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Abstract – This paper considers the dam-break problem in a horizontal smooth 1D channel, for 
hydrogeological hazards purpose. The fluid is muddy and it can be described by a Newtonian model, 
provided that  the inertial effects be neglected versus the viscous ones in the momentum balance. 
Assuming the shallow water approximation, a non dimensional equation is built from the continuity 
and the Navier-Stokes equations in the limit of zero-inertia and solved analytically in two limits: short 
time and long time. These solutions are then combined into a single, universal model. Limitations of 
the model are examined by comparison to a converged finite difference numerical solution of the flow 
equation. 
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1  Introduction 
Since Ritter’s original work on dam-break 
flow [1], many studies have been 
performed focusing on experiments, theory 
and numerical methods [2]. Dam-break 
flow has become a classical hydraulic 
problem with such a large complexity that 
a higher degree of  reproduction of real 
conditions raises new studies, as certain 
scenarios of initiation of debris flows, flash 
floods and lahars can be modelled by dam 
failures. So, among others, Zanuttigh and 
Lamberti [3] apply an exact Riemann 
solution that allows a second-order 
accuracy of the solution for the power-law 
section shape to the dam-break problem in 
valleys with different shapes but the same 
dam area; Frazao and Zech [4] present an 
experimental study of a dam-break flow in 
an initially dry channel with a 90° bend, 
and successfully compare their 
measurements of water level and velocity 
field with numerical results. 
Consider a dam obstructing a horizontal 
smooth channel, dry downstream and with 
a given quantity of fluid upstream (with 

height 0h ), contained between a fix plate 
and a dam. At initial time, the dam 

collapses and the fluid is released 
downstream (positive wave), while a 
negative wave propagates upstream 
(negative wave). From dam-collapse date 
to time where negative wave reaches the 
fix plate, Ritter [1] gives the so-called 
inertial solution, stating that the wave front 
advances with a constant speed of  

02 gh , while the negative wave moves 

back with constant speed 0gh .     
This configuration generally represents 
flow generated by dam failure caused by 
exceptional rainfall (e.g. Malpasset, France 
in 1959) or by an act of war (e.g. 
Dnieproghes, Ukraine in 1941). The fluid 
is water and the flow is described by the 
Navier Stokes and continuity equations, 
together with the non slip condition. 
Assuming the shallow water 
approximation, this system of equations 
leads to the Saint-Venant equations [5], a 
one-dimensional hyperbolic system. The 
complete hydrodynamic equations 
describing this unsteady flow in open 
channel were solved by Faure and Nahas 
[6], using the method of characteristics. 
Hunt [7], comparing one-dimensional 
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turbulent flow model down a slope with its 
viscous counterpart, concluded that the 
viscous flow model gives the best 
description for debris flows. Indeed, these 
flows develop within a long domain, i.e. a 
domain of space that is much longer than it 
is wide, so short time behavior described 
by the previous studies are inappropriate to 
give a complete description of these 
natural flows. Natural flows generally 
erode their bed and transport sediments. 
The fluid is generally mud, i.e. a very 
viscous complex mixture of water with 
diverse sediments, so the viscous terms are 
dominant here over the inertial ones. To 
represent such natural dam-break flow, 
Nsom et al.[8] and Nsom [9] performed an 
experimental study with glucose-syrup 
fluids characterized with adjustable 
viscosity and density. Hunt [7] built 
similarity solutions for “geological flows” 
down a sloping 1D channel. Also, Schwarz 
[10] achieved a numerical study of viscous 
thin liquid films down an inclined plane. 
Solving  free surface lubrication equations, 
including the effects of both gravity and 
surface tension, he states a scaling law for 
the prediction of finger-width. 
In this work, a 1-D model is presented, 
aiming to provide practical laws, useful to 
engineers. Assuming the shallow-water 
approximation, equations of motion 
governing viscous dam-break flow are 
built and put in non-dimensional form and 
the initial and boundary conditions are 
stated. Then, an analytical solution is 
presented both for short time and long time 
behavior. Zoppou and Roberts [11] tested 
the performance of 20 explicit schemes 
used to solve the shallow water wave 
equations for simulating the dam-break 
problem. Comparing results from these 
schemes with analytical solutions to the 
dam-break problem with finite-water depth 
and dry bed downstream of the dam, they 
found that most of the numerical schemes 
produce reasonable results for subcritical 
flows. So an explicit procedure was used 
here, which does not take into account 
turbulence generated by dam-break wave, 

as the flow develops over a dry smooth bed 
[12]. Analytical results are computed and 
compared with the numerical ones in each 
regime. 
 
 
 
2  Problem statement 
2.1  Equations of motion 
Let 0h  denote the height of fluid at negative 
time in a smooth horizontal rectangular 
channel, g the gravity, ρ  and µ  the fluid 
density and viscosity, respectively. Using a 
cartesian system of coordinates with the origin 
at the dam site, x-axis lying on the channel-
length and the z-axis in the increasing vertical 
direction (fig. 1).  
 
 

Wall

Dam

Fluid

h0

-L 0 X 
 
Fig 1: Configuration of horizontal dam-break 
flow at negative time 
 
The fluid is assumed to flow mainly in the 
direction of x-axis with height h at the given 
control section of the abscissa x, at time t. So, 
the vertical velocities are negligibly small, and 
therefore the pressure is hydrostatic, the 
pressure  in the flow is given by 

)(0 zhgpp −+= ρ    (1) 
 

where 0p denotes the (constant) pressure at the 
free surface.   The balance between the 
pressure gradient and the viscous forces is thus 
expressed by 

2

21
z
u

x
hg

x
p

∂
∂=∂

∂=∂
∂ νρ    (2) 

where the horizontal derivatives have been 
neglected in comparison with the vertical 
derivatives on the right-hand side of equ. (2) 
because the length of the current is very much 
greater than its thickness. At the base of the 

WSEAS TRANSACTIONS on FLUID MECHANICS B. Nsom, W. Ndong and B. Ravelo

ISSN: 1790-5087 78 Issue 2, Volume 3, April 2008



 

fluid layer the non slip condition writes 

( ) 0,0, =txu     (3) 
Considering that the shear stress at the top of 
the current is very much less than its value  
within the current, it can be approximated as 

( ) 0,, =∂
∂ thx
z
u

    (4) 

the solution of  equs. (2) - (4) is  

( ) ( )zhz
x
hgtzxu −∂

∂−= 2
2
1,, ν   (5) 

A complete determination of the unknowns 
u and h requires the equation of continuity 
which can be written here as 

0
0

=







∂
∂+∂

∂ ∫
h

udz
xt

h
   (6) 

Substituting (5) into (6) we obtain 

0
)(

12 2

42

=∂
∂

−∂
∂

x
hg

t
h

µ
ρ

   (7) 

If l denotes the reservoir length, we can 
assume the following set of non dimensional 
variables: 

)
12
,,(),,( 2

3

00

t
l

gh

h
x

h
hTXH µ

ρ
=   (8) 

where subscript f denotes the wave-front, the 
equation of motion (7) then becomes, in the 
non dimensional form: 

0
)(

2

42

=∂
∂−∂

∂
T
H

X
H

   (9) 

Equ. (9) is similar to the equation of motion 
obtained by Schwarz [10] and Barthes-Biesel 
[13], describing the evolution of a thin liquid 
layer flowing down a horizontal plane when 
surface tension effects can be neglected. 
 
2.2 - Initial and boundary conditions 
Using (10), the fluid height at initial time is 
given by: 

( )( )=TTXH b ,







01

0

1 ≤≤− X

otherwise

for
    

 

  

 
Furthermore, a complementary boundary 
condition should be imposed upstream, 
assuming that a short time or an asymptotic 
solution is sought. These boundary conditions 
are suggested by experimental observation. For 
the short time case, it is written as: 

( ) 1, =−= TLXH    with  
0h
lL=   (11) 

which means that only a given fluid quantity in 
the upper part of the reservoir is released 
downstream the very few moments following 
the dam collapse.  
While for the long time case, it is written as: 

( ) 0, =−=∂
∂ TLX
X
H

   (12) 

which means that there is no flow at the fixed 
wall; so at that site, the free surface is 
horizontal.  
 
 
 
3  Analytical solution 
Dam-break flow belongs to the general class of 
gravity currents; so the solution depends on the 
time scale [14]. First of all, the inertial regime, 
characterized by a fixed height at the dam-site  
holds immediately after the dam collapse [1]. 
Then, a solution dominated by  
viscous effects appears and tends to an 
asymptotic form. The solution sought here will 
give the analytical expression for a short time 

( 1<<T ) and a long time ( 1>>T ) viscous  
solutions, as well as the different dynamic 
characteristics. 
  
 
3.1  Short time solution 
Sedov [15] describes the method of 
investigating similar solutions of equ. (9) by 
means of a phase plane formalism. In fact, this 
equation of motion can be tackled by 
assuming a solution of the form 

( ) ( ) ( )λΨΩ= TTXH ,  where 
( )

( )TP
TX φλ −=   (13) 

Let )(TXb denote the front of the back 

wave and )(TX f the front of the positive 

wave. If cT denotes the time where the 
back wave front reaches the rear wall, the 
short time regime corresponds to a viscous 
solution such that cTT≤ . While, for larger 
time, H   is everywhere less than 1. So, a 
solution should be sought such that 

( )( )=TTXH b ,








( ) c

c

TT

TT

if

if

TH ≥

≤

− ,1

1
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( )=TXb







 ( )
c

cb

TT

TT

if

ifTX

≥

≤

−1
 (14)      (30) 

Two regimes can now be identified, which 
correspond to two different physical 
mechanisms of reservoir emptying. The 
short time solution is such that far 
downstream from the dam, the fluid seems 

to be at rest at a depth 0h , so that the 

reservoir’s length 0l has no effect on this 
flow regime, while for the long time 
solution, the flow only retains the initial 
(non dimensional) volume of the reservoir 

LV 1=  and not the details of its initial 
geometry.  
 
3.2  Short time solution 
The information affects the fluid contained 

between ( )TX f   and ( )TXb , this suggests 
to take 

( ) ( )TXTXTP bf −=)(   ,  ( ) ( )TXT b=φ      (15) 
Introducing equs. (13)-(15) in the equation 
of motion (9), we get 

0''
4

=λ
Ψ+λ

Ψλ+







λ

Ψ
λ−

d
dPX

d
dPP

d
d

d
d

b      (16) 

Next, a condition of no flow rate must be 
imposed at the rear wall and at the front of 
positive wave 

( )
02

42

=λ
Ψ

d
d

   for  0=λ  and  1=λ        (17)        

Applying then the principle of 
conservation of the mass on the fluid 
flowing in the channel 

∫ −=
f

b

X

X

bXHdX                  (18) 

we can easily verify that a self-similar 
solution to equs. (16)-(18) can be written 

( ) [ ] 2
1

2
1

10 2 TTXb γγ−=       (19) 

( ) ( )[ ] 2
1

2
1

10 21 TTX
Sf

γγ−=      (20) 

provided that the following functions: 








−
P

Xb  , 
mPP'  and 

m
b PX  be constant 

respectively noted 0γ , 1γ , ( )2γ−  with 

102 γγγ =  and which will be determined 
later. In equ. (20), the subscript s refers to 

the short time regime. Critical time cT  is 

obtained for 1−=bX  in equ. (19), there 
comes 

2
012

1
γγ

=cT         (21) 

While, using equ. (20), we see that at 
critical time, the abscissa of the front of the 
positive wave is 

( )
0

01

γ
γ−

=cf TX       (22) 

Moreover, at dam position ( 0=X ), we 

have 0γλ = , so the stage is constant in 
time with value 

( )0γΨ=dH         (23) 
 
3.3  Long time solution 

At cTT = , the front of the negative wave 

reaches the rear wall ( 1−=bX ) , so for the 
long time solution, we can take 

( ) 1−=Tψ    and   1)( += fXTP     (24) 
Then, introducing equ. (24) in the equation 
of motion (9), we get 

0''
34

24

=λ
ΨλΩ−ΨΩ

Ω
+







λ

Ψ
λ−

d
dPPP

d
d

d
d

   (25) 

Then, a condition of no flow rate must be 
imposed at the front of positive wave 

0
1

4

=







λ

Ψ
−λ

=λ
d

d
d
d      (26) 

Applying then the principle of 
conservation of the mass on the fluid 
flowing in the channel  

∫
−

=
fX

HdX
1

1      (27) 

we can easily verify that a self-similar 
solution to equs. (25)-(26) can be written 

( ) ( ) ( )
1

1
5

1
5

−























γ
+

+−γ= cf
cf

TX
TTTX

lL
  

provided that the following functions: 

PΩ
1 , 3

'
Ω

PP
 and 








Ω

Ω− 4

2'P
 be constant 

WSEAS TRANSACTIONS on FLUID MECHANICS B. Nsom, W. Ndong and B. Ravelo

ISSN: 1790-5087 80 Issue 2, Volume 3, April 2008



 

respectively noted3γ , 4γ  and 5γ  and 
which will be determined later. In equ. 
(28), the subscript l  refers to the long time 
regime. Then, equ. (25) becomes 

( )
044

4

=λ
Ψλγ+Ψγ+
















λ

Ψ
−λ−

d
d

d
d

d
d

    (29) 

which can take the form 

( )
04

4

=λ
Ψλγ+








λ

Ψ
λ−

d
d

d
d

d
d

     (30) 

After a straightforward analytical 
calculation, a solution of eq. (30) is found 
with the form 

( ) ( ) [ ] [ ] 3
1

23
1

3
1

4 1
8
3 λ−γ=λΨ      (31) 

The constants of integration si 'γ  are 
determined using the boundary and initial 
conditions. We find: 

α=γ=γ 30  with  [ ] λλ−=α ∫ d
3

1
1

0

21  and [ ]
3
8

4=γ  

[ ][ ]

[ ]∫
α

α=λ

λλ−





























λ
λ−

−λ
=β=γ 1

3
1

2

3
4

2

1

1

1

d

d

d

d
d

   (32)   (52)  

 
4  Numerical solution 
4.1  Discretization 
The problem to solve numerically is the 
same which has been solved analytically in 
the previous section by equs. (9)-(13). To 
build a numerical procedure, it is necessary 
to define the channel total length tl . The 
non dimensional extreme (downwards) 

abscissa is 
0h
llL t

e
−=  .  This point is so far 

from dam site, that the flow is supposed to 
never reach it during a given experiment 
(1D assumption), with total duration τ . 
This assumption constitutes the following 
complementary boundary condition: 

0),( =TXH e  0≥∀T     (33) 
This problem is solved by a finite 
difference method.  

For this, the function ( , )H X T  is 

computed in the set [ ] [ ]τ,0, ×− eLL , itself 
discretized in a finite number of identical 
small rectangles with sides T∆  and X∆ . 
The equation will be approximated at grid 
points located at the following coordinates 

in the [ ] [ ]τ,0, ×− eLL set: 
( ) ( )TjXiLTX ji ∆⋅∆⋅+−= ,,   

[ ]
X

LLi e

∆
+−∈ ,0   , [ ]

T
j ∆∈ τ,0     (34) 

Notice that the equation of motion (9) can 
be put in the form: 

22 2
3

2
4 3

H H H
H

T X X

 ∂ ∂ ∂= +  ∂ ∂ ∂ 
    (35) 

An heuristic approach considers the 

product ( )34H  in the right-hand side of 
eq.(38) as a “coefficient of diffusion” [16-
18]. Indeed, the following equations are 
considered : 

2

2
4

V V

T X

∂ ∂=
∂ ∂

 ,   ( ,0) ( ,0)V X H X=     (36) 

This numerical scheme is tested using the 
von Neumann method to provide a stability 
criterion which is necessary to ensure the 
convergence of our non-linear problem. 
 
4.2  Algorithms  
Using Taylor’s formula, the derivative of 
the unknown function can be given by: 

( ) ( ) ( )
A

T
TXHTTXH

TX
T
H −∆

−∆+=∂
∂ ,,, , 

( )TX
Tn

T
A n

n

n

n

,
!2

1

∂
∂∆

=∑
≥

−

      (37) 

Also, Taylor’s formula can be used to 
write the non linear term in eq.(9): 

( )( )
( )

( )
( )( )TX
X

H
p

X
BTX

X
H

p

p

p

p

,
!2

, 2

42

2

12

2

42

∂
∂∆

−=∂
∂

∑
≥

−

 

( )[ ] ( )[ ] ( )[ ]444 ,2,, TXHTXXHTXXH
B

−∆−+∆+
=

Introducing eq.(37) and eq.(38) in eq.(9) 
gives  
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( ) ( ) ( )[ ]
( ) C

X

TXXH
T

TXHTTXH +
∆

∆+
=∆

−∆+
2

4,,,

( )[ ] ( )[ ]
( ) ( )TXR

X

TXHTXXH
C TX ,

,2,
,2

44

∆∆+
∆

−∆−
=

  

with ( ) ( ) DTX
T
H

n
T

TXR n

n

n

n

TX −∂
∂∆

=∑
≥

∆∆ ,
!

,
2

,  

( )

( )
( )( )TX
X
H

n
X

TD n

nn

,
!2 2

4212

∂
∂∆

∆=
−

     (40) 

, ( , )X TR X T∆ ∆  is the residual term which is 
neglected to solve the numerical problem. 
Notice that this term can be numerically 
approximated knowing the solution at the 
former time step. Now let 

( )jiji TXHH ,, =      (41) 

where iX and jT  are given by eq.(34), 
then the finite difference equation to solve, 
which uses a first order time scheme and a 
centred second order spatial scheme, is 
written as 

( ) [ ] [ ] [ ]( )4
,

4
,1

4
,12,1, 2 jijijijiji HHH

X
THH −+

∆
∆+= −++

Notice that 1,0 +jH  corresponds to upstream 
Neumann condition given by eq.(34). It is 

derived from eq.(41), say 1,11,0 ++ = jj HH . 
Also, if maxi  denotes the maximum value 
that subscript i  can reach, i.e. maxi  is 
rounded off to the integer that is closest to 

X
XL e

∆
+

, then downstream Dirichlet 

condition given by eq.(35) yealds 
0

1,max
=

+ji
H                  (43) 

In order to have a stability criterion, the 
equation (36) is discretized following the 
same numerical scheme, i.e. a first order 
time scheme and second order centred 
spatial scheme. The numerical problem is 
written : 

EVV jiji +=+ ,1,  

( ) [ ] [ ] [ ]( )jijiji VVV
X
TE ,,1,12 24 −+

∆
∆= −+            (44) 

with the same boundary conditions as H , 

i.e. : 0, 1 1, 1j jV V+ +=  and max, 1 0i jV + = . Giving 

max
2 /( max 1)

, ,
0

ˆ
i

i kp i
p q k q

k

V V e π +

=

= ∑                (45) 

with ,k̂ qV  the Fourier component 

corresponding to wave number k  at time 
T q T= ∆ , defined by : 

max
2 /( max 1)

, ,
0

1ˆ
max 1

i
i kp i

k q p q
p

V V e
i

π− +

=

=
+ ∑     (46) 

the equation (45) is rewritten 

( )2
, 1 , 2

16ˆ ˆ 1 sin max 1k q k q

T kV V iX
π

+
∆ = − +∆ 

 

The stability criterion consists in 
considering that 

( )2
2

16
1 sin 1max 1

T k
iX

π∆ − < +∆ 
, k∀  

As ( )2sin 1max 1
k

i
π <+ , we obtain the 

following stability criterion: 

( ) 8
1

2
≤∆

∆
X
T

               (48) 

We can notice that the numerical scheme 

described by equ. (42), makes  1, 1 0I jH + + ≠  

if , 0I jH ≠ . The front wave velocity, 

defined as 
f

f

dX
V

dt
=  must then verify  

f

X
V

T

∆≤
∆     (49)  

A McCormack finite difference scheme 
can improve the accuracy of the solution 

when e

X
V

T

∆≥
∆ . In our case, the time step 

must be chosen small enough to verify the 
condition defined by equ. (48). 
 
5  Results 
All the results shown here were obtained 
either by computing the analytical solution 
or numerically. Both methods provided 
quite identical values for all investigated 
flow characteristics. 
 
5.1  Free surface profile 
The free surface profile is presented in 
fig.2. A large time after dam collapse, it 
completely differs from Ritter’s solution, 
i.e. when the fluid is water, computed 
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using equs.(1)-(2) which is concave. This 
shows that the convex shape of free surface 
profile for viscous dam-break flow is 
intrinsic to the equations of motion 
governing the problem. 
Furthermore, a complete description of the 
flow should include surface tension, 
introducing a complementary term in the 
equation of motion, say 







∂
∂−∂

∂
∂
∂=∂

∂
3

3
3 14

X
H

BX
HH

XT
H

   (50) 

where B denotes the Bond number, defined 

as σ
ρ 2gL

B=  and σ  the fluid surface 

tension.  Computation of equ. (50) was 
carried out using the procedure described 
in previous section for assigned glucose 
syrup concentration in water. Fluid 
physical properties (density, viscosity and 
surface tension) were taken in [19]. For 
similar flow configuration, results were 
quite identical to those obtained from equ. 
(9), i.e. when surface tension is neglected. 
In fact, surface tension would affect 
viscous dam-break flow, only in film 
lubrication conditions [10]. 
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Figure 2: Time variation of free surface 
profile 
 
5.2  Fluid height 
Fig.2 also shows that during a very short 
while after dam collapse (short time 
solution), the flow height remains constant 
at dam site, with 

684.0),0( ≈= TXHd       (51) 

in excellent agreement with the analytical 
solution (equ. 23). 
The viscous solution is characterized by a 
decreasing of the fluid height at dam site. 
At a given location inside the reservoir, 
time variation of the fluid height is shown 
in fig. 3 which indicates that the fluid 
height collapses for stations close to dam 
site followed by a smoother decrease for 
all upstream stations. While at given 
downstream station, flow height increases 
abruptly at first stage, then smoothly to a 
maximum value and finally decreases as 
shown in fig. 4 
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Figure 3: Typical time variation of fluid 
height at upstream stations 
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 Figure 4: Typical time variation of fluid 
height at downstream stations 
 
5.3  Maximum heights 
To localize the maximum height at given 
down scenario described in Fig. 4 shows 
that  
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( )
0

, =
∂

∂
T

TXH
    (52) 

While in the long time regime described by 
equ. (58), we have 

( )
( ) ( )'

1

1
2

'

Ψ+Ψ














+

+
−=

∂
∂ λ

α fm

f

X

X

T

H
 (53) 

So 
0'=Ψ+Ψ λ     (54) 

which gives 

( ) 2
1

5
3=λ     (55) 

Introducing this solution in equ. (31), the 
maximum height at given  downstream 
station X  is then found as 

( ) ( ) ( ) ( )1
11

5
3

5
2 2

1
3

1

max +α
=

X
XH    (56) 

The corresponding graph (hyperbola) is 
shown on Fig. 5 
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Figure 5: Variation of the maximum height 
at given station, vs the corresponding 
abscissa  
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igure 6: Variation of the time of occurrence 
of maximum height for given abscissa 

and it occurs at time maxT  such that 

( ) ( ) ( )
5

52
5

5max
11

3
51












αγ
−++γ= cTXXT   (57) 

whose graph is shown on Fig. 6 
 
5.4 Front wave position  
Time evolution of the front of the positive 
wave is presented in fig.7. It can be 
obtained either numerically (section 3) or 
analytically using equ. (20). This graph 
agrees with the experimental result 
obtained by Nsom [9] who found the 
following scaling law in this regime 

2/1TX f ∝     (58) 

Xf

T
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0
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0.4

Fi
gure 7: Evolution of the front of the 
positive wave front in short time viscous 
regime 
 
In the same flow regime, the front of the 
negative wave, obtained numerically or 
analytically using equ. (19) is shown on 

fig. 8. It can be observed that ( )TXb  
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decreases vs time with a slope itself 
decreasing in the time.  

Xb

T
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F
igure 8: Evolution of the front of the 
negative wave front in long time viscous 
regime 
 
While for long time flow regime, the graph 
of the equation of motion of the front wave 
is shown on fig. 9. It can be obtained 
numerically (section 3) or analytically 
using equ. (28) and this result agrees with 
the experimental result obtained by Nsom 
[9] who found the following scaling law in 
this regime 

5/1TX f ∝     (59) 
In these experiments, the author performed 
dam-break tests using well characterized 
water-glucose syrup solutions. 
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Figure 8: Evolution of the front of the 
positive wave front in long time viscous 
regime 
 
Generally, in the literature, theoretical 
studies focus on the long time solution also 
called asymptotic solution (e.g.: [7]) and 
the scaling law obtained is of the form of 
equ.(58). The originality of the present 
paper is to point out, analytically and 

numerically the previous two viscous flow 
regimes and to characterize them. 
 
5.5  Front wave velocity 
The wave front velocity is obtained from 

the time derivation of ( )fX T . It can be 
calculated analytically by a straightforward 
use of the corresponding equation of 
motion, obtained in section 2. While the 
numerical method consists in the following 
centred second order scheme : 

( ) ( ) ( ) ( )2

2
T

T
TXTTXTTU fw

f ∆Ο+∆
−∆+

=∆+  

where fU  denotes the front velocity and 

subscriptw  is used for b , fs and fl  when 
referring to the front of back wave or 
positive wave in the short time regime and 
in the long time regime, respectively. The 
results obtained using both methods are 
concordant 
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Figure 9: Time variation of the velocity of 
the back wave 
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Figure 10: Time variation of the velocity of 
the positive wave in the short time regime 
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Figure 11: Time variation of the velocity of 
the positive wave in the long time regime 
 
These graphs clearly show that for each 
wave, the velocity is time decreasing and 
tends to an asymptotic value which for the 
positive wave characterizes a 1D film 
lubrication.  
 
 
5.6 Comparison of the analytical results 
with the numerical ones 
When computing the time and abscissa 
variation of the fluid height in the short 
time viscous regime, we observed that the 
results from the numerical method (fig. 13) 
were generally greater than those obtained 
from the analytical method (fig. 12). 
Meanwhile, the results from the two 
methods were concordant with a relative 
difference less than 15%. 
The same remark holds for the long time 
viscous regime but the relative difference 
being now less than 2%. 
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Figure 12a: Fluid height vs. time and 
abscissa obtained analytically viewed from 
dam-site 
 

 
Figure 12b: Fluid height vs. time and 
abscissa obtained analytically: side- view  
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Figure 13:a Fluid height vs. time and 
abscissa obtained numerically viewed from 
dam-site 
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Figure 13:b Fluid height vs. time and 
abscissa obtained numerically: side-view  
 
 
To state on the accuracy of the methods 
used, we zoomed the different graphs 
obtained in the short time regime, on the 
dam site. We observed that the graphs 
observed from the numerical method (fig. 
15) intersected at a point which is more 
close to the dam than in the analytical case 
(fig. 14). So, the numerical method seems 
more accurate than the analytical one. 
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Fig. 14: Zoom on dam sitef or fluid height 
vs. time and abscissa obtained analytically 
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Fig. 15: Zoom on dam sitef or fluid height 
vs. time and abscissa obtained numerically 
 
 
6   Conclusion 
The flow regimes of the horizontal viscous 
dam-break flow are well known from 
experimental studies. At initial time (when 
the dam collapses), the fluid is released 

downstream (positive wave), while a 
negative wave propagates upstream. The 
flow is inertial (Ritter’s solution) until the 
back wave reaches the fixed rear wall. 
Then, the viscous forces become higher 
than the inertial ones and a short time 
viscous regime takes place until. In this 
regime, the flow height at dam site has a 
(fix) characteristic value. As the reflected 
wave overtakes the positive wave, the long 
time or asymptotic regime takes place. The 
present study considered the modelling of 
these two viscous flow regimes.  
Applying the conservation of mass and 
momentum with the shallow water 
approximation, an equation of motion was 
derived and made non dimensional, when 
the viscous forces were assumed to be the 
dominant ones. It was of porous medium 
type  and similar solutions built 
analytically.  
Then, the problem was considered 
numerically. The previous equation of 
motion was approximated using an explicit 
finite difference method. The stability and 
convergence of the computations were 
insured using a criteria based on heuristic 
approach. The very good agreement 
between the numerical and the analytical 
solutions showed the consistence of the 
numerical scheme for both short time and 
long time solutions. The time evolution of 
the abscissa and velocities of the different 
front waves were determined, as well as 
the different characteristic heights. 
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