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Abstract

Background: Dynamic transmission models are increasingly being used to improve our understanding of the

epidemiology of healthcare-associated infections (HCAI). However, there has been no recent comprehensive review

of this emerging field. This paper summarises how mathematical models have informed the field of HCAI and how

methods have developed over time.

Methods: MEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically searched for

dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial resistance in healthcare

settings.

Results: In total, 96 papers met the eligibility criteria. The main research themes considered were evaluation of

infection control effectiveness (64%), variability in transmission routes (7%), the impact of movement patterns between

healthcare institutes (5%), the development of antimicrobial resistance (3%), and strain competitiveness or co-

colonisation with different strains (3%). Methicillin-resistant Staphylococcus aureus was the most commonly modelled

HCAI (34%), followed by vancomycin resistant enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were

rarely investigated (3%). Very few models have been published on HCAI from low or middle-income countries.

The first HCAI model has looked at antimicrobial resistance in hospital settings using compartmental deterministic

approaches. Stochastic models (which include the role of chance in the transmission process) are becoming

increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and sensitivity

analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but their application is

increasing. Only 5% of models compared their predictions to external data.

Conclusions: Transmission models have been used to understand complex systems and to predict the impact of

control policies. Methods have generally improved, with an increased use of stochastic models, and more advanced

methods for formal model fitting and sensitivity analyses. Insights gained from these models could be broadened to a

wider range of pathogens and settings. Improvements in the availability of data and statistical methods could enhance

the predictive ability of models.
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Background
Healthcare-associated infections (HCAI) continue to

cause a major burden on society, affecting more than 4

million patients annually in Europe alone, and causing

an estimated 16 million additional bed-days responsible

for €7 billion in direct medical costs [1]. In the United

Kingdom, interventions such as improved hand hygiene,

antibiotic stewardship and screening combined with

decolonisation are believed to have set off a steep reduction

in reported incidence of health care-associated methicillin-

resistant Staphylococcus aureus (MRSA) bacteraemia and

Clostridium difficile infection with peak incidence in

2003/04 and 2007/08 respectively [2]. Further progress in

reducing the burden of HCAI is hindered by uncertainty

surrounding the role of asymptomatic carriers [3,4],

environmental transmission [5-7] and the recent emer-

gence of bacteria other than MRSA and C. difficile, such as
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enterobacteriaceae (e.g. Escherichia coli) [8]. Mathematical

models are increasingly being used to obtain a deeper

understanding of epidemiological patterns in hospital

infections and to guide hospital infection control

policy decisions, as is seen in other areas of infectious

disease epidemiology [9].

A previous review of the area provided insight into the

type of models used for hospital epidemiology and

highlighted their capacity to increase epidemiological

understanding, and inform infection control policy [10].

This review, conducted in 2006, primarily aimed to

explain the capacities of models and therefore was

limited to a detailed description of a number of

studies. Hence, the emerging trends in the area were

not fully explored. Since 2006 the field has expanded

considerably. We conducted a systematic review in

order to establish how mathematical models have

been applied in the field of HCAI, and how model

methods have developed over time.

Methods
We searched Medline (1950 to present), EMBASE (1947

to present), Scopus (1823 to present), CINAHL (1937 to

present) and Global health (1910 to present). Results

were limited to peer-reviewed publications in English.

Search terms and Medical Subject Headings (MeSH) for

nosocomial organisms and antibiotic resistance were

combined with search and MeSH terms for healthcare

settings and mathematical models as follows:

� Nosocomial infections in general (e.g.”healthcare-

associated infection$” or “hospital-acquired infection$”)

OR

� Nosocomial organisms (e.g. “C. difficile” or

“Staphylococcus aureus”) OR Antimicrobial

resistance AND Nosocomial (e.g. “hospital$” or

“healthcare”)

AND

� Mathematical modelling or economic evaluation

model (e.g. “stochastic” or “deterministic” AND

“model”)

We decided not to use search terms for nosocomial

infection types (e.g. surgical site infections or urinary tract

infections), since our review focuses on the transmission

of infections from one individual to another, which cannot

generally be accurately represented without knowing the

causative organism.

The complete search strategy is provided in the

Additional file 1. All databases were search identically,

with exception of the MeSH terms, which were

altered to the subject-heading dictionary used in each

particular database. The final search was conducted

on 11 December 2011. Each title and abstract in the

search result was independently screened by EvK and

at least one of the other authors. Full text evaluation was

conducted by EvK and in case of uncertainty, discussion

took place with JR.

Inclusion criteria

Eligible studies had to fulfil the following criteria: 1)

mathematical modelling of HCAI transmission and/or

the dynamics of antimicrobial resistance; 2) dynamic

transmission models only (i.e. a model which tracks the

number of individuals (or proportion of a population)

carrying or infected with a pathogen over time, while

capturing the effect of contact between individuals on

transmission [9]); 3) a primary focus on HCAI transmission

in healthcare settings.

Exclusion criteria

Studies were excluded if they did not involve: 1) human

to human transmission; or did involve 2) within host trans-

mission only; 3) pharmacodynamics and pharmacokinetics

of drugs (e.g. the impact of antibiotic exposure, exploring

antibiotic tolerance and investigating fitness), 4) animal

transmission of HCAI; 5) community transmission of

pathogens spread in the healthcare environment as

well, where community spread was the focus of the

paper (e.g. SARS epidemics); or 6) literature review

without new primary studies. Moreover, no editorials

or letters to editors were included, except if a new

mathematical model was introduced.

Results
The database search retrieved 2461 unique papers

(Figure 1). After screening the titles and abstracts,

302 papers met the inclusion criteria and were thus

eligible for full text evaluation. Review of the full text

publications resulted in the inclusion of 94 relevant

papers based on our selection criteria. An additional two

papers were identified via reference screening [11,12].

The distribution of these 96 papers over time demon-

strates that HCAI transmission models have been increas-

ingly employed since the introduction of the first model of

nosocomial pathogens’ spread [13] (Figure 2).

Objectives of mathematical models of HCAIs

Pathogens modelled

Although HCAIs are often associated with antibiotic-

resistant bacteria, HCAI models have involved antimicro-

bial susceptible pathogens as well. In this review, studies

that did not specify a particular pathogen of concern, but

that claimed to investigate antimicrobial resistant bacteria,
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were classified as antimicrobial resistant bacteria (ARB).

Otherwise, the study was categorised as ‘HCAI in general’.

Moreover, as the majority of patients can carry HCAI such

as MRSA and C. difficile asymptomatically, many mathem-

atical models simulate the epidemiology of colonisation,

however for brevity we have referred to all models as

concerning the epidemiology of HCAI in the text.

Figure 3 shows that MRSA was the most common

bacterial species studied (34%; 33 studies) [14-46],

followed by Vancomycin-resistant Enterococcus (VRE)

(or glycopeptide-resistant enterococci) (16%; 15 studies)

[12,18,28,31,47-57] whereas C. difficile has rarely been

the subject of a model (3%; 3 studies) [58-60]. As

several studies investigated the dynamics of more

than one pathogen, the total number of infection

agents (N=102) listed in Figure 3 exceeds the total

number of studies (N=96).

Intervention effectiveness

The first model of HCAI conceptualised the spread of

antibiotic resistance in bacterial populations among

hospital patients [13]. This was soon followed by models

evaluating the effectiveness of interventions to reduce

antibiotic resistance (e.g. antibiotic cycling or mixing).

5171 records identified through 
database searching (357 from CINAHL 

plus, 1285 from EMBASE, 556 from 

Global Health, 1061 from Medline, 
1912 from Scopus)

2 additional records 
identified by reference 

searching

2461 records after duplicates removed

2461 records screened
2159 records excluded after 
title-abstract selection based 

on eligibility criteria 

302 full-text articles assessed 
for eligibility

96 of studies included in 
qualitative synthesis 

208 full-text articles 
excluded based on eligibility 

criteria 

Figure 1 PRISMA flowchart.

Figure 2 Number of HCAI modelling publications over time (1993–2011). Number of studies identified on modelling of HCAI and

antimicrobial resistance spread in a nosocomial setting according to year of publication.
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Since then, most HCAI models have aimed to quantify

infection control effectiveness (64%; 62 studies). The

infection control measures most frequently considered

among these 62 papers have been: hand hygiene (37%;

23 studies), patient isolation (24%; 15 studies), HCW

cohorting (23%; 14 studies), antibiotic stewardship (21%;

13 studies), and screening (18%, 11 studies). Figure 4

provides an overview of the main interventions mod-

elled over time, emphasising that decolonisation and

vaccination are more recent subjects of study. Moreover,

Figure 3 Pathogens modelled in a nosocomial setting (1993–2011). Number of studies identified on nosocomial infection transmission

according to pathogen type. MRSA= Methicillin resistant Staphylococcus aureus; ARB = Antimicrobial resistant bacteria; VRE = Vancomycin-resistant

Enterococcus; HCAI = Healthcare associated infections; ILI = Influenza-like illness; SARS = Severe acute respiratory syndrome; TB= Tuberculosis;

R-GNR= Third generation cephalosporin-resistant Gram-negative rods; HIV = Human immunodeficiency virus; ESBL = Extended-Spectrum

Beta-Lactamases; CRE = cephalosporin-resistant Enterobacteriaceae.

Figure 4 Main interventions evaluated over time (1993–2011). Main interventions evaluated over time (1993–2011). Illustration of the

proportionate distribution of the seven most commonly investigated interventions by means of a modelling framework by the total number of

publications in each time period.
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a wider variability of interventions has been evaluated

in the later years. Table 1 illustrates the type of inter-

ventions that have been evaluated for each HCAI

pathogen.

Furthering epidemiological understanding

Models are often used to increase epidemiological

understanding. Hospital surveillance data, which is

frequently used to inform HCAI models, can lack detail

in what is needed for modelling purposes. For example,

information on asymptomatic carriage and timing of

events (e.g. infection) are often lacking. Several studies

use new statistical methods to overcome such difficulties

[31,36,48] and to allow for estimation of important

epidemiological parameters (e.g. transmission rates)

from different data sources, varying from routinely

collected hospital data [56,57] to strain typing [63] or

genotype data [64]. Others use modelling techniques to

determine the relative importance of potential transmis-

sion reservoirs or acquisition routes (of C. difficile [58,60],

VRE [50,53], cephalosporin-resistant Enterobacteriaceae

(CRE) [65] and SARS [66].

The ecological dynamics of pathogens have also been

explored using models, including antimicrobial resistance

[13,67,68]; co-colonisation with different pathogen

strain types [27,46] and competition between strains

[24]. Another more recent subject of study is the

potential impact of readmission of patients from settings

such as long-term care facilities (LTCFs) or the community,

as well as general movement patterns between healthcare

institutes and/or the community on the transmission

of MRSA [19,25,38,69], antimicrobial resistance [70]

and HCAI in general [71].

Economic outcomes were not considered in dynamic

transmission models until 2011 [14,23,72]. Three recent

papers applied dynamic modelling techniques to estimate

the economic burden of disease (MRSA) [22] and

norovirus [69], and to investigate economic incentives for

infection control investments [73].

Country of study

A number of studies (36%, 32 studies) did not specify a

particular national setting. Of the publications that did;

only three studies (3%) explored transmission of HCAI

in lower and lower middle income countries [22,74,75]

and another three looked at upper middle income

China [15,66,76]. Studies have mainly concentrated

on the United States (16%; 15 studies), the United

Kingdom (13%; 12 studies) and the Netherlands (10%;

10 studies).

Table 1 Definitions of modelling terms

Term Definition

Deterministic model A model in which there is no role of chance in the evolution of the states of the system, i.e. the model is
‘predetermined’ by the parameters and initial conditions [61].

Stochastic model A model in which random (stochastic) processes can affect whether certain events or processes occur (e.g. the rate
at which individuals are infected can vary by chance) [61].

Compartmental model A model in which the population is divided into subgroups (i.e. compartments), which represent the average values
of individuals in a particular state (e.g. susceptible, infectious or recovered). Within each compartment, all individuals
are homogenous [9].

Individual-based model A model in which single individuals are tracked rather than subgroups. Hence, each individual can be assigned
different characteristics such as the probability of acquiring infection or causing transmission [9].

Model fitting/ model
calibration

The inference of unknown parameters by choosing their values in order to approximate a set of data as well as
possible. Examples of model fitting methods are least squares approximation maximum likelihood estimation and
Markov Chain Monte Carlo Methods [62].

Model validation Comparison of model predictions to external data, that is a model should be validated against observations from
alternative data to the data used for model fitting [62].

Univariate sensitivity
analysis

Investigation of uncertainty in model parameters and its impact on model predictions by means of altering one
parameter at a time whilst holding others at their base-case value.

Bi/ multivariate sensitivity
analysis

Investigation of uncertainty in model parameters by means of alteration of two (or more) parameters at a time whilst
holding others at their base-case value.

Probabilistic sensitivity
analysis

A type of multivariate sensitivity analysis where multiple runs of the model are performed with random selection of
input parameters.

Dynamic transmission
model

A model which tracks the number of individuals (or proportion of a population) carrying or infected with a pathogen
over time, where the risk of transmission to susceptible at a given point in time is dependent on the number of
infected (or colonised) individuals in the community [9].

Static model A model where the transmission risk is treated as a parameter exogenous to the model, i.e. it does not change with
the number of infectious individuals in the population [9].

Force of infection The rate at which infected individuals become infected per unit time [61]
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Methods employed for mathematical modelling of HCAIs

Stochastic vs. deterministic

The first HCAI models captured transmission dynamics

in single wards using deterministic approaches [13,16].

As the population size in a single ward or hospital is

likely to be small, a stochastic modelling approach may

often be more appropriate as it can take account of the

role of chance in determining transmission patterns.

In Table 2, a definition of the modelling terms used

for model classification is provided. Figure 5a shows

that the proportion of stochastic models has increased

steadily over time, and as Figure 6 illustrates, stochasticity

was soon introduced (in 1997) [77] after publication

of the first (deterministic) HCAI model. Several stud-

ies developed both a stochastic and a deterministic

version of a similar compartmental model to investigate

whether projected intervention effects were partly a

result of random fluctuation [18,35,40,78-80]. Others

use a deterministic model to interpret the findings of

a stochastic model [81].

Compartmental vs. individual-based

Infectious disease models can have either an aggregate

(or compartmental) structure (which tracks groups in

the population) or an individual-based structure (which

tracks individuals). The latter enables better incorporation

of heterogeneity in patient characteristics such as patient

demographics, contact patterns and disease history, but at

the cost of increased computational burden. To date, most

(73%; 70 studies) HCAI models have taken an aggregate

approach, although the proportion of individual-based

models has increased over time (Figure 5a). In total, 26

publications (27%) took an individual-based approach of

which seven papers (8%) used both compartmental and

individual-based modelling [25,34,60,72,83,95,96].

Model fitting to data

Model parameter values can be based on existing stud-

ies, assumptions, or estimated directly from data [103].

Unknown parameters, such as infection transmission

rates, can be inferred by calibrating a model to empirical

data. With the increasing availability of computational

power, numerically-intensive statistical methods for

parameter inference have become more accessible. As

Figure 5b shows, although only 35% (34 studies) of HCAIs

models have incorporated some sort of calibration process

to empirical data, this proportion has increased over

time. Metrics used to quantify goodness of fit include

the least square criterion (minimisation of sums of

squares between the observed data and the model

predictions) [21,56,57,75], maximum likelihood estimation

(identification of the parameter value(s) that makes the

observed data most likely) [18,22,24,35,53,63,65,66]

and since 2007, Bayesian methods; frequently using

Markov Chain Monte Carlo (MCMC) approaches

[19,32,40,41,50,58,64,76] or a combination of MCMC

and maximum likelihood estimation [36,59]. A further

seven studies reported fitting their models by comparing

model predictions to observed epidemiological data

but did not apply any formal quantitative approach

[17,29,43,60,81,101,104].

Uncertainty in model predictions

Infectious disease models are developed and informed

using a combination of available evidence, for example

on infection transmission, disease natural history and inter-

vention effectiveness. As availability of such information is

unlikely to be complete, mathematical models inherently

include some degree of uncertainty. This uncertainty may

relate to model parameter values, model structure (e.g. in

terms of disease states incorporated and the relationship

between them) or methodology used [9,105].

Parameter uncertainty was investigated by 36% of the

studies (35 publications). As Figure 5b illustrates, similar

trends as seen for the application of formal model

calibration apply for the inclusion of parameter uncertainty.

Also the methods used for parameter uncertainty

have become more complex over time (Figure 5c). Of

the 35 studies that have investigated parameter uncer-

tainty, univariate sensitivity analysis (i.e. alteration of one

parameter at a time whilst holding others at their

base-case value) was conducted by 43% (15 studies)

[18,28,29,43,44,46,60,63,69,77,81,83,89,91,99]. The more

computationally expensive probabilistic sensitivity analysis

(formulation of uncertainty in the model inputs by a joint

probability distribution, and propagating this uncertainty

to the outputs [106]) is in general considered a rigorous

method to account for uncertainty in the joint distribution

of the parameters. This was employed by 51% (18

studies) [14,32,36,40-42,48,50,57-59,64,75,76,78,95,96,98]

among which Latin Hypercube Sampling (LHS) as a

means of performing probabilistic sensitivity analysis was

conducted by four studies [75,95,96,98]. Probabilistic

sensitivity analysis utilizing LHS provides a rigorous

method of incorporating and representing real uncertainty

surrounding parameter estimates into model-based ana-

lysis where joint probability distributions for parameters

are available.

Model validation

Model validation is rare in HCAI modelling. Ideally, a

model should be validated by means of comparing the

model predictions with observations from an alternative

dataset than the one used for model fitting, although this

is often difficult in practice. Four studies (5%) reported

some kind of model validation based on at least two

different data sets [50,53,75,101]. However, only one

study used a statistical approach [101], whereas the
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others included subjective comparison of the model

predictions (on infection transmission) with genotype

data [50,53,75].

Setting and interaction between settings

Mathematical models of HCAIs have primarily been set in

a single ward (49%, 47 studies), with the intensive care

unit (ICU) being the most frequent setting modelled (26%,

25 studies) [14,16,22,28,29,31,32,36,40-42,45,49,52,53,55,

63,65,72,79,82,91,101,107,108] or a simplified hospital set-

ting, lacking any further ward structure (31%, 30 studies)

[12,13,24,27,33,34,38,39,45,46,51,58,60,64,66,68,69,74,77,78-

,83-88,93,94,97,109]. More recent studies however, have

incorporated the interaction between general wards and the

ICU [23,43,69] or between different wards [11]. Although

these ward or hospital-based models do not usually treat

the hospital as a closed system (i.e. hospital admission and

discharge rates from and to a 'general community' are

frequently included), transfer patterns between healthcare

institutes are rarely considered [19,20,25,70,71,73], as are

transmission dynamics within settings outside the

healthcare facilities. The interaction between community

and hospital transmission has been included for MRSA

[30,35], antimicrobial resistant bacteria as a whole

[67], Severe Acute Respiratory Syndrome [76,102] and

tuberculosis [75]. Hence any possible long-term feedback

between the hospital and other settings is not taken

into account. Only two models concerned nosocomial

transmission in a LTCF setting alone, i.e. of influenza

[98] and norovirus [104] respectively.

Discussion
Models of MRSA transmission dominate the litera-

ture, followed by VRE, although to a considerably

lesser extent. Both have been the subject of national

surveillance and infection control policies in a variety

of developed countries [110-112]. This may account

Table 2 Healthcare infection control interventions

evaluated by a modelling framework (1997–2011)

Pathogen Interventions
studied

First
published

References

MRSA Hand hygiene 1997 [15-17,28,29,33,34,37,
40,44-46]

Antibiotic stewardship 1997 [16,21]

Isolation 1997 [14,16,26,32,35,41,42,45]

HCW cohorting 2002 [17,29,40,44,45]

Screening 2005 [14,23,25,32,34,39,44,45]

Decolonisation 2009 [14,25,26,33,34,40,45,46]

Patient cohorting 2007 [40]

Gown and glove use 2009 [32]

Other 2006 [43]

VRE Hand hygiene 1998 [12,21,28,47,49,51,54,55]

Antibiotic stewardship 1999 [47,51,55]

Isolation 2004 [12,52]

HCW cohorting 1998 [12,49,51,54,55]

Screening 2004 [47,52]

Decolonisation 2007 [50]

Patient cohorting 2008 [47]

Environmental
cleaning

2008 [47]

C. difficile Other 2009 [59]

ARB Hand hygiene 1997 [82]

Antibiotic stewardship 1997 [67,78,83-88]

Barrier precautions
(i.e. not specified)

2000 [85]

HCAI in
general

Hand hygiene 1999 [89,90]

Isolation 2005 [77,91]

HCW cohorting 2006 [77,90]

Screening 1999 [89]

Vaccination 2008 [77]

Barrier precautions
(i.e. not specified)

2007 [79]

Patient cohorting 2005 [91,92]

Environmental
cleaning

2007 [92]

Antibiotic prophylaxis 2007 [79]

Antibiotic stewardship 2008 [93]

HCW cohorting 2005 [91]

HIV Sterilization of medical
appliances

1999 [94]

Influenza
or ILI

Vaccination 2008 [95-97]

Prophylaxis 2009 [98]

Other 2008 [99,100]

Pertussis Vaccination 2009 [72,101]

Table 2 Healthcare infection control interventions

evaluated by a modelling framework (1997–2011)

(Continued)

Rotavirus Hand hygiene 2011 [81]

HCW cohorting 2011 [81]

Vaccination 2011 [81]

SARS Isolation 2007 [102]

Barrier precautions
(i.e. not specified)

2005 [74]

TB Isolation 2007 [75]

HIV treatment 2007 [75]

Air ventilation 2007 [75]

Facial mask 2007 [75]
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for the relative abundance of modelling studies. Despite

causing a high burden and being the subject of national

control policies [113,114], C. difficile transmission has

seldom been modelled. Similarly, bloodstream infections

due to third-generation cephalosporin-resistant E. coli,

which have been estimated to cause ~2,700 excess deaths

and 120,000 extra bed days in Europe in 2007 have

been considered by only one study [65]. For comparison,

MRSA was estimated to cause ~5,500 deaths and 256,000

additional bed days in Europe [115], yet has been the

subject of over 30 studies. It seems then that the

occurrence of models does not necessarily correlate

to the burden of disease. This is also true in low and

middle income countries, where a recently published

systematic review [116,117] demonstrated significantly

higher prevalence of HCAIs than in high income

countries; however, very few modelling studies have

tackled the problems of HCAI in less developed settings.

In terms of model methods, considerable changes

can be identified over time. After the introduction of

the first deterministic HCAI modelling study, inclusion of

stochasticity has become common practice. The majority

of the HCAI models evaluate infection control policies,

for which sound model parameterisation and sensitivity

analyses are required for reliable predictions. The use of

more sophisticated methods for model parameterisation

(e.g. MCMC) and uncertainty analysis has become

increasingly common.

HCAI models have also increased in complexity

regarding the settings modelled. Although the majority

of the models have considered a single ward (often

ICUs), the apparent emergence of transmission of typical

HCAIs in the community, in particular of MRSA

[118], have resulted in models which consider the

transmission of HCAI from a more holistic approach.

a

b

c

Figure 5 Development of HCAI model methods used over time

(1993–2011). Application of key modelling characteristics and

development over time. Figure 5a: Model approach Proportion of

models using a deterministic vs. stochastic and a compartmental vs

individual-based modelling approach by the total number of

publications in each time period. Note that the categories are

not exclusive, i.e. whereas all individual-based models identified

are stochastic, compartmental models may be deterministic or

stochastic. Moreover, a proportion of studies use a combination

of the above listed modelling approaches (e.g. a deterministic

compartmental model complemented by a stochastic individual-based

model). Figure 5b Model methods Proportion of models that are

fitted to data, have included uncertainty and are validated by

consultation of two different datasets by total number of

publications in each time period. Figure 5c Methods used for

characterising parameter uncertainty: Proportion of models that

have employed uni-variate, vs bi-variate vs probabilistic sensitivity

analysis by total number of publications that incorporated

parameter uncertainty in each time period.
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As the long-term feedback loop related to hospital dis-

charge and readmission of colonised patients and spread of

HCAI pathogens in the community or settings as LTCFs

can effect HCAI transmission dynamics [19,70,119], such

an approach can aid in providing a realistic estimate of

existing and new infection control strategies’ effectiveness.

This review has some limitations. First of all we have ex-

clusively considered peer-reviewed publications in English.

This might have resulted in a slight inaccuracy in our re-

sults, e.g. with regards to the modelling of particular path-

ogens in alternative national settings. We were exclusively

interested in models exploring the patient-to-patient

transmission of HCAI and antimicrobial resistance with-

in healthcare settings (either directly, or mediated by

healthcare workers and/or the healthcare environment).

This has resulted in the exclusion of a higher number of

models that elucidate the dynamics of antimicrobial resist-

ance in its own right, which are summarised elsewhere

[120,121]. Moreover, this review intended to provide over-

all trends in the field of HCAI modelling, rather than a de-

tailed account of the quality of individual models and of

what these models have shown, which could be a valid fu-

ture area of investigation.

Compartmental models (which group individuals in

classes) have predominated the field of HCAI modelling.

The emergence of individual-based modelling allows for

more realistic modelling of healthcare worker-patient

contact (e.g. super spreading events) or incorporation of

heterogeneity in transmission risk profiles of patients.

However, these approaches are computationally far more

intensive, are difficult to fit to data, and the inclusion of

additional factors makes more demand on the data avail-

able. Detailed level data such as observed healthcare

worker-patient contact collected for example via mote-

based sensor networks, as has been done recently [122],

could help parameterise such more complex models.

Moreover, recent technological developments in micro-

biology have resulted in enhanced access to pathogen se-

quence data, which could help to further improve HCAI

models. Such data are beginning to inform disease outbreaks

e.g. of avian influenza A (H7N7) [123] and Foot-and-Mouth

disease [124]. Importantly, the increasingly routine use of se-

quencing of genetic material for epidemiological purposes

can provide valuable insight, such as aiding in the under-

standing of the role of asymptomatic carriers in transmission

(e.g. of C. difficile) and evolution of antimicrobial resistance.

Figure 6 Milestones of HCAI modelling. Timeline listing new applications of mathematical models for HCAI and antimicrobial resistance over

time as well as improvements of these models according to year of publication.
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Conclusions
Transmission models concerning HCAI have showed

a general enhancement in complexity, but have been

almost completely limited to high-income settings,

and have strongly focused on MRSA transmission in

hospital settings. Further improvements in the availability

of data and statistical methods could enhance the insight

gained from these models.
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