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Abstract A dense cohesive sedi- 
ment suspension, which contains 
primarily clay particles, is a thixo- 
tropic non-ideal Bingham fluid with 
a true yield stress. Its time-depen- 
dent rheological behaviour can be 
described by the structural kinetics 
theory in which the yield stress is 
taken as a measure for the structural 
parameter. This theory allows the 
construction of a more general equa- 
tion of state, which is independent 

of the rate equation. The applicabil- 
ity of the model is demonstrated by 
examples of the prediction of con- 
stant structure curves and of transi- 
ent behaviour. The thixotropy model 
is incorporated into a Navier-Stokes 
solver to stimulate the flow behav- 
iour in a Couette viscometer. 
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Notation 

a Aggregation or recovery rate parameter 
b Break-down rate parameter 
c =po-Ctoe 
k General rate parameter 
r Radial coordinate 
t Time 
fi Break-down to recovery rate ratio =b/a 

Shear rate 
t/o~ Dynamic viscosity for fully broken structure 
2 Structural parameter ='cy/'Co 
/~0 Initial differential viscosity 
~o~ Bingham viscosity 
"c Shear stress 
% Initial yield stress (fully recovered structure) 
rB Bingham stress 
ry Yield stress 
Zs Static yield stress 

Rotation speed 
co Angular velocity 

Subscripts 

e Equilibrium 

Introduction 

The study of the rheological behaviour of cohesive se- 
diment suspensions, such as clay suspensions, is of 
practical importance in hydraulic engineering (dredging, 
hyperconcentrated flow, erosion resistance; e.g. Enge- 
lund and Wan, 1984, and Gularte et al., 1979), mining 
engineering (drilling muds; e.g. Nguyen and Boger, 
1985), civil engineering (cement and grouts; e.g. Lapa- 
sin et al., 1983) and chemical engineering (ceramic ma- 
terials; e.g. Moore, 1959). Since the early 1980s exten- 
sive studies have been carried out on the rheological be- 
haviour of estuarine cohesive sediment suspensions. Im- 
portant reviews have been presented by Williams 
(1984), Verreet and Berlamont (1989) and Williams and 
Williams (1989a, 1989b). This work is missing in the 
recent review by Coussot and Pian (1994). 

Cohesive sediment suspensions can be characterized 
as non-ideal Bingham fluids, often with a true yield 
stress (Toorman, 1994). The present paper is a sum- 
mary of an extensive theoretical study (Toorman, 1995) 
concerning the thixotropic behaviour (i.e. the mecha- 
nisms of structural recovery and shear thinning) of 
these suspensions, which is directly related to the floc- 
culation of the clay particles and the break-up of these 
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flocs in shear flow (Michaels and Bolger, 1962). The 
mechanisms of these processes are discussed in further 
depth by Williams (1984) and van Leussen (1994), 
amongst others. 

Moore (1959) introduced the structural kinetics theo- 
ry as a model for describing the thixotropic behaviour 
of clay suspensions. Worrall and Tuliani (1964) ex~ 
tended this work by adding a yield stress term. It is re- 
markable that the application of this theory thus far 
seems to be restricted to the determination of the equili- 
brium flow curve and the transient behaviour under 
constant rate of deformation. In this paper it is shown 
that the same basic theory allows the construction of a 
more general equation of state, which is independent on 
the rate equation and which can be applied to any flow 
history. 

Before continuing, it is important to make a general 
remark on rheometrical data for flocculated suspen- 
sions. In this work the model is tested on available pub- 
lished data as they are presented, without making cor- 
rections for possible wall effects, as is often done. How- 
ever, the quality or relevance of many data sets should 
be seriously questioned, because the majority of the 
rheometrical devices work with too small gaps or pro- 
duce shear layers which are too narrow for valid shear 
flow generation in fine-grained granular suspensions. 
The likely occurrence of wall slip or depletion in the 
shear layer, even for vane spindles, could explain the 
often measured decrease of the shear stress with in- 
creasing rotation speed (or deformation rate) at low de- 
formation rates. Hence, considering the fact that the 
chance for slip in a concentric cylinder viscometer is 
very high for small rotation speeds, one cannot be sure 
that the measured values and flow curve features at low 
shear rates are correct (Toorman, 1994). Therefore, one 
has to be very careful when experimental data are inter- 
preted. The problem of wall depletion is too often un- 
derestimated (Barnes, 1995). 

is assumed to be written as -b)2  n. Similarly, the rate of 
build-up is assumed to be proportional to the fraction of 
links remaining to be formed, which is assumed to 
equal )~0-2, to a certain power m. The maximum value 
of the structural parameter 2o is commonly assumed to 
equal 1. In the following, the exponents m and n are 
both assumed to be equal to 1, leading to the original 
first-order rate equation, proposed by Moore (1959): 

d)L 
d t  = a(20 - 4 )  - b)2 (1) 

where the aggregation or recovery rate parameter a and 
the break-down parameter b are empirical parameters. 

At equilibrium, the rate of break-down equals the 
rate of recovery. The locus of points in the r - ) plane, 
which fulfil this condition, form the equilibrium flow 
curve (EFC). Since at equilibrium d2/dt=0, the equili- 
brium value of the structural parameter 2+ can be ob- 
tained from Eq. (1), i.e.: 

a20 40 
he - -  1 + b~) - -  1 + fi;~ (2) 

where fl=b/a, he is thus a function of the shear rate. 
Hence, Eq. (1) can be rewritten in the form: 

d2 
dt - (a + b))(2 - J~e) (3) 

The yield stress, which is a measure of the internal 
strength of the flocculated structure, seems to be the 
most appropriate measurable property which can be re- 
lated to structure (Billington, 1960; Cheng, 1986). 
Therefore, following the proposal of Billington (1960), 
the structural parameter 2 is defined here as: 

2 = ry (4) 
T0 

where ~0 is the yield stress of the EFC, i.e. 
~o=ry (2= 1). 

Thixotropy model 

Structural kinetics 

To quantify the time dependent rheological behaviour 
of flocculated suspensions, a non-dimensional structural 
parameter 2 is introduced. This parameter is a measure 
of the degree of structure in the suspension, having a 
value in the range 0 (fully broken) to 1 (fully struc- 
tured). In analogy with chemical reaction kinetics, a 
rate equation, which expresses that the structural state is 
the net result of structural break-down and recovery, is 
defined (Moore, 1959). It is assumed that the rate of 
break-down depends on the deformation rate ) and on 
the fraction of links existing at any instant and therefore 

Equation of state 

In analogy with the model proposed by Moore (1959), 
Worrall and Tuliani (1964) added a structural term to 
the Bingham model. However, this does not account for 
the essential fact that the yield stress should be a func- 
tion of the structural parameter, according to Eq. (4). 
Therefore, the general equation of state for a thixotropic 
yield stress fluid is written as: 

+ = +y(2) + ~(~, 2)i  = 2+0 + ( ~ ( ~ )  + c2)~ (5) 

where ~7oo is the dynamic viscosity of the suspension at 
4=0  (i.e. completely broken-down structure). 

The concept of a time-dependent yield stress has 
been considered by several researchers. Slibar and 
Paslay (1964) however assumed a constant Bingham 
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viscosity and an exponential memory function. Tiu and 
Boger (1974) simply multiplied the two terms in the 
Hershel-Bulkley model with a structural parameter. 
Nguyen and Boger (1985) only analyzed data of the 
time variation at constant rate of deformation. 

The equilibrium flow curve found by Worrall and 
Tuliani (1964), expressed in terms of the parameters of 
the EFC, can be written in a rate equation independent 
form as: 

Te = 20T0 + (/zoo + c2e)) (6) 

where/J~ is the Bingham viscosity and r0 (in the origi- 
nal equation) has been replaced by 20T0, which does not 
make any difference since )~0=1. The equilibrium 
points are given by expressing Eq. (5) at a specified 2e. 
Equating this to Eq. (6), one finds the following rela- 
tionship: 

(20 - 2~()))z0 + (/~o~ - riot(P))) = 0 (7) 

Substitution of Eq. (7) into Eq. (5), eliminating qo~, 
yields: 

T = (20 + 2 - ,~ (~))r0 + ( ~  + e2)~ (8) 

Equation (8) represents a new rheological equation for 
a thixotropic yield stress fluid expressed in terms of the 
EFC parameters. Notice that this formulation does not 
put any constraints on the rate equation, i.e. it is valid 
for every type of rate equation! 

For the specific first-order rate equation, Eq. (3), the 
following equilibrium flow curve is found: 

c20:~ 
T = 2oTo + / z ~ )  + - -  (9) 

1 

Analysis of many rheometrical data on clay and (es- 
tuarine) mud suspensions strongly suggests that this 
gives the best representation of its equilibrium flow 
curve (Toorman, 1994). From Eqs. (2) and (7) the rela- 
tionship for the non-structured viscosity can be found: 

2ofiro 
r/~(p) = #o~-~ 1 + f l ~ ) - / z ~  + R~flr0 (10) 

Substitution of Eq. (10) into Eq. (5) yields: 

v = 2T0 + (/~o~ + c2 +f iVO2e) )  (11) 

It should be realized that in nearly every point of the 
EF curve zy(2~) ¢ v0 and /z ())~) ¢ Po~. The values of 
ry and t/~ depend on the structural parameter and thus 
vary along the EF curve. It is indeed observed that the 
value of the Bingham parameters decreases due to 
structural break-down (decreasing 4). The values of the 
parameters of the EF curve however are independent. 

Cal ibrat ion  

The proposed complete thixotropy model requires the 
determination of five empirical parameters. Four of 
them, i.e. Zo,lZo~,c and fl, are found through least 
squares fitting of the EF curve. The rate equation pa- 
rameters can be obtained from transient data. When the 
deformation rate is constant, the rate equation can be in- 
tegrated analytically. For instance, integration of the n- 
th order form of Eq. (3), i.e. d2 /d t  = - k ( 2  - 2e) n, at 
constant shear rate gives: 

((Ty -- Ty,e)/To) - (n- l )  

= (/7 l)/-Ct ÷ ((Ty,i -- Ty,e)/To) - (n- l )  (n > 1) (12) 

in (Ty - Zy,e) = In (Ty,i - Ty,e) - k t  (n = 1) 

where k = a + by = a (1 + fl)). Several published data 
indeed show this linear behaviour (e.g. Tiu and Boger, 
1974; Nguyen and Boger, 1985). This allows the deter- 
mination of the recovery rate parameter a and the order 
n of the rate equation. 

Constant structure curves 

The locus of points in the r -  ) plane which corre- 
spond to the same value of the structural parameter 2 
form the constant structure curve (CSC). When the EF 
curve is known and can be described by Eq. (9), a sim- 
ple procedure allows the computation of the CS curves. 
For each data point of the EF curve the value of the 
structural parameter value is obtained from Eq. (2). 
Substitution of this value into Eq. (11) gives the CS 
curve. Notice that the construction of the CS curves 
does not require the knowledge of the recovery and 
break-down rate parameters (a and b) individually, only 
their ratio ft. 

In concentric cylinder viscometry experimental data 
are obtained in terms of torque versus rotation speed. 
For non-Newtonian fluids the true shear rate is not only 
a function of geometrical parameters of the device, but 
also from the a priori unknown rheological parameters 
of the tested material. Several methods (sometimes re- 
ferred to as "shear rate correction methods") have been 
derived to compute the true shear rate at the wall for 
fully sheared and partially sheared (or plug) flow (Yang 
and Krieger, 1978; Toorman, 1994). Hence, one of 
these shear rate calculation methods should be applied 
to obtain the actual EF curve. The rhe01ogical parame- 
ters can be found with a curve fitting method (e.g. 
least-squares). 

This procedure has been applied to two data sets of 
clay suspensions (Cheng and Evans, 1965; and Joye 
and Poehlein, 1971). A comparison of measured and 
predicted CS curves for these cases is presented in 



E.A. Toorman 59 
Thixotropy model for cohesive sediment suspensions 

50 

45 

40 

~35 

m30 
t / )  

25 I-- 
(,q 

a~20 

co15 

10 

/ / i  
/ / / /  

i 
/ /  

/ .  / *  /" 
/ / /" 
/* / -  /"  

i I A  / 
~,l i / /A i "  

/ . . . . . . . . . . . . . .  
t / 

-z" 

/ 

o 560 lo'oo ,5'oo zo'oo 2soo 
SHEAR RATE (1/s) 

Fig. 1 Equilibrium flow and constant structure curves for a 6.5% 
bentonite suspensions.. Symbols=experimental data (Cheng and 
Evans, 1965); full line=equilibrium flow curve; dashed lines=con- 
stant structure curves according to Eq. (8). Model parameters: 
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Fig. 2 Equilibrium and constant structure curves for a hectorite sus- 
pension. Symbols (connected by dotted lines)=experimental data 
(Joye and Poehlein, 1971); full line=equilibrium flow curve; dashed 
lines=constant structure curves according to Eq. (8). Model parame- 
ters: Zo=9.2 Pa, TB= 16.2 Pa,/zoo =0.0098 Pa.s,/z0=0.074 Pa-s 

Figs. 1 and 2. The experimental points of the CS curves 
have been obtained with the shear-rate step-change 
method (Cheng, 1986). The agreement between model 
and experiment is surprisingly good. There are several 
potential causes for the deviations: 

a) Experimental errors, particularly wall slip; 
b) The Moore model may be too crude (or the rate 

equation is not first-order); 
c) The shear rate calculation method of Cheng and 

Evans (1965), which also allows the determination 

of the shear rate of CS curve data, may introduce 
too large truncation or differentiation approximation 
errors; 

d) Cheng and Evans' method does not account for the 
possibility that the material may not always be 
sheared over the total gap width. 

e) As Joye and Poehlein (1971) do not mention any 
shear rate calculation, it is likely that they assume a 
linear velocity profile over the 1-mm-wide gap. 
This may be a theoretically valid approximation 
under specific circumstances (narrow gap, fully 
sheared flow without wall slip), which, however, 
are unlikely to be achievable in reality, particularly 
at low shear rates. 

For further validation, transient flow tests should be 
considered. 

Numerical implementation 

The rate equation can be solved to yield the structural 
parameter at each time step, using a numerical discreti- 
zation scheme. This can very easily be incorporated 
into any numerical code, requiring only the storage into 
a vector of the values of the structural parameter for 
each node of the computational mesh, which are re- 
placed by the new value at each time step. Shear rate 
intensities are obtained from the flow field computation 
(e.g. a Navier-Stokes solver). 

When there is no advection, the spatial derivatives of 
2 are absent and differentiation of Eq. (3) with a 
Cranck-Nicholson scheme yields: 

2t - )or-At 
A t  

(a + b)t)(Rt - ,'~e) Jr- (a -~- b)Yt+At)(~t+At --/~e) 
z (13) 

2 

from which one obtains the simple algebraic expres- 
sion: 

)Lt = 2 t - ~ x t I 2 -  a - b~t_At ] + 2a (14) 

where At is the time step of the numerical scheme. 
A practical problem often will be the lack of knowl- 

edge of the initial structural conditions in each node. 
When initially the sample is at rest after sufficiently 
long storage the structure may be considered fully re- 
covered, i.e. 2 (t = 0) = 20 -- 1. This can be best justi- 
fied when the theological parameters are determined 
from samples taken at time zero of the test. Indeed, in 
that case the reference value ro is the highest yield 
stress value to be expected (unless the material is al- 
lowed to recover even more in certain areas of the do- 
main which are left undisturbed). 
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It should be noted that the present model generates a 
non-zero initial stress in a fluid at rest, which value is 
determined by the initial value of the structural parame- 
ter, i.e. 7: () = 0) = 2z0. In reality, a dense cohesive se- 
diment suspension at rest will consolidate (effective 
stresses will develop) and it transforms into a soft soil 
with visco-elastic properties. Under an external shear 
force, the material will first deform elastically, until the 
stress within the material exceeds the yield value. This 
rapid initial visco-elastic stress build-up is missing in 
the present model. Therefore, the use of the model is 
restricted to visco-plastic flow behaviour only (i.e. 
when the yield stress is exceeded), e.g. for use with a 
Navier-Stokes solver. It is for this purpose that the mod- 
el has been developed. The elastic contribution is pre- 
sent in the model by Coussot et al. (1993), who pro- 
poses a Bingham model where the yield stress is de- 
scribed by a Maxwell-like viscoelasticity combined 
with a structural kinetics equation. 

Secondary structure 

Many investigations on clay and mud suspensions re- 
veal an initial yield stress which is significantly higher 
than the Bingham stress and the corresponding flow 
curve shows a minimum. Cheng (1986) distinguishes 
this high static yield (rs) stress from the lower dynamic 
yield stress (To), which is the extrapolated value of the 
EF curve (Fig. 3). For some materials the static yield 
stress can be attributed to a known secondary structure, 
which breaks down rapidly and recovers very slowly or 
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Fig. 3 Static and dynamic yield stress for the equilibrium flow curve 
of a 4% aqueous bentonite suspension. Symbols=experimental data 
( C o u s s o t  e t  al . ,  1993); dotted line=curve fit, excluding static yield 
stress rs (Eq. 9); solid line=including Ts (Eq. 15). Parameter values: 
Ts= 154.2 Pa, T o =  105 Pa, rB= 110 Pa, #oo =0.064 Pa.s, /~0=0.2 Pa.s, 
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only under specific ambient conditions. An explanation 
for the occurrence of a static yield stress in some clay 
suspension (e.g. Englund and Wan (1984) found a 
stress minimum in the flow curve of concentrated ben- 
tonite suspensions, but not for kaolinite) does not seem 
to be known. 

Although it is still a subject of discussion whether a 
flow curve minimum is physically possible, several ob- 
servations seem impossible to be explained otherwise. 
A flow curve with a minimum leads to unstable flow 
phenomena. For instance, with a simple experimental 
test and a theoretical model (in which thixotropy is not 
taken into account) Engelund and Wan (1984) showed 
that the existence of a flow curve minimum provides 
the only explanation for observed clogging behaviour 
and subsequent water level oscillations in hyperconcen- 
trated river flow. This was verified by comparison of 
tests on suspensions with bentonite (flow curve mini- 
mum, oscillating flow) and kaolinite (no minimum, 
stable flow). 

A simple way to include the secondary structure in 
the equation of state is to add a new term to the equa- 
tion of state with a second structural parameter ;Ls: 

~ = 2 s  (zs - ~ )  + 2z~ + (/-too + c2 + /~Ae) ;~  (15) 

The parameter 2s can be computed from a second rate 
equation of the same form as for the primary structure. 
Notice that flow curve data, such as presented in Fig. 3, 
can be fitted with different sets of model parameters for 
Eq. (15). Additional experimental data are required to 
determine the only correct values. The correctness of 
this equation, both physically and mathematically, and 
of the determination of its parameters requires further 
investigation. 

The simulation of start-up flow data, presented below, 
required the inclusion of a secondary structural contribu- 
tion, in order to predict correctly the overshoot peaks. 
Equation (15) proved to be useful for this purpose. 

However, the occurrence of a stress minimum in 
flow curves obtained with conventional viscometers 
should be reviewed in the light of possible biassing of 
the measurements due to wall slip. 

Simulation of transient behaviour 

Stress decay/recovery at constant shear rate 

Nearly all published simulations of transient behaviour 
of thixotropic fluids are restricted to relaxation under a 
constant deformation rate, which often can be described 
by a linear relationship given by Eq. (12) (e.g. Tiu and 
Boger, 1974; Nguyen and Boger, 1985). 

For any point of the EF curve, the sudden change 
from one rotation speed to a higher or lower one results 



E.A. Toorman 61 
Thixotropy model for cohesive sediment suspensions 

2 o!, 3 ,5 501 
200' : 2.5 "G' ~ ..,¢o- 

', 2 ~ ~ 3 s  
to  ~ 150 "~, ~ m . , ~  ~ ~ 30 
~-- F -  K 

to~° . ' ...................................................................... 0.5 r-to ~ 25 -i, i 

........................ is ~2o-" 100 

50 ~. 15- 

• 10- 

0 0 5 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o.g 1 0 

TiME (s) 

Fig. 5 Comparison between measured (dashed lines) and computed 
(full lines) stress relaxation at a constant shear rate of 48.6 s-1 for 
different initial values of the structural parameter in a 14% aqueous 
bentonite suspension. Experimental data from Mylius and Reher 
(1972). Best correspondence for a rate equation of order n= 1.5 

Fig. 4 Comparison between start-up flow of a 4% bentonite-water 
mixture for ")=0 ~ 100 s -1 ([]=experiment; upper full fine=simula- 
tion), ~=0 ~ 50s -1 (A = experiment; dashed fine=simulation) and 
"~=300 ~ 100 s -1 (x=experiment; lower full line= simulation). 
Dotted line=assumed shear rate evolution relative to 100 s -] (T= 
0.013 s). Experimental data from Coussot et al. (1993). Parameter val- 
ues (the same for all simulations) as in Fig. 3 and b=0.09, bs=0.02 

in a stress over- or undershoot respectively because the 
material requires time to adapt to the new shear distri- 
bution. The maximum stress is thus reached after a fi- 
nite time. The simulation of the data presented by 
Coussot et al. (1993), assuming a sudden change in 
shear rate, predicts the stress peak to occur nearly im- 
mediately (also in the simulation by Coussot et al. 
themselves), unlike the experimental data. Hence, the 
relatively large delay in the occurrence of the stress 
maximum cannot be explained by the material response 
as described by the present or Coussot's model. It can 
only be simulated if it is assumed that the shear rate 
change takes a certain time (Fig. 4), which may corre- 
spond to a certain response time of the devive to a 
change in rotation speed (e.g. inertia of the rotating 
body or the gearing system). Therefore, in the simulation 
of Coussors data, a change in shear rate from 70 to )1 is 
imposed as )(t) = 70 + (71 - 70)( 1 - exp(-t/T)) 3, 
where T is a reference time scale for the transition period. 

The result of the model simulation is presented in 
Fig. 4. The break-down parameter values have been ca- 
librated with the experimental data. The other parameter 
values are obtained from the EF curve. It is assumed 
that the material initially is at equilibrium. The occur- 
rence of a higher stress peak for a smaller step change 
in the experiment is unexpected, unless the initial struc- 
ture was stronger than assumed. 

Also one stress relaxation experiment by Mylius and 
Reher (1972) has been simulated (Fig. 5). Here again, 
the flow curve (Fig. 6) shows a stress minimum. The 
flow curve has been obtained in a narrow gap con- 
centric cylinder viscometer in which it is expected that 
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wall depletion is very important. Therefore the flow 
curve may be completely biassed as wall depletion im- 
plies the measurement of much smaller shear stresses 
than obtained if the material was sheared within itself 
(Barnes, 1985). Nevertheless, accounting for the appar- 
ent secondary structure gives reasonable agreement with 
measurements. Not all of the experimental curves fol- 
low a perfect exponential decay or reach the same equi- 
librium value as in the model prediction (Fig. 5). This 
illustrates the difficulty of reproducing the same initial 
structural conditions in the experiment, which is another 
possible cause of the deviations between experiment 
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and computation. Notice that the difference between the 
experimental flow curve data points and those obtained 
with Yang and Krieger's (1978) shear rate calculation 
method do not differ much (Fig. 6), which indicates that 
a linear approximation of the velocity profile in a nar- 
row gap configuration at high rotation speeds can be ac- 
ceptable. 

Hysteresis 

All sorts of numerical experiments can be carried out 
by computing the stress evolution for a certain imposed 
shear rate history. In Fig. 7 the simulation of a cyclic 
shear rate history, is shown giving the typical hysteresis 
loops. This ultimately results in an equilibrium loop, 
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Fig. 2 and a=0.01 s -1. Full line: 2( t=0)= 1; dashed line: )~(t=0)=0; 
centred line=effect of added fictitious secondary structure (rs=20 Pa, 
fls=2 s, bs=0.5); dotted line=equilibrium flow curve 

which shape is determined by the rate of change of the 
shear rate and which intersects the EF curve at two 
points (at least if the maximum applied shear rate is 
large enough) as expected (Cheng and Evans, 1965). 
Comparison of these model results with experimental 
data by Gabrysh et al. (1962, 1963) shows that the pre- 
dicted hysteresis behaviour is very realistic. Often a 
small overshoot peak at low shear rate occurs in the 
published data, which again suggests the presence of a 
secondary structure. Indeed, addition of a secondary 
structure term, as in Eq. (15), can produce such a peak 
(Fig. 7 a). 

Simulation of Couette flow 

The velocity profile over the gap of a concentric cylin- 
der viscometer can be computed as the solution of the 
angular (or tangential) momentum conservation equa- 
tion: 

Ou Oca _ 1 0 ( r2 T ) Or 22 
p - ~  = pr Ot r 2 Or = ~ + r 

- -  r 2 Or  r3 /A = 3/A + r-~r -~r 

where: u = tangential velocity (0-component of the velo- 
city vector), co=u/r=angular velocity and r=radial co- 
ordinate. This equation can be written in many different 
ways, depending on how the derivatives are further de- 
veloped. Some of these forms lead to unstable schemes. 
Equation (16) is discretized with a first-order implicit 
finite difference scheme as follows: 

cai -- cai,O =B/A/cai+l -- cai-1 
pri At 2Ar 

ri F/Ai+I @/Ai cai+l -- cai 

+ Art l 2 Ar 

/Ai +/Ai-1 cai - coi_l ] (17) 
2 Ar J 

This equation is solved together with Eqs. (8) and (14). 
This has to be done iteratively because they are non-lin- 
ear since the viscosity is a function of the shear rate, 
which is described by a central difference discretization 
of the velocity gradient. The boundary conditions are: 
Cabob = f~(t) and COc,p = 0 rad/s.  

In the Figs. 8-10 the results of the numerical solu- 
tion of the flow field in a controlled rotation speed con- 
centric cylinder viscometer for a fictitious rotation 
speed history are shown. The bob radius is 10 mm and 
the cup radius is 15 mm. Over the gap 100 nodes have 
been taken. The time step At = 1 s. The rheological pa- 
rameters of the hectorite suspension from Fig. 2 have 
been used. 
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Fig. 8 Simulated shear stress and shear rate evolution at the bob 
wall for a classical stepwise controlled rate concentric viscometer test 
(with rotation speed change spread over a small, finite period; theolo- 
gical parameters as in Fig. 2) 
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When a sudden step-change in rotation speed as it 
occurring in one time step is imposed as boundary con- 
dition, there is often oscillation of the solution due to 
the overshoot peak (depending on the value of the time 
step). When the change of the rotation speed is allowed 
to vary rapidly, but continuously over a small, finite 
period, the stress peaks reduce (this could physically re- 
present the response time of the device, as mentioned 
above). In the simulation the delay of the velocity 
change is obtained by applying relaxation to the bob 
surface velocity boundary condition. 

Figure 8 shows the time evolution of the imposed ro- 
tation speed and the computed shear rate and shear 
stress correspondingly. The results clearly show that the 
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Fig. 10 Computed shear rate, shear stress and structural parameter 
profile evolution (arrows) for a step change from ~ = 3 0  to 60 rpm 
(parameters as in Fig. 2) 

shear rate follows a transient behaviour and does not 
follow the rotation speed immediately. In Fig. 9 the his- 
tory of the shear stress and the structural parameter jn 
function of the shear rate is shown. At each step 
change of the rotation speed the stress suddenly 
changes while the structure remains the same (horizon- 
tal arrow). Subsequently, both stress and structure 
slowly return to the equilibrium condition correspond- 
ing to the actual rotation speed. 

Figure 10 shows computed profiles of shear rate, 
shear stress and structure at different time steps between 
the initial and the final equilibrium state during the 
change from a certain rotation speed to a higher one. 
The material is only partially sheared over the wide 
gap. The computed shear rate and stress profiles show 
nicely how the yield surface, where ~ = 0, moves 
further away from the centre (from ry/rb ~ 1.14 to 1.19) 
with increasing the rotation speed and even shows an 
overshoot during the transient period. The shear rate 
profiles clearly show how thin the actual sheared layer 
is (only about 2 mm in this case). The solutions deviate 
from the expected solution when the radius approaches 
the (time-dependent) yield radius. This is because of the 
problem of the infinite vicosity beyond the yield radius, 
which cannot be dealt with numerically. In practice, the 
maximum viscosity must be delimited. This corre- 
sponds to a so-called bi-viscosity approach, often ap- 
plied for yield stress fluids (e.g. Beverly and Tanner, 
1992; Toorman, 1992). This is obtained by limiting the 

1 minimum shear rate to 10 s - .  
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Conclusions 

The rheological behaviour of dense cohesive sediment 
suspensions is time-dependent due to changes in the 
flocculated structure as a result of shear rate variations. 
It is a thixotropic fluid. The degree of structure is quan- 
tified with the introduction of a structural parameter. 
The yield stress seems to be the most convenient mea- 
surable property to represent the structural parameter. 

Application of the structural kinetics theory, as pro- 
posed by Moore (1959), allows the construction of the 
equation of state for the description of any flow history 
of a cohesive sediment suspension. The basic model in- 
troduces five parameters, of which four can be deter- 
mined from the equilibrium flow curve. The fifth pa- 
rameter can be obtained from a recovery experiment or 
from other transient data. 

Several data sets suggest the existence of a static 
yield stress, higher than the equilibrium or dynamic 
yield stress. This could indicate the presence of a dou- 
ble structure (i.e. possible two types of interparticle 
bonds exist). The secondary structure, corresponding to 
the static condition, probably extends throughout the 
sample and is possibly related to a certain state as ob- 
tained during consolidation. Its recovery seems to be 
much slower than that of the primary structure. The 
model has been extended to account for this phenomen- 
on by introducing a second structural parameter. How- 
ever, the interpretation of equilibrium flow curves with 
a minimum should be reviewed in the light of the likely 
occurrence of wall depletion. 

Two data sets for clay suspensions from the litera- 
ture, presenting the equilibrium flow curve and constant 
structure curves, are well described by the new model. 
Next, the model has been validated with transient data. 
Unfortunately, the data sets found in the literature are 
suspected to be biassed by the occurrence of wall slip. 
Nevertheless, two sets of published data for a step- 
change in shear rate experiment on bentonite suspen- 
sions could be simulated reasonably well. The fact that 
these data sets can be simulated satisfactorily indicates 
that the proposed model may be a very useful tool for 

the mathematical description of the thixotropic beha- 
viour of clay and related material suspensions. 

The occurrence of stress overshoots after a step- 
change in deformation rate are generally overestimated 
and occur nearly immediately according to the model. 
In reality a delay of the stress peak is observed and the 
peak period is wider. This can be completely explained 
and simulated by considering a continuous, rather than 
a sudden change in the deformation rate. This seems to 
be more realistic because of inertia effects in rheometri- 
cal devices. 

Results from tests of the model (e.g. the hysteresis 
test) provide an explanation for the underprediction of 
the rheological parameters, which have been obtained 
through conventional flow curve measurements (see e.g. 
the mud pumping simulation by Toorman, 1992). In- 
deed, in the latter case one obtains values which corre- 
spond rather close to equilibrium values. Due to the 
combined effects of slow break-down and recovery 
these values may never be reached in reality. The hys- 
teresis test shows that the equilibrium hysteresis has 
two intersections with the EF curve. Hence the actual 
viscosities can be much higher than those obtained 
from the EF curve. 

Other data sets suggest that fi may be dependent on 
the shear rate or that in many cases the rate equation 
should be of higher order (Toorman, 1995). This re- 
quires further investigation. The importance of wall slip 
effects should be studied in more detail. The elimina- 
tion of wall slip for dense flocculating fine-sediment 
suspensions is a problem because the effective shear 
layer thickness in conventional viscometers is often too 
thin (Toorman, 1994). 
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