nesting localities generally fell within a

restricted temperature range, avoiding extremes

(Table 1). The current distribution of White Storks

was on relatively flat ground and with a pronounced

human presence (Table 1).

When considering only the model of nest density

within presence areas, the species preferred open

habitat areas close to water surfaces (Table 2a). White

Storks also preferred to breed in microhabitats with

steeper slopes than average available conditions (Table

2a). The distance to and area of human settlements

was not a significant factor in explaining local

differences in breeding densities (Table 2a). When

considering the two larger scale models, we found that

although topographic relief was rather mild in the

most parts of the study area, the species preferred even

milder slopes, and preferred to nest in proximity to

human settlements (Table 2b & 2c).

These results allowed us to generate a spatially

explicit predictive model of nest density and nest

probability of occurrence, where in both models, a

gradient from the north and north-east towards the

south and south-west parts of the study area was

apparent (Fig. 4).

Best model method

We found that the kriging technique improved the

linear regression models’ fit. After preparing the linear

regression model and kriging the residuals, the RMSEr

improved from the initial 55.8% for the regression

model to 41.4% for the regression kriging model, and

accuracy also improved from 68.9% to 82.9%,

respectively. We found that the presence–absence

model using the binomial GLM method proved to be

already very robust for predicting nesting sites of

Figure 2. Nesting sites of White Stork (n=1642) in Slovenia,
Croatia and Bosnia and Herzegovina and minimum area of current
nest distribution (convex hull procedure).

Figure 3. Box plot for the nearest neighbour distances (in metres) for
White Stork nests and randomly distributed points in the study area.
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White Storks in the study area (ROC area for ten

repeated tests ranged from 96% to 98% and positive

predictive power median 98.8%). When comparing

the nest density model and the nest presence model

when using presence–absence data (Table 2b & 2c),

six environmental parameters (out of eight overall)

were found to be in common, whereas only five

variables were in common with the nest density model

with presence-only data (Table 2a). In the same vein,

the nest density model with presence-only data

produced conflicting results for five environmental

factors compared to the nest presence model (Table 2a

& 2c).

DISCUSSION

According to our results, suitable habitats for nesting

sites for White Stork cover a large part of the study

area (approximately 65%; HSI > 50.1). Our analysis

revealed that there was good habitat quality in some

Table 2. Predictive power of environmental variables for White Stork models: (a) nest density linear model (LM) with presence-only data, (b) nest
density LM with presence and pseudo-absence data and (c) binomial GLM with presence and pseudo-absence data. Coeff.: coefficient of the
regression model. For variable names see Table 1.

Environmental variables
Presence-only data Presence and pseudo-absence data

(a) Nest density LM (b) Nest density LM (c) Nest presence GLM

Code Coeff. z P Coeff. z P Coeff. z P

(Intercept) −0.61 11.3 *** −0.57 −6.9 *** −9.247 −6.5 ***
elev (m) −2.38e–05 −31.9 *** −0.001 −26.9 *** −0.012 −11.4 ***
slope (%) 6.65e–01 9.6 *** −0.275 −4.1 *** −6.082 −3.8 ***
precip (mm) 3.14e–02 45.1 *** 0.007 11.3 *** 0.062 4.5 ***
temp (oC) −0.114 −6.4 *** −0.018 −6.4 *** −0.163 −2.8 ***
a_water (%) −1.17e–01 −4.9 *** ns ns
d_water (m) 1.65e–06 5.2 *** ns −1.62e–05 −2.4 *
wet 0.046 17.2 *** 0.046 17.2 *** 0.195 4.5 ***
forest (%) ns ns −2.526 −7.7 ***
w_open 8.61e–08 2.3 * ns ns
a_settl (%) ns 0.163 4.2 *** 4.361 5.2 ***
d_settl (m) ns −6.26e–06 −3.5 *** −0.0002 −4.8 ***

Figure 4. (a) Broad scale predictive model of White Stork nest densities (linear model with regression kriging) and (b) broad scale predictive model
of White Stork nest presence (binomial GLM). Nest positions are marked in green.
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parts of the study area, especially in central parts of

Croatia, where densities of known White Stork nests

reached 44 nests/100 km2. This is a high density, but

not even close to those reported from the central part

of the species’ distribution in Poland (Kosicki 2010) or

Lithuania (Vaitkuviené & Dagyst 2014), although

more similar to those reported for Estonia (Ots 2009).

Our models have both conservation and

methodological implications. For example, within the

species’ distribution range, our results confirmed the

importance of the availability of open habitats such as

grasslands or non-irrigated arable lands in proximity to

White Stork nests, and these may require a suite of

management measures for their maintenance. Our

results show that the presence of the White Stork

nests is probably determined by a set of environmental

variables with the greatest negative influence being

topography (elevation) and amount of forest and the

greatest positive influence being presence of human

settlements. Although such findings were as expected

given the known ecology of the species, we quantified

and ranked the influence of the above environmental

factors on a comparative basis. Thus our results allow

us to identify the environmental factors that most

likely regulate the probability of occurrence and nest

density of White Stork in Southeast Europe, and

explain the aggregated distribution pattern of the

species in suitable habitats in the North Eastern part of

the study area: these factors were mostly topographic

and climatic in nature. Regarding topography, White

Storks in Southeast Europe breed in places at lower

altitudes with high values of topographic wetness

index. The positive effect of wetness on White Stork

potential prey is already well known (Tryjanowski

et al. 2005a), but we show the importance of using a

topographic wetness index as a good proxy for

predicting White Stork presence. This index is largely

dependent on topography, it can be easily extracted

from freely available digital elevation models and

reflects the wetness potential of a locality according to

its micro-relief. Topographic wetness index was found

to be a consistently significant predictor of White

Stork nest occurrence at all scales of model

implementation, proving that this index might be a

useful proxy to detect suitable areas for White Storks,

as well as for other birds dependent on humid

conditions (Aguirre & Vergara 2009).

The highest altitude with a detected White Stork nest

in our region was 752 m in Slovenia. Similarly, nests

were reported at 890 m in Poland (Tryjanowski et al.
2005c) or even areas of the Tatra Mountains up to

1000 m, at 1350 m in Sierra de Gredos (Spain) and at

2500 m in Morocco (Creutz 1985, Schulz 1988).

Rather than altitude per se, temperature may have

been a limiting factor in our region (Table 2). Our

results, similar to previous studies (Carrascal et al.
1993, Huntley et al. 2007) revealed a very good

correspondence of the species’ distribution in Europe

with climate variables. However, the importance of

climate variables should probably also be examined

further using techniques that do not assume linear

relationships because the species avoids extremes of

the available conditions in the area in both

precipitation during breeding season and minimum

temperature in May. Temperatures are important for

successful breeding of White Storks because young

birds are sensitive to low temperatures until they

develop thermoregulatory ability (Tortosa & Castro

2003). Rain and cold weather conditions can

significantly reduce breeding success causing high

chick mortality (Jovani & Tella 2004, Kosicki 2012,

Hilgartner et al. 2014), but it may also have beneficial

effects because of its influence on prey availability

(Tryjanowski & Kuzniak 2002).

Our study also has methodological implications. Our

study relied exclusively on widely available and easily

accessible data sets to produce spatially explicit models

of White Stork breeding sites. The kriging of the

density model residuals improved the percentage of

explained variance in the model of breeding densities

and confirmed that hybrid techniques between point

pattern analysis and geostatistics can improve model

predictions. This technique is becoming more widely

used in various ecological studies. Even software that is

advertised that uses only presence data (e.g. Maxent)

in fact uses pseudo-absence data but generates only

random points in a region of interest. We also

recommend using pseudo-absences spread in areas of

low habitat quality for a species and geographically far

from observed presence locations as has been suggested

previously (Lobo et al. 2010, Hengl et al. 2009, Senay
et al. 2013). The importance of entering pseudo-

absence points into a modelling procedure is evident

from our modelling of White Stork nests densities

where a linear model, prepared with only presence

locations, showed a non-significant influence on nest

locations due to human presence in the area. However,

when pseudo-absence locations were entered into our

modelling procedure (the larger scale model), it was

found that human presence influenced White Stork

breeding densities. Possible reasons for the less

satisfactory performance of the nest density models
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could be because we still lack comprehensive nest counts

from Croatia and Bosnia and Herzegovina (i.e. false

negatives in the model) but also because we are

missing important variables. Our density model should

perhaps ideally have integrated both quality of foraging

habitats (Tryjanowski et al. 2005a, Kosicki 2010) as

well as potential measures of disturbance rate, but

these variables are not easy to obtain for large areas.

Despite a simple methodology using only cartographic

data, we constructed a robust model for breeding site

prediction. As a conclusion, we suggest that modelling

should consider different spatial scales, capturing on

one hand the general ecological preferences of the

target species at larger spatial scales, in order to

identify main patterns and trends (i.e. what the species

avoids or prefers), and on the other hand on smaller

scales within areas of occurrence, pinpointing

microhabitat preferences within its distribution range

(i.e. what determines species density), so as to extract

conservation recommendations at all potential spatial

scales of management. In the context of the future

climate change (Huntley et al. 2007) our results offer a
conservation tool, by detecting not only the sites of

high conservation value that are aggregated towards

the north-eastern part of the study area, but also by

pinpointing the broader area for White Stork potential

breeding in the future. Models predicting presence of

the species revealed highly suitable areas for White

Storks in the coastal region of Croatia that are to date

unoccupied (see Fig. 4b). A possible reason could be

the pronounced pressure of poachers, especially in

Dalmatia (Denac 2010). However, during the summer

of 2011 and 2012 several non-breeding White

Storks were recorded foraging on one karst field near

the town of Sinj in the Croatian hinterland

(I. Budinski pers. comm.), an area found to be suitable

for storks with our binomial model. Protecting White

Storks on the Dalmatian coast may become even

more significant in the future, because the

Dalmatian coast is predicted as the only suitable

breeding area in Croatia during late 21st century

(Huntley et al. 2007).
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