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Abstract

The objects studied in geoscience are often not man-made objects, but rather the spatial
distribution of three-dimensional continuous geographical phenomena such as the salinity of a
body of water, the humidity of the air or the percentage of gold in the rock (phenomena that
tend to change over time). These are referred to as fields, and their modelling with geographical
information systems is problematic because the structures of these systems are usually two-
dimensional and static. Raster structures (voxels or octrees) are the most popular solutions,
but, as I argue in this thesis, they have several shortcomings for geoscientific fields.

As an alternative to using rasters for representing and modelling three-dimensional fields, I
propose using a new spatial model based the Voronoi diagram (VD) and its dual the Delau-
nay tetrahedralization (DT). I argue that constructing the VD/DT of the samples that were
collected to study the field can be beneficial for extracting meaningful information from it.
Firstly, the tessellation of space obtained with the VD gives a clear and consistent definition
of neighbourhood for unconnected points in three dimensions, which is useful since geoscien-
tific datasets often have highly anisotropic distributions. Secondly, the efficient and robust
reconstruction of the field can be obtained with natural neighbour interpolation, which is en-
tirely based on the properties of the VD. Thirdly, the tessellations of the VD and the DT
make possible, and even optimise, several spatial analysis and visualisation operations. A fur-
ther important consideration is that the VD/DT is locally modifiable (insertion, deletion and
movement of points), which permits us to model the temporal dimension, and also to inter-
actively explore a dataset, thus gaining insight by observing on the fly the consequences of
manipulations and spatial analysis operations.

In this thesis, the development of this new spatial model is from an algorithmic point of
view, i.e. I describe in details algorithms to construct, manipulate, analyse and visualise fields
represented with the VD/DT. A strong emphasis is put on the implementation of the spatial
model, and, for this reason, the many degeneracies that arise in three-dimensional geometric
computing are described and handled. A new data structure, the augmented quad-edge, is also
presented. It permits us to store simultaneously both the VD and the DT, and helps in the
analysis of fields. Finally, the usefulness of this Voronoi-based spatial model is demonstrated
with a series of potential applications in geoscience.
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Chapter 1

Introduction

The first geographical information systems (GISs) were developed around 40 years ago to
automate the production and the analysis of maps, and have since evolved from their ori-
gins (Coppock and Rhind, 1991). Before computers became widely available, the map-making
process was tedious and time-consuming for the cartographer, and the analysis and interpre-
tation of different themes for a given area was cumbersome because it had to be done visually
(with the help of transparent map sheets layered one over another). Computers and GISs
changed that during the 1960s. An example of one of the earliest GIS is the Canada GIS
(CGIS), which was developed to store, manipulate and analyse data collected by the Canada
Land Inventory. The land capability for rural Canada was determined by extracting statistics
for specific areas and by producing map layers for different themes, e.g. agriculture, wildlife,
forestry and recreation. The CGIS was probably the first large-scale system to structure geo-
graphical data in a database, to partition data into themes (map layers), and to have functions
for the measurement of areas and for the overlay of polygons (Tomlinson, 1988); many of its
key innovations are still being used in today’s commercial GISs. The Canadian government
still uses a similar system for the planning and management of its natural resources, but the
system in place obviously has more power and a much broader scope.

Although there is still a debate going on about what constitutes a GIS, and although not
everyone agrees on a unique definition of GIS (Gold, 2006), there is nevertheless a certain
consensus for a definition, which is similar to this one:

A geographical information system is a computer system capable of capturing,
storing, analysing, manipulating, sharing and displaying geographically-referenced
data, and their attributes.

The GIS is different from other systems handling spatial data (e.g. CAD systems, medical vi-
sualisation systems, engineering design tools, etc.) firstly because it can integrate geographical
data from different sources and formats (remote sensing and photogrammetry images, field
surveys, GPS data, etc.) into a single system, and secondly because it can analyse them to
help the decision-making process. Specialised tools usually have proprietary formats and are
designed only for few specific tasks; by contrast, the GIS claims to be open to different datasets
and can be used in conjunction with specialised tools to clean or format datasets, and also to
analyse (visually and quantitatively) the output of these tools. Although the definition of a
GIS theoretically includes any data positioned on the surface of the Earth (and near it), al-
most all available GISs are built on the idea of a ‘smart map’, i.e. a computer-based system for
creating, querying and producing two-dimensional representations of the surface of the Earth.
GISs have indeed evolved from their origins, and have never been transformed: visualisation
tools, analytical functions, and the possibility to integrate different sources of data, among

1
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others, have all been added to the latest GISs, but, the same original structure (the definition
of spatial relationships between objects and the data structures used) has not changed much
since the 1960s (Mark et al., 1997). Indeed, the definition of the spatial relationships between
objects is still based on the intersections of lines to create polygons (e.g. the node-arc-polygon
structure), and continuous phenomena are still represented with grid files.

The end of the 1980s saw the arrival of the personal computer, and the GIS morphed from
a tool used only by specialists to one that could be used by practitioners in many different
fields. Nowadays, commercial GIS companies are trying to accommodate different users by
producing modules that extend the functionalities of their GISs for different specialities such
as transportation, business, communication, forestry, agriculture, etc. The problem with these
extensions is that they only add new features to a GIS (e.g. extra analyses and tools required
by the application, or the extension of the database model), and do not change the rigid
two-dimensional structure on which these systems are built.

Although current GISs are adequate for many applications—the successes of some commer-
cial GIS companies are there to prove it—their static and flat representation of our world is
fundamentally flawed. The world we live in is three-dimensional, and many things are also
continually in movement. As a result, many geographical phenomena can not be correctly
represented with such systems.

1.1 Three-dimensional Datasets in Earth Sciences

The reduction of the world to a static and two-dimensional representation is particularly prob-
lematic for some disciplines related to the Earth, for example oceanography, meteorology, ge-
ology and geophysics (these are also called the geosciences). For these disciplines, adding new
functionalities on top of a GIS is simply not enough since their data are totally different from
the data GISs were designed to handle. This problem has been identified by many researchers
in the geosciences. In oceanography and marine applications, Davis and Davis (1988) state
that systems capable of handling three dimensions, plus time and attributes are needed to
adequately represent marine phenomena. Li and Saxena (1993) notice that very few artificial
objects are found at sea and hence phenomena are mostly represented by points (not lines and
polygons), and they also propose a ‘wish list’ of features that GISs should have, one of them
being the possibility to do simulation of oceanographic processes. In trying to define what a
Marine GIS is, Lockwood and Li (1995) warn the users that the use and the interpretation of
marine data could lead to wrong conclusions if they forget that their nature is different (e.g.
the distribution of data collected at sea is often highly irregular and the precision of these data
is sometimes not as accurate as the precision obtained on the land). In meteorology, Bernard
et al. (1998) and Nativi et al. (2004), among others, come to similar conclusions: the represen-
tation of the atmosphere requires three spatial dimensions, and a way to integrate time with
the spatial dimensions. Such systems are sometimes referred to as four-dimensional systems,
since they consider time as an extra dimension. In geology and geophysics, the inadequacy
of current GISs has also been noticed, and alternative solutions have been proposed; see for
example Jones (1989), Raper (1989) and Sambridge et al. (1995).

What is arguably more symptomatic of the shortcomings of current GISs is the fact that nu-
merous papers in the literature, discussing the use of GIS for environmental modelling, describe
how to circumvent the GIS’s structure, in order to integrate and analyse datasets. Examples
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of such papers are the exhaustive review of the use of GISs in oceanography and fisheries
by Valavanis (2002); the different applications of ESRI’s products in oceanography (Breman,
2002); and the reviews of Chapman and Thornes (2003) and Sui and Maggio (1999) respec-
tively in meteorological and hydrological modelling. The authors of these papers do state that
GISs are useful to their application domains, but they still have to reduce their datasets to a
two-dimensional plane—usually by ‘slicing’ it according to a certain direction—to be able to
take advantages of the analytical functions of GISs. The advantages of GISs often cited are:
(1) they can help to derive datasets from raw data; (2) once a simulation has been run in a
specialised tool, the output can be analysed by taking into consideration other datasets; (3)
they can convert the formats and/or the cartographic projections of datasets.

An important consideration when dealing with geoscientific datasets is that the objects studied
are usually not man-made objects, but rather the spatial distribution of continuous geographical
phenomena. Three-dimensional—or volumetric—examples of such phenomena are the salinity
of the water, the humidity of the air or the percentage of gold in the rock. These phenomena can
be considered as attributes of every location over a given three-dimensional spatial domain,
and are continuous because every location x − y − z over the domain has a value (there is
something at every point). The spatial distribution of an attribute a over a certain spatial
extent is also referred to as a field. Briefly, a field is a model of the variation of a and can be
modelled mathematically by a function (or a mapping) between the location and the value of
a, i.e. a = f(x, y, z). In this thesis, a is always considered to be a scalar value, but it is also
possible to have vector fields. Notice that the concept of a field is theoretically valid in any
dimensions (a becomes a function of the location in d-dimensional space), and time can also be
considered (that is, a = f(location, time)). Section 2.2 discusses at length the different types
of fields, their properties, the operations possible on them, and also the methods used to store
them in computers.

Because it is usually impossible to measure continuous phenomena everywhere, we have to
resort to collecting samples at some finite locations and reconstructing fields from these samples.
Each sample indicates the value of the attribute studied at a certain location x−y−z in space.
They can be very hard and expensive to collect because of the difficulties encountered and the
technologies involved. To collect samples in the ground we must dig holes or use other devices
(e.g. ultrasound penetrating the ground); underwater samples are collected by instruments
moved vertically under a boat, or by automated vehicles; and samples of the atmosphere must
be collected by devices attached to balloons or aircraft. More details about geoscientific data
and the way they are collected is available in Chapter 7. Because of the way they are collected,
three-dimensional geoscientific datasets often have a peculiar property: their distribution is
highly anisotropic. As shown in Figure 1.1, samples can for instance be abundant vertically
but very sparse horizontally. Another peculiar property of geoscientific datasets is that the
samples they contain represent spatial variability of a given attribute only at time t, and many
geographical phenomena in oceanography and meteorology change and evolve quickly over
time.

1.2 Modelling Three-dimensional Fields

Because fields are continuous functions, they must be discretised—broken into finite parts—to
be represented in computers, which are discrete machines. The space covered by a field can
be partitioned, or tessellated, into regular or irregular parts. In a regular tessellation, all the
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Figure 1.1: Example of a dataset in geology, where samples were collected by drilling a hole in the
ground. Each sample has a location in 3D space (x− y − z coordinates) and one or more attributes
attached to it.

elements will be of the same shape and size, while in an irregular one, elements of any shape
and size are allowed. In the plane (2D), each element is a polygon, while in three dimensions
it is a polyhedron. What follows is a brief overview of the most common methods to represent
and analyse fields (more details are available in Chapter 2).

Within the GIS community, the raster structure has been for years more or less synonymous
with continuous fields. In two dimensions, a raster structure is a regular tessellation with
grid squares, and to each element (called a pixel) is assigned the value of an attribute. The
popularity of raster structures is probably due to the fact the they are naturally managed in
a computer in the form of an array of numbers, and also because no complex data structures
are required for the location of objects: the position of an object (a pixel) is implicitly known
from the sequential position of pixels in the array. Most commercial GIS products use rasters
to represent continuous phenomena, and the tools implemented to model and analyse different
fields are based on map algebra (Tomlin, 1983), which is a framework developed for the analysis
of fields stored in a raster format. With this approach, each field is represented by a grid, and
a set of primitive GIS operations on and between fields can be used and combined together to
extract information and produce new fields. It has been severely criticised by many who claim
that raster structures have drawbacks and are not appropriate to model the reality (Kemp,
1993; Haklay, 2004). Triangulated irregular networks (TINs) are also widely used in the GIS
community to model the elevation of a terrain (Peucker et al., 1978). For this particular case,
the elevation of a terrain is considered as continuous and without any vertical cliffs or overfolds;
the elevation can thus be seen as an attribute of the planimetric locations on the surface of the
Earth. A TIN is an irregular tessellation of the x− y coordinates of the terrain into triangles,
and the surface of a terrain is approximated by lifting every vertex of the TIN to its elevation,
thus creating a mosaic of triangles in 3D space. Although the storage, construction and analysis
of a TIN is more complex than with a grid, it is seen by many as a superior method to represent
the elevation of a terrain. But many also disagree, and a debate between the advocates of each
representation has been going on for years—see Kumler (1994) for an exhaustive review of the
topic.

Raster is also the most popular and used structure to represent 3D fields, and different raster
systems have been proposed and designed (see for example Jones (1989); Raper (1989); Ma-
son et al. (1994)). For the 3D case, the space is divided into regular cubes (called voxels),
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and each one is linked to the value of a certain attribute. The advantages of 3D grids over
other methods are basically the same as in 2D (e.g. simplicity of implementation and manip-
ulation), but the many shortcomings (e.g. amount of memory used) are amplified in 3D, as
demonstrated in Chapter 2. Also, the map algebra approach has been recently extended to
incorporate the temporal and/or the third dimension (Mennis et al., 2005). As in the 2D case,
the disadvantages of a raster representation in 3D have also led to the use of 3D triangula-
tions, called tetrahedralizations since the space is tessellated into tetrahedra, for modelling
sub-surface phenomena (Lattuada, 1998; Xue et al., 2004).

The GIS community is not the only one that needs to discretise space, and it is worth studying
the methods used in other disciplines. The simulation of physical phenomena in engineering
and science, for instance the heat transfer of a mechanical part, the fluid flow around an aircraft
or the electromagnetic wave propagation, is usually modelled by partial differential equations
(PDEs). Because these equations are continuous and can be impossible to solve in some cases,
a numerical approximation of the solution is usually sought. The most popular method to
approximate PDEs is the finite element method (FEM) (Strang and Fix, 1973). Without being
too technical, the solution of a PDE is obtained by first partitioning the object under study
into small pieces (called elements), then approximating the behaviour of the phenomena for
each element, and by accumulating the result in each element, it is possible to approximate the
phenomena being studied. The discretisation of objects (2D or 3D) is referred to as meshing,
and automatically generating a mesh whose elements are well-shaped for the simulation of a
given phenomenon has historically been proved to be more challenging than the simulation
process itself (Shewchuk, 1997b). The elements used can be of any shape, but irregular tes-
sellations tend to be more popular since they can adapt easier to irregularly shaped objects.
As is the case in Earth sciences, the object being studied needs to be sampled (e.g. the tem-
perature at several locations is recorded), but because we usually have access to the objects,
the sampling process is much easier and obtaining samples that are well-distributed on or in
the object and cover the whole object is possible. Although a lot of work is being done by the
meshing community, the methods they develop are not necessarily adapted to the modelling
of geoscientific fields. The aim of the meshing community is to tessellate objects as best as
they can, which usually means with elements that are as well shaped as possible. Once this is
done, the mesh is usually used to approximate the PDEs. Their algorithms to mesh objects
are usually static, i.e. their meshes, once constructed, can not usually be modified on the fly,
and their data structures are usually not flexible enough to permit further analyses (they do
not represent many topological relationships between elements). By contrast, the modelling of
fields and datasets in geoscience is optimised when interactive tools to manipulate and anal-
yse a datasets are present (Gold, 1993; Anselin, 1999; Lee and Gahegan, 2002), and dynamic
algorithms also permit us to represent time-changing phenomena.

Another related application domain is medicine, particularly medical imaging. Three-dimensi-
onal datasets are also frequent, and several tools have been developed to analyse and extract
(visually and quantitatively) meaningful information from raw data. The major impediment to
the use of medical imaging techniques in geoscience is the fact that their datasets are usually
‘complete’, i.e. they have technologies to collect full representation of one part of a body (a ‘3D
image’). Three-dimensional grids are therefore naturally used, hence techniques to analyse 3D
objects are based on this structure.
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(a) (b)

Figure 1.2: (a) The Voronoi diagram, (b) the Delaunay triangulation, for the same set of points in
the plane.

1.3 Objectives of the Research

The main objective of this research is to develop generic tools for the modelling of three-
dimensional fields in Earth sciences. Three-dimensional datasets collected to study the Earth
have properties that are usually not present in datasets in other disciplines, for example en-
gineering, medicine or computer-aided design. Tools, methods and data structures developed
in these fields are not adapted to the modelling of 3D fields (I elaborate more on the short-
comings of techniques in other disciplines in Chapter 2). For this reason, this research aims
at developing a new spatial model that is adapted to the properties of the datasets commonly
found in Earth sciences. The term ‘spatial model’, or spatial data model as it is often called,
is “a limited representation of reality, constrained by the finite, discrete nature of computing
devices; the term discretization conveys much the same meaning as data model” (Goodchild,
1992a).

The development of this three-dimensional spatial model is based on previous results in two
dimensions with two related geometric structures called the Voronoi diagram (VD) and the
Delaunay triangulation (DT). Given a set of points in the plane, the former structure partitions
the plane into ‘proximity zones’, i.e. each point is mapped to the region of the plane (a polygon)
closest to it (see Figure 1.2(a)). The latter structure is closely related to the Voronoi diagram.
It partitions the plane into triangles—where the points generating the Voronoi polygons are the
vertices of the triangles—that have the property of having an empty circumcircle, i.e. the circle
circumscribed to each triangle does not contain any point in its interior. The two structures
are dual to each other, i.e. they represent the same thing, just from different viewpoints. They
have interesting properties that make them important and useful in a wide range of applications
(see Aurenhammer (1991)), and they can also be generalised to any dimensions (Okabe et al.,
2000). Their formal definition and a review of their properties are presented in Chapter 3. For
GIS applications, the Delaunay triangulation has been used for many years as the triangulation
of choice in TINs for terrain modelling applications. The Voronoi diagram is also important in
GIS: it has been used to answer different types of neighbourhood queries (Okabe et al., 1994),
and its ‘tiling’ properties, which can be used to define spatial relationships between objects in
a map, has led to its use as an alternative to current GIS structures (Gold, 1991; Gold et al.,
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1997). Its major advantage over other structures is that it can be locally updated when a new
object is inserted, deleted or moved, and there is therefore no need to reconstruct large parts
of a map when a change occurs. This is particularly interesting for the management of time in
a GIS (Mioc, 2002) and for the interactive exploration of a dataset (Lee and Gahegan, 2002).
An outline of a two-dimensional Marine GIS, entirely based on the VD to handle topology and
perform spatial analysis and operations, has been developed by Gold and Condal (1995). They
show it has many advantages over the traditional spatial model of GISs for a wide range of
applications at sea. Wright and Goodchild (1997), in a review, affirmed that this method was
the only published attempt at that time to solve many important problems related to the nature
of marine data. The marine data they refer to have several similarities with data collected in
Earth sciences: marine datasets are formed mostly by unconnected points (e.g. bathymetric
samples or boats), the distribution of samples is highly irregular (data are collected according
to ship’s tracks), and things at sea tend to change position over time.

In brief, a spatial model based on the two-dimensional VD elegantly solves many problems
encountered with traditional GISs, and, for this reason, the assumption on which this thesis is
based on is that the three-dimensional VD could bring the same benefits for three-dimensional
datasets. The aim of my research is therefore to extend to three dimensions the tools, algorithms
and data structures developed for the 2D VD, and ultimately to build a new spatial model—
based on the 3D VD—to represent and analyse trivariate fields. In other words, my research
attempts to answer the following question:

Is the Voronoi diagram an appropriate structure to model three-dimensional and
dynamic fields in geoscience?

It is worth mentioning here that a spatial model based on the 3D Voronoi diagram has been
briefly discussed in Gold and Edwards (1992), but, to my knowledge, no attempts were made
to build one.

To achieve my objectives, I will:

1. Look closely at the applications in geoscience dealing with trivariate fields and review
the known spatial models.

2. Validate the use of the Voronoi diagram in 3D as a spatial model. Studying its properties
is an important part of this research, to ensure that it can appropriately represent 3D
fields for a wide range of applications, including those having dynamic components.

3. Develop and implement algorithms for the construction and the manipulation of 3D
datasets.

4. Detail the GIS operations (spatial analysis) needed to model and analyse trivariate fields
as found in the Earth sciences, and implement these operations.

5. Validate the concepts with a prototype that will be tested with a few datasets from
different disciplines related to the Earth.

1.4 Scope of the Research

This research aims at developing a prototype GIS that will manage three-dimensional geosci-
entific fields. The research is conducted from an algorithmic point of view: its main results are
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the description of a spatial model, the data structures to store it, and a set of algorithms for
manipulating and analysing 3D fields. A strong emphasis is put on the design of dynamic and
kinetic algorithms, that is algorithms that permit us to modify a structure (the 3D Voronoi
diagram in this case)—by inserting, deleting or even moving data points—without recomput-
ing it from scratch. Many optimal algorithms in the literature are static, which means that
for an algorithm to run, its input must be totally known beforehand. If the input changes
afterwards, even slightly, then the algorithm has to run again. Static algorithms are a major
obstacle when one wants to interactively explore a dataset to extract information, as explained
in Section 2.5. As for kinetic algorithms, which basically means that the input to a function
continually changes over time, they are used to model time and to perform simulations.

Many efficient algorithms that would be useful in GIS are being developed in other disciplines,
particularly in computational geometry. Although computational geometers design algorithms
and data structures for many geometric and GIS-related problems, their solutions are in most
cases theoretical, i.e. the asymptotic worst-case complexity of an algorithm is the factor deciding
the performance of an algorithm. Having a theoretical framework to compare algorithms is
important, but the discipline has also been criticised for not being practical enough. In a
report, the computational geometry community itself acknowledged that: “Paper descriptions
of worst-case optimal algorithms do not constitute significant improvement in a community
[GIS] that wants implementations of solutions” (Chazelle et al., 1996). Criticism of the report
triggered a lively discussion1 about what computational geometry should be. Many argued that
it should be more application-oriented, focus more on the development and analysis of practical
algorithms, and also work more in collaboration with practitioners in computer graphics, GIS,
biology, etc. Some also argued that worst-case complexity of an algorithm is not always the best
indicator of its practical performance, and that theoretical results in two dimensions do not
necessarily generalise to higher dimensions. Another problem is the gap that sometimes exists
between a theoretical algorithm and its implementation; this is mostly caused by degeneracies
that arise in geometric computing, as explained in Chapter 3.

The goal of this research is not to design theoretically optimal algorithms, but rather robust
algorithms that are simple to implement and in practice take a reasonable time to solve rea-
sonable problems. Simpler algorithms can usually be implemented easily and they are also
less error-prone—some theoretically optimal algorithms have been proved almost impossible
to implement! A strong emphasis is put on robustness of the algorithms, so that they output
a correct solution, regardless of the spatial distribution of the points in the input. In brief, I
want to take ideas and results from the field of computational geometry and apply them in the
context of the modelling of 3D fields in the geosciences. The work in this thesis is thus at the
interface of the disciplines of GIS and computational geometry.

Building a completely operational system is clearly out of scope considering the time schedule
available for this research. Therefore, I aim at developing generic concepts to model and analyse
three-dimensional fields, and testing them by building a prototype GIS. The following is a list
of relevant topics to the modelling of 3D fields that are not covered in this research:

❼ Data storage and maintenance: for this research, it is assumed that attributes for each
object can be stored in a database linked to the GIS, but no data model is proposed for
handling the different types of data and their attributes.

1On the compgeom mailing list, in 1996.
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❼ Data quality and errors: all input data in the prototype are assumed to be ‘clean’ and
‘error-free’.

❼ Very large spatial databases: datasets collected to study the Earth, because they are
three-dimensional and because of the time factor, can become enormous. This research
is not concerned with this problem and assumes that all the data can be stored in the
main memory of a computer.

1.5 Outline of the Thesis

The thesis is organised in eight chapters (including this one). Although the next two chap-
ters act as literature review respectively in GIS and computational geometry, the problems,
operations and applications described in Chapters 4, 5, 6 and 7 are all introduced by citing
the appropriate related work. Also, most of the concepts, operations and algorithms discussed
are introduced by describing first their two-dimensional counterparts, because readers are of-
ten more familiar with two-dimensional modelling techniques, and the visualisation of certain
three-dimensional issues is also rather difficult.

Chapter 2 introduces the GIS concepts needed for the understanding of the rest of the thesis,
and acts as a literature review of the techniques used in different disciplines for representing
and analysing spatial data. A big part of the chapter is devoted to describing the different
spatial models to represent fields in a computer. The chapter concludes by highlighting the
shortcomings of available techniques for representing geoscientific fields.

Chapter 3 introduces several concepts in computational geometry that are necessary to the
understanding of Chapters 4 and 5. The Voronoi diagram and the Delaunay tetrahedralization,
and their relationships, are formally defined. The difficulties that arise when implementing
geometric algorithms are also discussed.

Chapter 4 presents the algorithms for manipulating a three-dimensional Voronoi diagram.
Detailed algorithms, which are robust against all degenerate cases, are given for the construction
of the VD, the deletion of a vertex in a VD, and also the movement of a vertex in a VD.

Chapter 5 presents several GIS and spatial analysis operations for trivariate fields that are
possible when a field is represented with the VD.

Chapter 6 discusses some implementation issues related to the prototype developed for this
research. The problem of computing with floating-point arithmetic is discussed, as well as the
data structures that can be used to store the VD. A new data structure that was developed
for this work is presented. The practical performance of the algorithms developed are also
tested.

Chapter 7 presents a few applications in geoscience where a spatial model based on the VD
is useful. I explain how some properties of the VD can help for many ‘generic’ applications,
and also discuss the use of the VD for real-world applications in oceanography, meteorology
and geology.

Chapter 8 concludes the thesis by summarising the advantages of using a Voronoi tessellation
of space to represent trivariate fields as found in the geosciences, and by outlining the major
contributions of this research. Recommendations for further research are also given.



Chapter 2

State-of-the-art GIS

This chapter gives an overview of the GIS concepts and techniques that are related to the
modelling of fields in geoscience. Since GIS has traditionally been two-dimensional, many
of the concepts discussed are first introduced with two-dimensional examples, and then their
three-dimensional counterparts are presented. I first discuss notions related to the space, and
the different models available to represent it in a computer are reviewed. Fields are then
formally defined and a survey of the different spatial models described in the literature is
presented. The existing methods to extract meaningful information from fields and to analyse
the spatial variation within a field are also discussed. I conclude this chapter by highlighting the
weaknesses of current systems and summarising what is needed to accurately model trivariate
fields in geoscience.

2.1 Spatial Modelling

Space is a rather peculiar concept because, although every human has an intuitive idea of what
it is since it interacts with it constantly, defining it is somewhat tricky. The nature of space
has been a debate for a long time (at least since antiquity), and no clear and uncontroversial
definition exists because different disciplines (e.g. mathematics, physics, geography and geogra-
phy) have different definitions that are context-related (Couclelis, 1999). Different typologies of
space, based on different criteria, have nevertheless been proposed. For example, Zubin (1989)
classifies space into four categories according to the human’s perception, and Mark (1992) has
three categories, based on people’s interaction with space; Freundschuh and Egenhofer (1997)
offer a thorough summary of the different typologies related to GIS. Regardless of all the clas-
sifications, the type of space that is most relevant in the context of this thesis is the space that
is usually referred to as geographical space. Cities, provinces and countries are all example of
such a space because they are too large to be manipulated, and they are related to entities
that lie on or near the Earth’s surface. Small objects such as a bicycle or an airplane are not
included because they are not of geographical scale; note that systems to model such objects
will usually be called ‘spatial’ and not ‘geographical’.

As Frank (1992) explains, the concepts used by humans to organise and structure space can
not necessarily be implemented in a computer “either for lack of formal definition or for lack of
discretization”. A representation of geographical reality that can be implemented in a computer
is referred to as a spatial model (which is also sometimes called a spatial data model, or simply
a data model). A model is “a simplified representation of an object of investigation for purposes
of description, explanation, forecasting or planning” (Fotheringham and Wegener, 2000). In
the case of a spatial model, we are interested in representing the geographical entities, their

10
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Figure 2.1: Euclidean space in three dimensions.

relationships, and the phenomena that are in a certain region. The entities, which will be
abstracted and mapped into the model, will become objects and the (spatial) relationships
between objects will have to be explicitly defined in the model. The two following sections,
Sections 2.2 and 2.3, discuss models for geographical data.

2.1.1 Representations of Space

The representation of geographical space that best abstracts people’s perception of small- and
medium-scale space is the Euclidean space (Couclelis, 1999; Mark et al., 1989; Worboys and
Duckham, 2004). This is a metric space, i.e. a space where the notions of distance between
two points and of angle between two vectors can be defined. The Euclidean space in three
dimensions, denoted R

3, has a coordinate system that has a fixed origin, and three mutually
orthogonal axes, usually named x, y and z (as shown in Figure 2.1). Note that in two dimen-
sions, the Euclidean space (denoted R

2) is the well-known Cartesian plane. In R
3, a point a is

defined by a tuple of real numbers (ax, ay, az), which defines a vector from the origin (0, 0, 0)
to (ax, ay, az). The length, or norm, of vector ~a is

||~a|| =
√

a2
x + a2

y + a2
z , (2.1)

and the distance between any given points a and b, denoted |ab|, is the straight line joining the
two points:

|ab| = ||b− a|| =

√

(bx − ax)2 + (by − ay)2 + (bz − az)2 , (2.2)

which is obtained by using the Pythagorean distance. Also, the (interior) angle θ between
vectors ~a and ~b is obtained by simple geometry:

cos θ =
axbx + ayby + azbz

||~a|| ||~b||
. (2.3)

Another important concept when discussing space in a GIS context is topology. This is a branch
of mathematics concerned with spatial properties preserved under topological transformations
(or homeomorphism, which basically means stretching and twisting, but not tearing, puncturing
or folding). Take for example a map of Europe made of rubber, if one stretches or twists the
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map, certain properties will be preserved, such as the fact that France and Spain are adjacent,
or that Berlin is situated inside Germany. No matter how one stretches the rubber map, these
properties will remain true because they are not based on distance or size, but rather on how
things are ‘connected together’. The study of topology is a central theme in GIS because it
permits us to formalise how geographical entities are connected or relate to each other in space,
especially when some transformations, e.g. a change of cartographic projection, are applied to
a map. It should be noticed that what is usually referred to as topology in the GIS-related
literature is a fairly reduced view of a much broader subject.

2.1.2 Conceptualisations of Space

Space can be conceptualised according to two different approaches: the object and the field
views (Couclelis, 1992; Goodchild, 1992a; Peuquet, 1984). The former view considers space as
being ‘empty’ and populated with discrete entities embedded in space. The entities can be for
example roads, cups of tea, churches, etc., and they have certain properties. The latter model
considers the space as being continuous, and every location in space has a certain property
(there is something at every location). Entities or things are formed by clusters of properties.

The field-object dichotomy is a debate that has been going on for years in different disciplines,
and is still considered open (Couclelis, 1992). In philosophy for example, it dates back to Kant
who considered space not to exist by itself and being formed by the entities that populate
it, and to Descartes who argued that space exists by itself. In physics, it is analogous to
the dichotomy between the plenum and atomic perspectives. The work of Newton is based
on what he called the absolute space, where the space is a container of things and event.
By contradiction, his rival Leibnitz assumed a relative space where there is no emptiness.
Also, Couclelis (1992) investigates the dichotomy from a human cognition point of view, to
understand how the geographical world is perceived and categorised by humans. She states that
“cognitive geography will not side with either the object nor the field side of the controversy,
but supports a little of each, and much beyond”. In brief, humans use both approaches, but
for different purposes.

The dichotomy also has serious practical consequences as it influences the way geographical
entities and phenomena are represented in a GIS. Although typical commercial GISs usually
offer one or the other representation, some offer the possibility to have both, with operations
to convert representations back and forth. Even when both representations are supported, a
distinction between the two is always present as many spatial analysis operations are based on
one representation or the other (Albrecht, 1996).

2.1.3 Confusion between Spatial Models and Data Structures

In the GIS community, there exists a confusion between the terms ‘spatial model’ and ‘data
structure’. The confusion originates from the fact that object and field views of space are usually
implemented in a GIS with respectively vector and raster models (Frank, 1992; Goodchild,
1992a). A vector model represents individually each object with primitives such as points,
lines and polygons (and polyhedra in 3D), and have hence been linked to the object view. The
confusion mainly comes from raster representations because they are more or less synonymous
with fields in the GIS community. However, as Goodchild (1992a) points out, and as explained
in Section 2.2, fields can also be represented by vector models (e.g. if a triangulation is used).
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Figure 2.2: A 2D surface obtained from a set of points in the plane having a height as an attribute.

According to Frank (1992), a spatial model offers an abstract view of a data structure, which
is defined as “the specific implementation of a geometric data model, which fixes the storage
structure, utilization, and performance”. The same spatial model can therefore be implemented
with different data structures.

In this thesis, the terms ‘object view’ and ‘field view’ are used to refer to spatial models, while
‘vector’ and ‘raster’ are used to refer to the implementation details of a spatial model.

2.1.4 Dimensionality of a Spatial Model

The term ‘three-dimensional’ is misleading in a GIS context because it might refer to two
different concepts:

1. Each location in space has two independent coordinates (usually x and y), and one
dependent variable z that is usually the height (or elevation) of a terrain.

2. Each location in space has three independent coordinates (x, y and z); z is thus not an
attribute. One dependent variable a can be assigned to each location.

The first kind of ‘third dimension’ is when a two-dimensional surface is embedded in three-
dimensional space. Because each location (x, y) is assigned to one and only one height z, the
surface can be projected unto the plane (x, y), as shown in Figure 2.2. The surface can be seen
as geometrically three-dimensional, but topologically two-dimensional, for when it is embedded
in a two-dimensional space, it keeps the same structure (if it was a triangulation, the adjacency
relationships between triangles would stay the same). It should be noticed that the modelling
such surfaces is sometimes referred to as ‘2.5D GIS’.

The second concept can refer to two different situations. In the first one, the three independent
coordinates (x, y, z) represent the exterior of an object (as in a boundary representation). One
example is the work of Tse and Gold (2004) where a triangulation is used to represent the
surface of the Earth, with holes (for tunnels), cliffs and caves. This extension to the TIN
structure is possible with the help of computer-aided design (CAD) functions. The second
situation refers to the modelling of not only the boundaries of an object, but also of its interior
(the whole volume covered by an object).

The state-of-the-art in 3D GIS developed by major commercial companies usually means adding
a 3D visualisation package to a 2D GIS to give the impression of a 3D environment. Although
texture of terrain, roads and buildings are added over the terrain, and 3D bird’s view navigation
is available, this adds nothing to the two-dimensional structure of the terrain. The buildings
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are usually not ‘topologically connected’ to the ground and hence no 3D spatial analysis is
possible.

2.2 Field-based Models

A field is a concept rather difficult to define because it is not tangible and not part of our
intuitive knowledge. It is easy for us to see and describe entities such as houses or chairs, but,
although we can imagine fields, they are somewhat an abstract concept. The consequences
of that are firstly that formalising a field is difficult, and secondly that many definitions exist
in different disciplines (Peuquet et al., 1999). The definition usually used in a GIS context,
and used in this thesis, is borrowed and adapted from physics. Physicists in the 19th century
developed the concept of a force field to model the magnetic or the gravitational force, where a
force (a vector with an orientation and a length) has a value everywhere in space, and changes
from location to location. In this thesis, the vector assigned to each point of the Euclidean
space is replaced by a scalar value, and we obtain scalar fields; note that, in this thesis, unless
explicitly stated, the word ‘field’ always refers to a scalar field.

Because each point in space possesses a value, a field can be represented mathematically. It is
a model of the spatial variation of a given attribute a over a spatial domain, and it is modelled
by a function, from R

d to R in a d-dimensional Euclidean space, mapping the location to the
value of a, thus

a = f(location).

The function can theoretically have any number of independent variables (i.e. the spatial do-
main can have any dimensions), but in the context of geographical phenomena the function
is usually bivariate (x, y) or trivariate (x, y, z). Note that the domain can also incorporate
time as a new dimension, and dynamic fields, such that a = f(location, time), are thus ob-
tained (Kemp, 1993)—see Section 2.6 for more details.

2.2.1 Properties

2.2.1.1 Scale of Measurement

The value of the attribute a of a field can be measured according to different scales, and
depending on the scale used different types of fields will be obtained. It is important to discuss
the different scales because the mathematical operations possible on fields will be different
when different scales are used. For geographical data, the scale of measurement usually used
is that of Stevens (1946), in which four scales are defined:

Interval: the values of an attribute can be any real number R, but the zero point on the
scale is arbitrarily defined. Operations such as addition and subtraction are meaningful,
but division is not. The Celsius and Fahrenheit scales are two obvious examples: 30❽
is 20❽ warmer than 10❽, but it is not three times warmer. Only the magnitude of the
difference between two values is meaningful.

Ratio: the values of an attribute have all the features of interval measurement, but here
the ratio between two values is meaningful. In other words, a ratio scale has a fixed
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zero point. Obvious examples are when temperatures are measured in Kelvin (instead of
Celsius), or the amount of snow that has fallen in a certain region.

Nominal: the values of an attribute are simply labels, and they are meaningless. An exam-
ple is a map of Europe where each location contains the name of the country. The only
comparison that can be made between two values is if they are the same or not.

Ordinal: the values are also labels, but they can be ordered, e.g. a certain region can be
categorised according to its suitability to agriculture from 1 to 5: 1 being poor, and 5
very good. Here comparisons such as ‘greater than’ and ‘less than’ can be made, but no
arithmetic operations are possible.

The first two scales are considered as being continuous, and most fields studied in the geo-
sciences fall into this category. Temperature, precipitation or salinity are examples because
they can be measured precisely. I refer to this type of field as a continuous field. The last two
scales are less common, but as shown in Chapter 7, are useful in some applications. I refer to
this kind of field as a discrete field.

2.2.1.2 Continuity

The use of the terms ‘continuous’ and ‘discrete’ can be misleading because in mathematics
continuity has a slightly different meaning. The terms refer here to the scale of measurement,
and not to the spatial continuity of a field. Indeed, both types of fields are spatially continuous,
as they are represented by a function and there exists a value at every location in space.

2.2.1.3 Anisotropy

Anisotropy is the property of being directionally dependent, and it is the opposite of isotropy.
An anisotropic field is thus a field for which the values of the attribute varies depending on the
direction. Most fields in the geosciences are anisotropic.

2.2.2 Digital Representations of Fields

The representation of a (geographical) field in a computer faces many problems. Firstly, fields
are continuous functions, and, by contrast, computers are discrete machines. Secondly, in the
context of the geosciences, we rarely have a complete coverage of a geographical phenomenon,
unless a dataset comes from photogrammetry or remote sensing (in three-dimensions, it is
almost impossible to have complete representation). We must therefore rely on sampling a
field, and reconstructing the field from the samples. The reconstruction of a field from a set of
discrete samples is based on the notion of spatial autocorrelation, which states that the similarity
between a given attribute at two locations xi and xj increases as the two locations converges.
That follows Tobler’s First Law of Geography: “everything is related to everything else, but
near things are more related than distant things” (Tobler, 1970). Therefore, to represent a
field—which, I should stress, is usually obtained from a set of discrete samples—in a computer,
we need to:
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Figure 2.3: Examples of regular and irregular tessellations in two and three dimensions.

1. tessellate into finite elements the space covered by the field. A tessellation is a partition
of the space by a set of disjoint elements, such that there are no empty parts (the union
of all the elements completely fills the space).

2. define a set of rules to obtain the values of the attribute studied at any location x. This
is akin to interpolation methods, which are further covered in Section 5.2.

In the GIS literature, there are usually six different representations of 2D fields (Kemp, 1993;
Longley et al., 2001): (1) regularly spaced sample points, (2) irregularly spaced sample points,
(3) TIN, (4) rectangular cells (raster), (5) polygons, (6) contour lines. Theoretically, these six
representations generalise trivially to three dimensions, except perhaps the contour lines that
become contour surfaces, which could be tricky to implement and visualise. Although the first
two representations are commonly used, they are incomplete, as the set of rules to reconstruct
the fields between the samples is not explicitly defined, and should not, in my opinion, be
considered valid representations. These six usual representations are not exhaustive, and some
are conceptually the same, e.g. TIN and polygons.

I categorise the representations based on the type of tessellation, and also on the function used
to reconstruct the field. The space covered by a field can be tessellated regularly, irregularly,
or hierarchically. Once partitioned, the field function becomes piecewise: to each region is
assigned a function describing the spatial variation in its interior.

2.2.2.1 Regular Tessellations

Regular regions all have the same shape and size. The most common regular tessellation in
GIS is by far the grid (or raster representation), where the elements are squares in 2D (usually
called pixels as an analogy to digital images) and cubes in 3D (called voxels, a portmanteau of
the words ‘volume’ and ‘pixel’), see Figure 2.3. Notice that other regular shapes are possible,
such as hexagons.
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Figure 2.4: Examples of a raster representation (left), and its compression with the region quadtree
(right).

The wide popularity of raster representations in GIS applications is probably due to the fact
that they permit us to integrate remote sensing images and fields, and also due to simplicity.
Indeed, a grid is naturally stored in a computer as an array (each grid cell is addressed by
its position in the array, and only the value of the grid cell is stored), and thus the spatial
relationships between cells are implicit. The algorithms to analyse and manipulate (boolean
operations such as intersection or containment) are also trivially implemented in a computer.
On the other hand, raster representations have been severely criticised, both from a theoretical
and a technical point of view. The issues involved when using pixels as the main element for
geographical analysis are summarised in Fisher (1997). One problem is that a grid arbitrarily
tessellates the space, without taking into consideration the objects embedded in it or the
phenomena modelled. Kemp (1993) states that “[a raster representation] requires us to enforce
a structure on reality rather than allowing reality to suggest a more appropriate structure for
our analysis”. On the technical side, the problems most often cited are: (1) the meaning of
a grid is unclear (are the values at the centre of each grid cell, or at the intersections of grid
lines?), (2) the size of a grid (if a fine resolution is wished, then the size of a grid can become
huge, especially in three dimensions), (3) grids scale badly and are not rotationally invariant,
(4) an entity is not represented explicitly, but by a group of grid cells with similar values,
which means that its boundaries will be jagged. Also, unless a grid comes from an image
sensor (remote sensing or photogrammetry), we can assume that it was constructed from a set
of samples. Converting samples to grids is dangerous because the original samples, which could
be meaningful points such as the summits, valleys or ridges or a terrain, are not present in the
resulting grid. The samples are in a way lost. Also, when a user only has access to a grid, he
often does not know how it was constructed and what interpolation method was used, unless
meta-data are available.

A few implementations of a voxel-based GIS exist, notably the open-source system GRASS1

in which diverse operations such as interpolation and visualisation are possible. Also, most of
the earlier attempts at building 3D GISs were using voxels, as explained in Raper (1989).

2.2.2.2 Hierarchical Tessellations

To solve the problem with massive raster files, hierarchical tessellations can be used. A com-
monly used structure in two dimensions is the region quadtree, which indexes and merges
adjacent grid cells to save space. As shown in Figure 2.4, it recursively subdivides the space

1Geographic Resources Analysis Support System (http://grass.itc.it).

http://grass.itc.it
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Figure 2.5: Quadtree of a set of points in the plane.

into four squares of equal size, until every square contains one homogeneous region (based on
the attribute of every grid cell).

A quadtree is a generic term for a family of tessellations that recursively subdivide the plane
into four quadrants, labelled NE, NW, SW and SE (NE being north-east, SW being south-
west, and so on). It is easily implemented in a computer because it is a tree (see Section 3.1.1),
where each node has exactly four children, if any. Different variant of quadtree have been
proposed (see Samet (1984) for an excellent survey), but I focus here on the most relevant type
for modelling fields, the PR quadtree (P stands for point, and R for region). This assumes
that the quadtree is based on a set of points, e.g. the samples collected to study a field. A PR
quadtree recursively subdivides the plane into squares of equal size until each square contains
a maximum of one point, and each node of the tree therefore corresponds to a square (see
Figure 2.5). Notice that some squares do not contain any points, and also that a quadtree
offers an adaptive solution as more squares are present to capture more details where there
are more points. The quadtree easily generalises to higher dimensions. For instance, in three
dimensions, the space is recursively subdivided into eight octants, and thus the tree is called
an octree for each node has eight children.

The shortcomings of octrees are similar to those of rasters: the rotation and scaling operations
are difficult to handle, and only a rough approximation of the boundaries of an object is possible
(e.g. a surface separating two different attributes). Worboys and Duckham (2004) also note
that the structure is highly dependent on the position of the points, i.e. a small rotation of
the set of points, or a small change in the location of a few points may modify the octree
considerably.

The main advantage of using the structure—saving memory space—is actually true only when
the distribution of the points is more or less regular. Indeed, the size and depth of an octree is
not dependent on the number n of points it stores, but rather on their distribution in space (see
de Berg et al. (2000) for an analysis). When the point distribution is irregular (e.g. contains
clusters), the tree can be unbalanced (and have arbitrary depth), and therefore the query
and the manipulation (insertion or deletion of points) of an octree can be extremely slow. The
compressed quad/octree improves this situation by eliminating all the non-leaf node having only
one non-empty child, but the depth of an octree can still be O(n) in the worst case (Clarkson,
1983). In spite of its shortcomings, it should also be noticed that the PR quad/octree is a
structure that can be easily modified dynamically (insertion and deletion of a single point),
and is thus attractive for the modelling of fields in an interactive context (see Section 2.5 for
more details about dynamic modelling).



Chapter 2 State-of-the-art GIS 19

Figure 2.6: An example of a choropleth map (figure from Statistics Canada).

Examples of the use of octrees in GIS projects are plenty: Bak and Mill (1989) and Jones
(1989) use it for modelling geological structures; Li and Saxena (1993) use it for modelling
the three-dimensional objects in their prototype marine GIS; and O’Conaill et al. (1992) and
Mason et al. (1994) show its advantages for many applications in the geosciences.

2.2.2.3 Irregular Tessellations

The elements of an irregular tessellation can be of any shape and size. In the plane, each
element forming the tessellation is a polygon, while in three dimensions it is a polyhedron.
Irregular tessellations usually follow the outline of the data points (the samples that were
collected to study the field), albeit this is not a requirement. Subdividing the space based on
the samples has the main advantage of producing a tessellation that is adaptive to the sample
distribution and to the complexity of the phenomenon studied. The subdivision is potentially
better than that obtained with quad/octree because there are no constraints involved when
subdividing the space.

The most known examples of the use of irregular tessellations in GIS are arguably the choropleth
map and the TIN. The former subdivides the plane into arbitrary polygons where all the
locations within a given polygon have the same values. They are thus discrete fields and used
mostly in social sciences for the visualisation of statistical variables such as densities, rates or
proportions. Figure 2.6 shows one example where the median age of the population for different
districts of Québec City is shown. A TIN tessellates the plane into triangles formed by data
points representing the elevation (or other attributes) at a certain location (x, y). Figure 2.2
shows an example of a TIN.
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Another example of an irregular tessellation is the Voronoi diagram of a set of points in a
d-dimensional space, where each point is mapped in a one-to-one way to a cell representing
the locations in space that are closer to the point than to any other in the set. This is an
advantage over raster and quad/octree structures where some cells do not contain any data
points. See Figure 1.2(a) for a two-dimensional example, and the properties of the structure are
extensively discussed in the next chapter. Perhaps the main advantage of irregular tessellations
in the context of field modelling is that they permit us to preserve the samples, which are the
only ‘ground truth’ of the field studied, and have even been referred to as the meta-field (Kemp
and Vckovski, 1998).

A number of spatial models based on irregular tessellations have been proposed in the liter-
ature. Although the authors were not referring directly to fields, they are still subdividing
the space covered by a three-dimensional object. Because the implementation of these are
theoretically and technically much more difficult than for regular and hierarchical tessellations,
many of these are simply theoretical discussion. Carlson (1987) proposes using triangles and
tetrahedra for modelling subsurface structures, but does not consider many cases that would
restrict the implementation, such as the presence of over-folds. Pigot (1992) also uses arbitrary
cells of any shapes to tessellate 3D objects. Despite the flexibility of this model, it can be very
difficult to implement from a data structure point of view and many spatial analysis opera-
tions are complicated by the fact that the cells are not convex. His work is based on a rather
powerful data structure developed by Brisson (1989), which is described further in the section
about data structures (Section 6.3). Tetrahedralizations, i.e. the decomposition of objects into
tetrahedra, have also been used. Examples include Lattuada (1998) who uses tetrahedra in
geological applications, and Pilouk (1996) who proposes using constrained tetrahedralizations
to tessellate 3D objects. Implementing Pilouk’s solution might prove to be difficult, as con-
strained tetrahedralizations are still at the research level, and are not possible for every 3D
object (see Section 4.4.1).

2.2.2.4 Piecewise Functions

The function representing a field is piecewise when it is formed by different functions assigned
to the different elements of a tessellation. The function within each element is usually a simple
mathematical function, and as Goodchild (1992a) points out, this function can be constant,
linear, or of a higher order. A constant function means that the value of the attribute is
constant within one region, for example to represent a discrete field, as in a choropleth map.
An example of the use of a linear function is a TIN: the spatial variation within each region
(a triangle) is described by the linear function (a plane) defined by the three vertices lifted to
their respective elevation. The value of the attribute of a field at an unsampled location x is
thus obtained by linearly interpolating on the plane passing through the three vertices of the
triangle containing x. Akima (1978) shows the advantages of using higher order functions in
each region of a TIN—the main one being that the slope of the terrain is continuous everywhere,
i.e. there are no discontinuities at the border of two triangles.

The same functions can obviously be used within each element in three dimensions.
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2.2.3 Field Operations

Although fields are continuous in space and contrast with the object-view of space, the concept
of object is still important as we can ‘extract’ discrete objects from a field. Indeed, implicit
lines or surfaces representing the border between two different attributes can be extracted to
help for visualisation or some other purpose. An example in two dimensions is a set of contours
lines created from a field representing elevation, and in three dimensions a surface representing
the front of a depression in atmospheric sciences.

Many arithmetic operations are also possible on fields, as demonstrated in the section about
map algebra (Section 2.4.2).

2.3 Object-based Models

Although this thesis is concerned with the modelling of fields, it is still worth discussing the
methods used in GIS to represent objects for several concepts are related (e.g. data structures).
In an object-based view of the world, the space itself is empty and ‘littered’ with individual
objects having their own attributes and location. Objects will ‘interact’ with each other (e.g. the
location of each object will cause some to perhaps overlap, or be adjacent, or be contained within
one another), and a GIS must represent each object, and also offer mechanisms to extract and
represent the interactions (the topological relationships). In two dimensions, the representation
of objects is usually done with three primitives: points, lines and polygons. To store all the
objects in a certain portion of the plane, a variety of data structures with different properties
have been developed and implemented. For instance, several GISs explicitly store the adjacency
relationships between objects (e.g. TIGER (Boudriault, 1987) and ARC/INFO (Morehouse,
1985)), while some others use non-topological structures (e.g. the so-called spaghetti models)
and reconstruct on the fly the spatial relationships when needed. Theobald (2001) examines
the merits and drawbacks of both approaches.

In three dimensions, the same ideas can be applied, but one more primitive is needed: the
polyhedron. Note that not all primitives need to be explicitly stored, as we can represent a
3D object only by its exterior surface, and thus use points, lines and polygons only. Most
of the work on three-dimensional vector GIS is concerned with the modelling of cities, with
for instance many buildings, roads and bridges. When designing three-dimensional spatial
models for such applications, two issues must be tackled: (1) how each object should be
represented; (2) how the topological relationships between objects are detected and stored.
The former issue is usually solved by using a boundary representation (b-rep) of each object,
and many data structures exist for that. I discuss in Section 6.3 several issues concerning data
structures for storing three-dimensional subdivisions. The latter issue implies that two or more
datasets containing objects are being ‘overlaid’ (or superimposed), and one needs to build the
relationships between all the objects. Zlatanova et al. (2004) give an excellent summary of
the spatial models that have been proposed for handling the geometry, the semantic and the
spatial relationships between 3D objects. They also give an overview of the several frameworks
used to detect relationships; most of them are similar to the 9-intersection model of Egenhofer
and Herring (1990) and to its extension to three dimension (Egenhofer, 1995).
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2.4 GIS Operations and Spatial Analysis

Although many programs can handle spatial data (e.g. CAD, scientific visualisation tools, sta-
tistical packages and database management systems), what sets GISs apart is their capabilities
to perform spatial analysis (Goodchild, 1987). Spatial analysis operations include any geomet-
rical, topological or statistical operations performed on spatial data (and their attributes) to
produce information for decision-making. The result of a spatial operation is dependent on the
locations of the objects studied; if the objects involved in a query moved, then the result of
query would be different.

The GIS operations in two dimensions are well-known, and many are available in commercial
systems. A few taxonomies of GIS operations exist, e.g. see Aronoff (1991) or Goodchild
(1987), but are limited by the fact that they are data structure dependent (vector or raster).
Admittedly, not every operation is possible on any kind of data (e.g. interpolation is meaningless
without a field, so is a buffer zone without discrete objects), but, in my opinion, the data
structure used to represent geographical reality should not drive the taxonomy of operations.

Albrecht (1996) recognises that and proposes a taxonomy that is, to my knowledge, the most
relevant one in the context of this thesis, albeit it is for the two-dimensional case only. The
other set of operations relevant to this thesis is the map algebra framework (Tomlin, 1983),
which comprises tools to model and analyse different fields stored in a raster format.

2.4.1 Albrecht’s Classification

Albrecht (1996) proposes a taxonomy of GIS operations mainly to help in the integration of
environmental modelling within GIS. He classifies “20 universal GIS operators that allow to
build all but the most exotic GIS applications” and separates them into six categories:

1. Search: interpolation, (re)classification, thematic and spatial search;

2. Location Analysis: buffer zone, overlay, and creation of Voronoi diagram;

3. Terrain Analysis: slope/aspect, viewshed, catchments/basins, and drainage;

4. Distribution/Neighbourhood: cost, proximity, and nearest neighbour;

5. Spatial Analysis: statistical and pattern analysis, shape;

6. Measurements: distance, area and centroid.

All of these are relevant in the context of modelling fields because, as mentioned in Section 2.2.3,
discrete objects can be extracted from fields. It should be noticed that most of these operators
take into consideration the attributes attached to each object or location, but that some op-
erators consider only the location information. Interpolation, classification, thematic search,
terrain analysis, and distribution belong to the former category; while buffer zone, pattern
analysis, shape and measurement belong to the latter. Notice also that new objects are created
by some operators, most notably the Voronoi diagram and buffer zone operations. The overlay
operator encompasses all the usual ‘topological operators’, as defined by Egenhofer and Herring
(1990): union, intersection, containment, adjacent, etc.

All the operations theoretically generalise to three dimensions, except the ones concerned with
terrain analysis. Many of these are discussed in Chapter 5.
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Figure 2.7: The map algebra operations with a raster structure. (a) A binary local operation. (b) An
unary focal operation. (c) A zonal operation that uses a set of zones (fzones) stored as a grid.

2.4.2 Map Algebra2

Map algebra refers to the framework, first developed and formalised by Tomlin (1983), to
model and manipulate fields stored as raster structures. It is called an algebra because each
field (also called a map) is treated as a variable, and complex operations on fields are formed
by a sequence of primitive operations, like in an equation (Berry, 1993). A field operation
always takes a field (or many fields) as input and returns a new field as output (the values of
the new field are computed location by location). Operations can be unary (input is a single
field), binary (two fields) or n-ary (n fields); I describe here only the unary and binary cases
because n-ary operations can be obtained with a series of binary operations. Tomlin (1983)
describes three categories of operations:

Local operation: (Figure 2.7(a)) the value of the new field at location x is based on the
value(s) of the input field(s) at location x. An unary example is the conversion of a
field representing the elevation of a terrain from feet to metres. For the binary case, the
operation is based on the overlay in GIS: the two fields f1 and f2 are superimposed, and
the result field fr is pointwise constructed. Its value at location x, defined fr(x), is based
on both f1(x) and f2(x). An example is when the maximum, the average or the sum of
the values at each location x is sought.

Focal operation: (Figure 2.7(b)) the value of the new field at location x is computed as a
function of the values in the input field(s) in the neighbourhood of x. As Worboys and
Duckham (2004) describe, the neighbourhood function n(x) at location x associates with
each x a set of locations that are ‘near’ to x. The function n(x) can be based on distance
and/or direction, and in the case of raster it is usually the four or eight adjacent pixels.
An unary example is the derivation of a field representing the slope of a terrain, from an
elevation field.

2This section is based on Ledoux and Gold (2006a).
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Zonal operation: (Figure 2.7(c)) given a field f1 and a set of zones, a zonal operation
creates a new field fr for which every location x summarises or aggregates the values in
f1 that are in a given zone. The set of zones is usually also represented as a field, and
a zone is a collection of locations that have the same value (e.g. in a grid file, all the
adjacent cells having the same attribute). For example, given a field representing the
temperature of a given day across Europe and a map of all the countries (each country
is a zone), a zonal operation constructs a new field such that each location contains the
average temperature for the country.

Although the operations are arguably simple, the combination of many makes map algebra
a rather powerful tool. It is indeed being used in many commercial GISs, albeit with slight
variations in the implementations and the user interfaces (Bruns and Egenhofer, 1997).

It should also be noticed that the three categories of operations are not restricted to the plane,
and are valid in any dimensions; Mennis et al. (2005) have recently implemented them with a
voxel structure.

Despite its popularity, the biggest handicap to the use of map algebra is arguably that is was
developed for regular tessellations only, although the concepts are theoretically valid with any
tessellation of space (Takeyama, 1996; Worboys and Duckham, 2004). The shortcomings of
raster structures to represent fields, as described earlier, all apply for map algebra. A further
important consideration is that in order to perform binary operations, the two grids must
‘correspond’, i.e. the spatial extent, the resolution and the orientation of the two grids must be
the same, so that when they are overlaid each pixel corresponds to one and only one pixel in the
other grid. If the grids do not correspond, then resampling of one grid (or both) is needed. This
involves the interpolation of values at regularly distributed locations with different methods
such as nearest neighbour or bilinear interpolation, but unfortunately each resampling degrades
the information represented by the grid (Gold and Edwards, 1992).

2.4.3 GIS Operations in Three Dimensions

The GIS operations are not as studied in three dimensions and no classification as complete
as Albrecht’s is known. Ideally, a 3D GIS should be able to perform the same operations as
in two dimensions. As stated, most of the two-dimensional GIS operators generalise to three
dimensions straightforwardly.

To my knowledge, the only attempt to classify the 3D GIS operations is a very generic classifi-
cation by Raper (1992). Since it is notorious that volumetric data are difficult to visualise, he
includes visualisation functions as one of the category. His other operators are: transformation
(shearing); selection (based on intersection of spatial objects); relationships (metric and topo-
logical); characterisation (volume, surface, centre of mass); and modelling (building of complex
objects from primitives).

I propose in Section 5.1 an extension to three dimensions of the classification of Albrecht
(1996).
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2.5 Dynamic and Interactive Modelling

The term ‘dynamic’ has different meanings depending in which discipline it is being used. In
a GIS context, it usually refers to the movement of some objects, so it is closely related to
the modelling of time. By contrast, a dynamic data structure in computer science is one that
permits the insertion and the deletion of objects, without the need of reconstructing from
scratch the whole data structure. A simple example is a linked list, because elements can be
added or deleted anywhere in the list, and the updating is efficient. Data structures permitting
the update of the data structure while objects are in motion, e.g. a set of points moving in the
plane and we want to keep at all times the spatial relationships between them up-to-date, is
referred to a kinetic structure in computer science.

Dynamism is essential in a context of interactive modelling (Anselin, 1999; Bailey and Gatrell,
1995; Gold, 1993). This is an approach where the user does not only use standard operations
(e.g. GIS spatial analysis or statistical methods) on a dataset, but actually interacts with it
by manipulating and transforming it and then looks at the consequences of his manipulations.
The emphasis is put on the interaction between the user and the dataset through modification
and visualisation tools. A simple example of this approach is a spreadsheet tool (e.g. Microsoft
Excel) where numerical data can be explored with the help of different statistical tests and
charts (histograms, scatter points, pie charts, etc.). These charts are linked to the data, i.e. if
some numbers in the dataset are changed, the charts are automatically updated.

In the context of geoscientific modelling, one can think of an environment where the samples
can be inserted, deleted or even moved at will by the user, and he gains insight about the
spatial variation of the field studied by manipulating the dataset and observing the results. A
key factor in interactive analysis is the speed with which each function is performed, to ensure
that the user gets an (almost) instantaneous result from a query or an operation, so that he is
not disturbed by long waits.

2.6 Handling Time within a GIS

2.6.1 Is Time Another Dimension?

As in the case of integrating the third dimension in a GIS, the integration of time is rather
complex. Although several solutions have been proposed over the years (see Langran (1992)
and Peuquet (2001) for excellent surveys), the representation of both space and time in the
same system is still problematic, and no fully functional systems are known. As Couclelis (1999)
points out, time has been historically linked to space, to the extent that it is often considered
as another dimension, one that is orthogonal to the three dimensions of space. This approach,
which yields a four-dimensional structure, is supported both by physics and mathematics: it is
called a Minkowski space and was used by Einstein to formulate the special theory of relativity.
However, as Galton (2004) argues, the special theory of relativity tries to explain the workings
of the universe and is somewhat irrelevant to the context of modelling temporal data at the
surface of the Earth. The full integration of time within a spatio-temporal coordinate system
is mostly a theoretical discussion as in practice, no matter if time is fully integrated or not,
objects will be located in three-dimensional space and in time. By contrast, Peuquet (1994b)
warns that a homogeneous four-dimensional representation might not be wished since space
and time exhibit important differences. The main differences being that the scale (or units) of
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time is totally different from the scale of space, and also that discretising time is not a simple
issue. These problems can probably be solved for specific applications, but generic rules are
difficult to devise.

In brief, space and time can theoretically be integrated together, but in practice in a GIS con-
text, things are more complicated. Adding a time dimension to a 2D GIS does not necessarily
make it 3D, in the sense that the geometry and topology of a 2D problem does not necessarily
become 3D when the factor time is added. It should be noticed that in a GIS context, the
terms ‘four-dimensional’ and ‘multi-dimensional’ are nevertheless often being used. Indeed,
attributes are often considered as an another dimension (as in a TIN), and scale as even been
considered as another dimension (Li, 1994).

2.6.2 Past or Future?

In the discussion about the integration of time in a GIS, two concepts contrast:

1. One is interested in analysing the state of a certain region at a given time, in the past.
This presupposes that data have been collected at different times, and one wants for
instance to analyse changes and identify trends.

2. One possesses a set of data at a certain time and would like to predict what will happen in
the future, given a certain number of hypotheses. This has been referred to as ‘What-if?
analysis’, or simulation.

Both concepts can use similar techniques, but there can also be important differences. Repre-
senting changes to be able to answer questions such as ‘Where was such-and-such object and
what was its attributes at time t ?’ is mostly a database problem. On the other hand, the
second concept involves the movement of objects or the simulation of a process, such as a forest
fire or the tides.

2.6.3 Representing Changes

Although GISs were essentially developed for the storage, representation and manipulation of
spatial information, different methods have been proposed in recent years to represent changes.
To integrate time, most of the methods developed are based on the extension of the existing
spatial models in commercial GISs, as it has been the case when integrating the third dimension.
Since there were no mechanisms to represent time, the first method used was rather trivial: time
was simulated by showing a series of separate snapshots, where each snapshot is a representation
of a certain region (a GIS layer) at a certain time (Armstrong, 1988). Every layer has a date
associated with it and every object on this layer is affected. This model has many problems:
the same object can be duplicated in two layers—which causes data redundancy and possibly
data inconsistency—, enormous data storage can be needed, and it is impossible to know when
a change occurred, we just know that it was between the times associated with two layers. To
solve these problems, the idea of date-stamping each piece of information instead of the whole
layer was developed. The attributes of every location (in a raster) or the objects themselves
(in a vector representation) are linked to a list that contains the chronological changes that
happened (the list can be thought of being perpendicular to the two spatial dimensions).
Examples of this method are the models of Langran (1992), Peuquet (1994a) and Worboys
(1992).
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The previous models add the time factor to a GIS, but none of them can maintain the topologi-
cal relationships valid after a change. The emphasis is put on ways to maintain consistently the
database, but how the spatial relationships among objects are maintained is usually not cov-
ered. Processes like the movement of an object over time can not be modelled with snapshots
because it is simply too expensive. It has been argued that the problem of adding dynamic pro-
cesses to a GIS will not be solved by simply modifying the database linked to the system since
the biggest handicap of commercial GIS is the definition of topology (Burrough, 1992; Gold,
1991; Peuquet, 1994b). Gold (1996) and van Oosterom (1997) both propose models where the
updating of the topology and the database is performed with models that are not based on
the usual polygon-arc-node models of commercial GISs. Representing continuous changes is
possible with these models: local updates are performed as soon as an event occurs. van Oos-
terom achieves this with a topological data structure, similar to the winged-edge (Baumgart,
1975), where insertion and deletion of objects are possible. Gold’s spatial model is based on
the Voronoi diagram and it permits local updates when objects are inserted, deleted or even
moved. It is possible to rebuild every topological state of a map since all the operations are
reversible. I give more details about the algorithms to modify a VD in Chapter 4.

Models for handling time within a 3D GIS are rare probably because 3D spatial models are
still in their infancy and are useful only in a few application disciplines, and also because of
the technical difficulties arising with the implementation of 3D algorithms. Pigot and Hazelton
(1992) propose a theoretical method, based on the spatial model of Pigot (1992), for represent-
ing space and time. Since the time is represented as an extra dimension, the spatio-temporal
objects are embedded in four-dimensional space. Different snapshots of a dataset are kept and
the spatio-temporal objects in it are formed by joining the cells between different times, thus
creating four-dimensional cells. They state that these spatio-temporal objects can be stored
with the data structure developed by Brisson (1989) and that the topological framework of
Egenhofer (1995) can be extended to four dimensions. Also, Mason et al. (1994) and O’Conaill
et al. (1992) describe two similar systems for three-dimensional oceanographic and atmospheric
data, and recognise the importance of integrating time in a GIS to improve environmental sim-
ulations. Their system treats the four dimensions equally but instead of using cells, they use a
raster representation that is implemented as a four-dimensional hypercube; the data structure
used is called a bintree, which is a hierarchical structure similar to the octree. Varma (1999)
also propose a similar model, based on the helical hyperspatial code, which is also a hierarchi-
cal tessellations. Finally, Raper and Livingstone (1995) discuss a 4D spatial model based on
object-oriented techniques for a specific problem in geomorphology, but the concepts can be
used for other applications where processes need to be modelled. The spatial model is vector-
based as different objects are modelled. Their discussion is mostly theoretical, and details
concerning the implementation (how the spatial relationships are defined) are not covered.

A further important consideration is that the map algebra framework, as described in Sec-
tion 2.4.2, can also be considered as a mean to model changes as fields collected at different
times can be analysed, and information extracted.

2.6.4 Simulations

Many disciplines need to simulate real-world processes, and the methods they use obviously
differ. This section is not intended to be a thorough review of the methods used, but rather a
short summary of the most relevant for the kind of data this thesis is concerned with.
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Simulations in engineering or in geoscience have usually been based on partial differential
equations (PDEs) that describe the behaviour of some fluid (e.g. the fluid flow around an
aircraft, or the movement of underground water) (Burrough et al., 1988). On the other hand,
researches oriented more towards social sciences (e.g. urban growth or transportation) have used
mostly cellular automata (CA) (Wolfram, 1986). Both methods are related as they require the
partitioning of the space into discrete cells. PDEs are solved, or rather approximated, with
mainly two numerical methods: the finite difference method (FDM), which was developed for
regular tessellations; and the finite element method (FEM) (Strang and Fix, 1973), which is
possible on any tessellations, regular or irregular. The solution of a PDE is obtained by firstly
approximating the behaviour of the process studied for each element of the tessellation, and
the final solution is obtained by accumulating all the results. By contrast, a cellular automaton
is a discrete model of a process (both in space and in time), and it consists of a tessellation
(usually regular, although it is possible to use CA on irregular tessellation) where each cell
has a state (the attribute given to each cell). Dynamic phenomena are modelled discretely,
i.e. the time is discrete, and the state of a cell at time t is defined uniquely by the states of
its neighbouring cells at time (t − 1). CA are theoretically valid in any dimensions, but most
of the GIS-related work is in two dimensions, see for example Batty et al. (1997), Couclelis
(1985), Takeyama and Couclelis (1997) and De Vasconcelos et al. (2002).

For the modelling of fluid flow, there exists an alternative approach to using a fixed/rigid
tessellation: the Free-Lagrange method (FLM), where the flow is approximated by a set of
discrete points (called particles) that are allowed to move freely. A tessellation of the space
is still required (based on the particles), but of course it will be modified as the particles are
moving. As already explained briefly, the Voronoi diagram ‘naturally’ tessellates the space
based on a set of points, and has therefore been used (Erlebacher, 1985). Although the FLM
theoretically can represent better a physical process (Fritts et al., 1985), it is handicapped by
the difficulties encountered when implementing it. As Mostafavi and Gold (2004) note, the
adjacency relationships of the cells of the tessellation must be kept consistent at all times, and
there must be a way to model time, because fixed time steps can comprise the adjacency of
the tessellation. They propose using the VD of a set of moving points (on the sphere), and the
tessellation does not have to be reconstructed after each move as all the operations are local,
as in the work of Roos (1991); more details about the movement of points in a VD are given
in Section 4.5.

The integration of process modelling with a GIS is a source of problems because GISs have not
been designed to handle time, even less processes which involves continual movement (Sui and
Maggio, 1999). Full integration is almost not heard of, and the two are usually simply ‘linked’,
i.e. a GIS is used as a pre-processing tool (e.g. to prepare a dataset or convert formats) and
as a post-processing tool (e.g. visualisation and further spatial analysis), but the simulation
itself is done using a specialised tool. Many argue for ‘full integration’, as both tools would
ultimately gain (Freda, 1993; Parks, 1993).

2.7 Visualisation

This section briefly presents the basics of three-dimensional visualisation. More details can be
found in any good computer graphics book, such as the one by Hill (2000).
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projection plane

Figure 2.8: Geometry of a perspective projection.

The basic idea of 3D visualisation is to project three-dimensional objects—formed by points,
line segments and planes—in a two-dimensional plane, the computer screen. Computer screens
have a raster display, that is a grid of pixels where each pixel can be assigned one and only one
colour. The process of projecting the objects is therefore split into two steps: the projection
in the plane and the rasterisation to assign one colour to each pixel. There exist many kinds
of projection, but a perspective projection (see Figure 2.8) will produce an image that mimics
how the eyes see the objects, i.e. the closer to the viewpoint an object is, the bigger it will be in
the plane. A perspective view is defined by a viewing volume, that is a truncated rectangular
pyramid that defines what portion of a scene should be projected in the 2D plane. There exist
different topics related to the rendering of 3D objects, for example level of detail algorithms will
vary the details in a scene to accelerate the rendering of the objects; hidden-surface removal
algorithms will determine which object in a scene is the closest to the viewpoint so the colour
of this one will be assign to the corresponding pixel; and algorithms for computing the shading
and the illumination of a scene are also necessary to have realistic views. The OpenGL library, an
interface to the graphics cards, greatly helps the process of rendering a scene by providing the
basics tools to perform the operations previously mentioned—OpenGL is not the only graphical
library, but a popular one since it is platform independent.

A three-dimensional perspective view with ‘navigation tools’ (zoom in/out, translation and
rotation) is sufficient to visualise surfaces, but not enough to explore a volumetric dataset
(data in three dimensions plus an attribute). Several extra techniques can help, as explained
in Section 5.4.

2.8 Why Do GISs Lack What Is Needed to Model Trivariate Fields?

Most of the techniques presented in this chapter have drawbacks for the representation and the
modelling of three-dimensional fields, as found in the Earth sciences. The object-based models
are clearly not appropriate, and what is needed is a tessellation. The wide popularity of regular
(voxels) and hierarchical tessellations (octrees) is probably due to their simplicity: a simple
data structure can be used to store them, and their manipulation is also simple. Unfortunately
this simplicity has a hefty price. Rasters can become huge, do not scale well, force an unnatural
discretisation of continuous phenomena and imply a fair amount of preprocessing of datasets,
which is usually hidden to the user. Octrees improve that but still have many shortcomings.
Arbitrary tessellations into polyhedra are an attractive solution, but the construction and the
manipulation of such a spatial model are cumbersome and rather slow.
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What is needed is a three-dimensional spatial model that adapts, or takes into consideration,
the phenomena being modelled, and also that permits us to modify it efficiently in order to do
interactive and temporal modelling. As briefly mentioned in this chapter, a tessellation of the
space into Voronoi regions seems like a perfect solution in our case. VDs in two dimensions
have been used in different GIS-related projects, most notably for a prototype of a Marine
GIS (Gold and Condal, 1995; Gold, 1999) where the needs are similar to the modelling of
fields in geoscience. A spatial model based on the three-dimensional VD would permit us to
accurately and efficient reconstruct a field from the samples that were collected to study it.
By assigning different functions to each cell, it would be possible to model both discrete and
continuous fields.

I argue in this thesis that the Voronoi tessellation has many advantages over other tessellations
for representing fields. First, it gives a unique and consistent definition of the spatial relation-
ships between unconnected points (the samples). As every point is mapped in a one-to-one
way to a Voronoi cell, the relationships are based on the relations of adjacency between the
cells. Second, the size and the shape of Voronoi cells are determined by the distribution of
the samples of the phenomenon studied, thus the VD adapts to the distribution of points.
This is particularly interesting because geoscientific datasets usually have highly anisotropic
distribution. Third, as demonstrated in Chapter 4, we can add, delete and even move points
in a VD without reconstructing the structure from scratch. Fourth, the dual of the VD, the
DT, can also be of great help for the manipulation and the analysis of fields.

Although the algorithms to manipulate and analyse a three-dimensional VD are admittedly
more complex than the ones for raster structures, I argue that the benefits of using the VD
compensate largely, as the rest of this thesis demonstrates.



Chapter 3

State-of-the-art Computational Geometry

Computational Geometry is a branch of computer sciences that involves the design and analysis
of efficient algorithms for solving geometric problems. It emerged in the late 1970s from the
field of algorithmic design, and is now a discipline on its own with conferences and journals.
It is popular because a great many problems are geometric by nature, and because the results
of computational geometry can be applied in a variety of disciplines, for instance computer
graphics, CAD, engineering, GIS, robotics, etc.

Arguably the most important structures in computational geometry are the Voronoi diagram
(VD) and the Delaunay triangulation (DT). The two structures have been discovered, redis-
covered and studied many times and in many different fields (see Okabe et al. (2000) for a
complete history). The VD can be traced back to 1644, where Descartes used Voronoi-like
structures in Part III of his Principia Philosophiæ. The VD in two and three dimensions was
used by Dirichlet (1850) to study quadratic forms—this is why the VD is sometimes referred to
as Dirichlet tessellation—but was formalised and defined for the d-dimensional case by Voronoi
(1908). The first use of the VD in a geographical context is due to Thiessen (1911), who used it
in climatology to better estimate the precipitation average around observations sites. The DT,
which is the dual of the VD, was formalised for the d-dimensional case by Delaunay (1934); no-
tice that his name is sometimes spelled ‘Delone’. Many computer scientists and mathematicians
consider the VD as being the most fundamental spatial structure (or spatial model) because
it is very simple, and yet is so powerful that it helps in solving many theoretical problems,
and helps in many real-world application; Aurenhammer (1991) and Okabe et al. (2000) offer
exhaustive surveys.

This chapter formally defines the concepts of VD and DT in three dimensions, and introduces
several concepts in computational geometry and combinatorial topology that are needed to
understand the next two chapters about respectively the manipulation of a three-dimensional
VD and the implementation of GIS operations based on the VD/DT. The definitions of most of
these concepts can be found in any good computational geometry book, such as Preparata and
Shamos (1985), Boissonnat and Yvinec (1998), de Berg et al. (2000), or Edelsbrunner (2001).

3.1 Mathematical Preliminaries

3.1.1 Graphs

In mathematics and computer science, a graph G = (V,E) is defined as a set of vertices V
(also called nodes) together with a set of edges E joining two distinct vertices. Depending on
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Figure 3.1: (a) The graph has two intersecting edges, but it is still a planar graph since it can be
drawn without any intersection, as in (b). (c) An example of a non-planar graph.

the application, an edge e = {a, b} joining two distinct vertices a, b ∈ V can be directed or not.
Every edge in an undirected graph is formed by an unordered pair of vertices a and b, so that
e = {a, b} and e = {b, a} represent the same edge. Weights can also be assigned to each edge
of a graph, i.e. a value is associated to an edge. This permits many real-world applications,
for instance the calculation of the optimal route between two locations (the weight can be the
distance between the locations, the time it takes to drive from one to the other, etc.). Notice
that the graphs used in this thesis are always unordered and unweighted. To simplify the
notation, I will simply use ab to refer to an edge e formed by the vertices a and b.

An important concept here is that of a planar graph: a graph is said planar when it can be
embedded in the Euclidean plane, and preserve its structure, so that no edges intersect (except
at nodes). Figure 3.1 shows examples of planar and non-planar graphs. Notice that the graph
in Figure 3.1(a), although having intersecting edges, is planar for it can be drawn without the
intersection (Figure 3.1(b)). Also, observe that a graph G = (V,E) can be embedded in higher
dimensions, if for example V is a set of vertices having three-dimensional coordinates, and the
edges in E are formed, like in the two-dimensional case, by pairs of vertices.

Another important concept is that of the degree of a vertex a, which is equal to the number of
edges formed by a and any other vertices in V (the number of incident edges to a).

To traverse or search a graph, mainly two algorithms are used: breadth-first search (BFS)
and depth-first search (DFS). The former algorithm starts at a given vertex v, and explores
all the adjacent vertices. Then, for these, it explores all their adjacent vertices until all the
vertices have been explored, or the goal is found. The BFS is similar, although it will start with
one adjacent vertex, and continue exploring another adjacent vertex until it is not possible to
explore further. Then another adjacent vertex to the starting vertex will be explored.

A tree is a special case of a graph in which any two vertices are connected by exactly one path
(there are no cycles). Figure 2.5 shows one example of a tree.

3.1.2 Simplices and Simplicial Complexes

Given a set S of points in the plane, if the maximum planar graph is constructed, a triangulation
of S is obtained. A maximum planar graph is a graph that contains the maximum possible
number of edges, if another edge connecting any pairs of nodes would be inserted, then it
would intersect an already existing edge. A maximum planar graph can therefore be seen as
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Figure 3.2: (a) Examples of simplices in different dimensions. (b) A simplicial complex on the left,
and a structure that is not a complex on the right.

a simplicial complex. Informally, this is a structure that is built from a set of simple elements
called simplices; in the case of a triangulation, the elements are nodes, edges and triangles
(notice that the triangles are represented implicitly by the graph). A simplex is the simplest
element in a given dimension. Specifically, a k-dimensional simplex is called a k-simplex and
it is the convex hull (see Section 3.1.4) of a set of (k + 1) linearly independent points in R

k.
As shown in Figure 3.2(a), a 0-simplex is a node, a 1-simplex an edge, a 2-simplex a triangle,
a 3-simplex a tetrahedron, and so on. Observe that in R

d, k-simplices (where 0 ≤ k ≤ d) can
exist. Also to simplify the notation, a k-simplex σ formed by the vertices a, b and c, is simply
denoted abc.

Notice that a k-simplex can be constructed by simplices of lower dimensionality. Let σ be a
k-simplex, then the facets of σ are the (k − 1)-simplices forming it. Two distinct simplices σ1

and σ2 (of the same dimensionality) are said to be adjacent if they share a facet. Also, two
simplices σ1 and σ2 are said to be incident if one is a facet of the other (thus σ1 and σ2 are
not of the same dimensionality).

A simplicial complex C is a finite set of simplices having the following two conditions:

1. Any facet of a simplex in C is also in C;

2. The intersection of two simplices σ1 and σ2 in C, denoted σ1 ∩ σ2, is either empty or is
a facet of both σ1 and σ2.

In brief, a simplicial complex is a space-filling structure, where its constituent simplices are
not allowed to puncture the interior of others simplices (see Figure 3.2(b)). The dimension of
a simplicial complex is given by the maximum dimension of its simplices. A two-dimensional
simplicial complex is a triangulation, and in three dimensions it is formed by tetrahedra, and it
is called a tetrahedralization (also called a tetrahedrization sometimes). Notice that the term
“triangulation” is sometimes used as the general term for a simplicial complex in R

d, where
d ≥ 2. A simplicial complex in R

d can be represented by a graph where the vertices and edges
are embedded in R

d such that a set of vertices and edges implicitly represent a k-simplex.
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Figure 3.3: The star and the link of a vertex v.

3.1.2.1 Stars and Links

The star and the link of a vertex in a d-dimensional triangulation are important concepts that
will be used later in this thesis. Let v be a vertex in a d-dimensional triangulation (where
d ≥ 2). Referring to Figure 3.3, the star of v, denoted star(v), consists of all the simplices that
contain v; it forms a star-shaped polytope. For example, in two dimensions, all the triangles
and edges incident to v form star(v), but notice that the edges and vertices disjoint from v—but
still part of the triangles incident to v—are not contained in star(v). Also, observe that the
vertex v itself is part of star(v), and that a simplex can be part of a star(v), but not some of
its facets.

The set of simplices incident to the simplices forming star(v), but ‘left out’ by star(v), form the
link of v, denoted link(v), which is a (d−1)-dimensional triangulation (if d = 2 then the link is
a 1-dimensional triangulation, or simplicial complex, which is a closed polygon). For example,
if v is a vertex in a tetrahedralization, then link(v) is a two-dimensional triangulation formed
by the vertices, edges and triangular faces that are contained by the tetrahedra of star(v), but
are disjoint from v.

3.1.2.2 Cells

The notion of simplex can be slightly modified to obtain a cell : a 0-cell is a vertex, a 1-cell an
edge, a 2-cell a polygon, and a 3-cell a polyhedron. Thus, a k-cell is a shape in R

k, but not
necessarily the simplest possible.

The same concept applies to simplicial complexes: cell complexes are obtained, and the complex
formed must respect the same two conditions as a simplicial complex. The notions of incidence
and adjacency are also the same as for the simplicial case.

3.1.3 Manifolds

A manifold is a topological space that is locally like a Euclidean space. The neighbourhood of
every point of a d-dimensional manifold (a d-manifold) resembles R

d; in mathematics terms,
the neighbourhood of a point is said to be homeomorphic to a ball in R

d. A 2-manifold is
therefore a surface which, it should be pointed out, can be embedded in three-dimensional
space (see Figure 3.4(a)); an obvious example is the surface of the Earth, for which near to
every point the environment is equivalent to a plane. An example of a 3-manifold is the entire
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(a) (c)(b)

Figure 3.4: (a) The neighbourhood of every point in a 2-manifold is equivalent to a plane. (b) The
neighbourhood of every point in a 3-manifold is equivalent to a 3D space. (c) A non-manifold object.
The neighbourhood of the vertex where the two tetrahedra, the triangular face and the edge meet
does not resemble R

3, i.e. a coordinate system can not be defined locally.

convex non-convex

(a) (b)

Figure 3.5: (a) A convex and a non-convex object. (b) The convex hull of a set of points in R
2.

Earth (its interior) because the neighbourhood of every point is equivalent to a sphere (see
Figure 3.4(b)). The concept of neighbourhood, or locality, is such that a manifold can actually
be constructed by ‘gluing’ separate Euclidean spaces together. A case where an object is not
a manifold is shown in Figure 3.4(c).

In mathematics and topology, there exist different classes of manifolds, and their definitions are
fairly technical. In the context of this thesis, the definition given here is sufficient. Manifolds
will be discussed mostly in the section about the possible data structures to store the VD/DT
(Section 6.3).

3.1.4 Convexity

An object is convex if for any pair of points within the object the line segment joining the two
points is completely contained in the object (see Figure 3.5(a)). Let S be a set of points in
R

d, the convex hull of S, denoted conv(S), is the minimal convex set containing S. It is best
understood with the elastic band analogy: imagine each point in R

2 being a nail sticking out
of the plane, and a rubber band stretched to contain all the nails, as shown in Figure 3.5(b).
When released, the rubber band will assume the shape of the convex hull of the nails. Notice
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Figure 3.6: A graph G (black lines), and its dual graph G⋆ (dashed lines).

that conv(S) is not only formed by the edges connecting the points (the rubber band), but all
the points of R

2 that are contained within these edges.

The three-dimensional case is analogous, but somewhat more complicated to visualise. The
convex hull of a set of points in R

3 is a polyhedron formed by triangular faces.

Convexity is a simple but useful concept, and that in a variety of applications. The convex
hull of a set of points helps to compute other structures, and manipulating objects that are
convex simplifies tremendously many operations: the intersection of two convex objects yields
a convex object, the calculation of areas/volumes is straightforward and so is the “point-in-
polygon” problem, etc.

3.1.5 Duality

Duality can have many different meanings in mathematics, but it always refers to the translation
or mapping in a one-to-one fashion of concepts or structures. I use it here in the sense of the
dual graph of a given graph. Let G be a planar graph, as illustrated in Figure 3.6 (black
edges). Observe that G can also be seen as a cell complex in R

2. The duality mapping is
defined as follows. The dual graph G⋆ has a vertex for each face (polygon) in G, and the
vertices in G⋆ are linked by an edge if and only if the two corresponding dual faces in G are
adjacent (in Figure 3.6, G⋆ is represented with dashed lines). Notice also that each polygon in
G⋆ corresponds to a vertex in G, and that each edge of G is actually dual to one edge (an arc
in Figure 3.6) of G⋆ (for the sake of simplicity the dual edges to the edges on the boundary of
G are not drawn).

The concept of duality is valid in any dimensions, if we consider a graph embedded in R
d as

a d-dimensional cell complex. The mapping between the elements of a cell complex in R
d is

simple: let C be a k-cell, the dual cell of C in R
d is denoted by C⋆ and is a (d− k)-cell. As as

result, in three dimensions, a point becomes a polyhedron, and vice versa; and an edge becomes
a face, and vice versa.
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(b)(a)

p

Figure 3.7: (a) The Voronoi cell Vp is formed by the intersection of all the half-planes between p and the
other points. (b) The VD for a set S of points in the plane (the black points). The Voronoi vertices
(white points) are located at the centre of the circle passing through three points in S, provided that
this circle contains no other points in S in its interior.

3.2 The Voronoi Diagram and the Delaunay Triangulation

3.2.1 The Voronoi Diagram

Let S be a set of points in R
d. The Voronoi cell of a point p ∈ S, defined Vp, is the set of

points x ∈ R
d that are closer to p than to any other point in S; that is:

Vp = {x ∈ R
d | ‖x− p‖ ≤ ‖x− q‖, ∀ q ∈ S}. (3.1)

The union of the Voronoi cells of all generating points p ∈ S form the Voronoi diagram of
S, defined VD(S). If S contains only two points p and q, then VD(S) is formed by a single
hyperplane defined by all the points x ∈ R

d that are equidistant from p and q. This hyperplane
is the perpendicular bisector of the line segment from p to q, and splits the space into two
(open) half-spaces. Vp is formed by the half-space containing p, and Vq by the one containing
q. As shown in Figure 3.7(a), when S contains more than two points (let us say it contains
n points), the Voronoi cell of a given point p ∈ S is obtained by the intersection of n − 1
half-spaces defined by p and the other points q ∈ S. That means that Vp is always convex, in
any dimensions. Notice also that every point x ∈ R

d has at least one nearest point in S, which
means that VD(S) covers the entire space.

As shown in Figures 3.7(b), the VD of a set S of points in R
2 is a planar graph. Its edges

are the perpendicular bisectors of the line segments of pairs of points in S, and its vertices
are located at the centres of the circles passing through three points in S. The VD in R

2 can
also be seen as a two-dimensional cell complex where each 2-cell is a (convex) polygon (see
Figure 3.8(a)). Two Voronoi cells, Vp and Vq, lie on the opposite sides of the perpendicular
bisector separating the points p and q.

In R
3, VD(S) is a three-dimensional cell complex. The Voronoi cell of a point p is formed

by the intersection of all the half-spaces (three-dimensional planes) between p and the other
points in S. Drawing a picture of the three-dimensional case is not easy, thus Figure 3.8(b)
shows only two Voronoi cells (which are convex polyhedra).
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Figure 3.8: (a) VD of a set of points in the plane. The point p (whose Voronoi cell is dark grey) has
seven neighbouring cells (light grey). (b) Two Voronoi cells adjacent to each other in R

3 (they share
the grey face).

The VD has many properties, and most of them are valid in any dimensions. Note that most
of these properties are valid only when the set S of points is in general position, that is when
for example in two dimensions no four points are cocircular, and no three points are collinear.
Details concerning the possible degeneracies are given in Section 3.2.5. What follows is a list
of the most relevant properties in the context of this thesis.

Size: if S has n points, then VD(S) has exactly n Voronoi cells since there is a one-to-one
mapping between the points and the cells.

Voronoi vertices: in R
d, a Voronoi vertex is equidistant from (d + 1) points. Observe for

instance in Figure 3.7(b) that the Voronoi vertices are at the centre of circles. In R
3, a

Voronoi vertex is at the centre of a sphere defined by 4 points in S.

Voronoi edges: in R
d, a Voronoi edge is equidistant from d points.

Voronoi faces: in R
d, a Voronoi face is equidistant from (d− 1) points. Hence, in R

3, it is
the bisector plane perpendicular to the line segment joining two points.

Convex hull: let S be a set of points in R
d, and p one of its points. Vp is unbounded if p

bounds conv(S). Otherwise, Vp is the convex hull of its Voronoi vertices. Observe that
in Figure 3.7(b), only the point in the middle has a bounded Voronoi cell.

Although the Voronoi diagram can be defined for other metrics than Euclidean (e.g. Manhattan,
Laguerre, etc.), this thesis is restricted to the Voronoi diagram in the Euclidean space.

3.2.2 The Delaunay Triangulation

Let D be the VD of a set S of points in R
2. Since VD(S) is a planar graph, it has a dual graph,

and let T be this dual graph obtained by drawing straight edges between two points p, q ∈ S if
and only if Vp and Vq are adjacent in D. Because the vertices in D are of degree 3, the graph
T is a triangulation. T is actually called the Delaunay triangulation (DT) of S, and, as shown
in Figure 3.9(a), partitions the plane into triangles—where the vertices of the triangles are the
points in S generating each Voronoi cell—that satisfy the empty circumcircle test (a circle is



Chapter 3 State-of-the-art Computational Geometry 39
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Figure 3.9: (a) The DT of a set of points in the plane (same point set as Figure 3.8(a)). (b) Both
the DT (black lines) and the VD (dashed lines) of a set of points in the plane. (c) A Delaunay
tetrahedron has an empty circumsphere.

(a) (b) (c) (d)
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Figure 3.10: Duality in 3D between the elements of the VD and the DT.

said to be empty when no points are in its interior). If S is in general position, then DT(S) is
unique.

The duality between the Voronoi diagram and the Delaunay triangulation is actually valid
in any dimensions. The Delaunay triangulation of a set S of points in R

d is a simplicial
complex where each d-simplex σ, formed by d + 1 vertices in S, has an empty circumball. For
R

3, it is called the Delaunay tetrahedralization: the space is tessellation into non-overlapping
tetrahedra having an empty circumsphere. Notice that in this thesis the acronym ‘DT’ can
refer to the Delaunay triangulation in any dimensions, and that the dimensionality is usually
implied in a section. The duality between the VD and the DT in R

3 follows the rule given in
Section 3.1.5: a Delaunay vertex p becomes a Voronoi cell (Figure 3.10(a)), a Delaunay edge α
becomes a Voronoi face (Figure 3.10(b)), a Delaunay triangular face κ becomes a Voronoi edge
(Figure 3.10(c)), and a Delaunay tetrahedron τ becomes a Voronoi vertex (Figure 3.10(d)). A
Voronoi vertex is located at the centre of the sphere circumscribed to its dual tetrahedron, and
two vertices in S have a Delaunay edge connecting them if and only if their two respective dual
Voronoi cells are adjacent.

3.2.2.1 Convex Hull

In any dimensions, the DT of set S of points subdivides completely conv(S), i.e. the union of
all the simplices in DT(S) is conv(S).
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3.2.2.2 Local Optimality

Let T be a triangulation of S in R
d. A facet σ (a (d−1)-simplex) is said to be locally Delaunay

if it either

(i) belongs to only one d-simplex, and thus bounds conv(S), or

(ii) belongs to two d-simplices σa and σb, formed by the vertices of σ and respectively the
vertices a and b, and b is outside of the circumball of σa.

The second case is illustrated in two dimensions in Figure 3.11(a). In an arbitrary triangulation,
not every facet that is locally Delaunay is necessarily a facet of DT(S), but, as Delaunay (1934)
himself proved, local optimality implies globally optimality in the case of the DT:

Lemma 3.1. Let T be a triangulation of a point set S in R
d. If every facet of T is locally

Delaunay, then T is the Delaunay triangulation of S.

This has serious implications as the DT—and its dual—are locally modifiable, i.e. we can
theoretically insert, delete or move a points in S without recomputing DT(S) from scratch.

3.2.2.3 Angle Optimality

The DT in two dimensions has a very important property that is useful in applications such
as finite element meshing or interpolation: the max-min angle optimality, firstly observed by
Sibson (1978). Among all the possible triangulations of a set S of points in R

2, DT(S) max-
imises the minimum angle (max-min property), and also minimises the maximum circumradii.
In other words, it creates triangles that are as equilateral as possible. Notice here that max-
imising the minimum angle is not the same as minimising the maximum, and the DT only
guarantees the former.

Finding ‘good’ tetrahedra, i.e. nicely shaped, is however more difficult than finding good trian-
gles because the max-min property of Delaunay triangles does not generalise to three dimen-
sions. A DT in R

3 can indeed contain some tetrahedra, called slivers, whose four vertices are
almost coplanar (see Figure 3.11(b)). Note that slivers do not have two-dimensional counter-
parts.

For many applications where the Delaunay tetrahedralization is used, e.g. in the finite element
method in engineering or when the tetrahedra are used to perform interpolation directly, these
tetrahedra are bad and must be removed. In the context of this thesis, one might wonder why
use them if their properties are not good? First, it should be said that in most cases Delaunay
tetrahedra have a more desirable shape than arbitrary tetrahedra. Rajan (1991) shows that
the smallest sphere containing a Delaunay tetrahedron is smaller than the one of any other
tetrahedron, i.e. the Delaunay criterion favours ‘round’ tetrahedra. Second, the VD is not
affected by them—Voronoi cells in three dimensions will still be ‘relatively spherical’ even if
the DT has many slivers. Third, many GIS operations on fields use the properties of the VD
(see Chapter 5), and if only one tetrahedron does not have an empty circumsphere, then the
VD is corrupted.
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Figure 3.11: (a) A four-sided convex polygon abcd can be triangulated in two different ways, but
the empty circumcircle criterion guarantees that the triangles are as equilateral as possible. Notice
that the edge ac is not locally Delaunay, but bd is. (b) In three dimensions, five vertices can be
triangulated with either two or three tetrahedra. Although the tetrahedralization at the bottom has
two nicely shaped tetrahedra, they are not Delaunay (the point d is inside the sphere abce, which
also implies that b is inside the sphere acde). The tetrahedralization at the top respects the Delaunay
criterion, but contains one very thin tetrahedron spanned by the points a, b, d and e.

3.2.3 Lifting on the Paraboloid

There exists a close relationship between DTs/VDs in R
d and convex polytopes in R

d+1. This
relationship was first observed by Brown (1979) (who used a spherical transformation), and
I describe here the well-known parabolic lifting map (Seidel, 1982; Edelsbrunner and Seidel,
1986).

Let S be a set of points in R
d, and let x1, x2, . . . , xd be the coordinates axes. The parabolic

lifting map projects each vertex v(vx1, vx2, . . . , vxd) to a vertex v+(vx1, vx2, . . . , vxd, v
2
x1 + v2

x2 +
· · ·+ v2

xd) on the paraboloid of revolution in R
d+1. The set of points thus obtained is denoted

S+. Observe that, for the two-dimensional case, the paraboloid in three dimensions defines
a surface whose vertical cross sections are parabolas, and whose horizontal cross sections are
circles; the same ideas are valid in higher dimensions. The relationship is the following: every
facet (a d-dimensional simplex) of the lower envelope of conv(S+) projects to a d-simplex of
the Delaunay triangulation of S. This is illustrated in Figure 3.12 for the construction of the
DT in R

2.

Since DTs are dual to VDs, the connection using the paraboloid is also valid for the VD in R
d.

For this case, the transformation maps each vertex v(vx1, vx2, . . . , vxd) in S to a hyperplane that
is tangent to the paraboloid at the point v+. Consider P the polytope in R

d+1 that is formed
by the intersection of all the positive half-spaces defined by the hyperplanes. The VD(S) in
R

d is the projection of the simplices of P .

In short, the construction of the d-dimensional DT can be transformed into the construction
of the convex hull of the lifted set of points in (d + 1) dimensions.
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Figure 3.12: The parabolic lifting map for a set S of points in the plane.

Figure 3.13: Example of a set of points for which the complexity of the DT is quadratic.

3.2.4 Space Complexity

The worst-case combinatorial complexity, i.e. the number of vertices, edges and faces, of VD(S)
for a set S of n points in R

3 is Θ(n2) (Okabe et al., 2000). In other words, the number can
be at most some constant times n2. The same bound is valid for the DT in R

3 because there
exist some sets for which the number of tetrahedra in DT(S) is Θ(n2); Figure 3.13 illustrates
a simple example. Consider two skew lines, and distribute the points in S such that each
lines has n/2 points. Observe that the sphere passing through any two contiguous points on
the upper line and any two contiguous and the lower line is empty. Therefore, the number of
tetrahedra for S will be around n2/4.

Notice that these results are consistent with the worst-case combinatorial complexity of convex
hulls in R

d, since it is Θ(n⌊d/2⌋) (de Berg et al., 2000). Once S is projected in R
4 with the

parabolic lifting map for instance, the complexity of conv(S+) becomes Θ(n2).

It should nevertheless be stated that these bounds are for extreme distributions of points, and
that in practice the combinatorial complexity of the VD/DT in three dimensions is expected
to be linear. Indeed, Dwyer (1991) shows that when the points in S are distributed uniformly
in a sphere, the expected complexity is Θ(n). Attali and Boissonnat (2002) prove the same
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Figure 3.14: The DT for four cocircular points in two dimensions is not unique (but the VD is).

result when the points of S are distributed on a polyhedral surface. The datasets used for the
experiments in Section 6.4 corroborate these theoretical results.

3.2.5 Degeneracies

The previous definitions of the VD and the DT assumed that the set S of points is in general
position, i.e. the distribution of points does not create any ambiguity in the two structures. For
the VD/DT in R

d, the degeneracies, or special cases, occur when d + 1 points lie on the same
hyperplane and/or when d + 2 points lie on the same ball. For example, in two dimensions,
when four or more points in S are cocircular there is an ambiguity in the definition of DT(S).
As shown in Figure 3.14, the quadrilateral can be triangulated with two different diagonals, and
an arbitrary choice must be made since both respect the Delaunay criterion (points should not
be on the interior of a circumcircle, but more than three can lie directly on the circumcircle).

This implies that in the presence of four or more cocircular points, DT(S) is not unique. Notice
that even in the presence of cocircular points, VD(S) is still unique, but it has different prop-
erties. For example, in Figure 3.14, the Voronoi vertex in the middle has degree 4 (remember
that when S is in general position, every vertex in VD(S) has degree 3). When three or more
points are collinear, DT(S) and VD(S) are unique, but problems with the computation of the
structures can arise, as explained in the next chapter. All the previous observations generalise
straightforwardly to higher dimensions.

3.3 Implementation of Geometric Algorithms

The authors of most papers in the computational geometry literature assume that they are
working in a ‘perfect world’, i.e. they state that their algorithms are valid if and only if the
input is in general position (which can have different meanings depending on the geometric
problem at hand). When developing an algorithm and analysing its complexity, this assumption
usually makes sense because one wants to avoid being overwhelmed with technical details (that
are usually seen as implementation details), and also wants to simplify the complexity analysis
(to be able to compare with other algorithms). Moreover, as de Berg et al. (2000, page 9) state,
“degenerate cases can almost always be handled without increasing the asymptotic complexity
of the algorithm”.
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The result is that the handling of degenerate cases is usually left to the programmer. However,
modifying an algorithm to make it robust for any inputs can be in some cases an intricate,
time-consuming and error-prone task because degeneracies have the effect of increasing consid-
erably the number of special cases that must be handled. For non-geometric algorithms such
as a sorting algorithm, it can be easy since only the case of two keys being equal must be han-
dled, but geometric algorithms can have dozens, or even hundreds of special cases (Hoffmann,
1989).

In some cases, modifying the original algorithm so that it is robust against all input can be even
more time-consuming and tedious than the design of the original solution in general position.
A simple GIS-related example is that of Douglas (1974) who describes his early attempts
to implement a routine to determine where two line segments in a plane intersect. What
seemed like a simple problem at first, turned out to be an implementation nightmare because
of the problems caused by vertical lines, tolerance, segments that are close to parallel, etc.
(his routine finally had 36 different cases). He states: “All of these inconsistencies eventually
drag the programmer down from his high level math (i.e. algebra), through computer language
(i.e. FORTRAN), into the realm of the machine methods actually used to perform arithmetic
operations and their restrictions”. Admittedly, this problem can now be solved rather easily
if vector representations are used instead of mathematical equations (Saalfeld, 1987), but I
believe it gives a good example of the difficulties of dealing with special cases.

A popular solution among computational geometers for dealing with degeneracies is the use of
perturbation schemes. Perturbing a set S of points means moving by an infinitesimal amount
the points to ensure that S is in general position. Since there are no special cases to deal with,
both the design and implementation are greatly simplified. However, as Seidel (1998) points
out, although the method is certainly useful for a number of problems, it has been abused by
many because it offers an easy solution to a difficult problem. The first problem is that after
perturbing a problem, the algorithm will not solve the problem itself, but a closely related one.
This can have serious drawbacks, for instance, in a DT, valid tetrahedra in the perturbed set
of points can become degenerate (e.g. have a volume of zero) when the points are put back to
their original positions.

The use of perturbations in geosciences is probably justified since there are always errors
associated with each samples collected, and moving some a bit will not change anything for a
given application. The problem is that geoscientific datasets can be riddled with degeneracies
(e.g. with datasets collected by water-columns, many data points are collinear) and detecting
and correcting them can be costly because the whole dataset must be visited. The second
problem is that exact arithmetic is required for all the operations involved. I discuss further
perturbation schemes in the next chapter, and I show that they can be very useful for solving
some problems when manipulating a DT.

Another problem that arises during the implementation of geometric algorithms is that algo-
rithms are usually designed to work with real numbers (R), which are difficult to represent in a
computer and are thus usually approximated with floating-point arithmetic. A floating-point
number can not represent exactly every number and the roundoff error can create problems for
geometric algorithms. For instance, if two line segments are nearly intersecting (but do not), a
routine based on floating-point arithmetic could report that they do. For a single test like this
one, the error might not be problematic. But objects like cell complexes have a combinatorial
structure and geometric information is attached to each vertex. The combinatorial part de-
pends on the results of several geometric tests: one wrong result and the whole combinatorial
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structure could become inconsistent. I discuss in Section 6.2 a few solutions for dealing with
floating-point arithmetic, including the one that was chosen to implement the prototype GIS
developed for this thesis.

In brief, to ensure that a geometric algorithm is robust against all input, i.e. it will recover
from error conditions or special cases in the input, these special cases must first be identified,
and then a means of dealing with the roundoff error of floating-point arithmetic must also be
devised.



Chapter 4

Manipulating Three-dimensional Voronoi
Diagrams

This chapter is about the manipulation of a Voronoi diagram in three dimensions, and of its
dual. I discuss three main operations that are necessary to build a dynamic/kinetic spatial
model, namely the insertion, the deletion and the movement of a point. The three operations
are based on a single local operation—the bistellar flip—which permits us to modify locally
a VD/DT. I also present the basic supporting operations needed, such as the traversal of the
structures and the basic geometric tests.

As explained in the previous chapter, the concepts and definitions of the VD and the DT in
two dimensions are rather simple, algorithms to manipulate them are well-known and several
implementations exist. The concepts of the VD/DT generalise rather easily to three dimensions,
but unfortunately the algorithms and their implementations are not straightforward. This is
due to the many degenerate cases that arise in three dimensions.

In this chapter, I describe in detail, by taking into account the degenerate cases, the algorithms
to manipulate a three-dimensional VD. Since the VD and the DT are dual structures, the
knowledge of one implies the knowledge of the other one; in other words, if one has only one
structure, he can always extract the other one. Because it is easier, from an algorithmic and
data structure point of view, to manage tetrahedra over arbitrary polyhedra (they have a
constant number of vertices and adjacent cells), I construct and manipulate a VD by working
only on its dual structure. When the VD is needed, it is extracted from the DT. This has
the additional advantage of speeding up algorithms because when the VD is used directly
intermediate Voronoi vertices—that will not necessarily exist in the final diagram—need to be
computed and stored.

The algorithms described in this chapter are not necessarily asymptotically optimal, as con-
ceptual simplicity and robustness were favoured over theoretical results and solutions that
would be intricate to implement. Still, as demonstrated in Chapter 6, they take in practice a
reasonable time for the problems that need to be solved, and they are also relatively easy to
implement.

The first part of the chapter (Sections 4.1 and 4.2) introduces concepts that have all been
previously published in different papers or books; only Section 4.2.4 is original work I made.
The algorithm to construct a DT is also based on algorithms previously published, although I
summarise and give many insights for the treatment of degenerate cases. Sections 4.4 and 4.5
are original contributions.

46
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4.1 Extracting the Voronoi Diagram from the Delaunay
Tetrahedralization

Let T be the DT of a set S of points in R
3. The simplices of the dual D of T can be computed

as follows (all the examples refer to Figure 3.10 on page 39):

Vertex: a single Voronoi vertex is easily extracted—it is located at the centre of the sphere
passing through the four vertices of its dual tetrahedron τ .

Edge: a Voronoi edge, which is dual to a triangular face κ, is formed by the two Voronoi
vertices dual to the two tetrahedra sharing κ.

Face: a Voronoi face, which is dual to a Delaunay edge α, is formed by all the vertices that
are dual to the Delaunay tetrahedra incident to α. The idea is simply to ‘turn’ around a
Delaunay edge and extract all the Voronoi vertices. These are guaranteed to be coplanar,
and the face is guaranteed to be convex.

Polyhedron: the construction of one Voronoi cell Vp dual to a vertex p is similar: it is
formed by all the Voronoi vertices dual to the tetrahedra incident to p. Since a Voronoi
cell is convex by definition, it is possible to collect all the Voronoi vertices and then
compute the convex hull (e.g. see Barber et al. (1996) for an algorithm); the retrieval of
all the tetrahedra incident to p can be done by performing a BFS-like algorithm on the
graph dual to the tetrahedra. A simpler method consists of first identifying all the edges
incident to p, and then extracting the dual face of each edge.

Given T , we must obviously visit all its 3-simplices to be able to extract D. This means that
computing D from T has a complexity of Θ(n) when S contains n points.

4.2 Basic Delaunay Tetrahedralization Operations

4.2.1 Initialisation: Big Tetrahedron

All of the algorithms related to the VD/DT in this thesis assume that the set S of points is
entirely contained in a big tetrahedron (τbig) several times larger than the range of S; conv(S)
therefore becomes τbig. Figure 4.1 illustrates a two-dimensional example. The construction of
DT(S) is for example always initialised by first constructing τbig, and then the points in S are
inserted.

Doing this has many advantages, and is being used by several implementations (Facello, 1995;
Mücke, 1998; Boissonnat et al., 2002; Liu and Snoeyink, 2005b). First, when a single point p
needs to be inserted in DT(S), this guarantees that p is always inside an existing tetrahedron.
We do not have to deal explicitly with vertices added outside the convex hull, as in Joe (1991).
Second, we do not have to deal with the (nasty) case of deleting a vertex that bounds conv(S).
Third, since a triangular face is always guaranteed to be shared by two tetrahedra, point
location algorithms never ‘fall off’ the convex hull. Fourth, the Voronoi cells of the points
that bounds conv(S) will be bounded, since the only unbounded cells will be the ones of the
four points of τbig. This can help for some of the spatial analysis operations described in
Chapter 5.
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o1

o2
o3

DT(S)

Figure 4.1: The set S of points is contained by a big triangle formed by the vertices o1, o2 and o3.
Many triangles outside conv(S) are created.

The main disadvantage is that more tetrahedra than needed are constructed. For example in
Figure 4.1 only the shaded triangles would be part of DT(S). The extra triangles (tetrahedra
in 3D) can nevertheless be easily marked as they are the only ones containing at least one of
the four points forming τbig.

4.2.2 Predicates

Constructing a DT and manipulating it essentially require two basic geometric tests (called
predicates): Orient determines if a point p is over, under or lies on a plane defined by three
points a, b and c; and InSphere determines if a point p is inside, outside or lies on a sphere
defined by four points a, b, c and d. Both tests can be reduced to the computation of the
determinant of a matrix (Guibas and Stolfi, 1985):

Orient(a, b, c, p) =
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InSphere(a, b, c, d, p) =
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We can state that applying an identical translation to every point will not change the result of
the determinant, and, for this reason, after translating all the points by −p the two predicates
are respectively implemented as the determinants of 3x3 and 4x4 matrices. I will not prove
here the correctness of those predicates (see Guibas and Stolfi (1985) for the two-dimensional
case) but simply state that Orient returns a positive value when the point p is above the plane
defined by a, b and c; a negative value if p is under the plane; and exactly 0 if p is directly on
the plane. Orient is consistent with the left-hand rule: when the ordering of a, b and c follows
the direction of rotation of the curled fingers of the left hand, then the thumb points towards
the positive side (the above side of the plane). In other words, if the three points defining a
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a

b

c

d

σa

Figure 4.2: The tetrahedron abcd is correctly oriented since Orient (a, b, c, d) returns a positive result.
The arrow indicates the correct orientation for the face σa, so that Orient (σa, a) returns a positive
result.

plane are viewed clockwise from a viewpoint, then this viewpoint defines the positive side the
plane. The predicate InSphere follows the same idea: a positive value is returned if p is inside
the sphere; a negative if p is outside; and exactly 0 if p is directly on the sphere. Observe that
to obtain these results, the points a, b, c and d in InSphere must be ordered such that Orient

(a, b, c, d) returns a positive value.

It should be noticed that InSphere is derived from the parabolic lifting map (see Section 3.2.3).
It is simply transformed into a four-dimensional Orient test: p is inside (outside) the sphere
abcd if and only if p+ lies under (above) the hyperplane a+b+c+d+, and directly on the sphere
if p+ lies on the hyperplane a+b+c+d+.

The ‘orientation’ of points in three dimensions is somewhat tricky because, unlike in two
dimensions, we can not simply rely on the counter-clockwise orientation. In three dimensions,
the orientation is always relative to another point of reference. When dealing with a single
tetrahedron τ formed by the four vertices a, b, c and d (as in Figure 4.2), we say that τ is
correctly oriented if Orient (a, b, c, d) returns a positive value. Notice that if two vertices are
swapped in the order, then the result is the opposite (i.e. Orient (a, c, b, d) returns a negative
value).

Vertices forming a face in a tetrahedron τ can also be ordered. As shown in Figure 4.2, a face σa,
formed by the vertices b, c and d, is correctly oriented if Orient (σa, a) gives a positive result—
in the case here, Orient (b, c, d, a) gives a negative result, therefore the correct orientation of
σa is cbd. Observe that the face bcd is called σa because it is ‘mapped’ to the vertex a that is
opposite; each of the four faces of a tetrahedron can be referred to in this way.

4.2.3 Three-dimensional Bistellar Flips

A bistellar flip is a local (topological) operation that modifies the configuration of some adjacent
tetrahedra (Lawson, 1986; Edelsbrunner and Shah, 1996). Consider the set S = {a, b, c, d, e}
of points in general position in R

3 and its convex hull conv(S). There exist two possible
configurations, as shown in Figure 4.3:

1. the five points of S lie on the boundary of conv(S); see Figure 4.3(a). According to
Lawson (1986), there are exactly two ways to tetrahedralize such a polyhedron: either
with two or three tetrahedra. In the first case, the two tetrahedra share a triangular face
bcd, and in the latter case the three tetrahedra all have a common edge ae.
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Figure 4.3: The three-dimensional bistellar flips.

2. one point e of S does not lie on the boundary of conv(S), thus conv(S) forms a tetra-
hedron; see Figure 4.3(b). The only way to tetrahedralize S is with four tetrahedra all
incident to e.

Based on these two configurations, four types of flips in R
3 can be described: flip23, flip32,

flip14 and flip41 (the numbers refer to the number of tetrahedra before and after the flip).
When S is in the first configuration, two types of flips are possible: a flip23 is the operation that
transforms one tetrahedralization of two tetrahedra into another one with three tetrahedra; and
a flip32 is the inverse operation. If S is tetrahedralized with two tetrahedra and the triangular
face bcd is not locally Delaunay, then a flip23 will create three tetrahedra whose faces are
locally Delaunay. A flip14 refers to the operation of inserting a vertex inside a tetrahedron,
and splitting it into four tetrahedra; and a flip41 is the inverse operation that deletes a vertex.

Bistellar flips do not always apply to adjacent tetrahedra (Joe, 1989). For example, in Fig-
ure 4.3(a), a flip23 is possible on the two adjacent tetrahedra abcd and bcde if and only if the
line ae passes through the triangular face bcd (which also means that the union of abcd and
bcde is a convex polyhedron). If not, then a flip32 is possible if and only if there exists in the
tetrahedralization a third tetrahedron adjacent to both abcd and bcde.

Degenerate cases. To deal with degenerate cases, other flips need to be defined. Shewchuk
(2003) defines and uses degenerate flips for the construction and the manipulation of con-
strained Delaunay triangulations in R

d. A flip is said to be degenerate if it is a non-degenerate
flip in a lower dimension. It is needed for special cases such as when a new point is inserted
directly onto a simplex. For instance, Figure 4.4(a) shows the flip12 that splits a tetrahedron
abcd into two tetrahedra when a new point is inserted directly onto the edge ac, and the flip13
that splits abcd into three tetrahedra when a new point is inserted directly onto the face abc.
The flip12 is equivalent to a flip in one dimension, and the flip13 to the one needed to insert a
new point in a triangle in two dimensions.

These flips are needed when dealing with constrained DT, but in our case they are not explicitly
needed, as the operation they perform can be simulated, as shown in the next sections, with the
flip23 and the flip32. The only degenerate flip needed for constructing a DT is the following.
Consider the set S = {a, b, c, d, e, f} of points configured as shown in Figure 4.4(b), with points
b, c, d and e forming a plane. If S is tetrahedralized with four tetrahedra all incident to one
edge—this configuration is called the config44—then a flip44 transforms one tetrahedralization
into another one also having four tetrahedra. Note that the four tetrahedra are in config44
before and after the flip44. A flip44 is actually a combination in one step of a flip23 (that creates
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Figure 4.4: The degenerate flips (a) flip12 and flip13, and (b) flip44.

a flat tetrahedron bcde) followed immediately by a flip32 that deletes the flat tetrahedron; a
flat tetrahedron is a tetrahedron spanned by four coplanar vertices (its volume is zero). The
flip44 is conceptually equivalent to the well-known flip22 in two dimensions.

4.2.4 Traversal of a Subdivision

Given a cell complex D in R
d, traversing it means to visit all its k-cells (where 0 ≤ k ≤

d) in order to report them all (or only a few). This is a useful operation if one wants for
instance to draw D, or perform some operations that require all the cells (e.g. the extraction of
isosurfaces, see Section 5.4.1). The traversal of D could be done rather easily with graph-search
algorithms, but unfortunately, if one does not want to visit twice (or more) the same cell, these
algorithms require to mark/flag which cells have already been visited. Mark bits have several
disadvantages: (1) they require extra storage space; (2) it could be impossible to modify the
data structure to store them; (3) but more importantly, resetting them after a complex has
been traversed completely or partially (to perform another one later) is problematic.

There exists an old and simple algorithm to traverse a 2D DT (Gold et al., 1977; Gold and
Maydell, 1978; Gold and Cormack, 1987). The method does not require the use of mark bits,
and is based on the following observation.

Observation 4.1. Any Delaunay triangulation in 2D may be ordered as a binary tree when
considered from a fixed viewpoint.

In that case, the elements of the tree are the triangles. Since a tree is built, it means that
the parent (the predecessor during the traversal) of every triangle must be unique. Notice
that the tree is binary because every triangle, after being entered, has two potential children.
The method uses the geometry of the triangles—with respect to the viewpoint—to ensure
that a triangle has only one parent; thus, only local information is necessary. As shown in
Figure 4.5(a), the method starts at the triangle closest to the viewpoint and defines two types
of triangle, based on the number of edges visible from the viewpoint. A triangle can only be
entered from a in edge, and by applying a simple and consistent rule for each triangle having
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Figure 4.5: (a) The traversal of a triangulation (left), and the two types of triangles (right). The
number refers to the order, viewed from the viewpoint v. Notice that a binary tree is built. (b) In
three dimensions, three types of tetrahedra are possible, when viewed from a fixed viewpoint (the
reader in this case).

two in edges, we can traverse a triangulation and guarantee that each triangle will be visited
only once. Observe that the method reports the triangle in depth-first order, i.e. the ordering
of the triangles is equivalent to a depth-first search on the graph dual to the triangulation.

Gold et al.’s algorithm has been extended for the traversal of any cell complexes in two di-
mensions, and for the traversal of convex cell complexes in three dimensions (de Berg et al.,
1997). The idea is the same: define an order on the cells of the complex, and visit them in that
order (a tree is also built, but it is obviously not binary since a cell can have more than two
children). de Berg et al. (1997) show that if a unique predecessor to each cell can be defined,
then a depth-first order can be obtained and each cell will be visited only once.

I present in the following a new algorithm, called Traverse (see Algorithm 4.1), to traverse
a Delaunay tetrahedralization. It uses ideas from Gold et al.’s and de Berg et al.’s algorithms,
and is efficient and conceptually simple. As Figure 4.5(b) shows, three types of tetrahedra are
possible when viewed from a viewpoint. Since we want to define a depth-first order on the
tetrahedra (and build a tree), a tetrahedron τ must have one and only one predecessor; that
means that only one face of τ can be its ‘real’ in face (this face is defined as the entrance
face). When τ has two or three in faces, several rules could be used to define which one is the
entrance face. The one I propose is as follows. (The notation for the faces is from Section 4.2.2,
where a face σa is mapped to its opposite vertex a.) The entrance face can be the face mapped
to the vertex in τ having the minimum distance to the viewpoint, or if a tetrahedron-based
data structure is used (see Section 6.3), the vertex having the lowest lexicographic index in τ .
Both of these rules are local, and can be computed in constant time. Notice that the function
GetChild (line 6) in Algorithm 4.1 refers to a function that returns the children of a given
tetrahedron, after it has been entered by one face.
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Algorithm 4.1: Traverse(T , τ1, v)

Input: A tetrahedralization T , a starting tetrahedron τ1, and a viewpoint v
Output: L: a list containing all the tetrahedra in T

push τ1 on stack1

while stack is non-empty do2

τ ← pop from stack3

Add τ to L4

for i← 0 to 2 do5

τc ← GetChild(i)6

σ ← τ ∩ τc7

if σ is entrance face of τc then8

push τc on stack9

end10

end11

end12

Only one special case must be handled here: when the three vertices of a face abc are coplanar
with the viewpoint v. To make sure that the face abc, shared by the tetrahedra τ1 and τ2,
will be in for τ1 and out for τ2 (or vice versa), it suffices to define a constant rule. A simple
solution is to define two vectors, ~v1 and ~v2, that are perpendicular to the face abc, and that are
respectively pointing to the inside of τ1 and τ2, and test the angle between these and a fixed
vector defined arbitrarily. The tetrahedron for which the angle between the vectors is positive
is the in face.

4.2.5 Point Location

Given the Delaunay tetrahedralization T of a set S of n points and a query point p, the
point location problem consists of determining inside which tetrahedron of T lies p. This is
a necessary operation for the incremental constructing of a DT, for deleting a vertex from it
(depending on the data structure used), and also for different spatial analysis operations.

Many algorithms solve the generic point location problem in two dimensions, i.e. for a cell
complex, in the optimal time of O(log n) (Snoeyink, 1997). For the special case of the DT,
different optimal methods are linked to the construction of the DT: Guibas et al. (1992) de-
scribe one that comes with their incremental algorithm, and Edelsbrunner and Shah (1996)
have generalised the method to higher dimensions. Devillers (2002b) also proposes a hierar-
chical structure to compute and store the DT in any dimensions where the point location is
sped up because it is made at different levels of the hierarchy. The major problems with these
algorithms are that they use additional storage (e.g. Edelsbrunner and Shah use a graph that
needs O(n2) additional storage to store the history of previously performed flips), they require
preprocessing for creating the additional data structure, and they are also often very compli-
cated to implement. As Mücke et al. (1999) note, optimal algorithms do not necessarily mean
better results in practice because of the amount of preprocessing involved, the extra storage
needed, and also because the optimal algorithms do not always consider the dynamic case,
where points in the DT could be deleted. For many problems like this one, practitioners have
been known to favour sub-optimal algorithms that are easier to implement.
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starting triangle

p

Figure 4.6: The Walk algorithm for a DT in two dimensions. The query point is p.

Mücke et al. (1999) and Devillers et al. (2002) analyse theoretically sub-optimal algorithms,
for the DT in three dimensions, that yield fast practical performances. These algorithms are
desirable in the case of a dynamic structure because they do not use any additional storage or
preprocessing. The adjacency relationships between the simplices in a DT are used to perform
the point location. They discuss and compare mainly two strategies: the walking and the
marching. The first one was described in the earliest papers about the construction of the DT
in two dimensions (Gold et al., 1977; Green and Sibson, 1978): in a DT in R

d, starting from a
d-simplex σ, we move to one of the neighbours of σ (σ has (d + 1)-neighbours; we choose one
neighbour such that the query point p and σ are on each side of the (d− 1)-simplex shared by
σ and its neighbour) until there is no such neighbour, then the simplex containing p is σ. The
algorithm is illustrated in Figure 4.6 for the two-dimensional case, and Algorithm 4.2 gives the
pseudo-code for the three-dimensional case (notice that at line 4, the face σi must be correctly
oriented, as explained in Section 4.2.2).

The walking method has often been overlooked by theoreticians because not much can be said
about the number of simplices that will be visited. As Figure 4.6 shows, the walk seems to go
in the general direction of the final destination, but other routes could be followed if the order
in which the edges are tested within a triangle was different.

An important consideration here is that the algorithm Walk as described in Algorithm 4.2 is
valid only with a DT. Indeed, for some arbitrary triangulations, such as the one in Figure 4.7(a),
it might never end. The walk is guaranteed to end is the case of a DT because it was proved
that DTs, in any dimensions, are acyclic for any fixed viewpoint (Edelsbrunner, 1990). In
other words, the in-front/behind relationship for the d-simplices of a DT, with respect to
a viewpoint, is acyclic (see Figure 4.7(b)). Walk can nevertheless be modified easily for
arbitrary tetrahedralizations: when entering a tetrahedron, if its faces are tested in a random
order instead of always the same, then the walk will find its way to the query point (although
it might take a long time!). Also, notice that Walk is not affected by degenerate cases, and
that if an Orient test returns 0, then it is simply considered a positive result. This will ensure
that if the query point p is located exactly that the same position as one point in S, then one
tetrahedron incident to p will be returned.

The second point location strategy, marching, is also simple: only the d-simplices intersected
by a line segment joining one vertex of the starting tetrahedron to p are visited. Although the
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Figure 4.7: (a) The Walk algorithm might never end for this triangulation because the three skinny
triangles form a cycle, when viewed from the viewpoint in the middle. (b) The triangles in a DT can
be ordered in an in-front/behind manner when viewed from a viewpoint.

Algorithm 4.2: Walk(T , τ , p)

Input: A Delaunay tetrahedralization T , a starting tetrahedron τ , and a query point p
Output: τr: the tetrahedron in T containing p

while τr not found do1

for i← 0 to 3 do2

σi ← get face opposite vertex i in τ3

if Orient (σi, p) < 0 then4

τ ← get neighbouring tetrahedron of τ incident to σi5

break6

end7

end8

if i = 3 then9

// all the faces of τ have been tested

Return (τr = τ)10

end11

end12

number of simplices visited will obviously be less than with Walk, the intersection tests in
three dimensions are much more computationally expensive than Orient tests.

Based on experimental results, both Devillers et al. (2002) and Mücke et al. (1999) conclude that
the walking strategy is the fastest solution. Different improvements to this simple algorithm
can be done to speed up the implementation. Firstly, remembering by which face we ‘entered’ a
tetrahedron, in order not to test it again, can improve slightly the algorithm. Secondly, instead
of starting the walk each time from a random tetrahedron, we can cleverly select one. One
basic method involves always remembering the last tetrahedron visited and start from there
for the next walk. One could argue that in practice the ordering of the points are rarely totally
random and often the next point to be inserted in a mesh is close to the last inserted, and
that when Walk is used for analysing the DT (e.g. interpolation) then we are most likely to
need tetrahedra that are close to each other. Another way, similar to a ‘bucketing’ method,
is to randomly select a certain number of tetrahedra in the DT, and to start each walk from
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the closest one (selected by a simple Euclidian distance test). Mücke et al. (1999) show that
this method—they give empirical results to choose an appropriate number of tetrahedra with
respect to the number n of points—has an expected running time close to O(n1/4).

4.3 Constructing a Delaunay Tetrahedralization

Mainly three paradigms of computational geometry can be used for computing a Delaunay
triangulation in two and three dimensions: divide-and-conquer, sweep plane, and incremental
insertion. Each one of these paradigms yields an optimal algorithm in two dimensions, i.e. a
DT of n points is computed in Θ(n log n). Examples of these are the divide-and-conquer and
the incremental insertion algorithms of Guibas and Stolfi (1985), and the sweep line algorithm
of Fortune (1987) that constructs directly the VD.

In three dimensions, things are a bit more complicated. Cignoni et al. (1998) developed an
algorithm, called DeWall and based on the divide-and-conquer paradigm, for constructing the
DT in any dimensions. Although the worst-time complexity of this algorithm is O(n3) in three
dimensions, they affirm that the speed of their implementation is comparable to the imple-
mentation of known incremental algorithms, and is subquadratic. Shewchuk (2000) proposes
sweep algorithms for the construction of the constrained Delaunay triangulation in R

d, and
these can be used for the normal DT. As is the case with Cignoni et al. (1998), his algorithm
is sub-optimal for the three-dimensional case.

In R
3, only incremental insertion algorithms have a complexity that is worst-case optimal, i.e.

Θ(n2) since the complexity of the DT in R
3 is quadratic. With these algorithms, each point is

inserted one at a time in a valid DT and the tetrahedralization is ‘updated’, with respect to the
Delaunay criterion, between each insertion. Observe that the insertion of a single point p in a
DT only modifies locally the DT, i.e. only the tetrahedra whose circumsphere contains p need
to be deleted and replaced by new one respecting the Delaunay criterion (see Figure 4.8(a) for
a two-dimensional example). In sharp contrast to this, divide-and-conquer and plane sweep
algorithms build a DT in one operation (this is a batch operation), and if another point needs
to be inserted after this, the whole construction operation must be done again from scratch.

Incremental insertion algorithms are therefore mandatory for building a dynamic and kinetic
spatial model. Consider T , the DT(S) of a set S of n points in R

3. The insertion of a single
point p, thus getting T p = T ∪ {p}, can be done with two incremental insertion algorithms:
the Bowyer-Watson algorithm, or one based on flipping in a tetrahedralization.

4.3.1 The Bowyer-Watson Algorithm

Bowyer (1981) and Watson (1981) both published independently a paper—in the same issue of
the same journal—describing essentially the same algorithm, which is valid in any dimensions.
The idea is relatively simple: all the d-simplices conflicting with p, i.e. whose circumball con-
tains p, are deleted from T , and the ‘hole’ thus created is filled by creating edges joining p to
each vertex of the hole (see Figure 4.8(a)). The following lemma proves that these new edges
are guaranteed to be locally Delaunay (this is for the two-dimensional case, but it generalises
to three dimensions easily):
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Figure 4.8: (a) The DT before and after a point p has been inserted. Notice that the DT is updated
only locally (only the shaded part of the triangulation is affected). (b) After deleting the triangles
whose circumcircle contain p, the edge ph is guaranteed to be Delaunay.

p

Figure 4.9: The insertion of p with the Bowyer-Watson algorithm causes the resulting triangulation
to be invalid. In the left triangulation, the triangles whose circumcircle contain p are shaded. Notice
that two triangles have exactly the same circumcircle, but one, because of a roundoff error, does not
contain p.

Lemma 4.1. Let p be a newly inserted point in T and h one of the vertices of a triangle hij
deleted because its circumcircle contains p. The edge ph is locally Delaunay.

Proof. There are only two ways of triangulating a convex quadrilateral, and only one respects
the Delaunay criterion (see Figure 3.11). As shown in Figure 4.8(b), ij is not locally Delaunay
since p is inside the circumcircle of hij. Therefore, ph is the only other possibility and is locally
Delaunay.

In its naive form, the Bowyer-Watson algorithm is prone to errors due to floating-point arith-
metic and in some cases, as Field (1986) and Sugihara and Hiroshi (1995) demonstrate, the
result of the insertion of a single point can be disastrous. Figure 4.9 illustrates one unfortu-
nate example in two dimensions: a point p inserted on the circumcircle of two triangles yields
something that is not even a triangulation. Sugihara and Hiroshi (1995) explain how to solve
this problem in two and three dimensions: before retetrahedralizing the hole, they basically
ensure that it is formed by connected simplices.

A further important consideration is that creating a hole in a tetrahedralization usually implies
the use of an auxiliary data structure to keep track of the hole’s boundary, and is intricate from
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Figure 4.10: Step-by-step insertion, with flips, of a single point in a DT in two dimensions.

an algorithmic and data structure point of view as the geometric and topological relationships
of the tetrahedralization are temporarily destroyed.

4.3.2 An Incremental Flip-based Algorithm

The alternative to creating a hole is to use bistellar flips (see Section 4.2.3) to modify the
configuration of tetrahedra in the vicinity of p. It should first be noticed that flips are operations
valid in any dimensions, and not only in two or three dimensions (Lawson, 1986). They permit
us to keep a complete tetrahedralization during the insertion process, and hence algorithms
are relatively simple to implement and also numerically more robust. Although a flip-based
algorithm requires somewhat more work than an algorithm where a hole is created—Liu and
Snoeyink (2005b) state that on average 1.5–2 times more tetrahedra are created and that
flippability tests also slow down the whole process—its implementation is simplified and less
error-prone since the maintenance of adjacency relationships in a DT is encapsulated in the
flip operations.

Two dimensions. The first flip-based algorithm was designed to construct the DT in two
dimensions. It was developed by Lawson (1972, 1977) who proved that, starting from an
arbitrary triangulation of a set S of points in the plane, flipping edges (i.e. replacing the
diagonal of a quadrilateral as in Figure 3.11(a)) can transform this triangulation into any other
triangulation of S, including the Delaunay triangulation. Roundoff errors can still happen in
this case but it is unlikely that they will cause the disastrous consequence shown in Figure 4.9;
the most likely problem in this case is that the final triangulation will not respect the Delaunay
criterion. The total running time of this algorithm is O(n2), since there is O(n) triangles that
must be tested against each other.

An incremental insertion algorithm based on edge flipping can improve this toO(n log n) (Guibas
and Stolfi, 1985). What follows are the main steps for the insertion of a single point p in a
DT, and the process is shown in Figure 4.10. First, the triangle τ containing p is identified and
then split into three new triangles by joining p to every vertex of τ . Second, each new triangle
is tested—according to the Delaunay criterion—against its opposite neighbour (with respect
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Algorithm 4.3: InsertOnePoint (T , p)

Input: A DT T of a point set S in R
3, and a new point p to insert

Output: T p = T ∪ {p}

τ ← Walk(DT(S), p)1

insert p in τ with a flip142

push 4 new tetrahedra on stack3

while stack is non-empty do4

τ = {p, a, b, c} ← pop from stack5

τa = {a, b, c, d} ← get adjacent tetrahedron of τ having abc has a facet6

if d is inside circumsphere of τ then7

Flip(τ , τa)8

end9

end10

to p); if it is not a Delaunay triangle then the edge shared by the two triangles is flipped and
the two new triangles will also have to be tested later. This process stops when every triangle
having p as one of its vertices respects the Delaunay criterion.

Three dimensions. While the concept of flipping generalises to three dimensions, Lawson’s
algorithm (Lawson, 1972, 1977) does not, as Joe (1989) proves. Indeed, starting from an
arbitrary tetrahedralization, it is possible that during the process of flipping, a non-locally
Delaunay facet be impossible to flip (this case happens when the union of two tetrahedra is
concave). Joe nevertheless later circumvented this problem by proving the following result (Joe,
1991):

Lemma 4.2. Given a DT(S) and a point p in R
3, there always exists at least one sequence of

bistellar flips to construct DT(S ∪ {p}).

In this case, there will be non-Delaunay facets impossible to flip, but he proved that there
will always be a flip possible somewhere else such that the algorithm progresses. This can
form the basis of an incremental insertion algorithm for the construction of the Delaunay
tetrahedralization, that is a straightforward generalisation of the two-dimensional case. Let
S be a set of points in R

3 and let T be DT(S), Algorithm 4.3 shows the algorithm, called
InsertOnePoint, needed to restore the ‘Delaunayness’ in T when a single point p is inserted.
The algorithm is adapted from Joe (1991), and is conceptually the same as Edelsbrunner and
Shah (1996). As is the case with the two-dimensional algorithm, the point p is first inserted in
T with a flip (flip14 in the case here), and the new tetrahedra created must be tested to make
sure they are Delaunay. The sequence of flips needed is controlled by a stack containing all the
tetrahedra that have not been tested yet. The stack starts with the four resulting tetrahedra
of the flip14, and each time a flip is performed, the new tetrahedra created are added to the
stack. The algorithms stops when all the tetrahedra incident to p are Delaunay, which also
means that the stack is empty.

The Flip method in InsertOnePoint needs to be refined because, unlike in two dimensions,
different geometric cases yield different flips. Assume that p was inserted in T , and that a
certain number of flips have been performed but that T p = T ∪ {p} is not Delaunay yet. All
the tetrahedra incident to p, which form star(p) (see Section 3.1.2.1), must be tested to ensure
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Figure 4.11: Four cases are possible for the Flip algorithm. For case #3, vertices p, a, b and d are
coplanar. For case #4, the tetrahedron abcp is flat.

that they are Delaunay, and notice that the ones that have not been tested yet are in the stack.
Let τ = {p, a, b, c} be the next tetrahedron popped from the stack. To ensure τ is Delaunay,
we need only to test it with the tetrahedron τa = {a, b, c, d} outside star(p) and incident to the
facet abc; we are actually testing if abc is locally Delaunay. If the circumsphere of τ contains
d, different options for the flip required are possible, according to the geometry of τ and τa.
Observe that if we look from p, we can see one, two or even three facets of τa (same idea as
in Figure 4.5(b)). When S is in general position, two cases are possible (both cases refer to
Figure 4.11):

Case #1: only one face of τa is visible, and therefore the union of τ and τa is a convex
polyhedron. In this case, a flip23 is performed.

Case #2: two faces of τa are visible, and therefore the union of τ and τa is non-convex.
If there exists a tetrahedron τb = abpd in T p such that the edge ab is shared by τ , τa

and τb, then a flip32 can be performed. If there exists no such tetrahedron, then no
flip is performed. The non-locally Delaunay facet abc will be ‘rectified’ by another flip
performed on adjacent tetrahedra, as Joe (1991) proves.

When three faces of τa are visible, no action is taken and the next tetrahedron in the stack is
processed.

The implementation of the test that determines which flip should be applied for τ and τa does
not test if their union is convex or concave. What is used instead is a test that determines if
the edge joining the two apexes of τ and τa crosses the interior of their common facet. If the
edge does, it means the union is convex, and if it does not the union is concave.

Time complexity. When an incremental insertion algorithm based on InsertOnePoint is
used to compute DT(S) of a set S of n points in R

3, the algorithm takes Θ(n2), which is
worst-case optimal (Edelsbrunner and Shah, 1996). However, in practice, the algorithm will
most likely be faster. Edelsbrunner and Shah (1996) prove that if the n points are uniformly
distributed in a unit cube, then the expected running time goes down to O(n log n), provided
that the history of the flips is used for point location.
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Algorithm 4.4: Flip(τ , τa)

Input: Two adjacent tetrahedra τ and τa

Output: A flip is performed, or not

// the 4 cases refer to Figure 4.11

if case #1 then1

flip23(τ , τa)2

push tetrahedra pabd, pbcd and pacd on stack3

else if case #2 and T p has tetrahedron pdab then4

flip32(τ , τa, pdab)5

push pacd and pbcd on stack6

else if case #3 and τ and τa are in config44 with τb and τc then7

flip44(τ , τa, τb, τc)8

push on stack the 4 tetrahedra created9

else if case #4 then10

flip23(τ , τa)11

push tetrahedra pabd, pbcd and pacd on stack12

end13

Furthermore, the work needed to insert a single point p in T is proportional to s, the number
of tetrahedra conflicting with p (Edelsbrunner and Shah, 1996). Indeed, notice that every
flip in InsertOnePoint is actually deleting one and only one non-Delaunay tetrahedron, and
replacing it with some new ones incident to p. The first flip14 removes only one tetrahedron
and replaces it by four new ones; a flip23 deletes a conflicting tetrahedron τa and replaces τ
(the tetrahedron incident to p in star(p)) and τa by three tetrahedra all incident to p; and a
flip32 also removes one conflicting tetrahedron (the one outside star(p)) and creates two new
tetrahedra incident to p. Also, once a tetrahedra is deleted after a flip, it is never re-introduced
in T p. Therefore, if s tetrahedra in T are conflicting with p, then exactly s flips are needed to
obtain T p.

Degenerate cases. Joe (1991) not only proved that a flip-based incremental insertion works
in three dimensions, he proved it even when S has degeneracies. He detailed the different
configurations possible when a flip is to be performed. I present in the following the many
degeneracies that can arise and I describe how to solve them. These solutions are mainly taken
from Joe (1991), Shewchuk (1997b) and Shewchuk (2003).

When S contains degenerate cases, the intersection tests between the two apexes of τ and τa

can return other results (both cases refer to Figure 4.11):

Case #3: the line segment pd intersects directly one edge of abc (assume it is ab here).
Thus, vertices p, d, a and b are coplanar. Observe that a flip23, that would create a flat
tetrahedron abdp, is possible if and only if τ and τa are in config44 (see Figure 4.4(b))
with two other tetrahedra τb and τc, such that the edge ab is incident to τ , τa τb and
τc. Since the four tetrahedra are in config44, a flip44 can be performed. If not, no flip is
performed.

Case #4: the vertex p is directly on one edge of the face abc (assume it is ab here). Thus, p
lies in the same plane as abc, but also as abd. The tetrahedron abcp is obviously flat. The
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only reason for such a case is because p was inserted directly on one edge of T in the first
place (the edge ab), and the first flip14 to split the tetrahedron containing p created two
flat tetrahedra. Because p was inserted on the edge ab, all the tetrahedra in T incident
to ab must be split into two tetrahedra. This could be done with the degenerate flip12,
but it can also be done simply with a sequence of flip23 and flip32. When the case #4
happens, it suffices to perform a flip23 on τ and τa. Obviously, another flat tetrahedron
abdp will be created, but this one will deleted by another flip.

Observe that although flat tetrahedra are not allowed in a DT (the circumsphere of a flat
tetrahedron is undefined and contains all the points in a set), they are allowed during the process
of updating a tetrahedralization, as long as the combinatorial structure stays coherent.

The only degenerate cases remaining to handle are: (1) there exists a vertex at the exact
location where p was supposed to be inserted; (2) p lies directly on the circumsphere of a
tetrahedron in T ; (3) p was inserted directly on a face of a tetrahedron in T . The first case can
be handled trivially: simply test the distance from p to each vertex of the tetrahedron returned
by Walk against a tolerance. If one distance is smaller than the tolerance, do not insert p at
all. The second case is also easy to handle: do not perform a flip since this is an unnecessary
operation that will slow down the algorithm. Since p is directly on the circumsphere and not
inside, no operation will still result in a correct DT. The last case does not require any special
treatment: the flip14 that inserts p in a tetrahedron will create one flat tetrahedron, and this
tetrahedron will be deleted when tested against the tetrahedron outside star(p) sharing the
same face.

4.4 Deleting a Vertex in a Delaunay Tetrahedralization1

As we saw in the precedent section, the construction of the DT of a set S of points in R
3

is a rather well-known problem and many efficient algorithms exist (at least when S is in
general position). The ‘inverse’ problem—the deletion of a vertex v in a DT(S), thus obtaining
DT(S \ {v})—is however much less documented and is still a problem in practice. Most of the
work on this topic has been done for the two-dimensional case and very little can be found for
the three- and higher-dimensional cases. The problem has been tackled mostly by removing
from the triangulation all the simplices incident to v and retriangulating the ‘hole’ thus formed
(see Figure 4.8(a) for the two-dimensional case).

In two dimensions, when the vertex v to be deleted has degree k, the hole created in DT(S)
is a polygon that needs to be retriangulated with (k − 2) triangles. Although Chew (1990)
proves that this problem can be solved in the optimal time of Θ(k), sub-optimal algorithms are
usually preferred for an implementation because of their simplicity and because the average
degree of a vertex in a 2D DT is only 6. The most elegant algorithms are based on the concept
of the ears of a polygon (Devillers, 2002a; Heller, 1990). As shown in Figure 4.12, an ear is
an ‘imaginary’ triangle (defined by three consecutive vertices on the hole) that could be used
to fill the hole. Ear algorithms fill the hole gradually by inserting at each step an ear; this
guarantees that the hole stays a simple polygon at all times. They exploit the fact that a DT
is only modified locally by the insertion/deletion of a single vertex, and isolate the hole and its

1This section is based two papers: Ledoux et al. (2005) and Ledoux et al. (n.d.). The second paper has been
under review for the International Journal of Computational Geometry and Applications for nearly a year;
Franz Aurenhammer and Jack Snoeyink made informal reviews of a preliminary version.
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v

Figure 4.12: Left: DT(S) before v is deleted. The shaded triangle reprensents an ear of star(v). Right:
DT(S \ {v}.

vertices from the rest of the DT. Devillers (2002a) transforms the problem into the construction
of the convex hull of the vertices of the hole lifted onto the paraboloid in three dimensions, and
shows that the ‘lifted ear’ having the lowest intersection with the vertical axis is guaranteed to
be Delaunay; he therefore proposes to process always that ear first (this is further explained
in Section 4.4.5.1). Mostafavi et al. (2003) propose a simpler criterion for processing the ears:
an ear is Delaunay if no vertices forming the hole is inside the circumcircle of the ear. These
two algorithms have respectively a time complexity of O(k log k) and O(k2).

In three dimensions, the problem is similar: the hole, created by the deletion of all the tetra-
hedra incident to v, is a polyhedron. The major difference is that the number of tetrahedra
needed to tetrahedralize the hole is not related to k, because the number of tetrahedra is not
a function of the number of points in S (see Section 3.2.4).

As described in Section 3.3, most algorithms in computational geometry assume that inputs
are in general position, and the handling of degeneracies are usually left to the programmers.
Luckily, the deletion of a single vertex in a 2D DT does not have many special cases and
its robust implementation is quite simple. However, the numerous degeneracies make the
implementation of Devillers’s and Mostafavi et al.’s algorithms impossible in three dimensions
(impossible without the use of an extra mechanism that is), despite the facts that the former
proved that his algorithm is valid in any dimensions, and that common sense suggests the latter
algorithm generalises easily. The problems are caused by the fact that not every polyhedron can
be tetrahedralized, as explained in Section 4.4.1. Devillers and Teillaud (2003) recognised that
and used perturbations to solve the problem. Unfortunately, the major part of their paper is
devoted to explaining the perturbation scheme used in CGAL2 (Boissonnat et al., 2002), and very
few details about the algorithm—a generalisation to three dimensions of Mostafavi et al.’s—
are given. Shewchuk (2000) also proposes a sweep algorithm for constructing the constrained
Delaunay triangulation in R

d of a star-shaped polytope, which can be used for deleting a vertex
in a Delaunay tetrahedralization. However, his algorithm is only guaranteed to work correctly
if a perturbation scheme is used to ensure that no five vertices lie on a common sphere.

In this section, I propose a new algorithm to delete a vertex v in a Delaunay tetrahedraliza-
tion, and I show that, instead of creating a ‘hole’ in the tetrahedralization, it is possible to
tackle the problem differently and use bistellar flips to modify the configuration of tetrahedra

2The Computational Geometry Algorithms Library (www.cgal.org).

www.cgal.org
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Figure 4.13: The Schönhardt polyhedron is impossible to tetrahedralize.

incident to v. As for the construction of a DT, flipping has many advantages since a com-
plete tetrahedralization is kept during the whole deletion process. More importantly, I present
two different methods to ensure the algorithm is robust against every degenerate case. The
first one perturbs symbolically cospherical vertices, and the second one, called unflipping, in-
volves going backward and modifying locally some tetrahedra to ensure that DT(S \ {v}) has
a tetrahedralization.

4.4.1 Tetrahedralization of a Polyhedron

While any polygon in two dimensions can be triangulated, some arbitrary polyhedra, even if
they are star-shaped, cannot be tetrahedralized without the addition of extra vertices, the so-
called Steiner points. Figure 4.13 shows an example, as it was first illustrated by Schönhardt
(1928). This polyhedron is formed by twisting the top face of a triangular prism to form a
6-vertex polyhedron having eight triangular faces (each one of the three quadrilateral faces
adjacent to the top face will fold into two triangles). It is impossible to select four vertices of
the polyhedron such that a tetrahedron is totally contained inside the polyhedron, as none of
the vertices of the bottom face can directly ‘see’ the three vertices of the top triangular face.

For the deletion problem, we are interested in a special case of this problem: the polyhedron is
formed by the union of tetrahedra in a DT, and is star-shaped (but not necessarily convex).

Lemma 4.3. Let P be a polyhedron formed by the union of all the tetrahedra incident to a
vertex v in a DT. The tetrahedralization of P is always possible, and moreover with locally
Delaunay tetrahedra.

Proof. Let T be a DT(S). If v is added to T , thus getting T v = T ∪ {v}, with an incremental
insertion algorithm (Watson, 1981; Joe, 1991), all the tetrahedra in T whose circumsphere
contain v will be deleted; the union of these tetrahedra forms a polyhedron H. Then, H will
be retetrahedralized with many tetrahedra all incident to v. Now consider the deletion of v
from T v. All the tetrahedra incident to v must be deleted, their union is the polyhedron P .
Notice that v could actually be any vertices in S, as a DT is unique and not affected by the
order of insertion. The polyhedron P is exactly the same as H, therefore T tetrahedralizes P
with Delaunay tetrahedra.

4.4.2 Ears of a Polyhedron

Let P be a simplicial polyhedron, i.e. made up of triangular faces. An ear of P is conceptually
a potential, or imaginary, tetrahedron that could be used to tetrahedralize P . As shown in
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Figure 4.14: Perspective view of the outside of a polyhedron. Two adjacent triangular faces (e.g. in
light grey) form a 2-ear, and three triangular faces incident to the same vertex (e.g. in dark grey)
form a 3-ear.

Figure 4.14, such a tetrahedron—that does not exist yet—can be constructed by the four
vertices spanning either two adjacent faces, or three faces all sharing a vertex (the vertex has
a degree of 3). The former ear is denoted a 2-ear, and the latter a 3-ear. A 3-ear is actually
formed by three 2-ears overlapping each other. In practice, a 2-ear can be identify by an edge
on P because only two faces are incident to it.

A polyhedron P will have many ears, but observe that not every ear is a potential tetrahedron
to tetrahedralize P , as some adjacent faces form a tetrahedron lying outside P . Referring again
to Figure 4.14, a 2-ear abcd is said to be valid if and only if the line segment ad is inside P ;
and a 3-ear abcd is valid if and only if the triangular face abc is inside P .

4.4.3 ‘Flipping’ an Ear

In the case of the deletion of a vertex v in a DT, the polyhedron we are concerned with is
star(v), and the ears of star(v) are defined by the triangular faces of link(v). Flipping an ear
σ means creating the tetrahedron spanned by the four vertices of σ, by using a bistellar flip
to modify the configuration of the two or three tetrahedra inside star(v) that are incident to
σ. As a result, the newly created tetrahedron τ will not be incident to v anymore, and both
star(v) and link(v) will be modified.

As shown in Figure 4.15, different flips are applied to different types of ears:

1. let σ be a 2-ear defined by the four vertices a, b, c and d. A flip23 performed on the
two tetrahedra inside star(v) and incident to σ (abcv and bcdv) creates the tetrahedra
abcd, abvd and acvd. The results of that flip23 are that, first, the tetrahedron abcd is
not part of star(v) anymore; and second, link(v) is modified as σ is replaced by a new
ear σ′ formed by the triangular faces abd and acd. The modification made to link(v) is
equivalent to a two-dimensional flip22 of one edge. A 2-ear σ is said to be flippable if
and only if the union of the two tetrahedra inside star(v) and incident to σ is a convex
polyhedron.

2. let σ be a 3-ear defined by the four vertices a, b, c and d. A flip32 performed on the
three tetrahedra inside star(v) and incident to σ (abdv, bcdv and acdv) creates the two
tetrahedra abcd and abcv. After the flip32, the tetrahedron abcd is not part of star(v)
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Figure 4.15: Flipping of an ear. For both 2- and 3-ears, star(v) and link(v) are modified by the flip.

anymore, and link(v) has now only one face abc instead of three. The modification made
to link(v) is equivalent to a two-dimensional flip31. Also, the degree of v is reduced by 1
by such a flip. A 3-ear is flippable if and only if vertices d and v are on each side of the
face abc, i.e. v should be ‘outside’ σ.

4.4.4 A Flip-based Deletion Algorithm

This section describes a new algorithm for deleting a vertex v in a DT(S) of a set S of points
in R

3 in general position. The algorithm is an extension to three dimensions of an ear algo-
rithm (Devillers, 2002a; Heller, 1990), which means that the updates to the tetrahedralization
are done incrementally by creating one Delaunay tetrahedron at each step of the process. Unlike
other known approaches, the tetrahedra incident to v are not deleted from DT(S); DT(S \ {v})
is obtained by restructuring the configuration of tetrahedra incident to v with a sequence of
bistellar flips.

The algorithm, called DeleteInSphere and detailed in Algorithm 4.5, proceeds as follows.
First, all the ears of star(v) are built and stored in a simple dynamic list; note that both valid
and non-valid ears must be stored since as flips will be performed, link(v) and star(v) will be
modified and non-valid ears will become valid, and vice versa. The general idea of the algorithm
is to take an ear σ from the list (any ear, there is no particular order in which they should be
processed) and flip it if all these three conditions are respected: σ is valid, σ is flippable and
σ is locally Delaunay. An ear σ is locally Delaunay if its circumsphere does not contain any
other vertices in link(v); this is simply tested with one InSphere test for each vertex in link(v).
If one or more of the three conditions are not respected, the ear is simply not processed and
the algorithm continues with the next ear in the list. As flips are performed, star(v) ‘shrinks’
and the configuration of the tetrahedra inside it changes; at each step of the process star(v)
contains all the tetrahedra currently incident to v. The process stops when star(v) contains
only four tetrahedra, and a flip41 deletes v.
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Algorithm 4.5: DeleteInSphere (DT(S), v)

Input: DT(S); the vertex v to delete
Output: DT(S \ {v})

// let L be a simple dynamic list

L ← build a list of ears of star(v), valid or not1

while degree of v > 4 do2

σ ← get an ear from L (anyone, order is not important)3

if σ is valid and σ is flippable and σ is locally Delaunay then4

if σ is a 2-ear then5

flip23(σ)6

delete σ from L7

add new ear created σ′ to L8

end9

if σ is a 3-ear then10

flip32(σ)11

delete σ from L12

end13

end14

end15

remove v with a flip4116

Time complexity. The time complexity of the algorithm is O(f k), where f is the number of
ears of star(v), and k its degree (number of edges incident to v). Each ear needs to be tested
against the k vertices in link(v). Notice that as flips are performed, star(v) shrinks and the
number of vertices in link(v) decreases. A flip is assumed to be performed in constant time
because only a finite number of adjacent tetrahedra are involved.

Data structure. The data structure to store the ears also needs to be discussed because of
two difficulties: a 3-ear is formed by three overlapping 2-ears, and after a flip 2-ears can become
3-ears, and vice versa. For simplicity and ease of implementation, I propose storing only the
2-ears of star(v) and identifying 3-ears ‘on the fly’. Before processing a 2-ear σ, a simple test,
that takes constant time, can tell if σ is part of a 3-ear: if the union of the two tetrahedra
defining σ is non-convex and if exactly three tetrahedra inside star(v) are incident to an edge
of the common face between the two tetrahedra, then σ is one of the three 2-ears forming a
3-ear. For example, referring to the bottom right of Figure 4.15, assume we are processing the
2-ear abcd. Because the union of tetrahedra acdv and bcdv is non-convex, we check if there
exists one tetrahedron (one and only one) that is adjacent to both the tetrahedron acdv and
the tetrahedron bcdv; in that case, the ear abcd is actually a 3-ear because of the tetrahedron
abdv.

Also, observe that a 2-ear can be identified by an edge in link(v) (only two triangular faces
in link(v) are incident to the edge), and that each edge in link(v) is incident to exactly one
triangular face in star(v). For the algorithm DeleteInSphere, we can therefore conceptually
store the ears by simply storing all the triangular faces incident to v in star(v); because a
complete tetrahedralization is kept at all time, the topological relationships permit us to have
access to the two incident tetrahedra.
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Correctness. The correctness of DeleteInSphere is proved by using results from the inverse
operation: the insertion by flips of a single point v in a Delaunay tetrahedralization.

Lemma 4.4. There always exists at least one sequence of bistellar flips to delete a vertex v in
a Delaunay tetrahedralization.

Proof. Let T be a DT in R
3, Joe (1991) proves that there exists at least one sequence l of flips

to construct T v = T ∪{v} (see Lemma 4.2). Section 4.2.3 shows that every flip has an inverse.
Therefore, performing the inverse flips of l in reverse order trivially deletes v.

We must now show that DeleteInSphere will always find one sequence of flips and that it
will not get stuck or enter an infinite loop. Again, consider a DT T , and let T v = T ∪ {v}
be the DT after the insertion of v, and T ′ = T v \ {v} the DT after the deletion of v from
T ′. Notice that T ′ must be equal to T since we assume general position in the set S. With
DeleteInSphere, if an ear σ of star(v) in T v is Delaunay, that implies that the tetrahedron
τ spanned by the four vertices of σ was present in T . It also implies that τ was destroyed
after the insertion of v in T since it does not exist in T v. The inverse flip that was used to
destroy τ can trivially reintroduce it. The m tetrahedra that were destroyed by m flips after
the insertion of v in T will have to be rebuilt with exactly m inverse flips when v is deleted
from T v.

Consider now T v after certain flips have been performed to insert v. Joe (1991) proves that if
T v is not Delaunay yet, then there exists at least one triangular face of link(v) that is flippable.
This case is geometrically equivalent to a Delaunay ear that is flippable during the deletion
algorithm, as the two processes are exactly inverse. The list of ears in DeleteInSphere

contains all the potential tetrahedra that could be used to retetrahedralize star(v). That
means that there will always be at least one Delaunay ear that is flippable until v is deleted.
Also, if a Delaunay ear is flipped, the tetrahedron τ that is reintroduced in T ′ is not incident
to v. Because the future flips will only affect the tetrahedra incident to v, τ cannot be deleted
again. Which means that a cycle is not possible during the deletion algorithm.

4.4.5 Degeneracies

Degenerate cases occur when one of the following two conditions arises:

1. the set of points S is not in general position.

2. the vertex v to be deleted lies on the boundary of conv(S).

The algorithm DeleteInSphere as detailed in Algorithm 4.5 is not valid for deleting a vertex
on the boundary of conv(S). This case can nevertheless be easily avoided by using a big
tetrahedron, as described in Section 4.2.1. If one wants to delete a vertex that lies on the
boundary of conv(S) but wants to avoid the use of a big tetrahedron, a sweep algorithm
described in Shewchuk (2000) for deleting a point from a constrained DT can be used.

The coplanarity of four or more points in S leads to the use of the degenerate bistellar flip44;
it is explained below how to use them.

When five or more points in S are cospherical, DT(S) is not unique. Let T be a DT(S)
containing five or more cospherical points, and let v be a point located somewhere ‘inside’ the
cospherical points. Consider the insertion of v in T , thus getting T v, followed immediately by
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its deletion to get the tetrahedralization T ′. The tetrahedralization T ′, although being a valid
DT, will not necessarily be the same as T . Cospherical points will introduce an ambiguity as
to which flips should be performed to delete v in T v. A flip used to delete v from T v, although
possible and performed on a Delaunay ear, is not necessarily the inverse of a flip that was used to
construct T v. This is not a problem in itself, except when some points in S are both cospherical
and coplanar at the same time. In that case, unfortunately, one or more of these ‘wrong’ flips
can lead to a polyhedron star(v) that is impossible to tetrahedralize. I propose two solutions
to deal with this problem. The first one is to prevent an untetrahedralizable polyhedron by
perturbing vertices to ensure that a DT is unique even for degenerate inputs. I describe in
Section 4.4.5.3 how symbolic perturbations of cospherical points can be implemented. The
main disadvantage of this method is that the same perturbation scheme must be used for all
the operations performed on a DT. As a result, if one only has a DT and does not know what
perturbation scheme was used to create it, then this method cannot be used. It is of course
always possible to modify a DT so that it is consistent with a given perturbation scheme, but
that could require a lot of work in some cases. Also, for some applications, using perturbations
is not always possible. An example is a modelling system where points are moving while
the topological relationships in the DT are maintained. It would be quite involved to ensure
that the DT is consistent at all times with a perturbation scheme. The alternative solution
consists of recovering from an untetrahedralizable star(v) by modifying the configuration of
some triangular faces on its boundary; such an operation requires the modification of some
tetrahedra outside star(v). This new method is called ‘unflipping’, as it goes backward and
undo some of the work previously done, and is described below.

4.4.5.1 Deletion with Power Function Does Not Work with some Degenerate Inputs

Devillers (2002a) shows that the deletion problem can be solved by using the parabolic lifting
map described in Section 3.2.3. His algorithm is theoretically valid in any dimensions, but
consider here the case for a set S of points in R

3 and a vertex v to be deleted. Let H be a
subset of S formed by the vertices in link(v), and let σ be a valid ear of star(v). The problem
of retetrahedralizing star(v) is transformed into the construction of conv(H+), H+ being the
set H lifted onto the 4D paraboloid (as explained in Section 3.2.3 on 41). To simplify the
visualisation in the following, let us translate the coordinates of every points in H by −v
and lift them to H+ again (see Figure 4.16(a) for a one-dimensional example). First, notice
that every σi lifts to a hyperplane σ+

i , and that v lies under every σ+

i since it is inside the
circumsphere of every σi. Observe also that the hyperplane σ+

i having the lowest intersection
with the axis orthogonal to R

3 is guaranteed to be part of conv(H+). Indeed, the hyperplane
σ+

i with the lowest intersection guarantees that every other point involved in the deletion is
above σ+

i , hence outside the circumsphere of σi. The construction of conv(H+) can therefore
be done by adding at each step the 3-simplex σ+

i whose intersection is the lowest. This order
is a shelling order of conv(H+) (Bruggesser and Mani, 1971), and gives an enumeration of the
faces of a polytope in an order such that all the faces remain simply connected. For a polytope
P formed by the faces of conv(H+), the shelling order at point v is defined by the order in
which an observer, starting at v and travelling along the axis orthogonal to R

3, sees the faces
disappearing. This actually enumerates only half of the faces of P but here we are interested
in only the lower part of conv(H+). Devillers’s algorithms can theoretically be implemented
with flips because there exists a relation between the ordering of flips when inserting a vertex
v in a d-dimensional DT of a set S of points and the shelling order of a (d + 1)-dimensional
polytope. Indeed, Rajan (1991) proves that, in order to insert a new point v in a d-dimensional
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Figure 4.16: (a) The relation between power distance and ‘vertical distance’ shown for the one-
dimensional case. (b) The power distance of a point v with respect to a circle σ.

DT, the shelling order at v of the lifted points S+ gives the ordering of flips, that is an order
where all the flips will be possible without having unflippable adjacent tetrahedra. Therefore,
reversing the shelling order at v gives a flipping order (by using the inverse flip at each step) to
delete v from DT(S); Devillers (2002a) simply describes the data structure that must be used
to obtain this order.

Devillers’s algorithm keeps a priority queue of all the ears σi sorted according to the dis-
tance, along the axis orthogonal to R

3, between v and σ+

i . This distance is equal to -pow(v,
sphere(σi)), the power distance of v with respect to the circumsphere of σi. As shown in
Figure 4.16(b), it is defined by

pow(v, sphere(σ)) = |vz|2 − r2 , (4.3)

where |vz| is the Euclidian distance between v and the centre z of the circumsphere of σ (denoted
sphere(σ)), and where r is the radius of sphere(σ). As shown in Aurenhammer (1987), its value
in three dimensions is equal to

pow(v, sphere(σ)) =
−InSphere(σ, v)

Orient(σ)
, (4.4)

and is negative (positive) if v is inside (outside) sphere(σ), and zero if v is directly on sphere(σ).

The queue of ears eliminates the need to test each ear with all the vertices in link(v) with
InSphere tests, and therefore speeds up the algorithm. A vertex v is deleted in O(t log h)
time, where t is the number of tetrahedra needed to retetrahedralize star(v) and h is the
number of ears of link(v).

In two dimensions, this algorithm is elegant and simple to implement, but unfortunately it is not
the case in three dimensions. Indeed, consider many cospherical points and a vertex v directly
in the middle of the sphere. If v is deleted with Deviller’s algorithm, then pow(v, sphere(σi)) of
all the ears σi will be exactly the same but only some ears will be flippable (some configurations
of tetrahedra will be non-convex). It is possible in that case to ‘hold’ some flips and process the
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Figure 4.17: Coplanarity causes degenerate configurations of tetrahedra. (a) A flip41 can be performed
with two flat tetrahedra. Tetrahedra abcv and bcdv are flat, a flip41 deletes v and creates the
tetrahedron abcd. (b) The ear abcd is coplanar according to two planes (a, b, v and d are coplanar;
and so are a, c, v and d). A flip23 on the ear abcd creates two flat tetrahedra abvd and acvd. (c)
Possible configuration (viewed from the top) of star(v) after some flips if an oceanographic dataset is
used. Every ear σ is in config44 according to two planes.

ear for which pow(v, sphere(σi)) is the second highest (or third, or fourth. . . ). Unfortunately,
holding flips does not always work because of untetrahedralizable polyhedra. Consider for
example star(v), after some flips, whose shape is formed by an untetrahedralizable polyhedron
‘attached’ to an arbitrary polyhedron. All the ears on the untetrahedralizable polyhedron will
be on ‘hold’, and it is possible that an ear σi, although not Delaunay, be flippable and be the
one for which pow(v, sphere(σi)) is the highest. Such a flip would corrupt the algorithm and
it is impossible to recover from that situation. The only solution is to prevent this case by
using a perturbation scheme. However, the perturbation of the power function is more involved
than the ones for InSphere or Orient because it has a higher algebraic degree (Devillers and
Teillaud, 2003).

4.4.5.2 Handling Coplanarity with the Degenerate flip44

Let σ be a 2-ear of a polyhedron star(v), and let τ1 and τ2 be the two tetrahedra in star(v)
incident to σ. Consider τ1 and τ2 to have four coplanar vertices and σ to be Delaunay (e.g.
in Figure 4.15, abdv would be coplanar). A simple flip23 on σ is not always possible since it
creates a flat tetrahedron; actually the flip23 is possible if and only if τ1 and τ2 are in config44
with two tetrahedra τ3 and τ4 that are in star(v) and incident to an ear σ2 that is Delaunay.
In that case, a flip44 will flip in one step both σ and σ2. If τ1 and τ2 are not in config44, then
σ cannot be flipped.

If four or more coplanar vertices are present in a DT, one must be aware of the presence of
flat tetrahedra. They can be created during the process of updating a DT (after a flip), but no
flat tetrahedron can exist in a DT. In DeleteInSphere, flat tetrahedra are permitted only if
they are incident to v; an ear clearly cannot be flat because after being processed it becomes a
tetrahedron of DT. Also, flat tetrahedra are allowed until the very end of the process because
the last operation needed to delete v in a DT, the flip41, can be performed with two flat
tetrahedra incident to v (see Figure 4.17(a)). Another way of eliminating a flat tetrahedron is
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with a flip32 performed on a 3-ear containing a flat tetrahedron.

A 2-ear σ can also be in config44 according to two different planes, that is when τ1 and τ2 are
configured such that two subsets of their five vertices are coplanar (see Figure 4.17(b)). Such
an ear must be handled with great care because flipping it creates two flat tetrahedra (one
for each subset of coplanar vertices). For a flip44 to be performed on σ, τ1 and τ2 must be
in config44 with tetrahedra according to both planes and the neighbouring ears must both be
locally Delaunay.

For some degenerate set of points in which many points are coplanar, deleting a vertex is still
a problem even if the flip44 is used. Examples of such degenerate sets are datasets collected
in geology or in oceanography, where samples are respectively gathered from boreholes and
water columns. The resulting datasets have many samples with the same x − y coordinates
and different depths. The deletion of a vertex v in the DT of such a dataset is tricky because
many flat tetrahedra can potentially be created. Consider star(v), of a vertex v belonging to
a borehole, after some ears have been flipped. It will be formed by many tetrahedra spanned
by v, one vertex ‘above’ (or ‘under’) v in the same borehole and two vertices belonging to a
neighbouring borehole, and most of the ears will be in config44 according to two planes. Viewed
from above, star(v) will look like an umbrella. Referring to Figure 4.17(c), flipping σ1 with a
flip44 (with σ2) creates the flat tetrahedra vabd and vabh. If later σ4 and σ5 are flipped with a
flip44, then star(v) does not stay ‘simply connected’, that is σ6 is only connected to the rest of
star(v) by the face avb having three collinear vertices. It is then impossible to flip σ6 without
creating another flat tetrahedron, which will be created ‘over’ one already present (both will
be spanned by the same four vertices).

It is possible to recover from this situation by removing from the DT the two flat tetrahedra
and updating the topological relationships between their adjacent tetrahedra, but this requires
to destroy momentarily the tetrahedralization and could be tricky to implement. A simpler
solution consists of preventing this situation by ensuring that star(v) remains a ‘simple poly-
hedron’ at all times. This is done simply by flipping an ear that is in config44 according to two
planes if and only if it is the only possible flip among all the ears of star(v). For example, in
Figure 4.17(c), if σ1 and σ2 are flipped first with a flip44, then σ4 will not be flipped. But σ3

will be flippable with a flip32 involving the flat tetrahedron vabd and the tetrahedra vade and
vbde.

4.4.5.3 Symbolic Perturbations to Handle Cospherical Points

Perturbing a set S of points means moving by an infinitesimal amount the points to ensure that
S is in general position. This is supposed to avoid many problems with the implementation of
geometric algorithms; the construction of the DT is for example greatly simplified if there are
no coplanar and no cospherical points. Unfortunately, moving points in R

3 can have serious
drawbacks: valid tetrahedra in the perturbed set of points can become degenerate (e.g. flat)
when the points are put back to their original position (Seidel, 1998; Shewchuk, 2000).

In the case of the deletion of a vertex v in a DT in R
3, only cospherical points really cause

problems—they can lead to an untetrahedralizable polyhedron—since coplanarity can be han-
dled with the flip44. I therefore describe in the following a method to perturb only cospherical
points without actually moving them. The idea, which was first proposed in Edelsbrunner and
Mücke (1990, Section 5.4), involves perturbing the points in R

d+1 by using the parabolic lifting
map. In R

3, five points are cospherical if and only if the five lifted points are coplanar on
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the paraboloid in R
4. Thus, each point of S is perturbed by a (very) small amount so that

no five points in R
4 lie on the same hyperplane. The method cannot be applied just for the

deletion of a single vertex since the resulting tetrahedralization of star(v) would not necessarily
be consistent with the tetrahedralization outside star(v). The main goal of using this method
is having a unique DT even when five or more points in S are cospherical, so that there is a
clear ordering of the flips to perform to delete v. The same perturbation scheme must therefore
be used for every operation performed on the DT, including its construction.

The perturbation scheme used here to delete a vertex in a DT is consistent with the intuitive
method a programmer would use to implement efficiently an algorithm to construct a DT
(to avoid unnecessary operations), and is also consistent with the construction of the DT with
InsertOnePoint previously described. When a new point v is added to a valid DT(S), if it lies
directly on the circumsphere of an already present tetrahedron, then v is considered outside and
the tetrahedron is not destroyed. This translates to perturbing sequentially the points in S and
lifting them upward; the last point in S is perturbed the most by an infinitesimal amount, and
the ones before by a smaller amount. Shewchuk (2000) adapted the scheme of Edelsbrunner and
Mücke (1990) and simplified greatly its implementation. With his method, the amount by which
each point is moved does not have to be calculated because the perturbations are implemented
symbolically in the InSphere test. My implementation of the perturbed InSphere predicate
is a slight modification of Shewchuk’s method, and goes as follows. First, the points are
perturbed only when they are cospherical; if they are not then InSphere returns either a
positive or negative result. When InSphere returns zero, simply move upward the lifted point
with the highest index by adding an arbitrary amount ǫ (the value is not important) to its fourth
coordinate (the fourth coordinate of p becomes for example p2

x +p2
y +p2

z +ǫ, see Equation 4.2 on
page 48), and recompute InSphere. If the four remaining points are affinely independent, then
the new result will be nonzero; if not then the points with the second highest index must be
moved upward by a smaller value, and InSphere recalculated. This continues until the result
of InSphere is nonzero. The perturbed InSphere test does not slow down the construction
algorithm as it is not required to explicitly perturb the points. Indeed, all InSphere tests will
be done with the last inserted vertex v and therefore if InSphere returns zero then v is always
considered to be outside the sphere. It should be noted that the CGAL library uses a similar
scheme (Boissonnat et al., 2002; Devillers and Teillaud, 2003), although the implementation is
different.

By using the perturbed InSphere with DeleteInSphere, the case of untetrahedralizable
polyhedra will not occur. It is nevertheless necessary to use the flip44 to handle coplanar points,
as described in the previous section. It should also be pointed out that the implementation of a
perturbation scheme is effective only if exact arithmetic is used for all the predicates involved;
see Section 6.2 for more details.

4.4.5.4 Unflipping

If cospherical vertices are not perturbed for the deletion of vertex v, it is possible, for very
degenerate sets S of points, that an intermediate star(v) (after some flips) be an untetrahe-
dralizable polyhedron (UP). To demonstrate the cause of this and the solution proposed, I first
need to state that Lemma 4.2 was proved by Joe (1991) even when the set S of points has
degeneracies. He showed how to handle coplanar points, and, as we just saw in the previous
section, cospherical points are easily handled. We thus have the following lemma:
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Figure 4.18: (a) Two-dimensional star(v) (dark grey) after some flips have been performed. The parts
already retriangulated are in light grey. (b) Any four cocircular points a, b, c and d are cospherical
with any other point p. (c) The smallest example of an untetrahedralizable polyhedron.

Lemma 4.5. There always exists at least one sequence of bistellar flips to delete a vertex v in
a Delaunay tetrahedralization of a set S of points in R

3, even when S contains four or more
coplanar points and/or five or more cospherical points.

Although when S contains five or more cospherical points the DT is not unique, cospherical
points are not the only culprit to produce a star(v) that is impossible to tetrahedralize.

Lemma 4.6. Let v be a vertex in a Delaunay tetrahedralization T in which no four vertices
are coplanar, but in which more than five vertices are cospherical. When deleting a vertex v,
no intermediate star(v) will be an UP.

Proof. The proof is by contradiction. Let star(v) be the polyhedron left to tetrahedralize
after some flips have been performed (see Figure 4.18(a) for the 2D case, the 3D case follows
the same idea). Suppose star(v) is an UP. It is impossible to tetrahedralize star(v) because
some cospherical vertices (e.g. a, b, c, d and e) introduced an ambiguity in the sequence of
flips that should be performed to delete v. Going backward to the original star(v) in T and
performing another sequence of flips (to tetrahedralize the cospherical vertices differently) yields
in every case the same intermediate star(v) that is impossible to tetrahedralize. This is because
even in the presence of cospherical vertices, star(v) always stays a simplicial polyhedron. By
Lemma 4.5, v can be deleted from T , therefore star(v) cannot be an UP.

Lemma 4.7. A star(v) impossible to tetrahedralize can only happen when the set of points
contains four or more cocircular points.

Proof. First, notice that it is only in the presence of four or more coplanar vertices in link(v)
that the polyhedron can become degenerate, i.e. a non-simplicial polyhedron having a face
formed by four or more coplanar vertices. This face will be triangulated in link(v) during the
process, but any triangulation would be valid.

Thus, to encounter an UP, link(v) must have five or more cospherical vertices (DT is not unique)
and four or more coplanar vertices (degenerate star(v)/link(v)). Observe that cocircularity of
some points implies that they are coplanar, and also that they are cospherical with some
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other point. Indeed, consider four cocircular points a, b, c and d (as in Figure 4.18(b)), these
points are cospherical with any other points p because the circle they define will always be a
cross-section of the sphere abcdp.

Now consider star(v), the polyhedron obtained after some flips when deleting v. If link(v)
contains four or more cocircular vertices, the triangulation of these vertices in link(v) is not
unique as it is the result of earlier flips where more than four points were cospherical. Note
that any triangulation of the cocircular vertices would be valid, but only one was randomly
picked. The impossibility to tetrahedralize some intermediate star(v) comes from this ambigu-
ity: it can create an inconsistency between the possible tetrahedralization of star(v) and the
tetrahedralization outside star(v)

During the deletion of v, if an UP is encountered it will therefore contain four or more coplanar
vertices, i.e. link(v) will have at least two coplanar triangular faces. Two incident coplanar faces
on link(v) are called a flat ear. The smallest example of an UP, and also the most common
during the experiments, is a triangular prism having the same triangulation as the Schönhardt
polyhedron, i.e. each quadrilateral face is triangulated such that every vertex has a degree
4 (see Figure 4.18(c)). Notice that if only one diagonal of one quadrilateral face is flipped
(think of a flip22 in a 2D triangulation) then the prism can easily be tetrahedralized with
three tetrahedra. Thus, to recover from an untetrahedralizable star(v), I propose flipping the
diagonal of one of its flat ear and continue the deletion process as usual afterwards. This is an
iterative solution: one flip might be sufficient in some cases, but if another untetrahedralizable
star(v) is later obtained then another diagonal must be flipped. Unflipping simply allow us to
get one triangulation of link(v) that permits the tetrahedralization of star(v) (by Lemma 4.5
there is always one). Flipping the diagonal of a flat ear obviously involves the modification of
the tetrahedra, inside and outside star(v), incident to the diagonal edge. The only way to flip
the diagonal edge is with a flip44 when the tetrahedra—incident to the flat ear—inside and
outside star(v) are in config44. Inside star(v), there will always be only two tetrahedra, but
outside there can be more than two. Modifying the tetrahedra inside star(v) is allowed since
they have not been processed yet, but the ones outside star(v) are by definition Delaunay. The
following lemma shows that it is always possible to modify them.

Lemma 4.8. Let star(v) be an intermediate polyhedron impossible to tetrahedralize. The ver-
tices of the tetrahedra incident to a flat ear of star(v) and outside star(v) all lie on the same
sphere.

Proof. Refer to Figure 4.19. Let a, b, c and d be four cocircular vertices forming a flat ear of
star(v), and triangulated with the triangles abc and bcd. Observe that at least two tetrahedra
are incident to the ear and outside star(v) (some other tetrahedra could also be incident to the
edge bc). Let abcp be one such tetrahedron, and let ζ be its circumsphere. Because a, b, c and
d are cocircular, the vertex d lies exactly on ζ.

If the tetrahedron incident to face bcd has p as its apex, then the proof is finished. Assume it is
not the case, and let q be another vertex forming a tetrahedron bcdq. Because all the tetrahedra
outside star(v) are Delaunay, q cannot be inside ζ, and it cannot be outside ζ either. Indeed,
if q is located anywhere outside ζ (e.g. where q′ is in Figure 4.19) the circumsphere of bcdq will
contain p, because, as the distance between the centre of ζ and q grows, the circumsphere of
bcdq grows and its centre always lies on a line perpendicular to the plane abcd. Therefore, q
lies on ζ.
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Figure 4.19: (a) Perspective view of the flat ear abcd, with two incident tetrahedra. (b) (c) Same
case viewed if the observer were looking directly at the edge bc. The shaded area is the interior of
star(v).
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Figure 4.20: Two possible configurations when unflipping. The flat ear σ is the bottom face of the
cube. (a) Two tetrahedra are incident to σ. (b) Three tetrahedra are incident to σ.

The only problem left is the tetrahedron or tetrahedra incident to the edge bc (lying between
the tetrahedra abcp and bcdq). Notice that pbcq will be the only tetrahedron unless a face is
spanned by another vertex r and the vertices b and c. The only way for any vertex r to be
part of a tetrahedron incident to bc is if r lies directly on ζ. Indeed, r cannot be inside ζ, and
if it lies outside ζ then the face bcr will not exist: the Delaunay tetrahedralization of the five
vertices p, b, c, q and r must contain the tetrahedron pbcq as r lies outside its circumsphere.

The configuration of tetrahedra incident to a flat ear and outside star(v) will not always be
the same, but it suffices to modify it such that only two tetrahedra τ o

1 and τ o
2 (τ o

i represents
the tetrahedra outside star(v)) that are in config44 with the two tetrahedra τ1 and τ2 inside
star(v). Then a flip44 performed on τ1, τ2, τ o

1 and τ o
2 will change the diagonal of the flat ear.

The modification of the tetrahedra outside star(v) is permitted by Lemma 4.8, and because
all the vertices involved lie on a sphere (they form a convex polyhedron), the flips will be
possible.

In practice, the most common case of an UP arises when most of the points in a set are
distributed on a 3D grid, that is when the spacing between points in the x − y − z directions
is constant. In such a case, unflipping can be seen as modifying the tetrahedralization of a
cube to make sure it is consistent with the one of adjacent cubes. Figure 4.20 shows two
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possible configurations for the tetrahedra incident to a flat ear σ and outside star(v). In the
first configuration, only two tetrahedra τ o

1 and τ o
2 are adjacent to σ, thus already forming a

config44. In the second configuration, three tetrahedra are incident to σ, and a flip23 on two of
the three tetrahedra will modify the configuration such that only two tetrahedra are incident
to σ. A flip44 is then possible.

4.4.6 Discussion

The problem of deleting a single vertex in a DT has highlighted the gap that sometimes exists
between theory and practice; this gap is mostly caused by degeneracies that are more difficult to
handle in higher dimensions. The algorithm of Devillers (2002a), although proved valid in any
dimensions and easily implemented in two dimensions, does not generalise straightforwardly to
three dimensions since a perturbation scheme must be used to ensure its robustness.

The alternative presented, DeleteInSphere, deletes a single vertex v in a DT in O(f k) time,
where f is the number of ears of star(v) and k the number of edges incident to v. Although
any vertex in a DT of n points in R

3 can have at most O(n) incident tetrahedra, as explained
in Section 3.2.4, when the points are distributed uniformly, the expected complexity of the DT
is linear, and thus each vertex is expected to have O(1) incident tetrahedra. Also, when the
set of points is distributed according to a Poisson distribution, a typical vertex v has around
15.5 incident edges and around 40.6 incident triangular faces (which gives the number of 2-ears
of star(v)) (Okabe et al., 2000). Despite the fact that DeleteInSphere is sub-optimal, it is
efficient in practice since k and f are generally small for most input.

In the absence of degenerate cases, the implementation of DeleteInSphere is relatively simple,
but as I have shown, different methods must be used to ensure its robustness. To make it fully
robust for any configurations of data, several things must be done. First, the coplanarity of
vertices must be handled with the degenerate flip44. Second, cocircular/cospherical vertices,
which may lead to an untetrahedralizable polyhedron, must be handled with either symbolic
perturbations or unflipping. The latter method is independent of any ordering of the vertices
or of the knowledge of previous operations performed on the DT, and has to be used for some
applications, e.g. when in a kinetic system is used, or when an ordering of points is not wished
or impossible.

4.5 Moving Points in a Delaunay Tetrahedralization

When a point in a VD/DT is continually moving over time and if one is interested in every
intermediate state of the VD/DT, it makes no sense to continually insert, delete and reinsert
it again somewhere else, because it is a computationally expensive operation. A more efficient
option is to literally move the point and update the topological relationships of the VD/DT
when needed. In other words, instead of using “discrete updates”, “continuous updates” to
the VD/DT are made. Discrete updates are nevertheless an adequate solution for many ap-
plications where points move a lot and where the intermediate states are not important (just
the start and end states are of interest). De Fabritiis and Coveney (2003) use for instance a
combination of discrete and continuous updates (depending on the situation) for the simulation
of fluids. Similarly, for the simulation of physical processes (where molecules are moving only
by very small distances), Guibas and Russel (2004) found that continuous updates permit them
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p

p

Figure 4.21: (a) The combinatorial structure of the DT will not change as long as the vertex p is moved
within the white polygon. (b) p has moved but S is still in general position. The combinatorial
structure of DT(S) has not changed. Only the location of p has changed, and so have the edges
incident to it. (c) Example of the consequences of moving p on the VD.

to update the VD/DT in approximately half to three quarters the time it takes to recompute
the whole structure.

The algorithms to maintain a VD/DT of a set S of points up-to-date as one or more points in
S are moving are based on the following observation.

Observation 4.2. Let T be the DT(S) of a set S of points in R
d in general position. If one

point p is moved by a sufficiently small amount so that S stays in general position at all times,
then the combinatorial structures of DT(S) (and of VD(S)) will not change (see Figure 4.21).

Notice that S will remain in general position until p is cospherical (lies on the same ball in
R

d) with d + 1 other points in S. At the critical moments when the loss of general position
arise, the topological structures of VD(S) and DT(S) will be modified; the critical moments
are called topological events. Observe in Figure 4.21(c) that the VD where one point is moving
looks different as the point is moving, but that the adjacency relationship of the Voronoi cell
of the moving point remain the same.

The result of Observation 4.2 is that in order to move one or more points in S, one has to detect
when the topological events will arise, and modify VD(S) and/or DT(S) consequently.

4.5.1 Two-dimensional Work

The Observation 4.2 was used by Roos (1991) who analysed the complexity of the movement
of points in a two-dimensional VD, and proposed an algorithm to update the VD. As is the
case in this thesis, although he discusses the movement of points in a VD, the algorithm he
developed is based on the dual. When a topological event arise, the update to the DT is
made with a bistellar flip. He considers that all (or most) of the points in S are moving
according to a linear trajectory and that they have a constant velocity. His algorithm starts
by computing DT(S), then all the potential topological events for all the quadrilaterals (every
pair of adjacent triangles in DT(S) is tested) are computed and put in a priority queue (e.g. a
balanced search tree), sorted according to the time they will arise. The time is computed by
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finding the zeros of the InCircle (two-dimensional counterpart of InSphere) developed into a
polynomial; in other words, the aim is to find when the four points forming a quadrilateral will
become cocircular (if ever). After that, the first topological event is popped from the queue,
DT(S) modified with a flip22, and the queue is updated because the flip has changed locally
some triangles. The algorithm continues until there are no topological events left in the queue.
The algorithm is efficient as only O(log n) is needed for each topological event.

Similar algorithms have also been proposed, see for instance Bajaj and Bouma (1990) and Imai
et al. (1989). Moreover, Gold (1990) and Gold et al. (1995) (with more details in Mostafavi
(2001) and Mostafavi and Gold (2004)) propose a different algorithm and give more imple-
mentation details. They focus on the operations necessary to move a single point p, and then
explain how to have many points move. To detect topological events, only the triangles inside
star(p) and the ones incident to the edges of link(p) need to be tested, and the changes in the
DT are also made with flip22 operations.

4.5.2 Three-dimensional Work

The work of Roos (1991) has been generalised to three- and higher-dimensional space by Albers
et al. (Albers, 1991; Albers and Roos, 1992; Albers et al., 1998). Their work is mostly theoretical
as they aim to find upper bounds on the number of topological events when the points are
moving according to some trajectories. They state that only the two-dimensional case has been
implemented, and they demonstrate that in three dimensions the flip23 and flip32 can be used
to update the DT. Gavrilova and Rokne (2003) discuss the movement of d-dimensional balls
(not only points, but balls with defined radii) while the additively weighted Voronoi diagram
(or Apollonius diagram) is maintained up-to-date with flips; the operations are performed on
the dual of the Apollonius diagram. Their algorithm is exactly the same as Albers et al.’s,
but they show how the InSphere test must be modified to consider the radius of each ball.
Neither of these algorithms discuss degenerate cases, or how collisions are handled.

The major impediment to the implementation of Albers et al.’s algorithm in three dimensions
is that, as Gavrilova and Rokne (2003) observe, calculating the zeros of the function InSphere

can not be done analytically, as is the case for the InCircle function. Indeed, the polynomial
for the three-dimensional case has a high degree (8th degree) and iterative numerical solutions
must be sought. That results in a much slower implementation, and it could also complicate
the update of the DT when the set of points contains degeneracies. On the other hand, Guibas
et al. (2004) recently proposed a generic framework for handling moving objects. The methods
they use for the kinetic 3D VD/DT is theoretically the same as in Roos (1991), but they use
different methods for finding the zeros of polynomials (InSphere) using fixed precision and
exact arithmetic, and they claim that 3D VDs/DTs can be updated relatively fast in most
cases.

It appears that the computational geometry community is more interested in studying the
complexity of the problem than implementing it. To my knowledge, the only reports of im-
plementations are available in related disciplines where there is a real need. Ferrez (2001) and
Schaller and Meyer-Hermann (2004) did practical implementations of the algorithm for respec-
tively the simulation of granular materials and cell tissues. Ferrez’s algorithm is for spheres in
Laguerre space (power distance is used), and thus the regular tetrahedralization is built; this
is almost the same as the DT, for only the InSphere test has to be modified slightly. Both
seem to have missed out several theoretical issues, e.g. they do not consider Observation 4.2,
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and use ‘time steps’ to move a point. In other words, a point is simply moved to a certain
location without first verifying if topological events will arise. Flips are performed after each
move to restore the Delaunay criterion, and their only constraints is that the combinatorial
structures must stay valid between two steps, i.e. a point is not allowed to penetrate another
tetrahedron. While this could work for some cases, defining a time step that works for all cases
is impossible, and they do not consider the fact that unlike in two dimensions, it is sometimes
impossible to flip adjacent tetrahedra. Their solution could therefore not work for every cases,
and more importantly, their tetrahedralization does not respect the Delaunay criterion at all
times, which could be problematic for some applications.

4.5.3 A Flip-based Algorithm

I discuss in the following a new algorithm to move points in R
3 and update the VD/DT when

topological events arise. Since the implementation of Albers et al.’s algorithm is intricate, I
describe a generalisation to three dimensions of Gold and Mostafavi’s method (Gold, 1990; Gold
et al., 1995; Mostafavi, 2001; Mostafavi and Gold, 2004). Unlike Albers et al.’s method where
all the pairs of simplices must be tested, the algorithm I present permits us to move one or only
a few points in the set S by using only local information, i.e. if p is moved, only the geometry
of the neighbouring tetrahedra of p will be used, and tetrahedra not in the neighbourhood of
p or the trajectory do not need to be tested. Moreover, it is not necessary to find the zeros of
the function InSphere because the topological events are detected by testing the intersections
between the circumsphere of neighbouring tetrahedra and the trajectory of p.

The different types of tetrahedra that must be considered are first discussed, then the algorithm
to move a single point is presented, and finally the movement of several points in S is discussed.
The concepts described are direct generalisations of the algorithm of Gold and Mostafavi, and
I describe the intricacies that one more dimension brings. The algorithm is based on bistellar
flips and is conceptually very simple. Most of the basic concepts and operations required for
inserting a point and deleting a vertex (flipping, ears of a star, flipping of an ear, etc.) are used
directly for the movement of a point, and not many extra operators are necessary. This ensures
that the implementation of the algorithm is fast and relatively easy. The implementation of
the movement of a single point actually proved to be much simpler than the deletion problem,
as problems with untetrahedralizable polyhedra do not arise.

4.5.3.1 Types of tetrahedra

Three types of tetrahedra, with respect to the moving point p, must be defined (see Fig-
ure 4.22(a) for an example in the plane):

Real tetrahedra: are the tetrahedra τi that are incident to the faces of link(p), but outside
star(p).

Imaginary tetrahedra: are the ears σi of star(p), as defined in Section 4.4.2. They are
imaginary because they do not exist yet, but some would exist if p was removed or moved
somewhere else. Remember that 2-ears and 3-ears can exist.

Behind tetrahedra: are real tetrahedra that are ‘behind’ p and its trajectory. In theory,
they are not mandatory, but in practice they permit us to test fewer tetrahedra (for the
intersection with the trajectory), and not to retest tetrahedra that have been previously
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Figure 4.22: (a) The different types of triangles needed to move the vertex p along the trajectory. Real
triangles are the dark shaded ones, and one example of an imaginary triangle is light shaded. Notice
that a behind triangle is always also a real triangle. (b) p must be moved to the closest intersection of
a circumcircle along the trajectory. The triangle having the closest intersection is the shaded triangle
(a real triangle).

tested. The criterion for a real tetrahedron τ to be a behind tetrahedron is if the orthog-
onal projection of the centre of its circumsphere, denoted sphere(τ), onto the trajectory
falls behind p, see Figure 4.22(a).

4.5.3.2 The algorithm

The general idea of the algorithm is that, given the moving point p and its final destination
x, we must move p step-by-step to the closest topological event, perform a flip, and then do
these two operations again until p reaches the location x. As shown in Figure 4.22(b), the
closest topological event is the location along the trajectory (the line segment px) where the
intersection between px and the circumspheres of the real tetrahedra of p and the imaginary
tetrahedra of p (only the valid ears are tested) is the closest. Observe that there are two cases
possible (this is illustrated in Figure 4.23):

(1) p is ‘moving in’ the circumsphere of a real tetrahedron;

(2) p is ‘moving out’ of the circumsphere of an imaginary tetrahedron.

The new algorithm I present, MoveOnePoint (Algorithm 4.6), is for moving a single point
in a set S (while all the other ones are fixed). It is assumed in this section that S is in general
position; the degenerate cases are discussed in the next section. MoveOnePoint start by
initialising a list, denoted B, containing all the behind tetrahedra of p. B is built by checking
if the orthogonal projection of every centre of sphere(τi) falls ‘before’ the trajectory px; if it is
then τi is added to B. Although it is not a necessity to store lists for the real and imaginary
tetrahedra, it might be a good idea to built them at the beginning and simply update them
as flips are performed. The lists are not necessary because at each step of the process the
real and imaginary tetrahedra can be efficiently retrieved on the fly by simply traversing all
the tetrahedra forming star(p) with a BFS-like algorithm on the dual of the tetrahedra. This
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Figure 4.23: Two cases are possible when p is moved along a trajectory. At all times, the real triangles
are the light shaded ones. (a) The closest intersection is with a real triangle. (b) p is moved to the
circumcircle, a flip22 is performed and the real triangles are updated. (c) The next closest intersection
is with an imaginary triangle (dark shaded triangle). (d) p is moved to the circumcircle, a flip22
is performed and the real triangles are updated. Notice also that the behind triangles are updated,
while they were not when p moved in a real triangle.

Algorithm 4.6: MoveOnePoint(T , p, x)

Input: a DT(S) T ; the point p to move; final destination x
Output: T is modified: p is at location x

initialise B // let B be a simple dynamic list1

while p is not at location x do2

τ1 ← get tetrahedron (real or imaginary) having closest intersection with trajectory3

move p to intersection4

if τ1 is a real tetrahedron then5

τ ← get tetrahedron inside star(p) adjacent to τ16

if τ ∪ τ1 is convex then7

// this is equivalent to case#1 in Figure 4.11

flip23(τ, τ1)8

else9

// case#2 in Figure 4.11

flip32(τ, τ1, τ2)10

end11

else12

// τ1 is an imaginary tetrahedron

if τ1 is a 2-ear then13

remove from B the 2 tetrahedra outside star(p) incident to τ114

flip23(τ1)15

add τ1 to B // the ear becomes a behind tetrahedron16

else17

// τ1 is a 3-ear

remove from B the 3 tetrahedra outside star(p) incident to τ118

flip32(τ1)19

add τ1 to B // the ear becomes a behind tetrahedron20

end21

end22

end23
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engineering decision also depends on the data structure used to store the DT (see Section 6.3
for different possibilities).

In order to get the tetrahedron (real or imaginary) whose circumsphere has the closest inter-
section, a simple test that computes the intersection between a line segment and a sphere is
used. As explained in Bourke (1992), the idea is to start with the parametric equation of the
line segment px, such that at t = 0 we are at location p, and at t = 1 we are at location x. By
substituting the equation of px with the equation of a sphere, we can get a quadratic equation
that has no solution (no intersection), one solution (sphere is tangent to px), or two solutions
(the line intersects the sphere). We also know where along the line segment the intersection(s)
occur(s): if t < 0 then it is before p, and if t > 0 it is after x. Observe that when we are dealing
with imaginary tetrahedra, the intersection with the highest value of t is to be considered as
we are moving out of a sphere, while the smallest value of t is considered for real tetrahedra.

When S is in general position, the rest of the algorithm is straightforward. Indeed, Albers
et al. (1998) show that when p is moved to the closest topological event, then a flip (either
flip23 or flip32) is always possible, i.e. there will not be unflippable cases.

An important point is that when p moves out of an imaginary tetrahedron, the list B must be
updated. As shown in Figure 4.23, the behind tetrahedra are modified when an ear is flipped,
but not when p moves in the circumsphere of a real tetrahedron. In three dimensions, the ear
σ flipped becomes a tetrahedron τ (spanned by the four vertices of σ) that must be added to
B. The two or three neighbours of τ (depending if σ was a 2- or 3-ear) outside star(p) must
also be deleted from B.

4.5.3.3 Degeneracies

The degenerate cases for a moving point are easier to handle than the ones for the insertion or
deletion algorithms, mostly because no points are added or deleted (and thus we have complete
tetrahedralization at all times), and also because problems with untetrahedralizable polyhedra
can not happen.

In the context of this thesis, the principal difficulty when implementing MoveOnePoint is
caused by the floating-point arithmetic used by modern computers. The issues are explained
in Section 6.2, but it basically means that some calculations are not exact, and the small errors
can have disastrous consequences. These calculations are not related to the two predicates
Orient and InSphere (these are robust in the prototype developed for this research), but to
other functions, particularly the one computing the intersections between the trajectory and the
circumspheres. Because of these errors and of degenerate cases, it was found that implementing
a flippability test was helpful, i.e. before moving a point to the closest intersection, we test if
a flip will be possible. This test is easily performed, since the tetrahedron whose intersection
is involved is known, and the usual test, as described in Section 4.3.2 for InsertOnePoint, is
used.

What follows is a list of the degenerate cases that can arise during the movement of a single
point at a time. If robust arithmetic was used for all the calculations (which would also
slow down the implementation tremendously), most of these degenerate cases would not cause
problem.
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Cospherical points. The flippability test is required when many points are cospherical because
not every tetrahedron spanned by the cospherical points can be flipped. When p is moved to
the circumsphere of five or more points, we must verify which tetrahedron/tetrahedra can be
flipped.

Floating-point arithmetic can also create problems when many points are cospherical, or nearly
cospherical. The intersection tests between the trajectory and the circumspheres could return
that a given tetrahedron has the closest intersection, but in reality it is another one, and thus
the flippability must be used to ensure that the combinatorial structure of the VD/DT is not
corrupted. In brief, even if a given tetrahedron has the closest intersection, if a flip can not be
performed the tetrahedron is simply ignored and the second closest tetrahedron is processed.
Observe that this test does not have to be performed each time the closest intersection is
sought, but only when two or more intersections are very close to each other (a tolerance can
be used).

Moving backwards. To solve the potential problems that can arise with floating-point arith-
metic, it was found that allowing the moving point to move ‘backwards’ helps. In other words,
sometimes moving backwards the point p and performing a flip unlocks a situation and the
algorithm can continue. This permits us to correct ‘errors’ that could have happened before.
Notice that the movements in the opposite direction are only for very short distances, e.g.
when the closest intersection of a real tetrahedron is slightly before the trajectory, and that
the flippability test must be performed before moving backwards.

Coplanar points. The presence of four or more coplanar points is not problematic in itself
because it is guaranteed that a flip is always possible (Albers et al., 1998). But because of
calculation errors, it is worth verify if a config44 is present before performing a flip23, to avoid
deadlocks.

Sphere tangential to the trajectory. In the situation where the closest intersection with a
sphere is when the trajectory is tangential with the sphere (only one intersection), the sphere
can be ignored and the second closest intersection can be processed. Tangential spheres can
be ignored because it does not matter if the flip is performed or not, so it is better to avoid
unnecessary operations.

Here again floating-point arithmetic can cause problems when a trajectory is very close to a
sphere: a non-intersecting case could be calculated as intersection, and vice versa.

Collisions. Depending on the application, different solutions must be considered. If the points
are real objects, e.g. boats in two dimensions, then collisions are obviously problematic. But in
the case of a simulation in geoscience for instance, points simply represent buckets of water or
air, and collisions have no meaning. MoveOnePoint must nevertheless consider this case. A
simple solution was implemented: when p is about to collide with another point q ∈ S, simply
delete p in DT(S), and reinsert it right after q along the trajectory. The collision detection is
performed by testing the distance between p and the points forming link(p) against a tolerance,
before moving p to the closest intersection. Observe that in that case, DeleteInSphere must
be made robust with the unflipping method, as keeping DT(S) consistent with a perturbation
scheme is (almost) impossible.
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Figure 4.24: The three types of time needed for moving several points at the same time. The next
movement to be made is for point b, since tbp is before tap. (Figure after Mostafavi and Gold (2004))

4.5.3.4 Moving several points

Let S be a set of points in R
3, where several points are moving over time. Each point is moving

according to a linear trajectory and has a velocity v; the time taken to reach its next topological
event, called tt, is therefore tt = d/v, where d is the distance to the closest intersection between
its trajectory and the circumspheres of the real and imaginary tetrahedra. As explained in
Mostafavi and Gold (2004), to ensure that at a given time t all the moving points are where
they should be, a global time needs to be kept (e.g. since the start of the simulation at t = 0).
If only tt was considered, then a case where a point having many topological events close to
each others would delay the movement of other points.

Three types of time must therefore be considered: t is the current time (time elapsed since
t = 0); tt is the time to the next topological event; and tp is the predicted time (global time)
for a point to reach the next topological event. The three types are linked:

tp = t + tt . (4.5)

To ensure that the points are moved in the correct order, i.e. in such a way that the combina-
torial structure of the VD/DT stays valid, a priority queue containing the tip of every moving
point i ∈ S is kept. At each step, the point i whose tip is the earliest is popped from the queue
and processed. After the movement of the point i, tip must be recalculated: the updated ti

becomes tip, and a new tip must be computed with the new tit. The types of time are depicted
in Figure 4.24 for the movement of two points a and b. Observe that a went through two
topological events before reaching its current position, and that b went through three. The
total predicted time for point b is before that of point a, so b will be moved before a (although
tat < tbt).

After a point i has been moved, the tjp of all the points j that were ‘influenced’ by the movement
must update their tjt (and thus their tjp). The movement of i modifies the shapes of all the
tetrahedra incident to i, and since these can be the real tetrahedra of other points, the points
j that forming link(i), plus the points forming the link of these, must be updated.



Chapter 5

GIS Operations for Trivariate Fields

This chapter describes several GIS and spatial analysis operations, for trivariate fields, which
are based on the VD and/or the DT. Besides the obvious advantages that the indexing of
a set of unconnected points brings (e.g. the closest-point queries are efficiently performed),
many spatial analysis operations use the properties of the VD/DT to help the user have a
better understanding of a dataset. While the VD (or the DT) is not mandatory for all the
operations presented, it greatly simplifies and optimises many of them; in fact, a few of the
operations would not even be possible without first constructing the VD/DT. The list of op-
erations presented in this chapter is not exhaustive, as other operations based on the VD are
possible, especially when other metrics are used. For instance, Okabe et al. (1994) present 35
GIS-related operations in two dimensions based on the generalised VD, operations that are
theoretically possible in three dimensions.

I begin this chapter by discussing which GIS operations are useful when modelling trivariate
fields, and by highlighting the major differences with bivariate fields. I then discuss a central
problem of this thesis: the interpolation methods that can be used to reconstruct a field from
the set of samples that were collected to study it. Some other operations are then presented,
among them are some functions that help in visualising a dataset, and also an extension of the
map algebra framework, where all the fields and operations are Voronoi-based.

5.1 A Classification of Three-dimensional GIS Operations

This section briefly discusses the GIS operations that are required in a GIS modelling three-
dimensional geoscientific datasets. The classification is based on the one by Albrecht (1996),
see Section 2.4.1 on page 22. Not all of Albrecht’s GIS operations are relevant in the context
of trivariate fields, and more are definitively needed, such as visualisation (Raper, 1992).

The updated classification would be as follows:

1. Search: interpolation, (re)classification, thematic and spatial search;

2. Location Analysis: buffer zone, overlay, and creation of 3D VD;

3. Visualisation: isosurface, slicing;

4. Distribution/Neighbourhood: cost, proximity, and nearest neighbour;

5. Spatial Analysis: statistical and pattern analysis, shape;

6. Measurements: distance, area, volume and centroid.

86



Chapter 5 GIS Operations for Trivariate Fields 87

First, notice that the terrain analysis operations are not relevant in three dimensions, and have
been removed from the list. A new category has been added: visualisation. As Houlding (1994)
argues, “visualization is essentially a qualitative form of spatial analysis, although it can also
be used to a limited extent in a quantitative sense, provided we have the means of tracking [...]
or interrogating any point in terms of characteristic or variable values”. I give more details
about visualisation operations in Section 5.4.

All the search operations are clearly relevant in three dimensions, and they generalise easily.
The interpolation methods are discussed in the next section, reclassification is part of map
algebra (see Section 5.3), and spatial searches are performed efficiently when the VD is used
(see Sections 4.2.4 and 4.2.5 about respectively the traversal and the point location problem).

The location analysis operations are also all needed in three dimensions. Although not used
in this thesis, buffer zones are useful in geoscience, for example when different datasets are
analysed together, and one wants to identify all the samples in one dataset that are within a
certain distance of another object. Sprague et al. (2006) give a few examples with the system
they developed to model geological data. Although overlay is mostly a concept related to
object-based models stored in different datasets, objects can be extracted from fields and in
a GIS the possibility of having different datasets is desirable. The topological relationships
between objects (e.g. difference, union and intersection) are usually based on the framework of
Egenhofer (1995).

The distribution/neighbourhood operations can also obviously be used in three dimensions, as
can the measurement operations.

Finally, although not used or implemented in the context of this thesis, statistical methods can
clearly help in the analysis of a datasets, and the same is true for shape analysis methods (e.g.
the shape of an isosurface, see Section 5.4.1 below, could indicate some properties).

5.2 Spatial Interpolation1

Given a set of samples to which an attribute a is attached, spatial interpolation is the procedure
used to estimate the value of the attribute at an unsampled location x. To achieve that, it
creates a function f , called the interpolant, that tries to fit the samples as well as possible.

Interpolation methods are an essential operation in this thesis because they permit us to re-
construct a field from the set of samples that were collected to study it. They are also an
important part in commercial GISs where they have been used for years to model, among
other things, elevation data. They are crucial for the visualisation process (e.g. generation of
contour lines), for the conversion of data from one format to another (e.g. from scattered points
to raster), to have a better understanding of a dataset or simply to identify ‘bad’ samples. The
result of interpolation—usually a surface that represents the real terrain—must be as accurate
as possible because it often forms the basis for spatial analysis, for example runoff modelling
or visibility analysis. Although interpolation, as implemented in commercial GISs, helps in
creating three-dimensional surfaces, it is intrinsically a two-dimensional operation for only the
x− y coordinates of each sample are used and the elevation is considered an attribute.

1This section is based on two papers: Ledoux and Gold (2004a) and Ledoux and Gold (2005a).
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To model the kind of datasets dealt with in this thesis, three-dimensional interpolation meth-
ods that consider the properties of the data must be used. While most of the interpolation
methods used in GIS intuitively extend to three dimensions, it is not obvious that they pre-
serve their properties or are appropriate for geoscientific datasets. I discuss in this section
the generalisation to three dimensions of some of the interpolation methods found in GIS or
geoscientific modelling packages. I restrict my discussion to methods that can be applied in a
context of dynamic or interactive modelling (see Section 2.5 on page 25). For each method, I
present and evaluate their properties, and also discuss implementation details to ensure that
they are computationally efficient.

5.2.1 What Is a Good Interpolation Method?

Watson (1992), in his authoritative book, lists the essential properties of an ‘ideal’ interpolation
method for bivariate geoscientific datasets. These properties can realistically be present for
trivariate datasets, and are as follows:

1. exact: the interpolant must ‘honour’ the data points, or ‘pass through’ them.

2. continuous: a single and unique value must be obtained at each location. This is called
a C0 interpolant in mathematics.

3. smooth: it is desirable for some applications to have a function for which the first or
second derivative is possible everywhere; such functions are respectively referred to as C1

and C2 interpolants.

4. local: the interpolation function uses only some neighbouring samples to estimate the
value at a given location. This ensures that a sample with a gross error will not propagate
its error to the whole interpolant.

5. adaptability: the function should give realistic results for anisotropic data distributions
and/or for datasets where the data density varies greatly from one location to another.

In the context of dynamic/interactive modelling, I add to this list:

6. the method must be computationally efficient.

7. the method must require as little input as possible from the user, i.e. it should be au-
tomatic and not rely on user-defined parameters that require a priori knowledge of the
dataset.

I describe in the following four interpolation methods, commonly found in GIS and geoscientific
software, that respect some of the criteria of an ideal method for an interactive system. The
major omission from my list is Kriging (Matheron, 1971; Oliver and Webster, 1990), which, al-
though possessing many of the ideal properties and being popular in many application domains
because it produces an interpolant that minimises the error variance at each location, cannot
be realistically be used in a dynamic environment. Indeed, the Kriging estimation is based on
a function characterising the dependence between the attributes of any two samples that are
at a given distance from each other. This function is obtained by studying the variance of the
attributes according to the distance and the direction, and fitting a simple function. This is
done manually by the user, and is a somewhat time-consuming process that is unthinkable to
do every time the dataset is modified.



Chapter 5 GIS Operations for Trivariate Fields 89

The four interpolation methods discussed are all weighted-average methods, which are methods
that use only some sample points, to which weights (importance) are assigned. The interpola-
tion function f of such methods have the following form:

f(x) =

∑k
i=1

wi(x) ai
∑k

i=1
wi(x)

(5.1)

where wi(x) is the weight of each neighbour pi (with respect to the interpolation location x)
used in the interpolation process, and ai the attribute of pi.

5.2.2 Nearest Neighbour

Nearest neighbour is a very simple interpolation method: the value of an attribute at location
x is simply assumed to be equal to the attribute of the nearest data point. Given a set S
of data points in a three-dimensional space, if interpolation is performed with this method at
many locations close to each other, the result is VD(S), where all the points inside a Voronoi
cell have the same value. The VD actually creates a piecewise model, where the interpolation
function inside each Voronoi cell is a constant function.

Although the method possesses many of the desirable properties (it is exact, local and can han-
dle anisotropic data distributions), the reconstruction of continuous fields can not realistically
be done using it since it fails lamentably in properties 2 and 3. The interpolation function is
indeed discontinuous at the border of cells. It is nevertheless the perfect method for recon-
structing discrete fields, and is also often used in remote sensing to avoid averaging or blurring
the resulting image.

The implementation of the method sounds easy: simply find the closest data point and assign
its value to the interpolation location. The difficulty lies in finding an efficient way to get
the closest data point. The simplest way consists of measuring the distance for each of the
n points in the dataset, but this is too slow for large datasets. To speed up this brute-force
algorithm, auxiliary data structures that will spatially index the points must be used. They
usually subdivide hierarchically the space into cells (usually squares or rectangles) and build a
tree that uses O(n) space; examples of such trees are the KD-tree, the R-tree and the octree
(see van Oosterom (1999) for a survey of two-dimensional structures; the three-dimensional
methods are simple extensions). Thus, to find the nearest neighbour, it suffices to navigate in
the tree and simply test the points in the adjacent cells. Locating the cell containing a test point
can for example be done efficiently with a KD-tree (in O(log n) time). An obvious solution
in the context of this thesis consists of building the VD for the set of points and identifying
inside which cell the interpolation point lies; that can be done with a trivial modification of
the algorithm Walk as shown on page 55.

5.2.3 Distance-based Methods

Distance-based methods are probably the most known methods and they are widely used in
many fields. As shown in Figure 5.1(a), in two dimensions they often use a ‘searching circle’,
whose radius is user-defined, to select the data points pi involved in the interpolation at location
x. The weight assigned to each is typically inversely proportional to the square of the distance
from x to pi. Other weights can also be used, see Watson (1992) for a discussion. The size
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x

wi(x) = |xpi|
−h

where h defines the
influence of pi on x

and |ab| is the distance
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Figure 5.1: (a) Inverse distance to a power interpolation. (b) Problems with anisotropic datasets.

of the radius of the searching circle influences greatly the result of the interpolation: a very
big radius means that the resulting surface will be smooth or ‘flattened’; on the other hand, a
radius that is too small might have dramatic consequences if for example no data points are
inside the circle. A good knowledge of the dataset is thus required to select this parameter.

This method has many flaws when the data distribution is highly anisotropic or varies greatly
in one dataset because a fixed-radius circle will not necessarily be appropriate everywhere in
the dataset. Figure 5.1(b) shows one example where one circle, when used with a dataset
extracted from contour lines, clearly gives erroneous results at some locations. The major
problem with the method comes from the fact that the criterion, for both selecting data points
and assigning them a weight, is one-dimensional and therefore does not take into account the
spatial distribution of the data points close to the interpolation location. A criterion based
on areas and volumes for respectively bivariate and trivariate data yields better results, as the
next two sections demonstrate.

The generalisation of this method to three dimensions is straightforward: a searching sphere
with a given radius is used. The same problems with the one-dimensionality of the method will
be even worse because the search must be performed in one more dimension. The method has
too many problems to be considered for geoscientific datasets: the interpolant is not guaranteed
to be continuous, especially when the dataset has an anisotropic distribution, and the criterion
has to be selected carefully by the user.

Note that the implementation problems are also similar to the ones encountered with the
previous method, and an auxiliary data structure must be used to avoid testing all the points
in a dataset.

5.2.4 Linear Interpolation in Simplices

This method is popular in two dimensions for terrain modelling applications and is based on
a triangulation of the data points. As is the case for the VD, a triangulation is a piecewise
subdivision of the space covered by the data points, and in the context of interpolation a linear
function is assigned to each piece. Interpolating at location x means first finding inside which
triangle x lies, and then the height is estimated by linear interpolation on the plane defined by
the three vertices forming the triangle. This can be efficiently implemented by using barycentric
coordinates, which are local coordinates defined within a triangle (see Figure 5.2 for details).
To obtain satisfactory results, this method is usually used in two dimensions with Delaunay
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Figure 5.2: Barycentric coordinates in two and three dimensions. Ai represents the area of the triangle
formed by x and one edge.

triangles because they have a ‘good shape’. This ensures that the three vertices used in the
interpolation process will most likely be close to and around the interpolation location.

The generalisation of this method to three dimensions is as follows: linear interpolation is per-
formed within each tetrahedron of a tetrahedralization. Note that the barycentric coordinates
can be generalised to linearly interpolate inside a tetrahedron.

As explained in Section 3.2.2, finding tetrahedra having a good shape is not as easy as in
two dimensions, and the presence of slivers yield bad results for the interpolation process.
This is why different empirical methods have been developed to improve the shape of certain
tetrahedra in a DT. For instance, Cheng et al. (2000) show that a tetrahedralization where
all the tetrahedra are well-shaped can be obtained as follows: start with the DT, assign some
importance to some data points forming slivers, and modify locally some tetrahedra (with the
help of flips) to obtain a regular triangulation of the set of points (Edelsbrunner and Shah,
1996). Contrary to some other methods in engineering where the shape of the elements are
improved by inserting new points (see Shewchuk (1997b)), Cheng et al.’s method eliminates
slivers without adding any new point and without moving any.

The construction of the DT and the point location problem have both been covered previously.
The linear interpolation itself is assumed to be performed in constant time since only four data
points are involved. When used on a tetrahedralization having well-shaped tetrahedra, the
linear interpolation method possesses all the ingredients of an ideal method but one: the first
(or second) derivative of the resulting function is not possible at the vertices, edges and faces of
the triangulation. Akima (1978) solved this problem in two dimensions by using higher order
functions in each piece of the triangulation, and the same could be done in three dimensions.

5.2.5 Natural Neighbour Interpolation

It has been shown that natural neighbour interpolation (Sibson, 1980, 1981) avoids most of the
problems of conventional methods and performs well for irregularly distributed data (Gold,
1989; Sambridge et al., 1995; Watson and Phillip, 1987). This is a weighted-average technique
based on the VD for both selecting the set of neighbours of the interpolation point x and for
determining the weight of each. The neighbours used in an estimation are selected using the
adjacency relationships of the VD, which results in the selection of neighbours that both sur-
round and are close to x. The weight of each neighbour is based on the volume (for convenience,
in this section, ‘volume’ is used to define area in 2D, volume in 3D and hyper-volume in higher
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dimensions) that the Voronoi cell of x ‘steals’ from the Voronoi cell of the neighbours in the
absence of x.

Although the concepts behind natural neighbour interpolation are simple and easy to under-
stand, its implementation is far from being straightforward, especially in higher dimensions.
The main reasons are that the method requires the computation of two VDs—one with and one
without the interpolation point—and also the computation of volumes of Voronoi cells. This
involves algorithms for both constructing a VD and deleting a point from it. By comparison,
conventional interpolation methods are relatively easy to implement; this is probably why they
can be found in most GIS and geoscientific modelling packages. Surprisingly, although many
authors present the properties and advantages of the method, few discuss details concerning
its implementation.

I present in the following a simple natural neighbour interpolation algorithm valid in any
dimensions. The algorithm works directly on the DT and uses the concept of flipping for
inserting and deleting the interpolation point. The Voronoi cells are extracted from the DT and
their volumes are calculated by decomposing them. I believe the algorithm to be considerably
simpler to implement than other known methods, as only an incremental insertion algorithm
based on flips, with some minor modifications, are needed.

5.2.5.1 Related Work

Very few researchers discuss implementation details of the natural neighbour interpolation
probably because only the two-dimensional case is usually considered and the implementation
of the method in that space is relatively easy. Efficient algorithms for manipulating a two-
dimensional VD/DT exist and are rather easy to implement, and computing the area of convex
polygons is trivial. As an alternative to inserting and deleting the interpolation point x, Watson
(1992) presents an algorithm that mimics the insertion of the interpolation point x. The idea
is to extract the Voronoi vertices of the VDs with and without x, order them around x and
find the stolen areas by decomposing them into triangles.

In three and higher dimensions, things get more complicated because, as seen in Chapter 4,
the algorithms to manipulate a VD are difficult to implement in the presence of degenerate
cases. Sambridge et al. (1995) describe three-dimensional methods to compute a VD, insert
a new point x in it and compute volumes of Voronoi polyhedra, but they do not explain
how x is deleted at the end. Owen (1992) also proposes a sub-optimal solution which con-
sists of inserting x in the DT with the Bowyer-Watson’s algorithm and computing the stolen
volumes by calculating the volume of the Voronoi cells with and without x by intersecting
three-dimensional planes (which is computationally expensive). Instead of using a deletion
algorithm, the tetrahedra that were removed by the insertion of x are saved and sewn back to
the original triangulation. Also, the idea of mimicking the insertion (Watson, 1992) has been
generalised to three dimensions by Boissonnat and Cazals (2002) and to arbitrary dimensions
by Watson (2001). To calculate the stolen volumes in one operation, both algorithms use some-
what complicated methods to “order” the Voronoi vertices of the two VDs and then decompose
the volumes into simplices. The time complexity of these two algorithms is the same as the one
to insert one point in a VD/DT. Note that this method also requires the use of an auxiliary
data structure to store the tetrahedra that would be removed by the insertion of x.
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Figure 5.3: Natural neighbour coordinates of x in the plane.

5.2.5.2 Natural Neighbours

The idea of natural neighbour is closely related to the concept of Voronoi diagram. Let VD(S)
be the VD of a set S of points in R

d, and let p be a point in S. The natural neighbours of p
are the points in q ∈ S whose Voronoi cell is contiguous to Vp. For example, in Figure 3.8(a)
on page 38, p has seven natural neighbours (the points generating the light grey cells).

Natural Neighbour Coordinates. The concept of natural neighbours can also be applied to
a point x that is not present in S. In that case, the natural neighbours of x are the points in
S whose Voronoi cell would be modified if the point x were inserted in VD(S). The insertion
of x creates a new Voronoi cell Vx that ‘steals’ volume from the Voronoi cells of its ‘would be’
natural neighbours, as shown in Figure 5.3. This idea forms the basis of natural neighbour
coordinates (Sibson, 1980, 1981), which define quantitatively the amount Vx steals from each
of its natural neighbours. Let D be a VD(S), and Dx = D ∪ {x}. The Voronoi cell of a point
p in D is defined by Vp, and Vx

p is its cell in Dx. The natural neighbour coordinate of x with
respect to a point pi is

wi(x) =
V ol(Vpi

∩ Vx
x )

V ol(Vx
x )

(5.2)

where V ol(Vpi
) represents the volume of Vpi

. For any x, the value of wi(x) will always be
between 0 and 1: 0 when pi is not a natural neighbour of x, and 1 when x is exactly at the
same location as pi. A further important consideration is that the sum of the volumes stolen
from each of the k natural neighbours is equal to V ol(V x

x ), in other words:

k
∑

i=1

wi(x) = 1. (5.3)

Therefore, the higher the value of wi(x) is, the stronger is the ‘influence’ of pi on x. The
natural neighbour coordinates are influenced by both the distance from x to pi and the spatial
distribution of the pi around x.
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Natural Neighbour Interpolation. Based on the natural neighbour coordinates, Robin Sibson
developed a weighted average interpolation technique that he named natural neighbour inter-
polation (Sibson, 1980, 1981); note that the method is also sometimes called Sibson’s method.
The points used to estimate the value of an attribute at location x are the natural neighbours
of x, and the weight of each neighbour is equal to the natural neighbour coordinate of x with
respect to this neighbour. If we consider that each data point in S has an attribute ai (a scalar
value), the natural neighbour interpolation function, which is also called the interpolant, is

f(x) =

k
∑

i=1

wi(x) ai (5.4)

where f(x) is the interpolated function value at the location x.

The natural neighbour interpolant possesses all the wished properties enumerated earlier, ex-
cept that the first derivative is undefined at the data points. To obtain a continuous interpolant
even at the data points, Sibson uses the weights defined in Equation 5.2 in a quadratic equation
where the gradient at x is considered. To my knowledge, this method has not been used with
success with real data and therefore I do not use it. Other ways to remove the discontinuities
at the data points have been proposed: Watson (1992) describes different methods to estimate
the gradient at x and how to incorporate it in Equation 5.4; and Gold (1989) proposes to
modify the weight of each pi with a simple hermitian polynomial so that, as x approaches pi,
the derivative of f(x) approaches 0. Modifying Equation 5.4 to obtain a continuous function
can yield very good results in some cases, but with some datasets the resulting surface can
contain unwanted effects. Different datasets require different methods and parameters, and,
for this reason, modifications should be applied with great care. Notice that these methods
first require to compute the natural neighbour interpolant as described in Equation 5.4, and
the algorithm described below can be easily modified to take into account the first derivative.

5.2.5.3 Flips and Construction of the DT in R
d

Because the algorithm presented in this section is valid in any dimensions, the flipping and
insertion operations in d-dimensional space need to be defined. They are both simple extensions
of their three-dimensional counterparts.

Consider the set S of d + 2 points in R
d. Similarly to the case in R

3 (see Figure 4.3), a flip
is the operation that retriangulates conv(S) by removing m d-simplices and replacing them
by d + 2 −m different d-simplices. Lawson (1986) shows that d + 2 points in R

d can always
be triangulated in at most two different ways; thus, the number of flips needed to modify a
triangulation does not increase with the dimension of the space. Also, note that only one of
the two possible triangulations of S respects the Delaunay criterion (empty circumball).

The insertion of a single point p in a DT in R
d using bistellar flips has also been gener-

alised (Edelsbrunner and Shah, 1996). The algorithm is basically the same as in three dimen-
sions: sometimes some flips will not be possible, but there will always exist another one such
that p can be inserted. The algorithm used is therefore based on incremental insertions.
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5.2.5.4 A Flip-based Natural Neighbour Interpolation Algorithm

The natural neighbour interpolation algorithm I propose, InterpolNN as detailed in Algo-
rithm 5.1, performs all the operations directly on the DT (with flips) and the Voronoi cells are
extracted when needed. It is based on a very simple idea: insert the interpolation point x in
the DT, calculate the volume of the Voronoi cell of each natural neighbour of x, then remove
x and recalculate the volumes to obtain the stolen volumes. To speed up the algorithm, two
modifications are applied. The first one concerns the deletion of x from the DT. Based on
Lemmas 4.4 and 4.2, we can affirm that if x was added to the triangulation with a sequence
l of flips, simply performing the inverse flips of l in reverse order will delete x. During the
insertion of x, the sequence of flips is therefore stored, to be ‘rolled back’ later. The second
modification concerns how the overlap between Voronoi cells with and without the presence
of x is calculated. I show that only some facets of a Voronoi cell are needed to obtain the
overlapping volume.

Algorithm 5.1: InterpolNN(T , x)

Input: A Delaunay triangulation T in R
d, and the interpolation location x

Output: An estimate of the value of the attribute at location x

insert x in T with d-dimensional version of InsertOnePoint1

// as flips are performed, store them in a simple list L
foreach pi of x do2

compute vol(Vx
pi

) and store it3

end4

compute vol(Vx
x ) and store it5

delete x from T x // rollback the sequence used for insertion6

foreach pi of x in T x do7

compute vol(Vpi
)8

compute wi(x) // Equation 5.29

end10

Return value obtained from Equation 5.411

Rollback of the Flips. Because a flip affects only a predefined number of simplices, it is
possible to identify uniquely a flip with a (d− 2)-simplex. To remember the sequence of flips,
a simple list containing (d − 2)-simplices is stored. That means that in two dimensions, the
list contains the pi in the order that they became natural neighbour during the insertion. In
three dimensions, only a flip23 adds a new pi to x; a flip32 only changes the configuration of
some tetrahedra. In the case of a flip23, the storage of the edge xpi that is created by the flip
is sufficient. A flip32 deletes a tetrahedron and modifies the configuration of the two others
such that, after the flip, they are both incident to x and share a common face abx; the edge
ab of this face is stored. Therefore, in two dimensions, to delete x we take one pi, find the
two triangles incident to the edge xpi and perform a flip22. When x has only three natural
neighbours, a flip31 deletes x completely from the triangulation. In three dimensions, if the
current edge is xpi, a flip32 is used on the three tetrahedra incident to xpi; and if ab is the
current edge, then a flip23 is performed on the two tetrahedra sharing the face abx.
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Figure 5.4: The insertion of x in a DT in R
d will modify only certain facets of Vp (p being a natural

neighbour of x). The modified facets (edges in two dimensions) of Vp are dotted.

Observe that this method is not affected by degenerate cases. If the insertion algorithm used
is robust against all special cases, then rolling back the flips is guaranteed to work since each
(d− 2)-simplex identifies uniquely a flip.

Volume of a Voronoi cell. The volume of a d-dimensional Voronoi cell is computed by decom-
posing it into d-simplices—not necessarily Delaunay simplices—and summing their volumes.
The volume of a d-simplex σ is easily computed:

vol(σ) =
1

d !

∣

∣

∣

∣

det

(

v0 . . . vd

1 . . . 1

)∣

∣

∣

∣

(5.5)

where vi is a d-dimensional vector representing the coordinates of a vertex and det is the
determinant of the matrix. Triangulating a Voronoi cell is easily performed since it is a convex
polytope.

In order to implement InterpolNN, we do not need to know the volume of the Voronoi cells of
the pi in T and T x, but only the difference between the two volumes. By looking at Figure 5.4,
it is easy to see that some parts of a Voronoi cell will not be affected by the insertion of x in T ,
and computing them twice to subtract afterwards is computationally expensive and useless.

When x is inserted in a DT in R
d, only a certain set of conflicting d-simplices are deleted and

replaced by new ones; let the union of these d-simplices be the star-shaped but not necessarily
convex polytope P . Only the Voronoi facets dual to the Delaunay edges inside or on the
boundary of P will be modified when x is either inserted or deleted. This is because these
edges are the only ones having different d-simplices incident to them in T and T x. Therefore,
to optimise this step of the algorithm (lines 3 and 8), only these Voronoi facets are processed.
The ‘volume’ of a single Voronoi facet is computed by decomposing it into simplices formed by
x and the Voronoi vertices forming the facet. In two dimensions that means one triangle for
each Voronoi facet (an edge), and in three dimensions the Voronoi facets (a convex face) can
be for instance first fan-shaped triangulated, and then tetrahedra are formed by each resulting
triangle on the face and x.

Finally, observe that for InterpolNN to be robust, the set of points must be contained in a
(d+1)-simplex big enough to contain all the points (as in Section 4.2.1), otherwise the Voronoi
cells of the points on the boundary of S will be unbounded and have infinite volumes.
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5.2.5.5 Theoretical Performances

As already explained in Section 4.3.2 for the 3D case (but it is the same idea in higher dimen-
sions), by using a flipping algorithm to insert x in a d-dimensional DT T , each flip performed
removes one and only one conflicting d-simplex from T . Hence, if s d-simplices are conflicting
with x, then exactly s flips are needed to obtain T x.

Each two-dimensional flip adds a new natural neighbour to x. The number of flips needed to
insert x is therefore proportional to the degree of x (the number of incident edges) after its
insertion. Without any assumptions on the distribution of the data, the average degree of a
vertex in a 2D DT is 6; which means an average of four flips are needed to insert x (one flip13
plus three flip22). This is not the case in three dimensions (a flip32 does not add a new natural
neighbour to x) and it is therefore more complicated to give a value to s. It can nevertheless be
affirmed that the value of s will be somewhere between the number of edges and the number
of tetrahedra incident to x in T x; these two values are respectively around 15.5 and 27.1 when
points are distributed according to a Poisson distribution (Okabe et al., 2000). As a result, if
x conflicts with s simplices in T then O(s) time is needed to insert it.

Deleting x from T x also requires s flips; but this step is done even faster than the insertion
because operations to test if a simplex is Delaunay are not needed, nor are tests to determine
what flip to perform. Also, the volume of each Voronoi cell is computed only partly, and this
operation is assumed to be done in constant time. In InterpolNN, if k is the degree of x in
a d-dimensional DT, then the volume of k Voronoi cells must be partly computed twice: with
and without x in T .

As a conclusion, InterpolNN has a time complexity of O(s), which is the same as an algorithm
to insert a single point in a Delaunay triangulation. However, the algorithm is obviously slower
by a certain factor since x must be deleted and parts of the volumes of the Voronoi cells of its
natural neighbours must be computed.

5.2.6 Discussion

This section has demonstrated that the weighted-average methods commonly used in GISs
do generalise to three dimensions, but sometimes new problems appear, for example with the
shape of tetrahedra or with the computational efficiency. Also, the flaws present in some
two-dimensional methods will often be amplified in three and higher dimensions. Natural
neighbour interpolation seems to be the method that is the most appropriate for modelling
geoscientific dataset because it is robust, entirely objective, and gives good results when the
data distribution is anisotropic.

5.3 A Voronoi-based Map Algebra2

Because the unnatural discretisation of space needed to use the map algebra framework (Tom-
lin, 1983) has been severely criticised (see Section 2.4.2 on page 23), many have proposed
improvements. For example, Takeyama (1996) proposes Geo-Algebra, a mathematical formali-
sation and generalisation of map algebra that integrates the concepts of templates and cellular

2This section is based on Ledoux and Gold (2006a).
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Figure 5.5: Two Voronoi-based map algebra operations. The top layer represents the spatial extent of
the fields, and x is a location for which the value in the resulting field fr (bottom layer) is sought.
(a) A unary focal operation performed on the field f1. The third layer represents the neighbourhood
function n(x). (b) A binary local operation performed on the fields f1 and f2.

automata under the same framework. The templates, developed for image algebra (Ritter
et al., 1990), extends the concept of neighbourhood of a location, and the addition of cellular
automata permits us to model geographic processes. Pullar (2001) also uses the idea of tem-
plates and shows how they can help to solve several practical GIS-related problems. But the
main criticism is related to the fact that map algebra was developed for fields stored as raster
files. Recognising that, Kemp (1993) shows that alternative representations (e.g. TINs and con-
tour lines) are viable solutions. She proposes to have operations—similar to map algebra’s—for
modelling fields, which are not all stored under the same representation. She therefore defines
a set of rules to convert the different types of fields to other ones when binary operations are
applied. For example, if two fields, one stored as a TIN and the other as contour lines, are
analysed then the contours must first be converted to TIN before any manipulation is done.
Haklay (2004), also to avoid the drawbacks of raster structures, proposes a system where only
the data points (samples) and the spatial interpolation function used to reconstruct the field
are stored. Each field is thus defined mathematically, which allows the manipulation of different
fields in a formulaic form.

This section presents a variant of map algebra where every field and every operation is based
on the VD. This eliminates the need to first convert to grids all the datasets involved in an
operation (and moreover to grids that have the same orientation and resolution), as the VD
can be used directly to reconstruct the fields.

5.3.1 Unary Operations

When a field is represented by the VD, unary operations are simple and robust. Indeed, as
shown in the previous section, discrete fields can be elegantly represented directly with the
VD where a constant function is assigned to each cell, and continuous fields can be efficiently
reconstructed with natural neighbour interpolation. Also, the neighbouring function needed for
focal operations is simply the natural neighbours of every location x, as defined in the previous
section. Figure 5.5(a) shows a focal operation performed on a field f1. Since at location x there



Chapter 5 GIS Operations for Trivariate Fields 99

are no samples, a data point is temporarily inserted in the VD to extract the natural neighbours
of x (the generators of the shaded cells). The result, fr(x), is for example the average of the
values of the samples; notice that the value at location x is involved in the process and can be
obtained easily with natural neighbour interpolation.

5.3.2 Binary Operations

Although Kemp (1993) claims that “in order to manipulate two fields simultaneously (as in
addition or multiplication), the locations for which there are simple finite numbers representing
the value of the field must correspond”, I argue that there is no need for two VDs to correspond
in order to perform a binary operation because the value at any locations can be obtained
readily with interpolation functions. Moreover, since the VD is rotationally invariant (like a
vector map), we are relieved from the burden of resampling datasets to be able to perform
operations on them.

When performing a binary operation, if the two VDs do not correspond—and in practice they
rarely will do!—the trickiest part is to decide where the ‘output’ data points will be located.
Let two fields f1 and f2 be involved in one operation, then several options are possible. First,
the output data points can be located at the sampled locations of f1, or f2, or even both. An
example where the output data points have the same locations as the samples in f1 is shown
in Figure 5.5(b). Since there are no samples at location x in f2, the value is estimated with
natural neighbour interpolation. The result, fr(x), could for example be the average of the two
values f1(x) and f2(x). It is also possible to randomly generate a ‘normal’ distribution of data
points in space (e.g. a Poisson distribution) and to output these. But one should keep in mind
that in many applications the samples can be meaningful, and it is therefore recommended
to always keep the original samples and if needed to densify them by randomly adding some
data points. The VD also permits us to vary the distribution of data points across space, for
example having more data points where the terrain is rugged, and less for flat areas.

5.3.3 Zonal Operations

Since the local and focal operations are rather straightforward when the fields are stored with
the VD, the only operation left to discuss is the zonal operation. As with the other map
algebra operations, a zonal operation must also output a field because its result might be used
subsequently as the input in another operation. With a Voronoi-based map algebra, the output
has to be a VD, and the major difficulty in this case it that we must find a VD that conforms
to (or approximates) the set of zones. Since zones come from many sources, different cases
will arise. The first two-dimensional example is a remote sensing image that was classified
into several groups (e.g. land use). Such a dataset can easily be converted to a VD: simply
construct the VD of the centre of every pixel. Although this results in a huge VD, it can easily
be simplified by deleting all data points whose natural neighbours have the same value. Notice
in Figure 5.6 that the deletion of a single point is a local operation, and that the adjacent
cells will simply merge and fill up the space taken by the original cell. The second example
is with in situ data, for instance in oceanography a dataset indicating the presence (or not)
of fish in a water body. The VD of such a dataset can obviously be used directly. The third
example is a set of arbitrary zones, such as a vector map of Europe. In two dimensions, it
is possible to approximate the zones with a VD (Suzuki and Iri, 1986), but the algorithm is
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x

Figure 5.6: Simplification of a discrete field represented with the VD. The natural neighbours of the
data point x all have the same attribute as x (here the value is defined by the colour), and deleting
it does not change the field.

(a) (b)

(d)(c)

Figure 5.7: Zonal operations with a Voronoi-based map algebra. (a) A vector map of three zones. (b)
A continuous field represented with the VD. (c) When overlaid, notice many Voronoi cells overlap
the zones. (d) Approximation of the borders of the zones with the VD.

complex and the results are not always satisfactory. A simpler option is to define a set of
“fringe” points on each side of a line segment, and label each point with the value associated
to the zone. Gold et al. (1996) show that the boundaries can be reconstructed/approximated
automatically with Voronoi edges. An example is shown in Figure 5.7: a set of three zones
appears in Figure 5.7(a), and in Figure 5.7(d) the Voronoi edges for which the values on the left
and right are different are used to approximate the boundaries of the zones. Since each location
x in the output field of a zonal operation summarises the values of a field in a given zone, we
must make sure that the locations used for the operation are sufficient and distributed all over
the zone. Let us go back to the example of the temperature across Europe to find the average
in each country. Figure 5.7(a) shows a vector map with three countries, and the temperature
field f1 is represented by a VD in Figure 5.7(b). Notice that when the two datasets are overlaid
(Figure 5.7(c)), many Voronoi cells cover more than one zone. Thus, simply using the original
samples (with a point-in-polygon operation) will clearly yield inaccurate results. The output
field fr, which would contain the average temperature for each country, must be a VD, and
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200m

Figure 5.8: Cross-section of a terrain (left), and the 200m isoline extracted from a TIN (right).

it can be created with the fringe method (Figure 5.7(d)). Because the value assigned to each
data point correspond to the temperature for the whole zone, I suggest estimating, with the
natural neighbour interpolation, the value at many randomly distributed locations all over each
zone.

5.4 Visualisation Tools

It is notoriously difficult to visualise trivariate fields, even if a three-dimensional computer
environment offering translation, rotation and zoom is available. The major problem is that
unlike bivariate fields, where the attribute a can be treated as another dimension, we can
not ‘lift’ every location xi by its value ai to create a surface in one more dimension and
visualise/analyse it—we can not see in four dimensions!

We therefore have to resort to other techniques to be able to visualise the spatial variation of
trivariate fields and to extract meaningful information from them. Within the field of volume
visualisation (Kaufman, 1996), there are mainly three approaches: (1) direct volume rendering;
(2) extraction of isosurfaces; (3) slicing.

The first approach permits us to visualise the whole dataset at once by projecting the infor-
mation onto a single plane (the screen). The mapping is done by assigning at every location
in the field a colour and an opacity, and then creating a single image where the colour of a
given pixel is obtained by accumulating the colour attributes of the locations that project to
this pixel. This approach yields good results, but is also complex, the rendered image takes
long to compute, and algorithms are usually based on voxel data. Hence, since the VD/DT is
not relevant to this technique, only the approaches of isosurfaces and slicing are discussed in
this section.

5.4.1 Extraction of Isosurfaces

Given a trivariate field f(x, y, z) = a, an isosurface is the set of points in space where f(x, y, z) =
a0, where a0 is a constant. Isosurfaces, also called level sets, are the three-dimensional analogous
concept to isolines (also called contour lines), which have been traditionally used to represent
the elevation in topographic maps. Of course, in practice, isolines and isosurfaces are only
approximated from the computer representation of a field.

In two dimensions, isolines are usually extracted directly from a TIN or a regular grid. As
shown in Figure 5.8, the idea is to compute the intersection between the level value (e.g. 200m)
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(a) (b) (c)

Figure 5.9: An example of an oceanographic dataset where each point has the temperature of the
water, and three isosurface extracted (for a value of respectively 2.0, 2.5 and 3.5) from this dataset.
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Figure 5.10: Ambiguous extraction of an isoline where the attribute is 8.

and the terrain, represented for instance with a TIN. Each triangle is scanned and segment
lines are extracted to form an approximation of an isoline.

Marching Cubes. The same idea can be used in three dimensions to extract surfaces from a
field (see three examples in Figure 5.9).

The principal and most known algorithm for extracting an isosurface is the Marching Cu-
bes (Lorensen and Cline, 1987). The isosurface is computed by finding the intersections between
the isosurface and each cell of the representation of a field, which is assumed to be voxel.
Linear interpolation is used along the edges of each cube of a voxel representation to extract
‘polygonal patches’ of the isosurface. There exist 256 different cases for the intersection with
a cube (considering that the value of each of the eight vertices of a cube is ‘above’ of ‘under’
the threshold), although if we consider the symmetry in a cube that comes down to only 15
cases. The major problem with Marching Cubes is that the isosurface may contain ‘holes’ or
‘cracks’ when a cube is formed by certain configurations of above and under vertices. The
ambiguities are shown in Figure 5.10 for the two-dimensional case when two vertices are above
the threshold, and two under, and they form a ‘saddle’. The three-dimensional case is similar,
with many more cases possible.

Marching Tetrahedra. Although Wilhems and van Gelder (1990) describe various methods
to fix the ambiguities, the simplest solution is to subdivide the cubes into tetrahedra. The
so-called Marching Tetrahedra algorithm is very simple: each tetrahedron is tested for the
intersection with the isosurface, and triangular faces are extracted from the tetrahedra by
linear interpolation on the edges. The resulting isosurface is guaranteed to be topologically
consistent (i.e. will not contain holes), except at the border of the dataset. But again, if a
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(a) (b)

Figure 5.11: (a) Two cases for the intersection of an isosurface and a tetrahedron: either 3 or 4
intersections. (b) Three cases when some vertices (the grey ones) have exactly the same value as the
isosurface.

big tetrahedron is used where the vertices are assigned to a value lower than the minimum
value of the field, then all the isosurfaces extracted are guaranteed to be ‘watertight’. The nice
thing about the algorithm is that only three cases for the intersection of the isosurface and a
tetrahedron can arise:

1. the four vertices have a higher (or lower) value. No intersection.

2. one vertex has a higher (or lower) value, hence the three others have a lower (or higher)
value. Three intersections are thus defined, and a triangular face is extracted. See
Figure 5.11(a) on the left.

3. two vertices have a higher (or lower) value and the others have a lower (or higher) value.
Four intersections are thus defined. To ensure that triangular faces are extracted (better
output for graphics cards), the polygon can be split into two triangles, with an arbitrary
diagonal. See Figure 5.11(a) on the right.

The only degenerate cases possible are when one or more vertices have exactly the same value
as the isosurface. These cases are handled very easily, and the intersection is simply assumed
to be at the vertices themselves (see Figure 5.11(b)). Notice that the case when three vertices
have exactly the same value, then the complete face of the tetrahedron must be extracted to
ensure topological consistency.

Speeding up the algorithm. The major drawback of Marching Tetrahedra is that every tetra-
hedron used to represent the field must be visited to extract one or more isosurfaces, even if
the isosurface actually intersects only a few. Different methods have therefore been proposed
to speed up the algorithm. A typical one is by Cignoni et al. (1996) who propose a theoreti-
cally fast algorithm where one isosurface is extracted in O(log s + k), where s is the number of
tetrahedra representing the field and k the size of the output. To achieve that, the maximum
and minimum values of each tetrahedron is store in an interval tree that permits the efficient
retrieval of all intervals containing a given value. The major disadvantage of the technique is
that a large run-time data structure of Θ(s) must be built, in addition to the data structure
used for the tetrahedralization.

It is possible to reduce the size of the additional data structure by observing that an isosurface
is a surface without holes formed of triangular faces, and that starting from one tetrahedron in-
tersecting the surface, it is possible to use the adjacency relationships in the tetrahedralization
to extract the whole surface. This also permits us to build a surface where the topological rela-
tionships between the triangular patches are known, unlike the methods previously mentioned.
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(a) (b)

Figure 5.12: (a) A dataset, representing a discrete field, sliced according to a plane. Each colour
represents one Voronoi cell. (b) A dataset, representing a continuous field, sliced according to a
plane.

Therefore, to reduce the number of tetrahedra visited to extract an isosurface, it suffices to
store only one tetrahedron from which the extraction starts, and ‘traverse’ the isosurface. No-
tice in Figure 5.8 that a field can contain more than one isoline (isosurface) for a given value,
and that they are not necessarily connected. Carr et al. (2003) propose a data structure that
uses only O(n) space (n being the number of points in the tetrahedralization) and permits to
compute and store the starting tetrahedra for any isosurface.

It should be noticed that none of the ‘optimised’ methods were implemented in the prototype
GIS developed for this research, as the extra data structures do not permit the deletion or the
movement of points. If a single deletion or the movement of a single points require recomputing
the whole data structure, then it is certainly not worth it. Recently, some theoretical work
have been made in that sense (Edelsbrunner et al., 2004), but a report on the implementa-
tion (Mascarenhas and Snoeyink, 2005) show that even the implementation in two dimensions
is intricate. The choice of implementing a simple algorithm is also corroborated by the practical
performances obtained with the prototype GIS, as described in Section 6.4.

5.4.2 Slicing a Dataset

Although the slicing method is rather simple, it can still help users to have a greater under-
standing of a dataset, and therefore reduce the analysis time. Slicing involves ‘cutting’ a dataset
according to a certain plane, and then visualise the spatial variation of a given attribute on
that plane, for instance with the help of colours.

For a discrete field represented with the VD, it would for example mean slicing the Voronoi
cells and outputting on the screen the intersections with a colour that is based on the value of
the attribute assigned to each cell. Figure 5.12(a) illustrate one example; notice that even if
the cells might look like Voronoi cells in two dimensions, they are not.
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Figure 5.12(b) shows an example where a continuous field (represented by its samples), is
sliced according to a certain plane, but instead of just using the Voronoi cells, interpolation
is performed at regular intervals on the plane with natural neighbour interpolation (but any
other method could also be used). In the case here, red means that the value of the attribute
is higher.

It is moreover possible to display many slices at the same time, and I describe in Section 7.4
how the slices can be valuable for the analysis of geological microstructures.

5.5 Conversion between Formats/Spatial Models

As explained in Chapter 2, trivariate fields can be stored in different formats (or spatial models):
voxels, octrees, tetrahedralization, Voronoi diagram, etc. The conversion between formats is
an important part of a GIS because datasets will most likely come from different sources, and
it is also useful to export datasets in different formats so that they can be used with other
programs. The grid (voxels) is by far the most popular format to store trivariate fields in a
GIS, and it is also the format in which specialised simulation tools in geoscience will output
their results.

5.5.1 Scattered Points to Grid

The conversion from scattered points to grid is trivial: simply interpolate at regular locations
in three dimensions (which represent the centre of each voxel) and output the results in the
appropriate format (grids can be stored in many ways). Any of the interpolation methods
previously described can be used.

5.5.2 Grid to Scattered Points

The inverse operation, the conversion of a grid to scattered points, is more complex. Given a
three-dimensional grid, it is possible to simply create one data point at the centre of each voxel
in the grid, and then construct the VD/DT of the point set. Observe that this way the Voronoi
cells would be cubes equivalent to the original voxels. But that creates a huge dataset, and a
lot of the information stored in the data points is usually redundant. This conversion problem
can also be seen as a special case of the simplification/generalisation of a field. Indeed, we
might want to reduce the number of samples in the field, so that the storage cost of the field
is less, and so that subsequent operations on the field are sped up. The field simplification
problem is defined as follows. Given a set S of points in R

3 representing a field f (where each
point p in S as an attribute a attached to itself), the aim is to find a subset R of S which will
approximate f as accurately as possible, using as few points as possible. The subset R will
contain the ‘important’ points of S, i.e. a point p is important when a at location p can not be
accurately estimated by using the neighbours of p.
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5.5.2.1 Discrete Fields

Discrete fields represented with grids can be simplified with the method described in Section 5.3
and shown in Figure 5.6: delete the Voronoi cells which have the same value as all their natural
neighbours.

5.5.2.2 Continuous Fields

Garland and Heckbert (1995) present a review of different methods that have been proposed
in the literature for the simplification of TINs, but the same ideas are readily applicable for
trivariate fields represented by a point set. Fowler and Little (1979) discuss an algorithm
where the important points are specific features in the TIN, e.g. summits, ridges or valleys.
This method is difficult to generalise to three dimensions as similar notions are not well-defined.
Heller (1990) proposes a solution where, instead of simplify a grid, the final TIN is constructed
by starting with a coarse TIN, and a point belonging to the grid is added if its error in the
TIN is greater than a threshold value.

Drop heuristic. The simplification algorithm I describe in this section is a generalisation
to three dimensions of the drop heuristic method (Lee, 1989, 1991). The input of the new
algorithm presented is a trivariate field f represented by a set S of points, and it proceeds as
follows. First, DT(S) (or VD(S)) is constructed—that will permit us to evaluate the ‘error’
of each point. Second, an iterative process, where the point in S having the minimum error is
deleted from S at each step, begins. The process ends when the minimum error is greater than
a given threshold (ǫmax); the points left in S after the deletions form the subset we are looking
for. The pseudo-code of the algorithm, called SimplifyField, is presented in Algorithm 5.2.
The error associated with each point v, denoted error(v), is calculated by interpolating at

location v after the vertex v has been temporarily removed from DT(S), and comparing the
value obtained with the real attribute a of v, thus error(v) = |a − estimation|. As shown in
Figure 5.13 for a one-dimensional case, when the error is more than ǫmax then the point must
be kept, if it is less then the point can be discarded.

Lee’s original method uses linear interpolation in triangles, i.e. after v has been temporarily
deleted from DT(S), the triangulation is updated and the estimation is obtained with the
triangle containing location v. However, observe that any other interpolation method could
also be used, and that natural neighbour interpolation is particularly suited because it involves
the insertion/deletion of vertices. By using the ideas described in Section 5.2.5 to implement
InterpolNN, the process could be implemented efficiently. Before temporarily deleting a given
vertex v, simply store vol(Vv

pi
), the volume of the Voronoi cells of the natural neighbour pi of

v, and recalculate vol(Vpi
) after the deletion of v. This will permit us to obtain the natural

neighbour coordinates, and an accurate estimation of the attribute.

The algorithm SimplifyField in its simplest form could be slow, but as van Kreveld (1997)
explains, different techniques can be used to speed it up. For instance, after removing a point
from DT(S), it is not required to recalculate the error for all the remaining points in S, as
only the natural neighbours pi of the deleted point are affected. It therefore suffices to only
recalculate error(pi). A priority queue storing the error for all the points in S, sorted from the
smallest to the biggest error, is kept and updated after each deletion. To optimise further the
algorithm, van Kreveld (1997) proposes to keep a pointer from each point v in S to its error(v)
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Algorithm 5.2: SimplifyField(S, ǫmax)

Input: A set S of points in R
3, and the error threshold ǫmax

Output: A subset R of S

// let Q be a priority queue

compute DT(S)1

foreach v ∈ S do2

DeleteInSphere (DT(S), v)3

compute error(v) and insert in Q4

InsertOnePoint (DT(S\{v}), v)5

end6

ǫmin ← get smallest error(v) from Q7

while ǫmin < ǫmax do8

DeleteInSphere (DT(S), v)9

foreach pi of v do10

// for every natural neighbour of v
remove error(pi) from Q11

recompute error(pi) and insert in Q12

end13

ǫmin ← get smallest error(v) from Q14

end15

Return points in S16

in the priority queue, and vice versa. A method I suggest involves the use of the rollback of the
flips, as used for InterpolNN, so that after deleting temporarily a point, it can be reinserted
quickly without computing any InSphere tests.

Time complexity. In the worst case, SimplifyField will take O(n2), where n is the number
of points in S, but that hides a big constant. Indeed, O(n2) is needed to construct the initial
DT(S), and there exist some very extreme configurations for which the insertion/deletion of
a single point could trigger O(n) flips. The update of the priority queue could also be slow
for the same configurations, since a given vertex could have O(n) natural neighbours. But if
we assume that the points in S are uniformly distributed, then every point has O(1) natural
neighbours (Dwyer, 1991), and the construction of DT(S) is expected to take O(n log n) (Edels-
brunner and Shah, 1996). The initialisation of the priority queue takes O(n), and each inser-
tion/deletion in it takes O(log n). The insertions and deletions of points in S are moreover
assumed to be performed in constant time, since each vertex has a constant number of nat-
ural neighbours. The overall algorithm therefore takes O(n log n), under the assumptions
described.

5.6 Extraction of Boundary Surfaces

A boundary surface is an object that can be extracted from a field, and it represents the space
where the value of an attribute changes abruptly. An example is the delimitation between a
zone of high pressure and one of low pressure in a field representing the air pressure.
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v1

v2

error(v1) > ǫmax

error(v2) < ǫmax

Figure 5.13: A one-dimensional example of the field simplification operation. Top: the field and its
set of samples. Bottom: the subset of samples used to represent the field.

When a discrete field is represented with the VD, a first approximation of the boundaries in
the field can be extracted easily. Assume we have a discrete field f representing the rock
types and that we have three types, as in Figure 5.14(a). By simply discarding the Voronoi
edges shared by cells having the same attribute, we obtain the boundary approximation of the
rock types. This technique has also been used for the rapid digitisation of polygonal maps
in forestry (Gold et al., 1996). As shown in Figure 5.14(b), in three dimensions, the surfaces
extracted are formed of Voronoi faces shared by cells having different attributes.

Observe that boundaries can also be extracted from continuous fields, if the field is reclassified
first. An example is a field representing the temperature in Celsius, and we create four cat-
egories: -10–0❽; 0–10❽; 10–20❽; and 20–30❽ (observe that the reclassification is an unary
local operation in the map algebra jargon). Then it is possible to extract very easily a boundary
representing where the air temperature is for instance 0❽.

5.7 Reconstruction of Surfaces

The reconstruction of a surface from a set S of samples that was collected on the surface is an
important problem in many disciplines, for instance in engineering when one wants to have a
digital model of an instrument or a machine already existing. The samples are usually collected
by laser scans, resulting in a dataset having a dense distribution. Figure 5.15 illustrates an
example. Observe that the attributes attached to the samples (if any) are not used in the
reconstruction, but only the locations of the samples; in other words, do not confuse these
surfaces with isosurfaces.

To reconstruct a surface, several methods based on different paradigms have been proposed, see
Dey (2004) for a survey. The most successful methods, in the sense that they can theoretically
guarantee under certain conditions that the surface will be artifact-free, are based on the
VD/DT. I will not go into the details here because it is out of scope for this research, but I will
simply state that once DT(S) is built, it is possible to extract triangular faces in DT(S) such
that the original surface is approximated (a piecewise linear function is created with the faces).
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(a) (b)

Figure 5.14: Examples of the extraction of boundaries in a discrete field in (a) two dimensions and
(b) three dimensions.

Figure 5.15: Laser scan of a hand, and the reconstructed surface. (Figure taken from Amenta et al.
(2001))
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Popular implementations of such algorithms are the Power Crust of Amenta et al. (2001), and
the Cocone of Dey and Goswami (2003).

This is clearly not related to fields, but, it is still relevant for a system managing geoscientific
datasets. For example, as explained in Chapter 7, some devices used in oceanography can
collect field-type data, but they are also equipped with side-scan sonar that can be used to
survey the seafloor and the exterior surface of complex man-made objects, to help in submarine
construction (Paton et al., 1997). The status of pipelines and cables laid on the seafloor could
be investigated for instance.

5.8 Detection of Clusters

Assume that we have a set of points in R
3, and that we want to study the ‘shape’ of this set,

i.e. identify shapes that are implied by the point distribution. Points could for instance be
distributed on a surface or a line, or contain clusters. Many techniques could be used, and I
describe in this section the alpha shapes, or α-shapes.

To explain the concept of an alpha shape, Fischer (2005) compares it to a huge mass of ice
cream in R

3 containing ‘hard’ chocolate pieces at the location of the points in the set S. Assume
we use a hypothetical sphere-formed ice cream spoon to carve out all the ice cream we can reach
without taking any chocolate pieces (it is also possible to carve out from the inside, i.e. the
spoon carves out ice cream at all locations where it fits). The resulting object will be formed
of points, arcs and caps, and is not guaranteed to be connected. The α-shape of S is obtained
by substituting the arcs and the caps by respectively straight edges and triangles. The ‘α’ in
α-shape is a parameter that defines the radius of the spoon—a small radius will therefore allow
us to eat a lot of ice cream.

Formally, the concept of α-shapes is a generalisation of the convex hull of a set of points. α-
shapes are actually subcomplexes of the Delaunay tetrahedralization of S, i.e. the triangular
faces and edges of a given α-shape can be derived from DT(S). For a given value of α, where
0 < α <∞, the α-shape is formed by all the simplices in DT(S) having an empty circumsphere
(they do not contain any points in S). Observe that when α = ∞, the resulting α-shape is
conv(S). Figure 5.16 shows a few examples of α-shapes of a point set in R

2. Edelsbrunner and
Mücke (1994) discuss at length α-shapes in three dimensions, and describe an algorithm to
construct all the α-shapes of a set of points. It starts by computing DT(S), and then for each
k-simplex (where 1 ≤ k ≤ 3) it calculates the radius of the smallest circumsphere to obtain the
α-interval for which the k-simplex is present. Note that this algorithm was not implemented
for this thesis, as the predicates needed are complex and it is difficult to ensure robustness.

As explained in Edelsbrunner and Mücke (1994), when an α-shape algorithm comes with a
visualisation software where the user can interactively modify the α parameter and see the
shapes created, then it becomes a powerful tool in many application disciplines. They mention,
among others, reconstruction of surfaces, automatic mesh generation, and the study of the
distribution of galaxies.

Alpha shapes can also obviously be used to detect clusters in geoscientific datasets. Observe
in Figure 5.16(c) that when α is small, the cluster of points at the top right of S now forms a
polygon that is not connected to the rest of the dataset. Similarly, Lucieer and Kraak (2004)
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(a) (b) (c)

Figure 5.16: Examples of the alpha shapes of a set S of points in the plane when α (a) equals ∞
(which results in conv(S)); and when in (b) and (c) it is the radius of the grey circle(s).

use α-shapes for the classification of remotely sensed imagery: their classification becomes
fuzzy because the user can interactively adjust α so that different classes are formed.



Chapter 6

Implementation Issues

This chapter discusses the technical issues that arose during the implementation of the pro-
totype GIS developed for this research. Firstly, the important issue of the robustness of the
algorithms developed, in light of the arithmetic used by computers, is examined. Secondly,
possible data structures to store the VD and/or the DT are reviewed, and a new one that was
developed during this research is presented. Finally, the practical performance of many algo-
rithms developed are analysed with different datasets, and compared with what is arguably the
de facto standard in computational geometry implementations, the Computational Geometry
Algorithms Library (CGAL) (Boissonnat et al., 2002).

6.1 Tools Used for the Research

The Borland Delphi environment, the object-oriented version of the language Pascal, was used
to build the prototype GIS. The algorithms described in Chapters 4 and 5, unless explicitly
mentioned, have been implemented and no third-party libraries have been used—this excludes
the OpenGL library that is used for visualisation. The visualisation engine1 permits the user to
zoom in/out, rotate the scene, and also translate it in any direction.

The program developed permits us to construct the VD/DT of a set of points, to manipulate
it, to query it and to visualise the results; Figure 6.1 shows its interface.

An important consideration is that the program is a prototype, and not a full-scale GIS. Its
main aim is to help in the development of algorithms, and help in testing them. Several common
GIS functions have therefore not been included, as the focus was on the algorithms for three-
dimensional fields described previously. Also, although the visualisation is an important part
of this thesis, the visualisation tools implemented have not been optimised for big datasets,
and with more than 500 points, the user can see a major slow down. If the visualisation is
removed, all the operations are performed rather quickly, as Section 6.4 reports.

6.2 Robustness Issues

Consider the admittedly simple algorithm AddRealNumbers, as shown in Algorithm 6.1,
that adds 0.1 one hundred times. It should obviously returns ‘true’, but if it is implemented
on a computer with floating-point arithmetic, the odds that it will return ‘true’ are rather

1It was developed with OpenGL by Rafa l Goralski and Marcin Dzieszko.
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(a)

(b)

Figure 6.1: Interface of the prototype GIS built for this research.
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Algorithm 6.1: AddRealNumbers

Input: —
Output: the result true or false

m← 0.01

for i← 0 to 99 do2

m← m + 0.13

end4

if m = 10.0 then5

Return true6

else7

Return false8

end9

low (if not nil). This is because floating-point arithmetic offers only an approximation to real
numbers, which are always rounded to the closest possible value in the computer. When one
chooses to implement an algorithm with floating-point arithmetic, it is important he under-
stands the consequences of his choice. Floating-point arithmetic to represent real numbers is
ubiquitous because it has many advantages: it is available almost on every platform, and, more
importantly, it has been highly optimised so that arithmetic operations are performed very
fast.

I began implementing the prototype GIS for this thesis under the naive assumption that
floating-point arithmetic was ‘good enough’ and that I would be able to understand the special
cases, and fix them by adding some more code. My method was the most widely used to fix
numerical non-robustness: the tolerance. In other words, if two values are very close to each
other, then they are equal. Tolerances can probably yield satisfactory results for simple prob-
lems (e.g. the intersection of two line segments), but for more complex ones like the construction
of the DT, where the combinatorial structure could be invalidated by small movements of the
vertices, it is risky. How should one define the ‘optimal’ tolerance? I observed that tweaking
the tolerance to fix a given problem was usually easy, the problem being that it was also cre-
ating another problem somewhere else. Even with the tolerance well-defined (or so I thought),
during the development of algorithms I became frustrated because my program would some-
times crash, or even output something that was not a valid tetrahedralization. “Was it the
arithmetic? My algorithm? Or a mistake I made while coding it?” I wondered all the time.
The development of algorithms was hindered by the fact that the source of the problem was
never known. The only solution was to use exact arithmetic: my first question was therefore
answered—that left two unanswered but that was better than nothing!

The major obstacle to using exact arithmetic (Yap and Dubé, 1995) is the speed of computation:
it is very slow. Unlike floating-point arithmetic, an arithmetic operation can not be assumed
to be performed in constant time. The complexity of an operation depends on the numbers n
of bits used to store a number, and the multiplication of two numbers can have for instance a
complexity of O(n2). Karasick et al. (1991) reported that the naive implementation of a divide-
and-conquer algorithm to construct the two-dimensional DT was slowed down dramatically by a
factor of 10 000, although they showed that by carefully selecting when to use exact arithmetic,
they could reduce the factor to around 5 for points uniformly distributed.

As mentioned in Section 4.2.2, the algorithms for manipulating a DT make their only important
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decisions based on the result of two geometric predicates. For this reason, if one wants to build
robust algorithms, only these two predicates need to be implemented with exact arithmetic.
Observe that we are not interested in the exact values returned by Orient and InSphere,
but rather by the sign of the result (although we must be able to detect when the value of the
determinant is exactly 0). Floating-point arithmetic will most likely compute correctly the sign
of the determinant when the points involved in a predicates are ‘clearly’ in general position,
but when four points are nearly coplanar, there is a chance that Orient returns that they
are coplanar. Similarly, five cospherical points can be mistakenly considered not cospherical
by InSphere because the result of the determinant is not exactly 0, but perhaps something
like 1, 555234× 10−18. The problem of robustness of an algorithm is therefore tightly linked to
the problems of degeneracies, as it is special cases that will create problems when computing
a predicate.

The solution I have retained for the implementation of my prototype is due to Shewchuk
(1997a,b). He developed and implemented—his code is publicly available on the Internet2—fast
geometric predicates that are ‘adaptive’, which means that their speed is inversely proportional
to the degree of uncertainty of the result. His method works like a filter that will activate exact
arithmetic only when it is needed, but since the exact result of the predicate is not sought, as
soon as the sign of the determinant can be correctly computed, the process stops. He shows
that using his adaptive predicates for building a DT in two dimensions slows down by about
8% the total running time for 1 000 000 randomly generated points, and by about 30% when
those points form a tilted grid. In three dimensions, his predicates slows down by about 35%
the total running time for 10 000 randomly generated points, and by a factor of 11 when those
are generated on the surface of a sphere. As Shewchuk (1997b) states: “these predicates cost
little more than ordinary nonrobust predicates, but never sacrifice correctness for speed”.

Because the predicates Orient and InSphere have been implemented with Shewchuk’s pred-
icates, the construction of the DT and the deletion of a vertex in the prototype are totally
robust. On the other hand, the movement of a point in a VD/DT requires more operations
that were not implemented with exact arithmetic. In most cases that does not create a problem,
but it is still possible that the program crashes because of imprecision with numbers.

Also, Shewchuk (1997a) implemented only the predicates necessary for constructing the two-
and three-dimensional DT, which means that the only arithmetic operations available are +,
- and × (the sign of a determinant does not require the ÷). For this reason, the deletion with
the power distance (see Section 4.4.5.1) is not robust because the power predicate requires a
division. The construction of the VD is not totally robust either because the computation
of Voronoi vertices (the centre of a sphere defined by four points) requires a division. In
the prototype, for some very degenerate configurations (e.g. points distributed uniformly on a
sphere), the division behaves badly and corrupts the VD.

6.3 Data Structures3

As it was mentioned in Chapters 3 and 4, most of the algorithms and implementations available
to construct the three-dimensional VD (and thus indirectly the DT) store only the DT and

2www.cs.cmu.edu/∼quake/robust.html
3This section is the result of joint work with Christopher Gold and Marcin Dzieszko, and is based on: Gold
et al. (2005), Ledoux and Gold (2005b), and Ledoux and Gold (2006c).

www.cs.cmu.edu/~quake/robust.html
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perform their topological operations on tetrahedra. This is usually justified by the fact that
given one structure the other is implicitly known, and also because managing and storing
simplices over arbitrary polyhedra simplifies the topological operations and permits the design
of simpler data structures.

The prototype developed for the work described in this thesis was first implemented using a very
simple data structure storing every tetrahedron and its four adjacent tetrahedra. Although this
results in an efficient implementation, both in terms of memory and speed (for the construction
and the manipulation operations), it has major drawbacks when analysing a dataset because,
as shown in the previous chapter, many operations are based on the VD. As described in
Section 4.1, the computation of the Voronoi elements (vertices, edges, faces and polyhedra) is a
computationally expensive operation that can slow down the prototype and hinder the analysis
of a dataset.

It can be argued that storing both the DT and the VD simultaneously can be beneficial for
a broad range of applications, and that doing so offers a more powerful and flexible solution
than the other known data structures storing three-dimensional cell complexes (see below for
a review). Keeping both subdivisions can optimise certain spatial analysis operations in GIS
based on the VD, and permit new applications involving the volume and the boundary of an
object. It also offers a flexible solution, because attributes for any elements of both subdivisions
can be stored, which is of considerable importance for the modelling of real-world features. On
the other hand, keeping two subdivisions at the same time obviously has drawbacks: it increases
the requirements for storage, and the construction/modification algorithms will be slower. I
nevertheless believe that, in many real-world applications, the major constraint is not the speed
of construction of the topological models of a large number of points or the space needed in
memory, but rather the ability to interactively construct, edit and query the desired model.

What is needed is a data structure like the quad-edge (Guibas and Stolfi, 1985)—it has
been used for many years to represent the primal and dual subdivisions of two-dimensional
manifolds—but for three-dimensional manifolds.

This section presents a new data structure to store and manipulate simultaneously the primal
and dual subdivisions of a three-dimensional manifold. The structure, called the augmented
quad-edge (AQE), is based on the quad-edge structure. Each 3-cell of a complex is constructed
using the usual quad-edge structure, and two 3-cells are linked together by the edge that is
dual to their shared face. The basic properties, the primitive operators, and the storage costs
of the AQE are also presented. The primary feature of the data structure is ease of use in
managing and navigating these cell complexes. While high in storage, it is computationally
efficient, requiring no searching operations in order to move from cell to cell.

6.3.1 Related Work

Because the computer science community tends to favour efficient implementation over the
analysis of datasets, most papers in the literature discuss data structures for storing only
tetrahedra. The simplest data structure, as shown in Figure 6.2 and as implemented for
the prototype, considers the tetrahedron as being its atom and stores each tetrahedron with
four pointers to its vertices and four pointers to its adjacent tetrahedra. This is the direct
generalisation of the triangle-based data structure that has been used for many years to store the
two-dimensional DT. As explained in Section 4.2.2, the vertices and faces of each tetrahedron
τ must be ‘oriented’ and ordered in a consistent way if we want to manipulate or perform some
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a
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τd

τc

τb

τa

Figure 6.2: The tetrahedron-based data structure.

operations on a DT. The four vertices in τ (a, b, c and d) are ordered such that Orient (a, b, c, d)
returns a positive value, and each adjacent tetrahedron τi is indexed in such a way that the
vertex i points to it. In other words, τi, that is adjacent to τ , shared three vertices with τ , but
does not contain the vertex i. This is a very space-efficient structure because it can be stored in
a simple array of pointers to vertices and tetrahedra. It also yields a fast implementation, and
it is therefore the structure of choice in many projects. Shewchuk (1997b) notably reports the
implementation of his program to compute the constrained Delaunay triangulation in the plane
to be nearly twice as fast when a triangle-based structure is used, instead of the quad-edge.
CGAL notably uses it in three dimensions but has added to each vertex a pointer to one of its
incident tetrahedra, to speed up the extraction of the Voronoi cells (Boissonnat et al., 2002).
It is also possible to store the tetrahedra implicitly by considering a data structure where the
atom is a triangular face having three pointers to its vertices and six pointers to its adjacent
faces, as described by Shewchuk (1997b).

Many data structures to store arbitrary three-dimensional cell complexes are extensions of work
done for the two-dimensional case. Examples are the half-face of Lopes and Tavares (1997)
(extension of the half-edge (Mäntylä, 1988)) and the Generalized Maps (G-Maps) (Bertrand
et al., 1993; Lienhardt, 1994). The latter structure, which is actually valid to represent a
broader class of objects called cellular quasi-manifolds, can be seen as a generalisation to d-
manifolds of boundary models as each k-cell (where 0 < k ≤ d) is recursively decomposed
into cells of lower dimensionality, and the topological relationships between adjacent k-cells are
kept. The resulting structure is thus very space-consuming, as each lower-dimensionality cell
must be stored in cells of higher dimensionality: a vertex shared by five edges is for instance
stored in each of the five edges. It is nevertheless being used in a commercial system for
the modelling of geoscientific data4. Although G-Maps stores only one subdivision, it offers
efficient functions to extract all the elements of the dual subdivision. One of the few structures
permitting the simultaneous preservation of primal and dual subdivisions of 3-manifolds is the
facet-edge structure of Dobkin and Laszlo (1989). As its name implies, the atom is a pair
formed of a face and an edge, and the next facet-edge pairs (one in each direction) around the
face and the edge (incident faces to the edge) are stored. Unlike G-Maps, a face shared by two
cells needs only be stored once. The facet-edge structure comes with a set of operations to
modify cells and to navigate within both subdivisions. Its generality makes navigation within
a single cell impossible, and hence the authors suggest storing extra information for each edge

4The gOcad system (www.gocad.org).

www.gocad.org
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q.org

Figure 6.3: (a) The quad-edge data structure and some basic operators (only one subdivision is
represented). The starting quad q is the black quad, and the resulting quads are grey. (b) The Splice
operator.

and using the quad-edge operators. Also, unlike the quad-edge that is being used in many
implementations of the two-dimensional VD/DT, the facet-edge has been found difficult to
implement in practice and, to my knowledge, has not been used in ‘real projects’. It should
finally be noticed that the facet-edge structure has also been generalised to any dimensions by
Brisson (1989).

6.3.2 Quad-edge Structure

The quad-edge data structure (Guibas and Stolfi, 1985) was developed to represent simultane-
ously the primal and dual subdivisions of a 2-manifold, and also to navigate from edge to edge
in these subdivisions. Each quad-edge represents one geometrical edge of a subdivision, and
this edge is decomposed into four directed edges: two in the primal, and their two respective
dual edges (as seen in Section 3.1.5, the dual of an edge in 2D is an edge). Each directed
edge is represented by a quad, which, in a given subdivision, will either point to one vertex
or to a face; in the dual, a quad points to the dual of what it is pointing to in the primal
(remember that in 2D, faces and vertices are dual). Its advantages are firstly that there is no
distinction between the primal and the dual representation (it is symmetric with respect to
edges and faces/polygons), and secondly that all operations are performed as pointer opera-
tions only, thus giving an algebraic representation to its operations. Figure 6.3(a) shows the
basic structure, with four branches (quads) for each edge of the graph being stored (the dual
edges are not drawn), one for each of the incident vertices or faces. There are three pointers
on each quad: one to the vertex or face object (org), one to the next anticlockwise quad-edge
around that object (next), and one to link the four quads together in a loop (rot). The three
operations org, rot and next are sufficient for navigating any subdivisions, but higher level
operators can also be defined: sym is for example equal to two rot applied consecutively, thus
q.sym = q.rot.rot.
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In brief, all vertices or faces have complete topological loops around them. Notice that the
rot operation actually permits us to navigate between the primal and the dual subdivisions.
Guibas and Stolfi (1985) also use the flip operator (do not confuse with the flip as described
in Section 4.2.3) to navigate to the other side of the 2-manifold (a manifold is orientable), but
this operation is not used for this research.

Only two commands are used to modify a graph: MakeEdge to create a new edge on a manifold,
and Splice to connect/disconnect quad-edges together (illustrated in Figure 6.3(b)). In the
simplest case, Splice connects two separate next loops, joining the two nodes together, and at
the same time splitting the next loop around the common face. Splice is its own inverse.

Guibas and Stolfi (1985) give many implementation details about the structure and its opera-
tions, and one can therefore implement it relatively easily.

6.3.3 Augmented Quad-edge Structure

The augmented quad-edge (AQE) uses the ‘normal’ quad-edge, which is valid for any 2-
manifolds, to represent each 3-cell of a 3D complex, in either space. For instance, each tetrahe-
dron and each Voronoi cell are independently represented with the quad-edge, which is akin to
a boundary representation (b-rep). With this simple structure, it is possible to navigate within
a single cell with the quad-edge operators, but in order to do the same for a 3D cell complex
two things are missing: a way to ‘link’ adjacent cells in a given space, and also a mechanism
to navigate to the dual space. First, notice that in this case two of the four org pointers of
a quad-edge point to vertices forming the 2-manifold, but the other two (which in 2D point
to the dual, or a face) are not used in 3D. Remember also that in 3D the dual of a face is an
edge. The idea is therefore to use this dual edge to ‘link’ two cells sharing a face: the unused
face pointers simply point to their dual edge. This permits us to ‘link’ cells together in either
space, and also to navigate from a space to its dual. Indeed, we may move from any quad-edge
with a face pointer to a quad-edge in the dual cell complex, and from there we may return to
a different 2-manifold in the original cell complex if needed.

A quad-edge is divided into four quads q, and there exist two types of quads: a qf points to
a face, and a qv points to a vertex. One rot operation applied to a qf returns a qv, and vice
versa. A qf identifies uniquely, like the facet-edge (Dobkin and Laszlo, 1989), a pair (face,
edge). Therefore qf has also a linked quad q⋆

f in the dual that is defined by (face⋆, edge⋆);

remember from Section 3.1.5 that if C is a k-cell in R
d, its dual cell is denoted by C⋆ and is a

(d− k)-cell.

One issue remains to be resolved: as each face is penetrated by several dual edges, a consistent
rule must be defined to select the appropriate one. Indeed, with the AQE, the dual edge to
a face has to be stored for all the dual 3-cells sharing that edge. A triangular face has for
example three dual edges since each of its three vertices becomes a 3-cell in the dual. A qv has
its org pointer set to a vertex, and a qf has its org pointer set to q⋆

f . The pointer to q⋆
f from qf

is called through, as shown in Figure 6.4(a). The quad q⋆
f is defined as belonging to the dual

cell which encloses the node pointed to by qf .rot = qv. This is sufficient to define the through
pointer structure. In Figure 6.4(a), the triangular face abc has three dual edges and may be
represented by the quad qf (the black quad) on the edge ab. The dual edge of abc is uv, and
the grey face represents the face that is dual to the edge ab. The operation qf .through gives
q⋆
f which is situated on the edge uv and on the face dual to ab; this face belongs to the cell
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Figure 6.4: (a) The through pointer. The black quad qf is the starting one, and the grey ones are
resulting quads after an operation. (b) The adjacent operator. The quads qf and rf represent the
same pair (face, edge), but belong to different 3-cells.

dual to vertex b since qf .rot.org gives b. Note also that qf .next.through gives a quad on a face
which belongs to the cell dual to the vertex a; and qf .next.next.through to c.

6.3.4 Navigation and Construction Operators

Navigation Operators. As mentioned earlier, because the quad-edge structure is used to
represent each cell of a three-dimensional cell complex, the ‘usual’ navigation operators (next
and rot) can be used to navigate within a 3-cell. Only one new operator is needed to navigate
within a three-dimensional cell complex and to be able to visit every polyhedron, face, node or
quad-edge: the through operator, as described in the previous section.

Let qf be a quad and q⋆
f its dual quad, then the following properties are valid:

q⋆
f = qf .through (6.1)

qf = qf .through.through = q⋆
f .through (6.2)

Different higher-level navigation operators can also be defined. One that is particularly useful
is an operator for ‘jumping’ from a cell to another adjacent cell, in either space. This navigation
operator is called adjacent. Let qf be a quad on the boundary of a common face between two
cells, as shown in Figure 6.4(b). We want to ‘jump’ to the quad rf representing the same pair
(face, edge) as qf but on the adjacent cell. We do this by using the dual structure to navigate.
Starting from qf , qf .through gives q⋆

f , and q⋆
f .next gives a quad whose through pointer gives a

quad in the original space but in a neighbouring cell. The rot operator is used twice to set the
result to rf . Thus,

qf .adjacent = qf .through.next.through.rot2 (6.3)

Other relations are also interesting. First, the adjacent operator is symmetrical:

qf = qf .adjacent.adjacent (6.4)



Chapter 6 Implementation Issues 121

Second, if qf and rf are adjacent quads as in Figure 6.4(b) (such that rf = qf .adjacent), notice
that their respective dual quads q⋆

f and r⋆
f are also adjacent, i.e. they represent the same pair

(face, edge) but are part of different 3-cells.

Construction Operators. New construction operators are required to build the DT and the
VD. There are three categories of operators:

Creation of new independent 3-cells, e.g. a Delaunay tetrahedron or a Voronoi cell. Because
the quad-edge structure is used, its construction operators MakeEdge and Splice are the
only operators needed. This operator is called CreateCell.

Modification of existing cells. When a topological operation is performed on the primal
subdivision, the dual must also be updated. The operators Sharpen, Truncate and Re-
placeEdge, described in Section 6.3.6, are examples of operators that can be used to
update the VD when the DT is modified.

Assemblage or linkage of two cells. The operators Sew and Unsew are used to respectively
set and reset the through pointers of all qf belonging to a face shared by two cells.

6.3.5 Storage Costs and Comparisons

This section analyses the storage costs of the AQE when it is used to represent both the DT
and the VD.

With the AQE, each cell (tetrahedron or Voronoi cell) is stored separately. Each tetrahedron
contains: six edges, each represented by four quads containing three pointers (org, next and
rot). This makes a total of 72 pointers. Notice that every qf has one and only one q⋆

f , and also
that the same is true for every qv (there is always one qv when a rot is applied to a given qf ).
As a result, the total number of pointers for the dual is also 72, which makes a total of 144
pointers for each tetrahedron.

This is obviously more than the data structures used to store only the DT. For example, the
tetrahedron-based structure uses only eight pointers per tetrahedron. To my knowledge, the
only data structure preserving both a primal and dual 3D subdivision is the facet-edge (Dobkin
and Laszlo, 1989). With it, each pair (face, edge) contains (considering both the primal and the
dual): four pointers to vertices (two Delaunay and two Voronoi), and also four pointers to the
next facet-edge (the navigation requires the use of the dual to access the adjacent facet-edges
around the face and the edge). There are three pairs per triangular face, and a tetrahedron
contains four faces. However, with this structure, the common faces between two tetrahedra are
not stored twice—and we can state that each face is shared by two tetrahedra, except the ones
on the convex hull of the data set. As a result, the total number of pointers per tetrahedron is
48, but, as explained previously, extra information needs to be stored if one wants to use the
quad-edge operators to navigate within a single cell.

To summarise, the AQE is about three times more space-consuming than the facet-edge, in
the worst case. A factor of two is consistent with my initial objective to maintain the primal
and dual structures simultaneously, and to use the same set of operations in each space. This
can be achieved by compressing the quad-edge as Guibas and Stolfi proposed: the rot pointers
between quads are not explicitly stored and the last two bits of each pointer are used to identify
each quad of a quad-edge.
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Figure 6.5: Truncate and Sharpen operators. The DT is in black lines, and the VD is dotted lines and
white vertices.

6.3.6 Implementation of the Flips with the AQE

To construct and manipulate simultaneously the DT and the VD, we need to modify the
flip operations so that the VD is updated as well. Because the flips are simple topological
operations involving a fixed set of tetrahedra, the operations to update the VD are relatively
simple and can be described using algebraic statements exclusively. The only data elements
are the (Voronoi or Delaunay) quad-edges and the (Voronoi or Delaunay) nodes. For the rest
of this section, it is assumed that the primal subdivision is the DT and the dual the VD.

Each flip in the primal is implemented with the three construction operators defined earlier.
The tetrahedra involved in the flip need first to be unsewn (with Unsew) from the ones not
involved, deleted, and then new tetrahedra need to be created (with CreateCell), sewn (with
Sew) together and also to the ones not involved in the flip.

Although more complicated, the update of the dual requires only three new operators, as
shown in the following. Recall that the Voronoi cell of a point is formed by all the centres of
the circumspheres of the tetrahedra incident to it. A flip will only modify (delete and create)
tetrahedra that are located inside conv(T ), where T is formed by the five points involved in
the flip. Therefore, only five Voronoi cells are modified by a flip23 or a flip32, and a flip14
modifies four Voronoi cells and creates a new one. The faces on the boundary of conv(T ) are
not modified by a flip, and therefore to update the dual after a flip only the through pointers of
the edges dual to these faces have to be updated. For example, a flip23 has only two different
kinds of vertices (referring to Figure 6.5): a and e both have one incident tetrahedron before
the flip23 and three after; and b, c and d all have two before and after (but they are different).
For the vertex a (as for e), the operator Truncate is needed to update the dual and involves
deleting the Voronoi vertex p dual to its incident tetrahedron, creating three new Voronoi
vertices (forming a new Voronoi face rst) and finally linking these vertices to the three Voronoi
edges dual to the three Delaunay faces incident to a. The reverse operation, needed for a flip32,
is called Sharpen.

The operator ReplaceEdge is needed to update the Voronoi cell of the vertex b (or c or d), and
involves setting the dual edges of the four incident Delaunay faces of b to the two new Voronoi
points r and t created by a flip23 or flip32. Notice that the Voronoi cell of b is modified, but
contains the same number of vertices, edges and faces before and after a flip.
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Figure 6.6: (a) Six map objects and their boundaries. (b) The same map stored as a graph and
its dual (dotted lines). (c) The dual graph is used to describe the relationships between adjacent
polygons. (Figure after Gold (1991))

As for the flip14, it can be implemented with the operators already described. Referring to
Figure 4.3(b) on page 50, a new Voronoi cell (dual to e) must be created and sewn to the ones
of a, b, c and d. The updates to the Voronoi cells are simply done with Truncate since the
points a, b, c and d all have one incident tetrahedron before the flip14, and three after.

The operations described here have been implemented successfully, and allow both the DT and
the VD to be updated after a flip, thus it is possible to insert a new point in a VD/DT, but
also theoretically delete or move one.

6.3.7 Applications

The AQE is a general-purpose data structure that can be useful not only for representing
fields with the VD/DT, but actually for a variety of applications where three-dimensional solid
objects are involved. The following presents two examples of applications for which the dual
of a subdivision is meaningful, and therefore is worth storing. Storing two subdivisions can
optimise some of the operations necessary for an application and offer a more flexible option
for the storage of attributes.

A two-dimensional example where the dual is meaningful was given by Gold (1991). He pre-
sented a polygonal map, as the one in Figure 6.6(a), where each polygon (a map object) has
certain attributes, and where the boundaries between two map objects also have some sort of
attributes, e.g. the boundary form or the flow. His claim was that the boundaries do not char-
acterise per se any of the objects, but rather the adjacency relationships that exist between any
two objects. He therefore suggested to store the relationships between two given map objects
in the edge that is dual to their shared boundary (Figure 6.6(c)).

6.3.7.1 Crust and Skeleton

Although most of the efforts of the meshing community have been targeted at storing regular
and irregular subdivisions, some real-world applications are only possible when both the DT
and the VD are known explicitly, i.e. properties of the DT and the VD are both used to solve
a problem. Obvious two-dimensional examples are the definitions of the crust and skeleton of
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Figure 6.7: An apartment building can be modelled with the AQE. The dual subdivision is not shown.

a sufficiently well-sampled polygon. It has been shown that these two structures are subsets
of respectively the DT and the VD (Amenta et al., 1998), and the extraction of either the
crust or the skeleton requires the knowledge of both the DT and the VD. Gold and Snoeyink
(2001) show that the crust/skeleton concept helps in many cartographic problems such as the
reconstruction of terrain models from contour lines, the estimation of a river network from
boundaries, and the extraction of “topology” from scanned maps. One interesting application
is polygon generalisation: a polygon may be generalised by first constructing its skeleton, then
simplifying this skeleton, and finally reconstructing the polygon from the simplified skeleton.
This idea has been extended to three dimensions for the reconstruction and simplification of
surfaces and features from laser scans (Tam and Heidrich, 2003). The method is similar to the
two-dimensional one and involves the extraction of the DT of the set of points, and the 3D
skeleton of the reconstructed objects (with the VD). The surface is simplified by modifying the
skeleton, which as a consequence modifies the crust.

6.3.7.2 Modelling Apartment Buildings

Perhaps the main advantage of using the AQE is that attributes can be stored for any elements
of both subdivisions (vertices, edges, faces and volumes). Indeed, the vertex attributes may be
stored along with the x − y − z coordinates in the vertex; edge attributes in a quad pointing
to a vertex; face attributes in a quad pointing to a face; and volume attributes in the vertex
that is dual to a volume.

One potential three-dimensional application exploiting duality to store attributes is the mod-
elling of an apartment building. Each room is represented by one 3-cell (see Figure 6.7 for a
simple example), and in a similar way to the example in Figure 6.6, the dual edge to each face
(e.g. the four walls, the floor or the ceiling) is used to store the relationships between two adja-
cent rooms, such as the visibility (instead of explicitly representing a window for instance), or
the noise transmission. Moreover, it is possible to store attributes for the properties of different
parts of one room: the finish of a wall or the floor type (attributes attached to 2-cells), the
type of moulding (attributes attached to the 1-cells), or the properties for the whole room (e.g.
its volume or renting price) can be stored in the dual vertex to the 3-cell. A major advantage
of using the AQE for modelling apartment buildings is that a wall (or a floor) is stored twice,
once for each of the two rooms sharing the wall. This is consistent with the way one would
conceptualise many rooms in a building: the wall separating two rooms will not necessarily
have the same properties on each side. For example, the finish on one side of the wall might



Chapter 6 Implementation Issues 125

be different from the one on the other side, or one side might have a gold ceiling moulding and
the other no moulding at all.

The AQE can also be used to search efficiently a three-dimensional cell complex. Referring to
Figure 6.7, if qf (the black quad) is a quad representing the wall between the two rooms, it is
possible to retrieve all the elements forming the room on the right by using breadth-first search
on the 3-cell representing the room (using quad-edge operators). Each element of the wall that
qf represents can also be retrieved with the quad-edge operators rot and next ; and the same
is true for the ceiling or the floor that can be accessed directly from the AQE algebra, without
searching. The attributes characterising the relation between the two rooms are obtained with
qf .through, and then the attributes of the whole room can be obtained directly because they
are stored in the vertex dual to the room. Also, from qf it is possible to navigate locally and
visit the adjacent room with qf .adjacent, and then for instance move to its ceiling by applying
rot twice. Given a k-cell C, it is actually possible to identify all the l-cells (where k < l ≤ 3)
incident to C using the navigation operators of the AQE described earlier. Notice that in
the case of retrieving all the elements incident to a vertex one can simply move to the dual
subdivision and perform a breadth-first search on the 3-cell because the elements retrieved are
dual to elements incident in the primal. A further important consideration is that a complete
three-dimensional cell complex can be easily and efficiently traversed without storing extra
information (see Section 4.2.4).

When the attributes are included in a search, it is for example possible to look for an edge that
represents gold ceiling moulding, incident to a white ceiling and a blue wall, and with a red
corner boss; or for all the rooms having more than 100 m2 but not having a carpet.

6.3.8 Discussion

It should be noticed that the AQE is only valid for cell complexes, and that subdivisions where
‘dangling’ elements are present cannot be represented with the structure in its current form.
In other words, non-manifold objects, such as the one shown in Figure 3.4(c) on page 35, can
not be represented.

The AQE preserves the lower dimensionality (two-dimensional) navigation and construction
operations, as well as keeping the underlying quad-edge properties in three dimensions. As a
consequence, the data structure is directly navigable and forms an ‘edge algebra’, allowing us
to combine our pointer operations by following well defined rules, and to show the equivalence
of different ways of getting to the same destination. Also, every operation has an inverse.

While the data structure requires somewhat more storage than some more simple structures,
it has the advantage of conceptual simplicity and involves only a simple extension of the 2D
topological relationships. The fact that the dual subdivision is also stored permits the storage
of attributes for any elements of a three-dimensional cell complex, and makes the structure
particularly valuable for a wide range of applications.

6.4 Practical Performance

I report in this section experiments that were made on a Pentium 4 (2.8 GHz), with 1 GB of
RAM and running the Windows XP Professional operating system. I tested the running time
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of a few algorithms described in Chapters 4 and 5: construction of the DT, deletion of vertices
in the DT, interpolation with natural neighbours, and extraction of isosurfaces.

The practical performances of the algorithm MoveOnePoint are difficult to compare with
other implementations since I could not have access to any, and at this moment only one point
is allowed to move at a time in my prototype. Since the movement of a point uses mostly the
operations developed for inserting and deleting a point, and since this section demonstrates
that these are efficient, I can conjecture that the operation is efficient in practice. The major
problem with the implementation is that it still sometimes crashes because of floating-point
arithmetic.

Because all the experiments had to be made under Windows, the choice of implementations
to compare mine with was quite limited, as most computer scientists use and develop software
under Linux/Unix. To my knowledge, the only dynamic implementation of the 3D DT is CGAL.
It actually offers much more than just the possibility to compute the DT and delete vertices
in it: many fundamental algorithms and data structures in computational geometry—in two,
three and higher dimensions—have been implemented and are being used for several projects in
universities and in industry. The source code of CGAL was written in C++, and can be compiled
under different platforms, including Windows. The major obstacles to using under Windows
programs developed under Linux is the fact that the exact arithmetic schemes do not port
easily—the implementations are rather low-level and most schemes are not implemented under
Windows. Fortunately, the scheme used by CGAL, the Core library (Karamcheti et al., 1999),
does work under Windows.

It should be noticed that CGAL is not the fastest implementation for the computation of a DT in
R

3, as there are reports of implementations that outperform it, see for instance Amenta et al.
(2003) and Liu and Snoeyink (2005a). Apparently, the fastest implementation is Pyramid5 by
Jonathan Shewchuk. It is the fastest ‘overall’ if the data structures used fit in main memory,
and if we exclude implementations that are not robust in all cases and where assumptions
about the input are made. An example of the latter is tess3 (Liu and Snoeyink, 2005b), which
was developed for constructing the 3D DT of points representing atom coordinates in proteins.
For these cases, the points are usually in general position, well distributed, and have a limited
precision, all of which allowed Liu and Snoeyink to use floating-point arithmetic and take some
engineering decisions that speed up the construction of the DT.

The aim of this section is not to show that my implementation of the algorithms is the fastest—
because it is not—but to demonstrate that it is comparable to other solutions available and
can realistically be used for real-world applications. The goal of this research was to build
a dynamic/kinetic spatial model based on the 3D VD/DT, and conceptual simplicity was
favoured over theoretically optimal algorithms. Because of that, engineering decisions had to
be taken, decisions that affected most of the operations. Examples of decisions are the simple
point location solution implemented, and the use of bistellar flips. Theoretically optimal point
location schemes to construct a DT, such as the one in Edelsbrunner and Shah (1996), require
us to keep an additional graph that can not (or only with great difficulties) be kept up-to-date
as vertices are removed or moved in the DT. Also, in my case the point location is used not
only to construct the DT, but also to analyse it subsequently (e.g. for interpolating). Bistellar
flips were chosen as the atomic operation to modify a DT because the movement of points is
based on them (many of the functions implemented for the deletion were the same as for the

5It is still in beta version, but has been used by some researchers in the computational geometry community.
The first description of Pyramid dates back to Shewchuk (1997b).
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movement of a point), and because keeping at all times a complete tetrahedralization is less
error-prone. I am aware that flipping to insert and delete points requires more operations than
creating a hole (Liu and Snoeyink, 2005b), but I also believe that it offers a good trade-off
simplicity versus running time. Therefore, for all the reasons mentioned, it is not suggested
that my prototype can compete in speed with implementations of the DT that were optimised
and fine-tuned with only one operation in mind.

For all the experiments described in this section, all the drawing procedures were removed from
the prototype and the running time shown is the time only for the operation itself, i.e. the time
to read the input file and output the results are not taken into account. Each plot of running
time was made from around 50 time samples collected during the process. The data structure
used is the tetrahedron-based structure, and the datasets were chosen such that all the data
and the data structures to store the DT fit in main memory. The prototype was not optimised
in any ways for very big datasets, such as the ones in Blandford et al. (2005) and Isenburg et al.
(2006). Unless explicitly mentioned, the adaptive predicates of Shewchuk (1997a) are used for
both Orient and InSphere for all the operations (which includes for instance Walk), but
standard floating-point arithmetic is used for all the other operations. The CGAL code (release
3.1, December 2004) was compiled under Windows with MinGW (a port to Windows for the gcc

compiler), and was made ‘comparable’ to my prototype. In other words, the predicates Orient

and InSphere also use robust arithmetic but all other operations are made with floating-point
arithmetic6. Also, all the ‘checks’ in CGAL have been disabled; these are functions verifying
that the combinatorial structure of the DT stays coherent after an operation (disabling them
sped up the insertion and the deletion by around 20%).

6.4.1 Datasets Used

The prototype was tested with four different datasets, which represent a variety of spatial
distributions that one is likely to find, and where degeneracies are present:

50k: a set of 50 000 points randomly distributed in a unit cube;

sphere: a set of 25 000 points randomly distributed on the surface of a sphere;

cubes: a set of 15x15x15 points regularly distributed in the x− y − z directions, forming a
cube with 3 375 points;

ocean: a real oceanographic dataset of the Bering Sea7. Figure 6.8 shows the dataset,
where the points are distributed along water columns. It contains many of such water
columns, and the points are regularly distributed along each column (at regular intervals
of depth), although this is not always the case as some data points were removed because
of instrument errors. Also, notice that the water columns do not all go to the same depth.

Table 6.1 contains the details of the four datasets. The tetrahedra outside the convex hull of
the dataset exist because of the big tetrahedron (see Section 4.2.1), and k is the degree of a
vertex in the DT. Observe that in the case of the ocean dataset, the anisotropic distribution
means that one vertex has a degree of 123, but that the number of tetrahedra is still linear.

All the coordinates x − y − z of the data points are stored with double precision (‘double’ in
Delphi and C++).

6The CGAL kernel Exact predicates inexact constructions kernel was used.
7Taken from the Oceanographic In-Situ Data Access: http://www.epic.noaa.gov/epic/ewb/

http://www.epic.noaa.gov/epic/ewb/
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Figure 6.8: Perspective view of the ocean dataset, formed by many water columns.

# pts # tetra (total) # tetra outside conv(S) kmin kmax kavg

50k 50 000 335 731 507 5 37 15.4
sphere 25 000 126 392 50 749 4 81 11.1
cubes 3 375 18 946 2 482 4 14 12.9
ocean 14 550 86 338 2 156 6 123 13.8

Table 6.1: Details concerning the datasets used for the experiments.
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mine (robust) mine (float) CGAL hierarchy
50k 10.6 7.6 9.6
sphere 20.6 — 49.5
cubes 6.6 1.1 37.9
cubes–r 1.7 0.4 23.3
ocean 16.9 — 58.1
ocean–r 5.4 — 55.8

Table 6.2: Running times (in seconds) for the construction of the DT of the datasets.

Also, the optimality of the incremental insertion algorithms is valid only under the randomness
assumption, i.e. the points in the set must be inserted in a random order. This is why many
implementations actually first shuffle the input, see for instance Amenta et al. (2001) and
Barber et al. (1996). As Amenta et al. (2003) and Liu and Snoeyink (2005b) note, when
constructing a DT (and also when deleting many points in a DT), a trade-off between inserting
points close to each other (to minimise the point location time) and inserting points evenly
across the space so that clusters are avoided (which creates long and skinny tetrahedra) must
be sought. Clusters can increase the average degree of vertices, and create configurations where
many points are coplanar and/or cospherical.

The ocean and cubes datasets have a strong spatial coherence: in the original ocean file, the
water columns are listed one after the other, and in each water column the points are listed from
the surface to the bottom of the sea; and the cube file was constructed using three imbricated
loops (so the dataset is constructed ‘line by line’). For this reason, the order of the points in
the two datasets were randomly shuffled to obtain two new datasets: ocean–r and cubes–r.

6.4.2 Construction of the DT

My prototype uses an incremental insertion algorithm, where each point is inserted with
InsertOnePoint (Algorithm 4.3 in page 59), to construct the DT, and the point location
strategy is Walk, as described in page 55.

CGAL also uses incremental insertion to construct a DT, but instead of flipping, the Bowyer-
Watson algorithm is used (see Section 4.3.1). For the point location strategy, CGAL implements
the Delaunay hierarchy of Devillers (2002b): for a set S of points, the first DT(S) is con-
structed, and then other levels are created by sampling some points in S and creating the
other DTs. The tetrahedra sharing the vertices between two levels are linked together. The
point location involves walking (with Walk) to the tetrahedron at the top level containing the
target point, and then going down one level and continuing this way until the tetrahedron in
DT(S) containing the target point is found.

The running times of my prototype versus CGAL for the six datasets are reported in Figure 6.9
and summarised in Table 6.2. The results obtained are rather surprising as my prototype is
faster for five of the datasets, and by a factor of almost 14 for the cubes–r dataset; the only
dataset where my prototype is slower is for 50k, but only by 10%. An important observation
is that the behaviour of my prototype is linear as the number of points grows, and that for
all the six datasets. Notice also that shuffling the cubes and the ocean datasets improved the
construction of the DT of my prototype by a factor of respectively 4 and 3; while with CGAL

the factors were respectively 1.6 and almost no change.
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Figure 6.9: Running times for the construction of the DT for the six datasets. For all the plots, the
horizontal axis is the number of points, and the vertical axis the time in seconds.
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The reasons of such important differences between my prototype and CGAL are not totally clear
to me because in many reports CGAL performs rather well, and can compare easily with the
other implementations available. For instance, Boissonnat et al. (2002) report constructing the
DT of 100 000 points randomly distributed in a cube in 12.1s, on a computer relatively slower
than the one used for my experiments (a Pentium 3, 500 MHz with 512 MB of RAM). By
comparison, for 100 000 points randomly distributed, CGAL takes 19.7s on the computer I used.
The major differences were that they used CGAL under Linux, and also used integers to store
the coordinates of the 100 000 points. The use of integers can speed up an implementation
(computation with integers is faster), but unfortunately can not be used in all situations. When
dealing with real-world data, the coordinates of the points are usually converted to integers by
multiplying them by a constant; this can lead to problems in a dynamic context if the next
points to be added are unknown, as there might be a big difference in the order of magnitude
of the precision of a point, which would invalid the constant used. Integers are also limited to
4 bytes, which could be problematic for some datasets.

Three reasons could explain the somewhat poor results of CGAL I obtained during my ex-
periments. Firstly, because CGAL performs very poorly for datasets containing degeneracies
(even when they are shuffled), the robust arithmetic used by CGAL is probably the bottle-
neck. The arithmetic used in my prototype is adaptive, while CGAL uses a completely different
scheme (Karamcheti et al., 1999), which might not be as fast, especially under Windows. Sec-
ondly, it seems that the compiler used, and the platform, have a big influence on the speed of
the code. Indeed, Liu and Snoeyink (2005a) report having differences in CGAL’s running time
of a factor of as much as 2.5 when it was compiled on Linux with different kernels, and that
similar differences were found between versions of CGAL. Thirdly, although it is less likely, the
perturbation scheme used by CGAL could be the culprit. Since CGAL 3.0, the perturbation is
indeed based on the lexicographic index of the points (and no more on the order of insertion
of the points), and therefore potentially more work is required when many points are cospher-
ical, because the unique DT must be found. By contrast, the perturbation scheme used in my
prototype does not slow down the insertion process, as it assumes that the last point inserted
is always outside the already existing spheres (see Section 4.4.5.3).

The speed of my prototype, with robust and with standard floating-point arithmetic, was also
compared to verify the claims made in Shewchuk (1997a). The running times for each dataset
are given in Table 6.2 (a dash ‘—’ means that the program crashed), and plots for the 50k
and the cubes datasets are in Figure 6.10. As expected, the DT of the datasets containing
many degenerate cases could not be constructed, although, surprisingly, the cubes and cubes–
r datasets could be constructed (this by no means implies that all regularly spaced datasets
could have been constructed, since during other experiments many regularly-spaced datasets
crashed). The construction of the DT for the 50k dataset is around 40% slower when robust
arithmetic is used, and the cubes and cubes–r datasets are slower by a magnitude of respectively
6 and 4.6. These numbers corroborate the results in Shewchuk (1997a).

6.4.3 Deletion of a Vertex in the DT

The deletion algorithms of my prototype and of CGAL were tested by deleting sequentially the
points in the six datasets (in the reverse order with which they were inserted).

For my prototype, the algorithm DeleteInSphere (Algorithm 4.5) was used, and the degen-
erate cases were handled with either the perturbation scheme described in Section 4.4.5.3 or
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Figure 6.10: Comparison of the running times for the construction of the DT, with my algorithm,
between the robust arithmetic of Shewchuk (1997a) and floating-point arithmetic. For both plots,
the horizontal axis is the number of points, and the vertical axis the time in seconds.

mine (perturb) mine (unflipping) # UP mine (float) CGAL hierarchy
50k 29.0 29.0 0 22.5 49.6
cubes 61.0 59.9 0 — 156.3
cubes r 3.8 3.8 7 — 28.7
sphere 99.3 89.7 0 — 117.1
ocean 433.5 403.4 0 — 193.8
ocean r 9.6 9.4 101 — 56.1

Table 6.3: Running times (in seconds) for the sequential deletion of all the points in the datasets. ‘#
UP’ is the number of untetrahedralizable polyhedra that the unflipping algorithm encountered.

the unflipping method of Section 4.4.5.4. Because a simple tetrahedron-based data structure
is being used, the retrieval of a tetrahedron incident to the vertex v to be deleted is obtained
with a Walk in the tetrahedralization. The deletion algorithm implemented in CGAL, described
in Devillers and Teillaud (2003), is conceptually the same as DeleteInSphere, but a hole is
created and a perturbation scheme is used to deal with degeneracies. A point location strat-
egy is not required since CGAL keeps, for each vertex in a DT, a pointer to one of its incident
tetrahedra (Boissonnat et al., 2002).

The running times of my prototype versus CGAL for the six datasets are reported in Figure 6.11
and summarised in Table 6.3. First, observe that my prototype is faster for all the datasets,
except the ocean. When the points are in general position (50k dataset), my prototype is faster
by a factor of 1.7; when degeneracies are present, the factor can go up to around 7 (for the
cubes–r). These differences are probably due to the same reasons as for the construction of
the DT. Also, the behaviour of my prototype is linear (or almost linear) for the six datasets,
while CGAL is either linear or is faster towards the end of the sequential deletions. The latter
can probably be explained by the fact that less work is required when a vertex has a smaller
degree. Moreover, notice that the unflipping method is marginally faster than (or equal to)
the symbolic perturbations method for the six datasets; for the 50k, cubes–r and ocean–r the
running times were virtually the same, so only one line was drawn.
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Figure 6.11: Running times for the sequential deletion of all the points in the DT for the six datasets.
For all the plots, the horizontal axis is the number of points, and the vertical axis the time in seconds.
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The fact that unflipping is faster than using perturbations was expected from the theory:
when a perturbation scheme is used, a unique DT is sought, and that prevents some ears to
be flipped, even though they could be. Theoretically, the unflipping method can take much
longer for deleting a single vertex than when a perturbation scheme is used (because it is an
iterative process), but in practice the cases where the star of the vertex is an untetrahedralizable
polyhedron (UP) are rare, and only when the dataset contains many degeneracies. As shown
in Table 6.3, only the cubes–r and the ocean–r encountered UPs during the sequential deletion
of all the points, and yet the behaviour is still linear and the running times faster than CGAL.

Only for the sphere and ocean datasets does CGAL get similar or faster running times. For the
former, it is only around 25% slower, but that was expected by the theory: when points are
on a sphere, many ears can not be flipped so a lot of time can be spent finding a flippable ear
(CGAL obviously avoids this as a hole is created). The deletion of all the points in the ocean
dataset is about twice faster with CGAL, but again that was expected from the theory. Indeed,
as explained in Section 4.4.5.2, when the tetrahedra forming an ear are coplanar according to
two different planes (see the ‘umbrella’ configuration in Figure 4.17(c) in page 71), the deletion
is slowed down because the star of the vertex to be deleted must remain a ‘simple polyhedron’
at all times, and many flips are ‘held’ before they can be performed. As the experiment
shows, this slows down the deletion (because most of the deletions in the ocean dataset will
have this ‘umbrella’ configuration), but when the dataset is randomly shuffled, this is not that
problematic anymore for it is faster than CGAL.

The experiment was also tested with floating-point arithmetic, and, as shown in Table 6.3, the
program crashed for all the datasets but 50k, for which the deletion was sped up by around
25%.

6.4.4 Natural Neighbour Interpolation

An experiment was also made to test the speed of the natural neighbour interpolation algo-
rithm, InterpolNN, as presented in Section 5.2.5.4. As mentioned in that section, not many
algorithms to compute the natural neighbour coordinates exist in three dimensions, and only
Boissonnat and Cazals (2002) report the practical performance of their code. Their method is
supposed to be added to CGAL, but is still not available8. It is not really possible to compare
the running times they obtained, since they used different computers, operating systems and
representation of coordinates (they used integers).

I therefore report in this section an experiment that compares the two-dimensional version of
InterpolNN with the most popular algorithm: the mimicking algorithm presented in Watson
(1992) (the method of Boissonnat and Cazals (2002) is a generalisation to three dimensions
of this algorithm). Both algorithms were implemented with Delphi, and they use the same
point location strategy, which is the two-dimensional counterpart of Walk. To implement
InterpolNN, an incremental insertion algorithm based on flip22 was implemented, and the
interpolation point is deleting by rolling back the flips.

I ran the experiment with two different datasets: (1) a set of 10 000 points randomly distributed
in a square; (2) a portion of a map where the elevation is represented with isolines, which have
been converted to points (see Figure 6.12). This dataset is akin to the water columns dataset,
as the distribution is very anisotropic and formed by lines. The experiment consists of creating

8In CGAL 3.1, the declaration of the function is there, but the source code is still missing.
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Figure 6.12: The dataset, created from contour lines, used for the interpolation experiment.
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(a) 10 000 points randomly distributed in a square.
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(b) Dataset of contour lines.

Figure 6.13: Running times for the creation of a 2000x2000 grid with natural neighbour interpolation
for two different datasets in two dimensions.

a 2000x2000 grid from these datasets, i.e. 4 millions interpolations are performed at regular
locations. Figure 6.13 shows the running time for both datasets. Both algorithms have a linear
behaviour and take almost the same time to perform the operation; InterpolNN has a slight
advantages in both cases (5% for the randomly distributed points, and 15% for the isolines).

6.4.5 Extraction of Isosurfaces

As mentioned in Section 5.4.1, no additional data structures were used to help with the ex-
traction of isosurfaces. When an isosurface is needed, all the tetrahedra are simple visited and
triangular faces are extracted from the intersected tetrahedra. Although this is not theoretically
optimal, this simple algorithm yields, in my opinion, satisfactory results.

For instance, when an isosurface is extracted from the ocean dataset, the running time is on
average only 0.4s. The time depends on the number of tetrahedra intersected (which itself
depends on the value of the isosurface): when it is around 12% of the total, the running time
is 0.36s, while when it is around 22%, it is 0.43s. This time is for the traversal of the whole
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DT (with Traverse, see page 51) and the extraction of the triangular; the drawing time is
not taken into account.

Another experiment was made with the 50k dataset, to which attributes were attached: each
point was assigned to a random value between 0 and 5. The extraction of an isosurface takes
around 3s: 1.9s when 35% of the 335 731 tetrahedra intersect the isosurface, and 3.6s when
87% of the tetrahedra are intersected.



Chapter 7

Applications in Geoscience

A spatial model based on the Voronoi diagram and the Delaunay tetrahedralization, with the
manipulation and analytical functions described in Chapters 4 and 5, is a generic tool that
can be used in a wide variety of domains and applications. Indeed, any applications where
trivariate fields—represented by their samples—are involved can benefit from the properties of
the VD and the DT. Moreover, many application domains where the datasets are point-based
can also be modelled and analysed with the VD/DT. The major impediment to the use of the
VD/DT to model three-dimensional geoscientific datasets is that faults and/or discontinuities
in the data and phenomena are not allowed. As a consequence, geological applications can
not use the spatial model directly, although some have used tetrahedralizations for specific
problems in geology, see for instance Lattuada (1998) and Xue et al. (2004).

As it was mentioned in the Introduction, most scientific papers related to the use of GIS to
model and analyse three-dimensional geoscientific datasets focus on methods to circumvent
the static and two-dimensional structures of traditional systems. The analytical methods they
present are in two dimensions, as they almost in every case slice the datasets and analyse
separately each slice. Examples of such papers are plenty in the surveys of Chapman and
Thornes (2003), Sui and Maggio (1999) and Valavanis (2002) concerning the use of GIS in
the geosciences. Consequently, discussions concerning ‘real’ three-dimensional modelling of
datasets, and of three-dimensional spatial analysis operations, are scarce in the literature.

This chapter presents some potential applications where the properties of the VD/DT are
useful to model fields, both continuous and discrete. Firstly, a few generic applications are
presented, and then examples in oceanography, in meteorology and in the study of geological
microstructures are presented.

7.1 Generic Applications

7.1.1 Simulations

As briefly discussed in Section 2.6.4, different techniques can be used to perform the simulation
of a real-world process. Most simulations of processes in the ocean (e.g. tracking of pollution
plumes) and in the atmosphere (e.g. dispersion models) are made with the finite difference
method (FDM) on voxel structures. The FDM performed on grids, as used by systems for
weather forecasting, is well-known, efficient and mostly accurate. However, the use of grids can
sometimes lead to unreliable results (Augenbaum, 1985), and some other technical problems
also arise (for instance the curvature of the Earth is problematic for large datasets).

137



Chapter 7 Applications in Geoscience 138

An interesting alternative to FDM is the Free-Lagrange method (FLM) (Fritts et al., 1985).
With this method, the flow being simulated is approximated by a set of points (called particles)
that are allowed to move freely and interact, and a tessellation of space is kept up-to-date as
points are moving (this is fundamental in order to discretise the continuous flow). Each point
has a mass and a velocity. Any tessellation is theoretically possible, but the VD has desirable
properties because of the shapes of its cells, and also because, as points are moving, the
changes in the Voronoi cells are ‘smooth’. In other words, topological events arise gradually
by the addition/deletion of a facet to a cell (Fritts et al., 1985); by contrast, if a triangulation
is used to represent the flow, the bistellar flips cause abrupt changes. Mostafavi and Gold
(2004) propose using the VD for the FLM because of the shapes of the cells obtained, but also
because of the kinetic properties of the VD. Indeed, earlier implementations of the FLM were
very slow because the adjacency relationships between cells had to be rebuilt at each step of
the process. With the kinetic VD, all the topological events are managed locally, and the time
steps that were previously used (which could lead to overshoots and unwanted collisions) can
be avoided as topological events are used. They show the advantages of the kinetic VD with
the simulation of global tides on the Earth (thus using the VD on a sphere).

The FLM based on the VD could obviously be used in three dimensions, provided that we can
formalise the physical forces applying to every location in space. Because the movement of
points in a VD is rather computationally expensive (when all the points are moving simultane-
ously), the simulation of atmospheric or oceanographic phenomena on a large scale might not
be the most suitable examples right now—we want to obtain the weather forecast for tomor-
row today! A representative example is the simulation of underground water, for instance for a
city. Questions such as “where does the ground water come from?”, “how does it travel?”, and
“where do water contaminants come from, and where are they going?”, can all be answered
if we can adequately model the phenomenon. The results obtained in this thesis have already
been used, by Dr Mostafavi at the Université Laval, Québec City, Canada (Mostafavi, 2006),
for the development of a prototype GIS modelling underground water. His team is currently
working on defining the governing equations to obtain the vector and the velocity of every
point in three dimensions, and it is hoped that the kinetic VD will yield results that are more
accurate than the ones with methods currently used.

7.1.2 Real-time Applications

The term ‘real-time’ refers to using a GIS as data are collected. According to Hatcher and
Maher (1999), when used in a marine context, two concepts are involved: when data related
to the position of the ship (from a GPS receiver onboard for example) are directly put into the
GIS and the position of the boat can be seen according to surrounding objects; and when data
are collected, quickly processed and then added to the GIS. The first concept is related to the
problems of robot navigation of boats and collision avoidance, while the second permits us to
obtain directly at sea a first check of the quality of a survey, and to correct mistakes or collect
new data when some are missing. This ensures that a boat will not have to return to a site
for further surveys, for oceanographic surveys are very expensive. The concepts are obviously
valid for other applications where data are collected by devices.

Because of the dynamic and kinetic properties of the VD, a VD-based GIS could integrate
in real-time new data that were just collected, and analyse them at once because the spatial
relationships of the objects in a dataset are guaranteed to be valid at all times. No a priori
knowledge of the complete dataset would be require to view the datasets and query them, as
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is the case if one wants to use raster and the Kriging interpolation method to construct the
grids.

7.1.3 Temporal Data / History Maintenance

The VD permits insertion, deletion and movement of points with local modifications only, thus
every operation is reversible. As shown in Gold (1996) and Mioc (2002), by simply keeping
a ‘log file’ of every operation done it is possible to rebuild each ‘topological state’ of a VD,
at any time. This represents one way of solving the problems GISs have with temporal data.
There is no need to keep various ‘snapshots’ of the data at different times for further analysis:
when a representation of a field at a specific time is required, it is reconstructed from the
original data and from the log file. A dynamic field can also be viewed like a ‘movie’ of the
changes that occurred during a certain period of time, provided of course that such information
is available.

7.2 Oceanography

The most common type of volumetric data in the marine environment is CTD data, which
is the abbreviated name for data collected with an instrument having sensors for measuring
conductivity, temperature and depth of the water (Nichols et al., 2003). Additional properties
of the water (e.g. salinity, fluorescence, particle concentration and density) can also be measured
when other sensors are mounted on the CTD instrument. The traditional sampling technique
in oceanography is the vertical CTD cast: the instrument is lowered from the boat through
the water column, and then raised back to the ship. A three-dimensional representation of the
water is built with many water columns; resulting datasets therefore have a highly anisotropic
distribution.

Volumetric information about the seawater can also be collected with remotely operated ve-
hicles (ROVs) and autonomous underwater vehicle (AUVs) (Nichols et al., 2003). Both are
submersible robots that can be positioned with inertial systems and on which CTD-typed sen-
sors can be fixed (George et al., 2002). ROVs are linked to the ship by a tether, which permits
an operator to control it and received the datasets in real-time. AUVs are totally autonomous
and can operate for weeks, transmitting their data by satellite when they periodically reach
the surface of the water. The samples collected with these instruments will obviously also have
an anisotropic distribution.

Sonar is also a technology being used to conduct underwater surveys. The technique uses
the propagation of sound waves: a pulse of sound is created, and when it hits an object the
reflection of the wave goes back to the sensor; the distance sensor-object can be measured, along
with other properties of the objects. Notice that when such a sonar is used, datasets also have
a highly anisotropic distribution because samples are collected according to the ship’s track.
To circumvent this, multibeam sonars have been developed in recent years. They permit us to
send simultaneously many sound waves across a transversal swath (with perhaps 60 degrees off
the nadir); an almost complete representation of a scene can therefore be collected. They have
mostly been used to map the seafloor, but it is also possible to fix such a sonar to AUVs/ROVs
to scan more accurately the seafloor or objects that lay on it (cables, pipelines, wrecks, etc.).
Even with multibeam sonars, interpolation techniques are still required because, as Emery
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(a) (b)

Figure 7.1: Two slices taken at different locations in the same field (red indicates a high value). For
both cases, an isosurface for a high value is also shown.

and Thomson (2001) note, “oceanographic research vessels are expensive platforms to operate
and must be used in an optimal fashion. As a consequence, it is often impossible to collect
observations in time or space of sufficient regularity and spacing to resolve the phenomenon
of interest. Efforts are usually made to space measurements as evenly as possible but, for a
variety of reasons, station spacings are often considerably greater than desired”.

7.2.1 Visualisation of Sea Attributes

Tools that help with the visualisation, as described in Section 5.4, can be combined, and
with the help of new techniques developed in recent years in computer graphics, it is possible
for instance to draw many isosurfaces and view them all by using ‘transparency’ techniques,
assigning different colours to each, ‘peeling off’ surfaces and navigating inside and outside to see
the shape. For instance, Figure 7.1 shows one case where a cutting plane and an isosurface for
a high value of the attribute are displayed. With the help of such tools and visualisation tools
to ‘navigate’ in the scene, a user can understand better the spatial variation of the attribute
being studied.

Head et al. (1997) describes several visualisation operations in the context of oceanographic
datasets represented with grids, but the same operations are possible and even optimised when
the VD/DT is used, as described in the previous chapter.

7.2.2 Study of Upwellings

Upwelling is the “upward movement of cool and nutrient-rich sub-surface waters towards the
surface often leading to exceptionally rich areas”1. Understanding upwelling is important
because 50% of the world’s fisheries are found in the upwelling areas, which are only 0.1%
of the ocean surface area (Valavanis, 2002). Su and Sheng (1999) studied this process in the

1Definition of the Food and Agriculture Organization of the United Nations’s glossary (www.fao.org).



Chapter 7 Applications in Geoscience 141

Monterey Bay in USA by visualising the water properties (CTD data for temperature, salinity
and density) over a certain period of time. Different isosurfaces, for each property, were created
and then animated; the location and pattern of these isosurfaces helped scientists to determine
upwelling characteristics.

They first converted their data to a regular grid, but with a spatial model based on the VD/DT,
isosurfaces could be extracted directly from the DT, and no grids would have to be built. Also,
if the processes involved were formalised, it could be possible not only to look at datasets
collected at different times, but also to simulate the upwelling process and study the shape of
isosurfaces, as points are moving over time. This three-dimensional simulation could also be
visualised, and stopped at any time to query the data.

7.2.3 Fisheries

While most researchers recognise the benefits of using traditional GISs for fisheries-related ap-
plications (Meaden (1999), Meaden (2000) and Valavanis (2002) give numerous examples of ap-
plications), they also argue that since fisheries phenomena are dynamic and three-dimensional,
so should be the systems for managing and analysing them.

One of the technologies that has helped the most the collection of fisheries-related data is the
multibeam sonar because, in recent years, it has been improved and can now record midwater
returns. In other words, any object in the water column (e.g. a fish school, or large quantities
of seaweed) can now be detected, instead of only bathymetric and seafloor-type data (Hammer-
stad, 1995). Multibeam datasets are formed by points with three-dimensional coordinates, and
some attributes can be attached to each point. These attributes are obtained from parameters
returned by the sound wave, such as the backscatter energy, and can help to identify the types
of objects; it is for instance possible to extract the type of fish or the density of seaweed in the
area (Mayer et al., 2002). While such datasets do not represent a field, the same methods for
the extraction of information and the visualisation described in Chapters 5 can be used.

Assessing the fish population and its abundance with multibeam dataset is a complicated
task, firstly because the raw data must be processed and analysed to detect the presence of fish
schools, and secondly because of the quantity of information that multibeam sonars can collect,
which can be up to 400 Mbytes per hour (Mayer et al., 2002). While different techniques to
process the raw multibeam data have been proposed (e.g. see Gerlotto et al. (1999) and Mayer
et al. (2002)), very little work has been published on the postprocessing of the information, in
order to extract information from the processed datasets. Buelens et al. (2005) propose using
data mining techniques to identify and assess the size of fish schools from very large datasets.
They identify clusters, which represent fish schools, based on the backscatter energy of each
point, and use Delaunay tetrahedralization to group different points into a single objects, as
Figure 7.2 shows. They are also using alpha shapes to obtain similar results, without the use
of the backscatter energy. But, as Buelens (2005) points out himself, the VD could also help
in extracting information: “At the moment I am using 3D Delaunay triangulations with some
thresholds (like alpha shapes). However, I think Voronoi cells may actually be more accurate
because they place the points in the cells rather than at vertices”.

Examples of potential applications of GIS in fisheries are also given by Meaden (2000). Firstly,
he states that GISs are useful to identify the relationships between marine populations and
environmental variables (seabed type, temperature or salinity of water, seaweed type, etc.),
and secondly, the modelling of fish activity and movement (to predict where fish schools will
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Figure 7.2: Example of processed multibeam data. The orange surface represent the seabed, while the
cluster of yellow points represent a fish school. (Figure obtained from Buelens (2005))

migrate) could also be done, provided that a model is available and that a dynamic/kinetic
GIS is available.

7.2.4 Biogeography

Biogeography is the science that deals with the spatial distribution of species. It helps us
understand where animals and plants live, and tries to understand why they live there. Its
link with GIS is obvious. As is the case for many GIS applications related to the ocean, most
biogeography projects use commercial two-dimensional GISs, see for instance Schick (2002).
Until recently, the use of traditional GISs were not really an issue because methods to track
a mammal underwater were not available, and one had to wait until the mammal surfaced
to get a position with the GPS. But it is now possible to track the movements of mammals
underwater, provided that they have been tagged with devices. Oliver (1995) briefly presents
the technology used, and describes the kind of insights he gains from a program where the path
of the mammal can be visualised, and combined with other datasets. Analysing the temperature
that the animal encountered, and why it went to a specific depth before resurfacing can help
predict its future behaviour.

The VD/DT could help for such an application because, first of all, the volumetric data would
not need to be gridded (as it is usually done), and secondly, the mammal could simply ‘navigate’
within the field (by using the adjacency relationships between the tetrahedra, similar to the
Walk algorithm in page 55) and use for instance linear interpolation on the faces of the tetra-
hedron that is being traversed (or natural neighbour interpolation at predefined location along
the path of the mammal) to estimate what temperature/salinity the mammal encounters.
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7.3 Meteorology

Datasets collected to study the properties of the atmosphere are closely related to those in
oceanography. Although collecting data in the atmosphere is somewhat simpler than underwa-
ter, obtaining a complete representation of the atmosphere is still difficult. The vast majority of
datasets in meteorology have a highly anisotropic distribution similar to that in oceanographic
datasets. Only NEXRAD2, a network of radars capable of measuring precipitation and wind,
can produce an almost complete representation of the atmosphere because the radar waves can
be scattered in all directions.

Betancourt (2004) surveys the different three-dimensional atmospheric data, which are as fol-
lows. Common measurements such the air temperature, pressure and humidity—which are
used for weather forecasting—can be collected with disposable instruments attached to bal-
loons either launched from the ground or dropped from an airplane. The measurements are
recorded at regular time intervals along the route of the balloon, which will obviously not be
completely vertical because of the winds (the position of the balloon is obtained with a GPS).
The same instruments can also be attached to aircraft. Moreover, the LIDAR3 technology,
where the distance between the instrument and an object is determine with laser pulses, is
used in meteorology to measure the concentration of chemicals (e.g. ozone or pollutants): the
instrument is fixed to the ground and points in the vertical direction, so that samples of the
concentration of chemicals are collected all along the vertical direction. Similar instruments,
called wind profilers, use radar to measure the motion of the atmosphere in the vertical direc-
tion. In all cases, the resulting distribution of samples is along the trajectory of the instrument,
which is akin to the water columns.

As is the case in oceanography, three-dimensional datasets are usually broken into many two-
dimensional datasets to be analysed and visualised (Chapman and Thornes, 2003), or converted
to voxels (Bernard et al., 1998; Habermann et al., 2004; Nativi et al., 2004). A spatial model
based on the VD/DT to represent and analyse atmospheric data would basically bring the
same advantages as in oceanography: the gridding of the samples can be omitted and the data
can be analysed directly. The dynamic/kinetic properties of the spatial model are particularly
useful here as the atmosphere tends to change quickly over a short period of time; the analysis
and weather forecasting must usually be performed quickly.

A early concrete example of application where the VD would be beneficial is given in Barjen-
bruch et al. (2002). They claim that the study of the trajectories of air parcels is crucial in
the weather forecasting process. These trajectories are computed from scientific models, and
their visualisation and analysis can inform the operator about significant coming events, such
as heavy rain. The visualisation of parcels has traditionally been done in two dimensions, but
they show a computer program where the trajectories are viewed in a three-dimensional envi-
ronment. They also state that understanding where and why the parcel travelled is important
(with respect to the attributes of the atmosphere, such as temperature or humidity) so they
colour the trajectories based on certain attributes. It is important to state here that all their
datasets are first converted to grids. The air parcels moving in the atmosphere are concep-
tually the same as the mammal moving underwater, and therefore the methods explained in
Section 7.2.4 with the VD/DT could be also used.

2Next-generation radar, see http://www.srh.noaa.gov/srh/sod/radar/radinfo/radinfo.html for a descrip-
tion of the technology.

3Light Detection and Ranging.

http://www.srh.noaa.gov/srh/sod/radar/radinfo/radinfo.html
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Figure 7.3: A polyphase crystalline rock.

Another example of a meteorological application is presented in Ciolli et al. (2004): the simu-
lation of the temperature and the wind strength near the surface of the Earth, for instance in a
valley. That project is actually a good example of the integration of environmental models and
GIS. The model in this case is local, i.e. the attributes of the air and the wind are obtained from
the slope of the terrain (which is calculated from a digital terrain model) and solar radiation at
different times of the day. Ciolli et al. used GRASS to build their model, and output 3D grids
of the attributes. The grids at different times can be visualised, and also analysed; they use
for example three-dimensional map algebra functions to derive grids of some attributes of the
air, and they also extract isosurfaces. In a subsequent paper, they admit themselves that grids
have shortcomings: “the (3D) raster approach implies that, while it is possible to choose the
resolution along the three axes, the variables must be estimated over the whole domain. Since
heavy geometric calculation is involved [...] this can be needless burdensome when the values
in only a small set of points are needed” (Vitti et al., 2004). They propose instead a variant
of their method where only scattered points are output by the model, using the new 3D vector
capabilities of GRASS. However, they fail to explain how the fields could be reconstructed from
the data points created. To visualise and analyse the results, they output the points at regular
intervals, in fact recreating the grid they wanted to avoid in the first place. The VD/DT could
help solve this problem.

7.4 Geological Microstructures

Although the spatial model proposed in this thesis can not be used directly for all the geolog-
ical applications (because of overfolds and discontinuities), some geology-related problems can
clearly benefit from the VD. One of them is the study of the processes of deformation in rocks,
which is usually done at the micro-structure level. I describe in the following an ongoing col-
laborative project with James Mackenzie and Prof. Dr René Heilbronner from the Department
of Geosciences, Basel University, Switzerland.

The aim of the research project is to study the deformation mechanisms in crystalline rocks,
which are formed by different ‘phases’, i.e. a rock is an amalgam of different rocks, as in
Figure 7.3. Crystalline rocks can therefore be seen as discrete fields, where a value is assigned
to each phase in the rock. The claim of Mackenzie et al. (2006) is that the spatial distribution
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of phases in a rock (the adjacency relationships between phases, and the fact that phases are
clustered or not) is a robust indicator of the deformation mechanisms in the rock, because
the usual geological processes are not likely to destroy them. Unfortunately, there is a major
obstacle to the study of the distribution of phases in three dimensions: only two-dimensional
thin sections of the rock (sliced through the rock) can be collected on-site.

This problem has been tackled in different ways. Kretz (1969) quantifies the spatial distribution
of two phases by comparing the boundary fractions (with two phases A and B there will be three
types of boundaries between phases: AA, BB and AB) on the thin sections with the expected
values if the two phases were randomly distributed in three dimensions. With statistical tests,
he can assess if the two phases are clustered or not. His work is based on the fact that the area
of the surface boundary between two phases can be estimated to be equal to the length of the
boundary between the same two phases on a two-dimensional slice (Underwood, 1970). Also,
Jerram et al. (1996) build a three-dimensional model of a rock, where the different parts of the
rock are represented by spheres (of the same size), which serves as a reference to compare the
pattern obtained in the thin sections. This approach has the major shortcoming of not creating
a space-filling model, and thus adjacency relationships between phases can not be studied.

The idea of Mackenzie and Heilbronner is to build a computer generated model of the rock
in three dimensions, and to offer the possibility to vary the ratio of phases, and their spatial
distribution in the volume. Then, two-dimensional slices from the model could be obtained,
and they would serve as reference when they are compared to the thin sections of real rocks.

This is where the Voronoi diagram is useful: it produces a space-filling model, two or more
phases can easily be created (simply by assigning a value to the Voronoi cells), and, as seen in
Section 5.4.2, slices through a VD are easily and efficiently performed. Some functions were
added to my prototype to help for such an application. Firstly, it is possible to slice according
to any direction the dataset, and visualise the result directly on the screen. It was found
that the possibility to view which Voronoi cells are sliced was useful to understand and assess
the results; Figure 7.4 shows one slice, one Voronoi cell that was sliced, and the data points
whose Voronoi cells were sliced (the ones in green). The prototype also offers the possibility to
view many slices and save them as bitmaps: standard image processing software can then be
used to calculate the area of phases and the length of the contact boundaries (see Figure 7.5).
Notice that the colours on the slides are not meaningful as in that case only two phases were
used. I used different colours for each Voronoi cell sliced (so that the user can see the contact
boundaries between phases), and the phase (A or B) is represented by the ‘red value’ of the
pixel (i.e. if the number used to code the red value of a pixel (number between 0 and 255) is
an even number, then it is phase A, and if it is odd, then it is phase B). This way, the user has
access to both the contact boundaries and the value of a phase in the two-dimensional slices.
Secondly, functions to calculate the contact boundaries and the volume occupied by each phase
in three dimensions were also added to the prototype, to be able to compare them with the ones
obtained on the slice. As explained in Section 5.2.5.4 (for computing the natural neighbour
coordinates), volumes of Voronoi cells and areas of Voronoi faces are readily computed because
they can be decomposed into simplices whose volume/area is simply the determinant of a
matrix.
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Figure 7.4: Visualisation of one slice in a discrete field, combined with the display of one Voronoi cell
that is intersected by the slice. The green data points are the ones whose Voronoi cells are sliced.

Bitmap created from the slicing

Figure 7.5: Slices can be viewed in the 3D environment, and also saved as bitmaps.



Chapter 8

Conclusions

The choice of a spatial model to represent geographical phenomena is a crucial one that is
more than often overlooked by GIS practitioners. As Goodchild (1992b) states: “there exists
a multiplicity of possible conceptual data models [spatial models] for spatial data, and the
choice between them for a given phenomenon is one of the more fundamental issues of spatial
data handling”. For a given task, practitioners tend to simply use the spatial models and data
structures available in commercial GISs, without assessing the consequences of their choice.

The representation of geoscientific fields in three dimensions is particularly problematic be-
cause, regardless of a few notable models developed in academia, the only solutions available
are voxel-based models. The popularity of voxel structures is probably due to their conceptual
simplicity and to the fact that they are easily and naturally stored in computers. However, as
argued in this thesis, voxels have also many shortcomings, both conceptually and technically.
Raster structures tessellate arbitrarily the space without taking into consideration the objects
embedded in that space (or the phenomenon being studied), which yields an unnatural dis-
cretisation. On the technical side, rasters do not scale well and are not rotationally invariant,
the size of a grid can become enormous if a fine resolution is wanted, and operations involving
the combination of many grids usually mean resampling them, to ensure that every voxel in
one grid ‘corresponds’ to one and only one in the other grids. Each resampling degrades the
information stored in the file, and can lead to errors and misinterpretations in the analysis.

8.1 Advantages of a Spatial Model Based on the VD/DT

I have presented in this thesis a new spatial model to represent trivariate fields as found in the
geosciences, i.e. the datasets collected to study fields are point-based. Notice that when a field
is already represented with a given tessellation, it is nevertheless always possible to extract
points from it. The new spatial model is based on the three-dimensional Voronoi diagram
(VD) and its dual the Delaunay tetrahedralization (DT). As I have argued throughout this
thesis, the tessellations obtained with the VD and the DT have many advantages over other
tessellations, particularly over the widely used raster structures (regular grids and octrees).
What follows is a summary of the main advantages of using a Voronoi-based spatial model:

1. the VD offers a natural discretisation of space, which is based on the samples that were
collected to study the field. The phenomena studied can thus be represented freely, and
not enforced by a rigid structure like voxels. The shape and the size of the cells in the
VD are adaptive to the spatial distribution of the samples, which is crucial when dealing
with highly anisotropic distributions such as the ones found in the geosciences.
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2. the one-to-one mapping between the points and the Voronoi cells ensure that the original
samples—the meta-field according to Kemp and Vckovski (1998)—are kept and not ‘lost’,
as is the case when gridding. Moreover, the adjacency relationships between the cells
define the spatial relationships between unconnected points in space.

3. the reconstruction of a field, a trivariate function, can be done automatically and ef-
ficiently with natural neighbour interpolation (for continuous fields) and with nearest
neighbour interpolation (for discrete fields). Both methods are entirely based on the VD.
In short, no a priori knowledge of a dataset or user-defined parameters are necessary, as
is the case with other popular methods such as distance-based methods, or Kriging.

4. the knowledge of the VD implies the knowledge of its dual graph the DT, which helps
greatly for manipulation operations, and also for some spatial analysis operations such
as the extraction of isosurfaces.

5. the construction of the VD/DT for a set of samples is an automatic and efficient process.
The storage of the spatial model in a database is also extremely simple for only the
samples can be stored. The reconstruction of the VD can also be made with a subset of
the samples if only a certain part of the dataset is of interest, or even with for instance
30% of the samples to give a crude approximation of the field.

6. local updates to the spatial model are possible, i.e. insertions, deletions or movements of
points in the VD can be made without recomputing the structure from scratch. This is
fundamental for the interactive exploration of a dataset, and to model dynamic fields.

7. many GIS and spatial analysis operations in three dimensions are possible and even
optimised when the VD/DT of a set of points is constructed. Chapter 5 gave several
examples of these operations. Moreover, when many fields need to be combined together
to extract information, there is no need to resample the fields, as map algebra functions
can be performed directly on the VD.

Admittedly, the algorithms to construct, manipulate and analyse three-dimensional fields rep-
resented with the VD are more complex than the ones for raster structures, but, as I have
demonstrated in this thesis, they are available, efficient in practice, and can be readily imple-
mented even in the presence of degeneracies. I believe that the benefits of a Voronoi-based
spatial model compensate largely for the increased complexity during the implementation.

The usefulness of the VD was highlighted by several examples of potential applications in the
geosciences. Moreover, the results of this research and the prototype GIS are already being
used in two different projects: a team at the Basel University uses it to study the deformation
mechanisms in geological structures (Mackenzie et al., 2006); and a team at the Université
Laval has started using it for the simulation of underground water. I am confident that other
applications of the tools developed will appear in the future.

8.2 Summary of Contributions

The major contribution of this research is the description of a new spatial model to represent
and analyse trivariate fields in geoscience. The spatial model is a viable alternative to using
three-dimensional raster structures, viable in the sense that it is not only a concept, but a
solution that can be implemented and used for real-world applications. Although the 3D VD
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has been proposed before as a spatial model (Gold and Edwards, 1992), and although it has
been used in other disciplines (see for instance Kim et al. (2004) in chemistry, and Dey and
Goswami (2003) for the reconstruction of surfaces), this research contains, to my knowledge,
the first detailed description of its use as a spatial model, a description that goes beyond a
simple theoretical discussion. The spatial model proposed permits us not only to represent
trivariate fields, but also to interactively explore and analyse them with operations that are all
based on the properties of the VD and the DT.

The other contributions of this research, without which the major contribution would not have
been possible, include:

1. I have shown that the 3D VD/DT can be constructed and manipulated, to become
a dynamic and kinetic structure, with the same set of atomic operations—the bistellar
flips—and that the practical performance of the resulting algorithms are still satisfactory,
despite the fact that flips are theoretically slower. Flip-based algorithms have the main
advantages of being numerically more robust, and they are also easier to implement
because the maintenance of adjacency relationships is encapsulated in the flip operations.

2. I have demonstrated that the duality concept, in the graph sense of the term, is of
significant importance for the modelling of trivariate fields in geoscience. Indeed, the
construction and manipulation operations presented are all based on the DT (the bistellar
flips are based on simplices), while many GIS operations are based on the properties of
the VD.

3. I have presented a new algorithm to delete a vertex in a DT. It uses flips, and the
‘unflipping’ method was proposed to ensure robustness when the use of a perturbation
scheme is impossible. An example of such a case is when a kinetic system is used, because
making sure that the perturbations stay coherent with the DT at all times is (almost)
impossible.

4. A new algorithm to compute the natural neighbour coordinates (and natural neighbour
interpolation) in any dimensions was also proposed. As is the case with the manipulation
operations, it is based on the bistellar flips, and yields fast theoretical and practical
performances. That permits us to reconstruct a 3D field from the set of samples that
were collected to study it.

5. I have offered a detailed description of the algorithms to build the dynamic and kinetic 3D
DT, and discussed how to make them robust against all degenerate cases. This research
has therefore helped in bridging the gap between theory and practice in computational
geometry.

6. To study and extract information from many fields, a variant of the map algebra frame-
work, in which all the fields and all the operation are Voronoi-based, was proposed.

7. A new data structure, the augmented quad-edge, was also developed. To my knowledge,
this is the only implementable data structure that can store simultaneously a three-
dimensional subdivision and its dual (its use is not restricted to the VD and the DT).
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8.3 Further Research

The work presented in this thesis answers many questions, but also raises a few more. What
follows is a brief summary of the issues that need further research.

Movement of many points in a VD. In the prototype GIS developed, it is only possible to
move a single point in the VD at a time. The algorithm to move several at the same time
is known and was described, but there are concerns about the speed of a system where all
the points would be moving. It would therefore be interesting to implement the method, and
test its speed with the simulation of a real process, for instance the simulation of underground
water (with the Free-Lagrange method). Comparing the results with other known simulation
methods would also be of interest. The implementation of the algorithm with robust arithmetic
for the important computations (i.e. intersection of the circumspheres by the trajectory) is, in
my opinion, mandatory is one wants to have a program robust in all cases.

DT of large datasets. The prototype GIS developed for this research was not optimised for
very big datasets, and the experiments were run for datasets for which all the data structures fit
in main memory. In practice, this hinders considerably the use of the prototype for real-world
applications since datasets collected to study the Earth, because they are three-dimensional
and dynamic, can become enormous.

Creating the DT of very large datasets has become in recent years a topic in itself, with many
publications approaching the problem from different perspectives. One way of constructing the
DT of a larger input size is simply to use a less space-consuming data structure. Blandford et al.
(2005) propose one where only 7.5 bytes per tetrahedron is used, permitting to construct DTs
of datasets 4–5 times larger than with a tetrahedron-based data structure. The main drawback
of this method is that fewer adjacency and incidence relationships between the elements of
the DT are stored explicitly, requiring more work to manipulate the DT, or to extract the
VD. Another drawback is that attributes can only be attached to edges, and not to faces and
tetrahedra.

For larger point sets—and we are talking about dataset containing many millions of points
here—we have to resort to using disk storage. But even with that, problems arise because the
memory of modern computers is hierarchical, and works under the assumption that recently
used data will be used again soon. This is unfortunately in contradiction with the randomness
assumption on which the incremental insertion algorithm is based. When the main memory
is exhausted during a computation, paging with disk begins, which slows down tremendously
the speed of construction, and can even stop the program. Amenta et al. (2003) circumvent
this problem by modifying the insertion order of the points, to find a balance between spatial
coherence (points are inserted relatively close to each other) and keeping enough randomness in
the input. They show that the performance of CGAL and Pyramid are for instance considerably
increased with their input order: the running time is faster, and the DT of much larger datasets
is also possible. Similar ideas were used by Liu and Snoeyink (2005b), but their order is
different: input points are ordered along a Hilbert curve. This assumes that the points are
evenly distributed in space, and would not be optimal for geoscientific datasets. Also, Isenburg
et al. (2006) recently exploited the spatial coherence already existing in datasets, and tweaked
it slightly to create an order of insertion that permits them to construct, for instance, the 3D
DT of 60 million points in less than one hour.
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The good news is that the use of these methods requires only slight modifications to the code
of the program built for this research—no rewriting of a new algorithm or data structure is
necessary. It would be particularly interesting to see the influence of very anisotropic datasets
with these methods.

Discontinuities in geology. The use of the duality between the VD and the DT, or an arbitrary
subdivision and its dual, seems to have potential for the modelling of geological structures. The
discontinuities and faults could be modelled with one subdivision, while its dual would permit
us to represent the spatial variation of certain attributes inside the volume bounded by the
discontinuities. The use of VD has already been used to reconstruct geological structures, but
it was in two dimensions as cross-sections were used (Boissonnat and Nullans, 1996). Similar
ideas could be used directly in three dimensions.

Augmented quad-edge. A preliminary implementation of the AQE was made during its
development, to help validate the concepts. The core of the AQE, its navigation operators, and
the flips operations were implemented. To test the AQE, the incremental insertion algorithm to
construct the VD/DT was used. The code was not optimised in any ways for space or time of
construction, and it was therefore meaningless to compare the running time of the construction
of the DT with the two different data structures implemented. The development of this new
data structure raised several issues that need further investigation.

The construction operators described in this thesis are rather ‘crude’, and a set of atomic
operators permitting us to construct any subdivisions would definitively enhance the use of
the AQE. Thus, low-level operators, similar to Splice and MakeEdge for the quad-edge, are
needed.

It would also be worth exploring if the AQE is appropriate for non-manifold objects, i.e. arbi-
trary subdivisions of 3-manifolds where ‘dangling’ faces and edges may exist. The quad-edge
permits such cases for 2-manifolds, so the AQE could probably do the same for 3-manifolds.

Finally, it would also be interesting to store the AQE in a database, so that big models and
the attributes that are attached to each elements be stored and retrieved when needed. Earlier
work suggests that quad-edges, being an algebra, may be stored effectively using relational
databases, but this is still being examined (Merrett, 2005).
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Ph.D. thesis, Département de Mathématiques, École Polytechnique Fédérale de Lausanne,
Switzerland.

Field DA (1986). Implementing Watson’s algorithm in three dimensions. In Proceedings 2nd
Annual Symposium on Computational Geometry, volume 246–259. ACM Press, Yorktown
Heights, New York, USA.

Fischer K (2005). Introduction to alpha shapes. http://n.ethz.ch/student/fischerk/

alphashapes/as/.

Fisher PF (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing,
18(3):679–685.

Fortune S (1987). A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174.

Fotheringham AS and Wegener M, editors (2000). Spatial models and GIS : New potential and
new models. Taylor & Francis, London.

Fowler RJ and Little JJ (1979). Automatic extraction of irregular network digital terrain
models. In SIGGRAPH ’79: Proceedings 6th Annual Conference on Computer Graphics and
Interactive Techniques, pages 199–207. Chicago, USA.

Frank AU (1992). Spatial concepts, geometric data models, and geometric data structures.
Computers & Geosciences, 18(4):409–417.

Freda K (1993). GIS and environment modeling. In Goodchild MF, Parks BO, and Steyaert
LT, editors, Environmental modeling with GIS, pages 35–50. Oxford University Press, New
York.

Freundschuh SM and Egenhofer MJ (1997). Human conceptions of spaces: Implications for
geographic information systems. Transactions in GIS, 2(4):361–375.

Fritts MJ, Crowley WP, and Trease HE (1985). The Free-Langrange method, volume 238.
Springler-Verlag, Berlin.

Galton A (2004). Fields and objects in space, time, and space-time. Spatial Cognition and
Computation, 4(1):39–68.

Garland M and Heckbert PS (1995). Fast polygonal approximation of terrain and height fields.
Technical Report CMU-CS-95-181, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA.

http://n.ethz.ch/student/fischerk/alphashapes/as/
http://n.ethz.ch/student/fischerk/alphashapes/as/


Bibliography 158

Gavrilova ML and Rokne J (2003). Updating the topology of the dynamic Voronoi diagram for
spheres in Euclidean d-dimensional space. Computer Aided Geometric Design, 20:231–242.

George RA, Gee L, Hill AW, Thomson JA, and Jeanjean P (2002). High-resolution AUV
surveys of the eastern Sigsbee escarpment. In Offshore Technology Conference. Houston,
USA.
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