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5Laboratoire de Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS, Université de Strasbourg/EOST), 5 rue René
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S U M M A R Y

A 2-D numerical model for brittle creep and stress relaxation is proposed for the time-

dependent brittle deformation of heterogeneous brittle rock under uniaxial loading conditions.

The model accounts for material heterogeneity through a stochastic local failure stress field,

and local material degradation using an exponential material softening law. Importantly, the

model introduces the concept of a mesoscopic renormalization to capture the co-operative

interaction between microcracks in the transition from distributed to localized damage. The

model also describes the temporal and spatial evolution of acoustic emissions, including their

size (energy released), in the medium during the progressive damage process. The model

is first validated using previously published experimental data and is then used to simulate

brittle creep and stress relaxation experiments. The model accurately reproduces the classic

trimodal behaviour (primary, secondary and tertiary creep) seen in laboratory brittle creep

(constant stress) experiments and the decelerating stress during laboratory stress relaxation

(constant strain) experiments. Brittle creep simulations also show evidence of a ‘critical level

of damage’ before the onset of tertiary creep and the initial stages of localization can be

seen as early as the start of the secondary creep phase, both of which have been previously

observed in experiments. Stress relaxation simulations demonstrate that the total amount of

stress relaxation increases when the level of constant axial strain increases, also corroborating

with previously published experimental data. Our approach differs from previously adopted

macroscopic approaches, based on constitutive laws, and microscopic approaches that focus on

fracture propagation. The model shows that complex macroscopic time-dependent behaviour

can be explained by the small-scale interaction of elements and material degradation. The fact

that the simulations are able to capture a similar time-dependent response of heterogeneous

brittle rocks to that seen in the laboratory implies that the model is appropriate to investigate

the non-linear complicated time-dependent behaviour of heterogeneous brittle rocks.

Key words: Probability distributions; Microstructures; Creep and deformation; Acoustic

properties; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

A detailed knowledge of time-dependent brittle deformation mech-

anisms, such as brittle creep (also known as static fatigue) and

stress relaxation, is a vital prerequisite for understanding the long-

term behaviour of the rocks found within the Earth’s upper crust

(Karato & Li 1992; Wang et al. 1994). Its comprehension is there-

fore not only crucial for assessing geophysical hazards such as earth-

quake rupture (Main & Meredith 1991) and volcanic eruption (Main

1999; Kilburn 2003; Heap et al. 2011), but for the construction and

long-term stability of engineering structures such as underground

mines and excavations (Kaiser & Morgenstern 1981; Diederichs

& Kaiser 1999) and nuclear waste repositories (Nara et al.

2010).

Deformation during laboratory brittle creep experiments is nor-

mally explained in terms of time-dependent, subcritical crack

growth (Atkinson 1984). In the Earth’s brittle upper crust, stress

corrosion cracking is often considered the most prevalent subcriti-

cal crack growth mechanism (Atkinson 1982, 1984) and is powered

by reactions that occur between a chemically activated geofluid

(commonly water) and the strained atomic bonds at the tips of

microcracks within a material (Michalske & Freiman 1982, 1983;
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1782 T. Xu et al.

Freiman 1984; Hadizadeh & Law 1991). Such reactions facilitate

microcrack growth (and ultimately sample failure) without the need

for an increase in the applied differential stress and at lower applied

differential stresses than anticipated from the short-term failure

characteristics of the material. Three regimes are usually observed

during brittle creep experiments (when the measured strain is plotted

against time): primary creep or transient creep (decelerating strain

rate), secondary creep or steady-rate creep (constant strain rate)

and tertiary or accelerating creep (accelerating strain rate). The end

of the tertiary creep phase is signalled by the dynamic rupture of the

test sample (Scholz 1968). This kind of trimodal behaviour (note

that although it is generally accepted that this behaviour is the result

of subcritical crack growth, not all are exclusively interpreted in

terms of stress corrosion cracking, especially carbonate rocks) has

been observed in sandstone (Baud & Meredith 1997; Heap et al.

2009a,b; Yang & Jiang 2010), granite (Kranz 1979), basalt (Heap

et al. 2011), oolitic iron ore (Grgic & Amitrano 2009) and limestone

(Rutter 1972). In the primary creep phase, the strain rate deceler-

ates with time via a power law. This experimental law was first

observed in metals (Andrade 1910), and then for other materials,

such as glass (Charles 1958; Maes et al. 1998), rocks (Lockner

1993b; Singh 1975) and composite materials (Nieh 1984; Tuttle

& Brinson 1986; McMeeking 1993; Madgwick et al. 2001). The

strain rate during secondary creep is considered to be essentially

constant (see the ‘bath-tub’ curve, fig. 8 in Heap et al. 2009a) and

depends strongly on the applied differential stress (see Heap et al.

2009a), the presence of a reactive species (Kranz et al. 1982; Grgic

& Amitrano 2009) and the sample temperature (see Heap et al.

2009b). The sensitivity of the creep strain rate (the strain rate dur-

ing the secondary creep phase) to the applied differential stress has

been illustrated for granite (Kranz 1980; Lockner 1993b), sandstone

(Baud & Meredith 1997; Ngwenya et al. 2001; Heap et al. 2009a;

Yang & Jiang 2010) and basalt (Heap et al. 2011). In general, the

experimentally derived relationship between differential stress and

creep strain rate, that is, differential stress = f (creep strain rate),

can be adequately fitted to either a power law or an exponential law

(e.g. see Ngwenya et al. 2001; Heap et al. 2009a). The non-linearity

of the process is highlighted by the values found for the exponents

to these fits (for example, at an effective confining pressure of 30

MPa, the power law exponents for sandstone (Heap et al. 2009a) and

basalt (Heap et al. 2011) were calculated at 45 and 32, respectively).

Since brittle creep is facilitated by a chemically activated process,

sample temperature has also been observed to greatly increase the

creep strain rate during secondary creep (see Kranz et al. 1982;

Heap et al. 2009b). Kranz et al. (1982) observed a decrease in the

time-to-failure in brittle creep experiments on granite by up to three

orders of magnitude upon increasing sample temperature from 24

to 200 ◦C. Similarly, Heap et al. (2009b) experimentally observed

an increase in creep strain rate of three orders of magnitude from 20

to 75 ◦C in experiments on sandstones. Tertiary creep and eventual

sample failure (by means of a shear fault under triaxial stress con-

ditions) have been ascribed as the result of the sample reaching a

microcrack density at which microcracks can interact and coalesce,

known as the ‘critical damage threshold for tertiary creep’ (Kranz

& Scholz 1977; Kemeny 1991; Baud & Meredith 1997; Miura

et al. 2003; Heap et al. 2009a, 2011). A power law acceleration of

strain rate has been postulated for the tertiary creep phase (Voight

1989; Main 2000). Recently, a power law model has been used to

fit the tertiary creep curves for a suite of experiments on basalt at

different constant applied differential stresses (Heap et al. 2011).

Results of their maximum-likelihood model illustrate that the ter-

tiary creep exponent shows no strain rate dependence and its value is

consistent with accelerating power law exponents observed in anal-

ogous natural systems, such as tectonic seismicity rates and seis-

micity and strain rates before volcanic eruptions.

Stress relaxation describes the time-dependent decay of stress

within a stressed elastic body under a constant strain (i.e. the length

of the sample is constant). During experimentation, the stored elastic

strain energy in the test sample dissipates over a period of time

through plastic deformation, allowing the value of stress supported

by the sample to decay over time. Stress relaxation experiments by

Rutter & Mainprice (1978) have highlighted that the strength of their

sandstone samples was dramatically weakened by the presence of

water at strain rates less than about 10−6 s−1. In contrast, the strength

of their dry samples showed a distinct insensitivity over a wide range

of strain rates. Stress relaxation experiments on samples of tuff have

shown there to be an exponential relationship between the load decay

and time (Peng & Podnieks 1972). Stress relaxation tests under

uniaxial compression for four rock types (conducted on a hydraulic,

servo-controlled stiff testing machine) have shown that the rock

stress relaxation curves exhibit two kinds of typical relaxation laws:

continuity and discontinuity (Li & Xia 2000). The stress relaxation

during creep convergence of a deep borehole excavated in rock salt

(at depth and non-equal far-field stresses) shows that sudden failure

is possible due to the slow variation of the stresses (Paraschiv-

Munteanu & Cristescu 2001).

Although laboratory experiments are an essential pre-requisite

for our understanding of time-dependent brittle deformation of

rocks, they can be experimentally challenging due to their long

(and sometimes ultra-long) duration. For example, recent data on

brittle creep from Heap et al. (2011) demonstrated that a basalt

from Mt Etna would fail after approximately 4400 min at a strain

rate of 2.4 × 10−9 s−1. However, if the laboratory data are extrap-

olated to 10−10 s−1, the experiment would last approximately 81 d;

and at 10−11 s−1, it would last almost two and a half years. Since

such experiments can be rather unfeasible in the laboratory, mod-

elling becomes an increasingly important tool to access the natural

strain rates observed in the Earth’s brittle upper crust. A variety

of approaches have been used to model the time-dependent brittle

deformation of materials, including rocks. Constitutive laws, based

on laboratory experiments, can provide a relation between strain,

stress and strain rate (Voight 1988; Lockner 1998; Shao et al. 2003;

Challamel et al. 2005). For instance, Costin (1985) developed a con-

tinuum damage model for the deformation of brittle materials based

on the mechanics of microcrack nucleation and growth. The model

was extended to include the effect of interaction among neighbour-

ing microcracks during the evolution of damage. With the inclusion

of interaction effects, a variety of non-linear, time-dependent be-

haviour such as constant stress rate loading, creep and uniaxial

strain can be realistically modelled. A constitutive law consisting

of a strain hardening approach with separate creep and relaxation

functions has been proposed by Haupt (1991), showing that when

compared with conventional steady-state creep equations, the vis-

cous behaviour of rock salt could be described more realistically.

A constitutive model for creep deformation in rock has also been

derived by Shao et al. (2003) to describe the main time-dependent

deformation features observed in cohesive frictional geomaterials

(in this case, rock and concrete), such as plastic deformation, dam-

age, volumetric dilation, pressure sensitivity, rate dependency and

creep. Challamel et al. (2005) developed a simple time-dependent

softening model to be applied to quasi-brittle materials to describe

phenomena like relaxation, creep and rate-dependent loading using

a unified framework. The model could be viewed as a generaliza-

tion of a time-independent damage model and is based on strong
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Modelling time-dependent rheological behaviour 1783

thermodynamical arguments. Models, such as those outlined above,

have successfully reproduced the behaviour of different types of

rocks under different loading conditions (creep, constant stress

rate or strain rate). Other approaches to modelling creep involve

a network of elements that interact by distributing the applied load

equally among all of the intact elements, such as the concept of

fibre bundles (e.g. Turcotte et al. 2003; Newman & Phoenix 2001).

Each element represents the mesoscale, much larger than the size

of one microcrack, and much smaller than the size of the system or

medium. These models can only provide the temporal evolution of

strain and damage during creep, and cannot model its spatial distri-

bution, localization before failure or the size distribution of damage

events. More recently, Amitrano & Helmstetter (2006) proposed a

finite element model based on static fatigue laws to model the time-

dependent damage and deformation of rocks under a constant stress.

They used an empirical relation between time-to-failure and the ap-

plied stress to simulate the behaviour of each element. Their model

produces a power law distribution of damage event sizes, aspects of

localization and the trimodal behaviour seen in experimental brit-

tle creep curves. A micromechanical model for subcritical crack

growth has been proposed by Kemeny (1991), by incorporating

Charles’ power law relation into a ‘sliding crack’ model. The model

reproduces the trimodal form of the creep curve, indicates that there

is a critical density of microcracks at the onset of tertiary creep and

allows time-to-failure predictions. At the microscopic scale, other

studies have modelled the macroscopic strain using the growth of

individual microcracks (Lockner & Madden 1991; Lockner 1993a).

Lockner & Madden (1991) developed a numerical multiple-crack

interaction model to simulate the failure process in brittle solids

containing a significant population of flaws. Lockner (1993b) de-

rived a time-dependent model for the temporal evolution of strain

based on reaction rate theory and reproduced empirical laws be-

tween strain rate and stress during secondary creep. Macroscopic

creep models of power law form (Charles 1958) and of exponen-

tial form (Hillig & Charles 1965; Wiederhorn & Bolz 1970) have

been developed to apply the concept of stress corrosion-controlled,

time-dependent cracking to large-scale geophysical problems. In

practice, it can sometimes be hard to discriminate between power

law and exponential rheology, due to the high stress sensitivity

and the low bandwidth of stresses available (Ngwenya et al. 2001;

Heap et al. 2009a). In the mean-field theory of damage mechanics,

Horri & Nemat-Nasser (1985) developed a mean-field theory for the

acoustic emissions (AEs) and dilatancy related to microcracking by

considering a population of initially weakly interacting microcracks,

with a transition to strong interactions and failure when the mean

crack density reached a critical threshold. Main (2000) further de-

veloped the mean-field theory of damage mechanics and suggested

a simple damage mechanics model for the apparently trimodal be-

haviour of the strain and event rate dependence, by invoking a phase

of strain hardening involving distributed crack damage, and a phase

of strain softening involving crack interaction and coalescence. The

model of Main (2000) has been applied to recent experimental data

sets (Heap et al. 2009a, 2011).

In this manuscript, we present a time-dependent material soften-

ing model to simulate the time-dependent deformation of heteroge-

neous brittle rocks under constant uniaxial compressional loading.

We also model the accompanying AE, which is considered as a

macroscopic consequence of the progressive degradation of mate-

rial structure at the mesoscale. First, the time-independent model

and time-dependent model are described and validated by previously

published experimental data. We then present and discuss the results

of our simulated brittle creep and stress relaxation experiments. Fi-

nally, the underlying mechanisms for the transition from primary

to tertiary creep in heterogeneous brittle rocks are discussed us-

ing the relative roles of the renormalization, the stochastic strength

field, the progressive localization and the transition from tensile to

shear mechanism at different stages of damage evolution. In this

work, we only present the modelling of time-dependent behaviour

of heterogeneous rock in uniaxial compression. The modelling of

the time-dependent behaviour of rock in triaxial loading and the

extension of the model to coupled poromechanical behaviour will

be the focus of future manuscripts.

2 D E S C R I P T I O N O F T H E N U M E R I C A L

M O D E L

The model is based on the theory of elastic-damage mechanics and

assumes that the damage is elastic and isotropic. The model accounts

for material heterogeneity through a stochastic local failure stress

field, and local material degradation using an exponential material

softening law (i.e. different to the approach adopted by Amitrano &

Helmstetter 2006). The maximum tensile strain criterion and a mod-

ified Mohr-Coulomb criterion with a tension cut-off are adopted as

two damage thresholds in the model. This approach makes it pos-

sible to simulate the transition from distributed damage by tensile

microcracking to damage where microcracks can interact, coalesce

and ultimately form a shear fault. The model also describes the

temporal and spatial evolution of AEs, including their size (energy

released), in the medium during the progressive damage process.

Our approach differs from similar models, such as Amitrano &

Helmstetter (2006), by accounting for heterogeneity by allowing the

material strength and Young’s modulus to follow a Weibull statis-

tical distribution. Weibull distributions are often used in the field

of failure analysis due to their flexibility, and have been adopted

by many researchers (Gulino & Phoenix 1991; Singh & Behrendt

1994; Tang 1997; Gupta & Bergstrom 1998; Fang & Harrison 2002;

Van Mier et al. 2002; Xu et al. 2004). Amitrano & Helmstetter

(2006) introduce heterogeneity by assuming that the cohesions of

the elements conform to a uniform distribution. In addition, we in-

corporate two further statistical distributions: a uniform and normal

distribution. Successful numerical simulations have previously used

the Weibull distribution, normal distribution and uniform distribu-

tion to account for material strength and Young’s modulus (Liang

2005). Furthermore, our model can visually replicate the tempo-

spatial evolution of the shear stress fields, the associated AE and

a rich assortment of other parameters, such as compressive stress,

tensile stress, displacement vector, stress vector and Young’s modu-

lus during the time-dependent brittle deformation of heterogeneous

rock under a constant uniaxial compressive stress.

The model therefore allows us to simulate a large range of ob-

servations from the laboratory scale (Tang 1997; Tang et al. 2000)

to the in-situ macroscopic scale (Xu et al. 2006; Tang et al. 2008),

and even the crustal scale (Tang et al. 2003). We first summarize

the main features of our time-independent model, and then focus

on incorporating a time dependence to the deformation.

2.1 Time-independent model

In the model, the system is analyzed at the mesoscale, and its stress-

strain relationship can be described by an elastic damage constitu-

tive law. Continuum damage mechanics can describe the effects of

progressive microcracking, void nucleation and microcrack growth

at high stress levels using a constitutive law, by making use of

a set of state variables modifying the material behaviour at the

macroscopic level. Using an isotropic continuum damage

C© 2012 The Authors, GJI, 189, 1781–1796
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1784 T. Xu et al.

formulation, the constitutive law for an isotropic and elastic material

at instantaneous loading can be written as (Lemaitre & Chaboche

2001)

εi j =
1 + ν

E
σi j −

ν

E
σkkδi j , (1)

E = E0(1 − D), (2)

where εi j is the damaged elastic strain tensor, σi j is the stress tensor,

E and E0 are the Young’s moduli of the damaged and the undamaged

material, respectively, D is the isotropic damage variable, ν is the

Poisson’s ratio and δi j is the Kronecker symbol. In the case of a

uniaxial state of stress (σ11 �= 0, σ22 = σ33 = 0), the constitutive

relation can be rewritten in terms of the longitudinal stress and strain

components only:

σ11 = E0(1 − D)ε11. (3)

Hence, for uniaxial loading, the constitutive law is explicitly

dependent on damage index D.

The model is based on progressive isotropic elastic damage.

When the stress on an element exceeds a damage threshold, its

Young’s modulus E is modified according to eq. (2). In the begin-

ning, each element is considered to be elastic, defined by a specific

Young’s modulus and Poisson’s ratio. The stress–strain curve of the

element is considered linear elastic with a constant residual strength

until the given damage threshold is reached. This proceeded by a

phase of softening. The maximum tensile strain criterion and modi-

fied Mohr-Coulomb criterion with tension cut-off (Brady & Brown

2004; Jeager et al. 2007) are selected as two damage thresholds. At

any time, the tensile strain criterion is preferential since the tensile

strength of rock is far lower than its compressive strength (Jeager

et al. 2007).

Specifically, when the mesoscopic element is under uniaxial ten-

sile stress, the linear elastic constitutive law (with a given specific

residual strength) can be illustrated as in Fig. 1. No initial damage

is incorporated in this model and, in the beginning, the stress–strain

curve is linear elastic and no permanent damage occurs. When the

maximum tensile strain criterion is met for a given element, the el-

ement is damaged. According to the constitutive law of mesoscopic

element under uniaxial tension (as shown in Fig. 1), the damage

evolution of element D can be expressed as

D =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, ε < εt0,

1 −
σtr

εE0

, εt0 ≤ ε < εtu,

1, ε ≥ εtu,

(4)

Figure 1. Elastic damage constitutive law of an element under uniaxial

tensile and compressive stress.

where σtr is the residual uniaxial tensile strength and σtr = λσt0,

where λ is the residual strength coefficient and σt0 is the uniaxial

tensile strength at the elastic strain limit εt0. εtu is the ultimate

tensile strain of the element. Eq. (4) indicates that an element would

be completely damaged when the tensile strain of the element attains

this ultimate tensile strain.

Since it is assumed that the damage of a mesoscopic element

in a multi-axial stress field is also isotropic and elastic, the above-

described constitutive law for uniaxial tensile stress can be extended

to 3-D stress states. Under multi-axial stress states, an element is still

damaged in a tensile mode when the equivalent strain ε̄ (Lemaitre

& Desmorat 2005) attains the aforementioned threshold strain εt0.

The constitutive law for an element subjected to multi-axial stresses

can be easily obtained by substituting the strain ε in eq. (4) with

equivalent strain ε̄. The equivalent strain ε̄ is defined as follows:

ε̄ =

√

〈ε1〉
2 + 〈ε2〉

2 + 〈ε3〉
2, (5)

where the equivalent strain ε̄ =
√

〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2, where ε1,

ε2 and ε3 are the three principal strains, 〈 〉 stands for the positive

part of a scalar and 〈x〉 = (x + |x |)/2.

Similarly, when the element is under uniaxial compression, and

damaged in shear mode according to the Mohr–Coulomb criterion,

the damage variable D can be described as follows:

D =

⎧

⎪

⎨

⎪

⎩

0, ε > εc0,

1 −
σcr

εE0

, ε ≤ εc0,
(6)

where σcr is the residual uniaxial compressive strength and is defined

as σcr = λσc0. In the model, it is assumed that σcr/σc0 = σtr/σt0 = λ

holds true when the mesoscopic element is under uniaxial compres-

sion or tension.

Shear damage occurs when an element is under multi-axial stress

state and satisfies the Mohr–Coulomb criterion, and the effect of

the other principal stresses in the model during damage evolution

process is considered. When the Mohr–Coulomb criterion is met,

the maximum compressive principal strain εc0 at the peak value of

the minimum principal stress is given by

εc0 =
1

E0

[

fc0 +
1 + sin ϕ

1 − sin ϕ
σ3 − µ (σ2 + σ3)

]

. (7)

In addition, it is assumed that the damage evolution is only related

to the maximum compressive principal strain ε1. Therefore, the

maximum compressive principal strain ε1 of damaged element is

used to substitute the uniaxial compressive strain ε in eq. (6). Thus,

eq. (6) above can be extended to biaxial or triaxial stress states:

D =

⎧

⎪

⎨

⎪

⎩

0, ε̄ > εc0,

1 −
σcr

ε̄E0

, ε̄ ≤ εc0.
(8)

From the above derivation of damage variable D (which is gen-

erally called the damage evolution law in damage mechanics) and

eq. (3), the damaged Young’s modulus of an element at differ-

ent stress or strain levels can be calculated. The unloaded element

keeps its original Young’s modulus and strength prior to its strength

threshold. That is to say, the element will elastically unload and

no residual deformation will occur in the simulation. It must be

emphasized that when D = 1, eq. (3) stipulates that the damaged

Young’s modulus will be zero, which would make the system of

equations ill-posed. Therefore, a relatively small value (1.0e−0.5)

is given for the Young’s modulus under this condition.

C© 2012 The Authors, GJI, 189, 1781–1796
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Modelling time-dependent rheological behaviour 1785

In the absence of heterogeneity, the behaviour of the model is

entirely homogenous, no damage localization occurs and the lo-

cal behaviour is replicated at the macroscopic scale. Thus, it is

necessary to introduce heterogeneity to obtain a collective macro-

scopic behaviour different from those of the elements. To reflect the

material heterogeneity at a mesoscale, the mechanical parameters

(e.g. strength and Young’s modulus) of the mesoscopic material

elements, which are assumed to be homogeneous and isotropic, are

assigned randomly from the Weibull statistic distribution (Weibull

1951) as defined in the following statistic probability density func-

tion:

σ (u) =
m

u0

(

u

u0

)m−1

exp

[

−

(

u

u0

)m]

, (9)

where u is the scale parameter of an individual element (such as the

strength or Young’s modulus) and the scale parameter u0 is related

to the average element parameter. The shape parameter m reflects

the degree of material homogeneity and is defined as a homogeneity

index. According to the Weibull distribution and the definition of

homogeneity index, a larger m implies that more elements will have

the mechanical properties similar to the mean value, resulting in

a more homogeneous material. Fig. 2 shows two numerical spec-

imens that are composed of 20 000 (200 × 100) square elements

of the same size, produced randomly according to the Weibull dis-

tribution and using the same uniaxial compressive strength scale

parameter 100 MPa. The only difference is their homogeneity in-

dices (m). Fig. 2(a) has an m of 2, whereas Fig. 2(b) has an m of

10. In Fig. 2, the different grey scale corresponds to different values

of element strength. The corresponding stochastic distribution his-

togram of element strength is presented in Fig. 3. It shows that the

strengths of the elements are distributed in a narrower range around

the mean value when m is higher. Therefore, high values of m lead

to more homogeneous numerical specimens, and vice versa. There-

fore, the homogeneity index is an important parameter to control

the macroscopic response of a numerical specimen.

AEs are transient elastic waves generated by the rapid release of

energy within a material, such as the strain energy released during

microcrack propagation. Monitoring AE during deformation has

become an increasingly important diagnostic tool in material sci-

ence and has provided a wealth of information regarding the failure

process in brittle materials. AE monitoring has shed light on the

onset of microcracking during deformation (or C′, see Wong et al.

1997), the evolution the spatial and temporal progression of micro-

cracks (e.g. Knill et al. 1968; Ohnaka 1983; Lockner 1991; Lockner

1993a; Benson et al. 2007; Brantut et al. 2011), and can be used in

failure forecasting modelling (e.g. Bell et al. 2011a,b). For instance,

Lockner et al. (1991) and Lockner (1993a) analyzed catalogues of

AE events recorded during compressive loading tests on rock. The

events were analyzed in terms of the information they offer about the

accumulated state of damage in a material. This measured damage

state can be combined with a model for the weakening behaviour

of cracked solids, showing that reasonable predictions of the me-

chanical behaviour are possible. Based on this prior knowledge, it is

reasonable to assume that the number of AE events is proportional

to the number of damaged elements and the strain energy released

(the strain energy before and after damage) corresponds to the en-

ergy of that particular AE event (Tang 1997; Tang et al. 1997). In

our model, we can use the output of AE to indirectly assess the dam-

age evolution. However, it must be mentioned that aseismic damage

during rock brittle creep tests could possibly occur. The sources of

aseismic damage can be numerous, for example: the low surface

energy of calcite, radiated energy being absorbed by neighbouring

dislocation and/or intermittent dislocation flow (Weiss & Marsan

2003; Schubnel et al. 2006), amongst many more. Although this

approximation is obviously a simplification of what occurs in re-

ality, it has been shown that this micromechanical representation

of microcracking can yield realistic patterns and can reproduce the

macromechanical behaviour of heterogeneous rock.

The cumulative damage, ψ , in a given volume of rock, due to

local failures, can be defined as the ratio of the volume of failed

rock, V f , to the total volume V :

ψ =
Vf

V
=

ve

∑s

1 ni

Nve

=
1

N

s
∑

1

ni , (10)

where ve is the volume of single element, s is the number of cal-

culation steps, ni is the number of failed elements in the ith step

and N is the total number of elements in the model. For a perfectly

elastic brittle material, the energy ef released by the failure of each

element can be calculated from the element peak strength:

ef =
σ 2

0

2E
ve, (11)

Figure 2. Numerical specimens with different strength homogeneity index m. (a) m = 2 and (b) m = 10.
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1786 T. Xu et al.

Figure 3. Histogram of the strength of an element in a numerical specimen with a different homogeneity index (m). In this example, m = 2 and 10. (The

numerical specimen is shown in Fig. 2, which is composed of 20 000 elements and the scale parameter u0 is 100 MPa).

where σ 2
0 is the peak strength of the element and E is the Young’s

modulus of the element. The cumulative seismic energy can then

be obtained by:

∑

ef =
∑ σ 2

0

2E
ve =

ve

2

∑ σ 2
0

E
. (12)

Thus, by recording the number of failed elements, the AE asso-

ciated with the progressive failure of the material can be simulated

in our model.

2.2 Time-dependent model

In recent studies (Pietruszczak et al. 2004; Shao et al. 2006, 2003;

Amitrano & Helmstetter 2006), a general methodology has been

proposed for the description of brittle creep in rock in terms of

microstructural evolution. Shao et al. (2003) studied the time-

dependent deformation of rock in terms of the evolution of mi-

crostructure leading to the progressive degradation of the Young’s

modulus and the failure strength of the material. Based on these

principals, they proposed a constitutive model for brittle creep de-

formation in rock. A time-independent creep model has also been

developed based on dislocation mechanics at the continuum scale

that incorporates damage to simulate the creep of metal (Esposito &

Bonora 2009). Xu (1997) performed a series of brittle creep tests on

weak rock in uniaxial compression and suggested that the strength

and Young’s modulus of weak rock degraded with a similar law.

More recently, Heap et al. (2010) reported the degradation of elas-

tic moduli (Young’s modulus and Poisson’s ratio) with increasing

microcrack damage in experiments on gabbro, basalt, granite and

two sandstones.

As an approach to study the time-dependent deformation and

failure of rock, our time-dependent model is logically formulated

from the time-independent model presented above. In the model,

the time-dependent behaviour of rock is considered as a macro-

scopic consequence of evolution of microstructure at the elemen-

tary scale. The evolution of microstructure is a time-dependent

Figure 4. Schematic of the strength degradation law of an element.

progressive damage process. Based on a general understanding of

time-dependent behaviour of rocks, we assume that the material

degradation with time is due to the degradation of its internal ma-

terial properties (such as the elastic moduli), which is attributed

to microcracking within rock (Lin et al. 2009). We therefore intro-

duce a material degradation law, an exponential relation between the

time-dependent strength of each element and the time-to-failure of

each element, to model the failure of each element when subjected

to a constant stress σi (maximum stress on the element) smaller

than its short-term strength σ0,i as shown in Fig. 4 and expressed in

eq. (13):

σti = σ∞ +
(

σ0,i
− σ∞

)

e−a1ti , (13)

where σti is the time-dependent strength at time ti, σ∞ is the long-

term failure strength at time t approaching infinity, σ0,i
is the initial

short-term failure strength of each element and a1 is the coefficient

of strength degradation of the element. An element fails either when

the time t is equal to its failure time ti, or, during an avalanche,

when the stress σi on this element reaches the rupture criterion

σ0,i . The damage variable, the stress, the strength and the times-to-

failure of all elements are updated after each failure event. If we let

σ∞/σ0,i
= k, defined as the ratio of long-term failure strength to
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Modelling time-dependent rheological behaviour 1787

Figure 5. A flow chart for the numerical model.

the short-term failure strength, eq. (13) can be rewritten as

σti = σ0,i
[k + (1 − k) e−a1ti ]. (14)

This is the exponential relation between the time-to-failure of

each element and its normalized stress σi/σ0,i . Further, the Young’s

modulus of each element is assumed to follow a similar degradation

law as in eq. (14). The system is loaded by imposing a constant

stress σi on its upper boundary (for brittle creep experiments). The

simulation stops when the macroscopic strain reaches a threshold

(after macroscopic sample failure).

To clarify the implementation of our numerical model, a flow

chart of the model is shown in Fig. 5. It is important to note that

eq. (14) can be easily implemented into a numerical integration

algorithm using the finite element method, with nodal displace-

ments as the principal unknowns. By introducing a time-dependent

degradation of material properties into our model, the damaged be-

haviour with time can be obtained. In the model, the element may

degrade and damage gradually with time according to the elastic

damage constitutive relationship. The combined interaction of time-

dependent tensile damage and compressive shear damage leads to

the macroscopic failure of material. According to the general frame-

work described above, the model can use a unified approach for the

description of both short-term and long-term behaviour of hetero-

geneous brittle rock.

3 N U M E R I C A L S I M U L AT I O N S

3.1 Geometry of the modelled samples

The geometry of the modelled sample was 100 mm × 50 mm (the

same sample dimensions as in Li & Xia 2000) and was discretized

into a 200 × 100 (20 000 elements) square grid (i.e. each square

element had sides of 0.5 mm). The size of the modelled sample was

kept constant for all of the numerical simulations throughout this

paper. Steel end caps (10 mm thick and 50 mm wide) were applied

to both ends of the modelled rock sample. During the simulation, the

elements within the modelled rock sample are fixed in the vertical

direction but can move freely in the horizontal direction (as is the

case for uniaxial compressive loading).

3.2 Validation of the numerical model

The validity of our numerical model was tested via an attempt to

replicate previously published experimental data from uniaxial brit-

tle creep experiments on four different rocks (from Li & Xia 2000).

The rocks used in the experimental study of Li & Xia (2000) cover

a wide range of rock physico-mechanical properties (summarized

in Table 1) and are therefore represent an ideal data set to test our

model.
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1788 T. Xu et al.

Table 1. Physico-mechanical parameters of tested rock specimens.

Uniaxial

compressive Elastic Ultimate

strength modulus strain

Rock (MPa) (GPa) (per cent) Origin

Marble 120 70 0.23 Emei mountain,

Red

sandstone

60 17 0.67 Sichuan province

Sandstone 12 3 0.52 Shenbei coal field,

Claystone 5 1.5 0.55 Liaoning province

Table 2. Physico-mechanical parameters of model specimens.

Uniaxial

compressive Elastic

Homogeneity strength modulus Poisson’s

Rock index (MPa) (GPa) ratio

Marble 2 640 95 0.25

Red sandstone 2 188 24 0.3

Sandstone 2 37.5 4.8 0.3

Claystone 2 14 2.2 0.3

The Young’s modulus and the Poisson’s ratio of the marble (70

GPa and 0.25, respectively) and the red sandstone (17 GPa and 0.3,

respectively) were also retrieved from published literature (Wu &

Zhang 2003). For the sandstone and the claystone, the Young’s mod-

uli and Poisson’s ratios were estimated to be 3 GPa and 0.3 for the

sandstone, and 1.5 GPa and 0.3 for the claystone. A typical brittle

creep experiment involves holding a rock at a constant applied dif-

ferential stress for a protracted period of time (usually until failure).

For all of the experiments conducted by Li & Xia (2000), a fixed

percentage (75 per cent) of the short-term peak stress was used (i.e.

90, 44, 9 and 3.75 MPa for the marble, red sandstone, sandstone

and claystone, respectively). To rigorously test our model, the val-

idation simulations were set up using the rock physico-mechanical

properties and performed at the applied differential stresses outlined

above.

First, and before we can perform the numerical simulations, the

mechanical parameters (such as the mean uniaxial compressive

strength) for each of the model elements were obtained using a

back analysis method based on both the macroscopic rock physico-

mechanical properties (see Table 1) and the statistical distribution

relationship between the physico-mechanical parameters of the el-

ements at the mesoscale and the physico-mechanical properties of

rock samples at the macroscale. The computed physico-mechanical

parameters for elements within the modelled samples are listed

in Table 2. We must note that the mesoscale element parameters

listed in Table 2 represent the macroscale mechanical properties

of the rock sample. The ratio of the long-term failure strength

to short-term failure strength was set to 0.8 and the coefficient

of degradation of each element was chosen, by trial and error, to

be 0.05 s−1.

The simulated creep curves (curves of strain versus time at a con-

stant applied differential stress) are plotted in Fig. 6, together with

the published experimental data of Li & Xia (2000). Fig. 6 shows

that the simulated creep curves are in good agreement with the ex-

perimental creep curves. Furthermore, the simulations accurately

capture the trimodal nature of a classic experimental creep curve,

that is, the three creep phases (primary, secondary and tertiary), are

all observed. We therefore contend that, based on these validations,

our rheological model can be used to investigate the time-dependent

brittle response of inhomogeneous rock under uniaxial compression

loading conditions.

3.3 Modelling of basic mechanical properties

Prior to investigating brittle creep and the stress relaxation behaviour

of rocks, a constant displacement rate uniaxial experiment (i.e. a

conventional unconfined compressive strength experiment, or UCS

experiment) was conducted numerically to obtain the macroscopic

physico-mechanical properties of our studied rock. The mesoscale

physico-mechanical properties of the individual elements used in

Figure 6. Comparison between simulated brittle creep curves (red dashed lines) and experimental brittle creep curves (blue solid lines) from Li & Xia (2000).
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Modelling time-dependent rheological behaviour 1789

Table 3. Physico-mechanical parameters of numerical

model.

Items Specimen

Homogeneity index 1.5

Mean uniaxial compressive strength, MPa 200

Mean Young’s modulus, MPa 60 000

Poisson ratio 0.25

Ratio of compressive to tensile strength 10

Frictional angle, ◦ 30

the simulation are given in Table 3. The modelled sample was then

uniaxially loaded under a constant displacement rate.

The simulated constant strain rate of stress–strain curve and as-

sociated AEs are shown in Fig. 7. The model accurately simulates

the non-linear nature of a typical experimental constant strain rate

of stress-strain curve for heterogeneous brittle rock (see Paterson

& Wong 2005). The stress–strain response was first pseudo-linear

(elastic, recoverable strain) prior to the onset of dilational microc-

racking at about 9 MPa (as evidenced by the onset of AE output),

usually termed as C′ (see Wong et al. 1997). In terms of the simu-

lation, this represents the failure of individual elements within the

grid. Furthermore, at this early stage in the deformation, the distri-

bution of failed elements was diffused (i.e. not localized) throughout

the modelled sample. After the onset of dilational microcracking,

the curve deviated from pseudo-linearity as irrecoverable microc-

rack damage developed in the sample. Eventually, the sample failed,

reaching a peak stress (maximum strength) of about 30 MPa. Sam-

ple failure was the result of the failure of clusters of elements

(i.e. localized) and was accompanied by sharp burst in AE output

(Fig. 7).

The modelled final shear stress fields and final AE distributions

for the simulation are also shown in Fig. 7. The greyscale in the shear

stress field represents the relative magnitude of the associated shear

stresses, where lighter areas are indicative of higher shear stresses,

and vice versa. The black areas in the shear stress field represent

completely damaged elements (i.e. D = 1). In the AE distributions

of Fig. 7, each circle symbol represents one AE event. The size of

the circle represents the magnitude of the released energy and the

colour represents the type of event (white = shear crack induced

by a compressive stress and red = tensile crack induced by tensile

stress). A black circle represents a failed element or an AE event

in a former calculating step. The detailed spatial distribution of the

shear stress and the AE activity shows the location and orientation

of the shear fault that ruptured the sample. In this case, failure was

induced by two large conjugate shear faults (Fig. 7).

3.4 Modelling of brittle creep behaviour

The proposed model will now be used to simulate a suite of con-

ventional brittle creep experiments under different constant applied

differential stresses (i.e. we changed the ratio between the creep hold

stress and the short-term failure stress). Similar to laboratory brit-

tle creep experiments (e.g. see Heap et al. 2009a), the numerically

simulated brittle creep experiments consisted of two stages: (1) an

initial loading stage, where the sample is loaded (at the same rate)

to a pre-determined level of stress and (2) a constant stress stage,

where the sample is kept at a constant stress until macroscopic

sample failure or until it was clear that the sample would not fail

under the imposed constant stress in a reasonable time period (for

further details see fig. 1 in Heap et al. 2011). The numerical simula-

tions were all performed using the physico-mechanical parameters

presented in Table 3 and under uniaxial compressive loading con-

ditions. In addition to the constant displacement rate experiments

described above, to simulate time-dependent behaviour, the ratio

of the long-term failure strength to the short-term failure strength

and the coefficient of degradation of the element were set at 0.8

and 0.05 s−1, respectively. These parameters were maintained for

the steel end caps so that material degradation could not occur. The

constant stresses used in the simulations were 20, 21, 22, 23, 23.8,

24, 25 and 26 MPa. Since the modelled rock sample has a UCS of

30 MPa (see Fig. 7), these stresses equate to between 67 and 87 per

cent of the short-term failure stress. These stress ratios are within

the range where we should expect time-dependent brittle creep to

occur (see Heap et al. 2009a). The numerically modelled creep

curves (strain against time) together with the output of AE against

time for all of the brittle creep experiment simulations are presented

Figure 7. The stress–strain curve (solid blue line) and associated AE output (red bars) for a numerical sample deforming under a constant displacement rate

in uniaxial compression. The final plots of AE activity and shear stress field are also shown on the figure (see text for details).
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1790 T. Xu et al.

Figure 8. Creep (solid blue lines) curves and associated AE output (red bars) for constant stress simulations at constant stresses of (a) 26, (b) 25, (c) 24, (d)

23.8, (e) 23, (f) 22, (g) 21 and (h) 20 MPa. The final plots of AE activity and shear stress field are also shown on the graphs (see text for details).

Figure 9. Synopsis plots of the simulated creep curves shown in Fig. 8, showing (a) the creep curves, (b) the cumulative AE energy, (c) the calculated creep

strain rates on a log-linear plot and (d) the times-to-failure on a log-linear plot. (c) also shows some experimental data from Heap et al. (2009a). The green

triangle in (d) is the calculated time-to-failure for the simulation at 20 MPa (see text for details).

in Fig. 8. Further, we show synopsis plots of the creep (time ver-

sus strain) curves (Fig. 9a), the cumulative output of AE energy in

Joules (Fig. 9b), and the calculated creep strain rates (Fig. 9c) and

times-to-failure (Fig. 9d) for all of the simulations given in Fig. 8.

The results from the brittle creep simulations are also presented in

Table 4.

The simulations show that for the four lowest stress levels (be-

tween 67and 77 per cent of the short-term failure stress), sample

failure was not observed in the first 55 min and the simulations were

discontinued. These simulations did not result in sample failure and

only the primary and secondary creep phases were observed. The

strain and output of AE energy both decelerated with time (by a

power law or Andrade’s law, Andrade 1910) until both proxies for

sample damage reached what appear to be near-constant values.

However, in fact, the strain rates were not constant. The samples

were deforming at very slow strain rates. The creep strain rates

(the strain rate calculated from within steady-rate secondary creep)

were 3.1 × 10−9, 7.4 × 10−9, 9.3 × 10−9 and 1.5 × 10−8 s−1 for

the applied differential stresses of 20, 21, 22 and 23 MPa, respec-

tively. Heap et al. (2009a) postulated that the lower limit for brittle

creep is likely to be at the position of C′ (the lower limit of new

damage accumulation). For our simulated rock samples, the stress

C© 2012 The Authors, GJI, 189, 1781–1796
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Modelling time-dependent rheological behaviour 1791

Table 4. Results of the brittle creep simulations.

Applied Applied creep stress Resultant creep Time-to-

creep stress (per cent of the strain rate failure

(MPa) short-term peak stress) (s−1) (min)

20 66.7 3.1 × 10−9 –

21 70.0 7.4 × 10−9 –

22 73.3 9.4 × 10−9 –

23 76.7 1.5 × 10−8 –

23.8 79.3 5.9 × 10−7 32.4

24 80.0 7.2 × 10−7 27.8

25 83.3 2.4 × 10−6 14.9

26 86.7 3.7 × 10−6 4.5

at the position of C′ was about 9 MPa (Fig. 7), much lower than

the minimum stress we have used in our simulations. Therefore, it

is likely that although the proxies for sample damage (strain and

AE energy) were progressing at very low rates, it is likely that the

samples would have eventually failed if given the appropriate time.

Indeed, complete conventional creep experiments have been known

to last longer than 55 min (e.g. Heap et al. 2009a, 2011).

However, brittle sample failure was observed, and hence all three

creep phases (primary, secondary and tertiary) were obtained, for

the four highest levels of constant applied stress (between 79 and 87

per cent of the short-term failure stress). The strain first decelerated

to a steady rate, before accelerating to failure (approximately ex-

hibiting a power law function) after a period of time (Fig. 9a). The

output of AE followed a very similar trend (Fig. 9b). In terms of the

simulation, the increase in the rate of these proxies for sample dam-

age was the result of interactions among elements and increasing

damage induced by element degradation. At 86.7 per cent, the sam-

ple had a creep strain rate of 3.7 × 10−6 s−1 and failed after about

4.5 min (Fig. 8a), whereas at 79.3 per cent, the creep strain rate was

reduced to 5.9 × 10−7 s−1 and sample failure occurred after about

32 min (Fig. 8d). It is well known that during brittle creep experi-

ments, creep strain rate increases and time-to-failure decreases as

the constant applied differential stress is increased (e.g. see Kranz

1980; Baud & Meredith 1997; Heap et al. 2009a, 2011); a notable

feature during the deformation of heterogeneous brittle rock, since

brittle fracture is a stochastic process.

The axial strain at the onset of tertiary creep for the simulations at

the four highest stresses was found to be approximately equal (they

each enter tertiary creep between about 0.65 and 0.70 per cent axial

strain). At the onset of tertiary creep, a critical mass of failed indi-

vidual elements developed, and, at that point, they began to interact

(both on a local scale and through the renormalization of softening

in the model) and coalesce. This resulted in strong damage local-

ization and damage acceleration too fast for the decreasing strength

reduction rate, possibly associated with an increasing proportion

of shear failure events. This agrees with previously published data

that postulates the existence of a ‘critical level of damage’ required

before the onset of acceleration to failure, in both brittle creep ex-

periments (Kranz & Scholz 1977; Baud & Meredith 1997; Heap

et al. 2009a, 2011) and modelling (Kemeny 1991). These authors

consider that the acceleration to sample failure is linked to the point

at which microcracks can start to interact and coalesce, a feature

also reproduced by our model. However, Heap et al. (2009a) show

that the distribution of AE hypocenters during a brittle creep ex-

periment on sandstone hints that early stages of localization could

begin as early as the primary creep stage. It must be noted that the

durations of the tertiary creep phase in our simulations are approx-

imately equal, whereas experimental data (e.g. Heap et al. 2009a,

2011) show that the duration of the tertiary creep phase is reduced

as the applied differential stress is increased. Further work will con-

centrate on a solution to this discrepancy and will be reported in a

future manuscript.

The data from the simulated conventional brittle creep experi-

ments can be summarized in log-linear plots of creep strain rate

(Fig. 9c) and time-to-failure (Fig. 9d) versus applied differential

stress. Experiments have demonstrated that the plot of creep strain

rate versus differential stress forms a linear curve on a log-linear

plot (see inset in Fig. 9c, experimental data for sandstone from Heap

et al. 2009a), that can be adequately fitted with either a power law

or exponential law function. However, the modelled results do not

accurately replicate this behaviour and show a substantial jump in

creep strain rate between 23 and 23.8 MPa. This sharp increase

in creep strain rate marks the boundary between those simulations

that resulted in sample failure and those that were arrested at 55

min, and therefore did not fail (marked by a line in Fig. 9c). This

discrepancy cannot be due to the fact that the four experiments be-

tween 67 and 77 per cent of the short-term failure stress did not

reach secondary creep, and therefore the calculated strain rates are

inaccurate, as this would only serve to overestimate the strain rates.

Further, if the simulations were allowed to run until sample failure,

the sample at a constant stress of 20 MPa would fail after about

7000 min (calculated using the creep strain rate and the strain re-

quired to reach an axial strain of 0.65 per cent). Extrapolation from

the simulations that resulted in sample failure offers a failure time

between 1000 and 2000 min for 20 MPa (see Fig. 9d). Experimental

data have demonstrated that this kind of extrapolation is reasonable

within the range of strain rates achievable in the laboratory (Heap

et al. 2009a, 2011). Nevertheless, the model does accurately repli-

cate specific aspects of time-dependent brittle deformation during

a conventional brittle creep experiment, such as the trimodal creep

behaviour and the ‘critical level of damage’ required for the onset

of tertiary creep. The solution to the problem of the sharp increase

in creep strain rate between 23 and 23.8 MPa is non-trivial and

future work will concentrate on resolving this discrepancy and will

be reported in a subsequent manuscript.

The modelled final shear stress fields and final AE distributions

for the complete range of applied differential stress levels are also

shown in Fig. 8. Large discrete shear faults can be seen for the

simulations at the four highest stress levels (between 79 and 87

per cent of the short-term failure stress), whereas more distributed

damage can be seen for the four lowest stress levels (between 67 and

77 per cent). The detailed temporal evolution and spatial distribution

of the shear stress field and the AE activity for two of the simulated

brittle creep experiments are shown in Fig. 10. Fig. 10(a) shows the

evolution of damage for a simulation that did not result in failure

after 55 min (constant stress = 22 MPa) and Fig. 10(b) shows the

evolution of damage for a simulation that resulted in failure after

about 16 min (constant stress = 25 MPa). Adjacent to the shear

stress field and the AE activity, images are the creep curves for both

simulations, indicating the position of the time steps.

For the simulation conducted at 25 MPa (Fig. 10b), the initial

state of damage (i.e. the damage incurred during the loading stage

of the brittle creep simulation) was seen to be distributed throughout

the sample (Fig. 10b, panel i). This was due to the wide distribu-

tion of weak elements (local minima in the strength distribution)

in the modelled sample. Relatively few diffused AEs had occurred,

resulting in an initial non-interacting microcrack network. Shear

cracks dominated the deformation (white circles represent shear

cracks and the red circles represent tensile cracks) during the initial

loading of the modelled sample. As damage accumulated in the

C© 2012 The Authors, GJI, 189, 1781–1796
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1792 T. Xu et al.

Figure 10. Snapshots of the shear stress field and the AE activity from brittle creep simulations at (a) 22 and (b) 25 MPa. The times of the snapshots are given

below the panels (in minutes) and their locations on the creep curve are shown in the adjacent strain-time plots.

sample during the creep phase of the simulation, the number of

distributed local minima decreased and the microcracking became

increasingly clustered (Fig. 10b, panel vi), thus involving increas-

ingly more adjacent elements, that is, microcrack interaction (both

on a local scale and through the renormalization of softening in the

model) and coalescence was in motion. Indeed, a localized cluster

of tensile microcracking had formed in the top right of the sample

after just 5.3 min. After 12 min, the focus of damage had switched

to another localized zone parallel and immediately below the first

cluster. As the number of failed elements increased within these two

localized zones of damage, adjacent elements were exploited due

to their now reduced strength (when compared to other elements

far from the damaged zones). This stress concentration produced a

strong damage localization that more than overcame the decreas-

ing strength reduction rate, possibly associated with an increasing

proportion of shear failure events. In other words, the clusters pro-

duced their own stress fields that dominated further microcrack

growth. Eventually, the elements in and surrounding the localized

zones of damage became mechanically unstable and there was the

sudden collapse of sample structure, resulting in the formation of

two through-going shear faults (Fig. 10b, panel viii). The ultimate

failure of the sample, commensurate with a large number of small

tensile microcracks, exploited both of the earlier-formed clusters of

damage. The question of when damage starts to localize during a

brittle creep experiment is certainly an interesting one, and has been

discussed by many authors. During the initial stages of deforma-

tion, it is difficult to predict the location of the eventual shear fault.

However, perhaps, the beginning stages of a localized fault plane

can be observed in the 22 MPa simulation (Fig. 10a) from about

28.3 min onward, running northwest–southeast through the sample

(most clearly seen in the AE activity plots). As discussed above,

the same is true in the simulation conducted at 25 MPa (Fig. 10b).

Using the benefit of hindsight (i.e. looking at the final panel (viii)),

we can see that damage started to localize one of the eventual fault

planes after only 5.3 min (and can be seen in both the shear stress

and AE activity plots). In terms of the creep curve, this corresponds

to a position just after the onset of secondary steady-rate creep.

These observations are in agreement with the experimental find-

ings of Heap et al. (2009a) and Yanagidani et al. (1985). Heap

et al. (2009a) showed that in triaxial brittle creep experiments on

sandstone, AE hypocenters suggested that localization could start

as early as the primary creep phase. Yanagidani et al. (1985) came

to a similar conclusion based on uniaxial experiments on granite.

However, it must be noted that there is contradictory data (Hirata

et al. (1987) showed that clustering and localization increases as

creep progresses, with the biggest changes occurring during the ter-

tiary creep phase) and theories (e.g. the ‘critical level of damage’

theory, as explained above, suggests that the acceleration signalling

the start of the tertiary creep phase is due to microcrack interaction,

coalescence and localization).

In addition, the numerical simulations suggest that the evolution

of strain or AE during primary and secondary creep could be used to

forecast the time of macroscopic failure of material. A similar con-

clusion, based on creep experiments, was reached by Scholz (1972)

who suggested that the only characteristic time for the evolution of

the damage rate during brittle creep is the time of macroscopic fail-

ure. This is also in agreement with the experimental and analytical

results of Nechad et al. (2005a, 2005b) for heterogeneous material.

They found that the macroscopic time-to-failure was proportional

to the duration of the primary creep regime.

3.5 Modelling of relaxation behaviour

Relaxation tests have been numerically conducted with different ini-

tial constant axial strain levels (160, 240, 320, 400 and 650 µε) and

are presented in Fig. 11(a). The physical and mechanical parameters

C© 2012 The Authors, GJI, 189, 1781–1796
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Figure 11. (a) Simulated relaxation curves for the constant strains of 160, 240, 320, 400 and 650 µε. (b) The final AE activity plots for each of the stress

relaxation simulations shown in (a).

of the model specimens are the same as those used for the above

brittle creep simulations (available in Table 3). The simulated sam-

ples were all loaded at the same rate. The curves of Fig. 11(a) clearly

show pronounced stress relaxation over time. The total amount of

stress relaxation increased when the level of constant axial strain

was increased. For example, at 650 µε, the stress relaxed by about

10 MPa, whereas at 160 µε, the stress was only reduced by about

1 MPa. In all of the experiments, the rate of stress relaxation de-

creased during the course of the experiment; indeed, after about

30 min, with the exception of the 650 µε curve, the curves settled

down to a seemingly constant level of stress. However, the sample

held at the highest constant axial strain (650 µε) failed at about

27 min (see Fig. 11b), after which the stress dropped to 0 MPa.

The final AE distributions for all five simulations are shown in

Fig. 11(b). It illustrates that the number of AE events in the samples

increased with increasing level of constant axial strain and, at 650

µε, the deformation was localized and a shear fault was formed.

These numerical data are corroborated by the experimental studies

of Li & Xia (2000).

A simulated stress relaxation curve with different strain level

steps is shown in Fig. 12(a). When the first strain level of 640 µε

was applied and kept constant, the stress relaxed from point (i)

(30 MPa) to point (ii) (24.8 MPa). The rate of stress relaxation

decreased over time, as observed in the previous simulations (see

Fig. 11a). When the second strain level of 660 µε was applied and

sustained, there was no initial increase in the axial stress, instead

C© 2012 The Authors, GJI, 189, 1781–1796
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Figure 12. (a) Multistep stress relaxation simulation showing both the re-

laxation of the stress with time (solid blue line) and the associated AE output

(red bars). (b) and (c) Snapshots of the shear stress fields and the AE activity,

respectively, for the positions labelled in (a).

the stress relaxed further, and at an increased rate, from 24.8 to

22.4 MPa. The initial stage of this stress drop was commensurate

with a large spike in AE activity (about 900 AEs). After about a

minute had passed under a constant strain of 660 µε (point (iii)),

there was another, and this time larger, stress drop accompanied

by another burst of AE activity (about 500 AEs). This stress drop

marked the failure of the sample. Figs 12(a) and (b) show the shear

stress fields and the AE activity obtained from the experiment at

points (i)–(iv) (as indicated in Fig. 11), respectively. Fig. 12(b)

shows that the AE activity associated with changing the constant

level of axial strain from 640 to 660 µε was localized on the eventual

failure surface. The stress drop commensurate with point (iii), which

signalled the failure of the sample, extended the beginning stages

of localization from point (ii) to form a through-going fault that

ruptured the sample. It follows that, in nature, stress relaxation in

rock should be important in regions of the crust that are highly

stressed. The mechanism of stress relaxation has therefore been

previously discussed in relation to earthquakes (Yang & Toksöz

1981) and volcanoes (Palano et al. 2009). Further, since it has been

postulated that stress relaxation occurs prior to earthquake rupture

(Gao & Crampin 2004; Crampin et al. 2008) and volcanic eruption

(Bianco et al. 2006), an increased understanding may be useful in

geophysical hazard prediction.

4 C O N C LU S I O N S

(1) We have presented a 2-D numerical model in an attempt to

replicate the time-dependent brittle deformation of heterogeneous

rock and the associated AE, under a constant uniaxial compressive

stress. The model accounts for material heterogeneity through a

stochastic local failure stress field, and local material degradation

using an exponential material softening law. Importantly, the model

introduces the concept of a mesoscopic renormalization to capture

the co-operative interaction between cracks in the transition from

distributed to localized damage. We have validated our model using

previously published experimental data and then used it to sim-

ulate conventional brittle creep experiments and stress relaxation

experiments.

(2) Our model reproduces the classic trimodal behaviour (pri-

mary, secondary and tertiary creep phases) seen in conventional

laboratory brittle creep experiments. Our simulations also show ev-

idence of the ‘critical level of damage’ before the onset of tertiary

creep commonly observed in laboratory experiments, and could add

to the debate as to when localization initiates during a brittle creep

experiment: our modelled output shows that the initial stages of

localization can be seen as early as the start of the secondary creep

phase. However, when compared with experimental data, the model

does not yet accurately reproduce the dependence of the applied

differential stress on the creep strain rate and time-to-failure.

(3) Our model reproduces the decelerating stress relaxation dur-

ing constant strain simulations. Our simulations demonstrated that

the total amount of stress relaxation increased when the level of

constant axial strain was increased. Our numerical data corroborate

with previously published experimental data.

(4) Our approach differs from previously adopted macroscopic

approaches, based on constitutive laws, and microscopic approaches

that focus on fracture propagation. The model shows that the com-

plex macroscopic time-dependent behaviour of heterogeneous brit-

tle rocks can result from the small-scale interaction of elements

and material degradation. The fact that the simulations are able to

capture a similar time-dependent response of heterogeneous brit-

tle rocks to that seen in the laboratory implies that our rheological

model is appropriate to investigate the non-linear complicated time-

dependent behaviour of heterogeneous brittle rocks.

(5) Our findings can be applied to the investigation of the time-

dependent instability of rock masses, to the mitigation of associated

rock hazards in rock engineering, and to a better understanding

of geological and geophysical phenomena occurring in the Earth’s

brittle upper crust.
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