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S. Draper, G.T. Houlsby, M.L.G. Oldfield and A.G.L. Borthwick 

Department of Engineering Science, 

University of Oxford, 

Parks Road, Oxford, OX1 3PJ, UK 

 

Abstract 
An extension of actuator disc theory is used to describe the properties of a tidal 

energy device, or row of tidal energy devices, within a depth-averaged numerical 

model. This approach allows a direct link to be made between an actual tidal device 

and its equivalent momentum sink in a depth-averaged domain. Extended actuator 

disc theory also leads to a measure of efficiency for an energy device in a tidal stream 

of finite Froude number, where efficiency is defined as the ratio of power extracted by 

one or more tidal devices to the total power removed from the tidal stream. To 

demonstrate the use of actuator disc theory in a depth-averaged model, tidal flow in a 

simple tidal channel is approximated using the shallow water equations and the results 

compared with published analytical solutions.  
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1 Introduction 

The deployment of a large-scale tidal farm will influence the hydrodynamics within a 

coastal basin. To understand this influence, recent studies have considered analytical 

models of tidal power extraction from channels (see, for example [1, 2, 3, 4]), 

numerical models of site specific coastal regions (see, for example [5, 6, 7]) and 

numerical models of general coastal regions [8, 9]. These studies have typically 

considered the maximum power that can be extracted from a coastal site and the 

impact of tidal devices on tidal variables such as the local tidal range and tidal current. 

As a result, a reasonably complete understanding has been developed of the power 

potential of well-bounded tidal streams, such as tidal flow through a single channel 

between two basins [1, 2, 3]. However, a growing number of less well-bounded sites 

have been identified as having potentially significant tidal energy resources (see, for 

example [10, 11]).  

Fig. 1 sketches a set of idealised geometries that summarise the different generic types 

of coastal sites that might be encountered in practice. This basis set defines four 

coastal geometries: a) a channel between two disconnected basins; b) a coastal inlet, 

estuary or bay; c) a headland; and, d) an island located near a much larger land mass. 

Noting that the hydrodynamic behaviour of the geometry depicted in Fig. 1(a) has 

received considerable attention to date [1, 2, 3], a detailed understanding of the power 

potential and hydrodynamic effects of energy extraction in the remaining geometries 

would provide an ideal reference point for tidal resource assessment. 

Numerical simulations offer a useful means of predicting how less well-bounded 

coastal sites, such as those depicted in Figs 1(c) and 1(d), react to tidal power 

extraction. Previous numerical models have all been based on approximations to the 

Shallow Water Equations (SWEs), with the effects of tidal devices typically 
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introduced through an added roughness or a general source term [5, 6]. Although 

added roughness can represent tidal devices to a first order approximation, it is 

difficult to relate the roughness value to a particular tidal device configuration. 

Attempts to do so have been empirical and have not yet been verified [7]. In the 

present paper we use actuator disc theory to describe a tidal device within a depth-

averaged numerical model, following Garrett and Cummins who used a similar 

approach within a 1D analytical model [12]. A key advantage of actuator disc theory 

is that it provides a theoretical argument that links a tidal device, defined by a 

blockage ratio and porosity (see Section 3 for definitions), to the equivalent 

momentum sink that the device should impart within a depth-averaged domain. 

Furthermore, simple scaling arguments suggest that actuator disc theory might also 

provide a useful approach for unbounded flows.    

The layout of the paper is as follows. Section 2 reviews the literature on analytical and 

numerical modelling of tidal power extraction. Section 3 presents an extension to the 

actuator disc model of Whelan et al. [13] that accounts for downstream mixing. The 

extended model is used to investigate the efficiency of a tidal device in a tidal stream 

of finite Froude number. Using simple scaling assumptions, it is argued in Section 4 

that actuator disc theory can provide a useful description of tidal power extraction in 

coastal basins driven by long waves.  In Section 5 the SWEs are outlined and the 

numerical boundary condition for a line of tidal devices is discussed. Section 6 

presents results obtained for a simple tidal channel between two basins including 

power extraction. The numerical results are compared with an analytical model due to 

Garrett and Cummins [1]. 



 4 

2 Literature Review 

1.1 One-Dimensional Theoretical Models 

The following one-dimensional (1D) theoretical models have been developed to 

describe energy extraction from a channel. The first, due to Garrett and Cummins [1], 

investigates a channel connecting two large basins or oceans, whose tides differ in 

phase and/or amplitude. Such a model might, for instance, represent a first 

approximation to the Pentland Firth, between Scotland and the Orkney Islands.  The 

geometry therefore resembles Fig. 1(a), or, if the island is large, Fig. 1(d). The second 

theoretical model, due to Garrett and Cummins [2] and Blanchfield et al. [3], concerns 

a channel connecting a large basin or ocean to an enclosed basin or bay. This model is 

a generalised form of Fig. 1(a) if the two large basins are only connected through the 

channel. It is also a compact case of Fig. 1(b), since the bay dimensions are assumed 

small in comparison to the tidal wavelength.  Both of the theories adopt the 1D SWEs 

and make several simplifying assumptions which are discussed in detail by Garrett 

and Cummins [14]. Based on these assumptions the maximum average power P  that 

can be extracted from the channel when subjected to a sinusoidal driving tide of 

amplitude a , is shown to be 

maxgaQP γρ= , (1) 

  

where maxQ  is the maximum flow rate in the undisturbed channel, ρ  is the density, g  

is acceleration due to gravity and γ  is a dimensionless factor that varies between 0.19 

and 0.26.  The range of γ  is representative of the dynamic balance in the channel, 

with a value of 0.21 in both models indicating that the flow is dominated by quadratic 

drag losses as opposed to acceleration effects [1, 3]. However, since the range of γ  is 

small, taking 22.0=γ   provides a useful approximation to both regimes [1, 14]. The 
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maximum average power is then defined in terms of the undisturbed flow rate and the 

driving amplitude, both of which can be measured from observations and numerical 

simulations [1, 5, 14]. As a result Eq. (1) provides a useful prediction of power 

potential that is accurate to the leading order, provided the exit separation and other 

non-linear losses vary with the flow rate squared as tidal devices are introduced [14]. 

The analytical models also provide an indication of hydrodynamic effects. For 

instance, at optimum power extraction the flow rate through a channel between two 

large basins is reduced to 58% if drag forces are dominant in the undisturbed state [1]. 

However if, for example, a 10% reduction in the flow rate is considered 44% of 

maximum average power can still be achieved (when 21.0=γ ) [5]. For the second 

model, a similar trend is noted [6, 15].  

Garrett and Cummins [12] have suggested a way of extending 1D theory to channels 

partially blocked by tidal devices, using linear momentum actuator disc theory 

(LMADT) in the region containing the devices. Although actuator disc theory ties in 

well with the assumptions of the 1D theoretical models, it also requires further 

assumptions in the vicinity of the power extraction device, including constant channel 

width, uniform along channel bathymetry, uniform upstream flow, and steady state 

conditions.  

1.2 Numerical Simulations 

Several site-specific numerical simulations have been documented. Amongst these are 

studies of the Minas Passage by Karsten et al. [6], the Johnstone Strait by Sutherland 

et al. [5] and the Portland Bill by Blunden and Bahaj [7, 16]. In each of these studies, 

the presence of tidal devices is modelled by an additional bed friction source term 

which varies according to the square of the local tidal current velocity. For example, 

in both [5] and [6] the friction coefficient is defined as 
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,tod kkC +=  (2) 

where ok  is related to natural friction and tk  represents tidal turbines. Since the 

objective of [5] and [6] was to investigate the maximum extractible power, no 

particular physical description of tk  is discussed. In [7, 16] the coefficient was 

assigned based on a case study of a yawed horizontal axis marine current turbine and 

a hypothetical array design.  

Bryden and Couch [8] and Polagye et al. [9] have studied general coastal basins using 

shallow flow numerical models. Bryden and Couch considered flow around an island 

with turbines idealised as added roughness. Polagye et al. simulated uniform flow in a 

channel with one open boundary, one closed boundary and two discontinuous changes 

in width that define an internal extraction zone. The tidal devices were represented as 

line discontinuities across the complete width of the power extraction zone.  
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3 Momentum Actuator Disc Theory 

The linear momentum actuator disc theory (LMADT) presented by Garrett and 

Cummins [12] considers an actuator disc in a flow of constant cross section, bounded 

by parallel channel walls and a constant free surface profile. Recently Whelan et al. 

[13] applied LMADT to provide an approximation to the flow field around an 

actuator disc in an open channel flow with a non uniform free surface. Houlsby et al. 

[17] extend Whelan et al.’s theory to include downstream mixing and hence provide a 

local steady state description of a real turbine, or line of turbines, that can be 

introduced as a perturbation in both velocity and depth into a depth averaged 

numerical model. We provide a summary of that approach here. 

Fig. 2 illustrates a one dimensional channel containing an actuator disc with 

associated downstream mixing. It is assumed that the upstream conditions are uniform 

with constant velocity u  and depth h . The channel, or centre to centre spacing 

between adjacent turbines, has constant width b . The flow is inviscid. At Stations 1, 4 

and 5 in Fig. 2 it is assumed that the pressure is hydrostatic and the flow is uniform. 

The velocity  uub 44 β=  denotes the bypass flow velocity at Station 4, while 

uu t 22 α=  and  uut 44 α=  define the turbine flow velocity at Stations 2 and 4 

respectively. The thrust T  is the horizontal force applied to the fluid from the turbine. 

The turbine(s), idealised as actuator discs, occupy an area A , and so a dimensionless 

blockage ratio may therefore be defined as ( )hbAB = . The analysis which follows is 

indifferent to the location or shape of the actuator disc in the effective cross section 

.hb  
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Following Whelan et al. [13], applying continuity, and energy and momentum 

conservation selectively between Stations 1 and 4 leads to a quartic equation 

describing the bypass velocity 

( )
( ) ,0224

2
 424

 222
2

2
44

2

4
2

44

2
4

23
4

2
4

4
4

2

=








−α−α++β−α+α

−β+−−βα+β

B
Fr
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FrBFr
Fr

 
(3) 

  

where ghuFr =  is the upstream Froude number. Provided that the upstream 

Froude number is known and the turbine is defined by a blockage ratio and the 

velocity coefficient 4α , equation (3) can be solved for 4β . Applying the Bernoulli 

equation and continuity in the bypass flow then allows for the calculation of the 

remaining velocity coefficient 2α   

( )
( ) ( )








+β−

α−β
−βα=α 1

2
1

1
4

2

44

44
2

Fr

B
. (4) 

  

 

Alternatively, the turbine could be defined by a blockage ratio and an induction factor 

21 α−=a , in which case equations (3) and (4) are solved simultaneously for   4β  

and 4α . In general any three independent parameters are sufficient to define the flow 

field provided that the bypass flow does not become critical (where the relevant 

physical root of (3) becomes complex [17]). The power and thrust can be determined 

in terms of a power coefficient PC  and a thrust coefficient TC  

( ) ,
2

1

2

1 22
4

2
4

2 BbhuCBbhuT T ρ=α−βρ=  (5a) 

  

and 

( ) .
2

1

2

1 32
4

2
42

3
2 BbhuCBbhuuTP P ρ=α−βαρ=α=  (5b) 
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Since the flow is not uniform with depth at Station 4, we assume that downstream 

mixing will occur. Applying momentum conservation in the horizontal direction 

between Stations 1 to 5 then leads to 

( ) .)(
2

1 22 






 −
∆−

ρ=−∆−−ρ u
hh

uh
bhuThhhgb  (6) 

  

Substituting for the thrust coefficient and rearranging then gives 
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This is a cubic expression that can be solved for the downstream depth change 

5hhh −=∆ . Notably for zero Froude number the relative depth change tends to the 

solutions →∆ hh 0, 1, and 2, with the former being the physically admissible 

solution. We determine the power lost in the wake in terms of h∆  from 

( ) ghhhbu
hh

h
bhu

BbhuBbhuPW

ρ−+








∆−
ρ

−βα−ρ+ααρ=
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2

3

2
42
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42

3

2

1
              

)1(
2

1

2
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 (8) 

  

Combining (8) with (5b) gives the total power lost in the channel 

( )











∆−
∆−

−∆ρ=+
2

2

)1(

21
1

hh

hh
FrhgubhPP W , (9) 

  

and a measure of efficiency, defined as the ratio of power extracted by the tidal 

device(s) to the total power removed from the tidal stream, follows directly as, 

( )
.

)1(

21
1

1

2

2

−












∆−
∆−−

∆ρ
=

+
=η

hh

hh
Fr

hgubh

P

PP

P

W

 (10) 

  

We can make several observations about this measure of efficiency and its design 

implications for tidal turbines. Firstly, as 0→Fr , 2α→η , which agrees with the 
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result discussed by Garrett and Cummins [12] for an actuator disc in a constrained 

volume flow. This result is easy to deduce from (10) by ignoring the term 

proportional to 2Fr , noting that the power can be written as ( )TuP 2α= , and 

rearranging ×u (6) to give 

,
2

2









∆−
∆−∆∆−∆ρ=

hh

hh
Fr

h

hh
hgubhuT  (11) 

  

Ignoring terms proportional to 2Fr  and hh∆  (since 0→∆ hh  when 0→Fr  from 

(7)), we have uThgubh →∆ρ  and so 2α→η  as required.  

For arbitrary Froude number, the effect of the free surface on efficiency is best 

appreciated through manipulation of (10). Combining (10) with the expression for 

power from (5b) and substituting for 22BFrCT  from (7) leads to 

( )( ) ( )
( )( )( ) 22

12

2
1211

121
−

−

∆−∆−−
∆−−∆−

α=η
hhhhFr

hhFrhh
. (12) 

  

For small but finite Froude number and downstream depth change (so that 

( ) 11
12 <<∆− −hhFr ), which is often realistic for tidal flows, the efficiency can be 

written as 








 ∆−α≈η
h

h

2

1
12 . (13) 

  

This indicates that the main effect of the non-zero Froude number and associated 

relative depth change, is to reduce efficiency by a factor of )1(
2
1 hh∆− , as compared 

to a device with a depth change that is negligible compared to upstream depth.  

The measure of efficiency defined by (12) is maximised when 12 →α  and 

0→∆ hh . However this only applies when no power is extracted from the flow. 

Based on this result it is tempting to abandon efficiency as a primary optimisation 
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parameter. However, an interesting problem arises if we restrict the downstream depth 

change, possibly for environmental reasons, or restrict the total amount of power that 

can be removed from the channel, and then optimize efficiency. For a given Froude 

number and downstream depth change, it then follows directly from (13) that 

increasing 2α  will improve efficiency. An equivalent conclusion is that efficiency 

increases with blockage ratio, since the blockage ratio increases monotonically with 

2α  when the Froude number and depth change are fixed (see Fig. 3). Of course there 

is a limit to how close to unity 2α  and B  can become to extract the required depth 

change. Using the theory described here the bypass flow becomes critical when 2α  

and B  are too large (see Fig. 3). 

Efficiency can also be improved by increasing the number of turbine fences that in 

combination lead to an overall fixed downstream depth change. This gain is achieved 

because, as the number of fences increases, the incremental depth change across each 

fence reduces, causing the incremental efficiency to rise according to (13). In 

addition, 2α  is a decreasing function of the downstream depth change, which leads to 

a further gain in incremental efficiency from (13). In fact, since 2α  is strongly 

dependent on the incremental depth change, and insensitive to the small increase in 

Froude number and blockage ratio between successive fences, the optimum 

distribution of depth change across a series of fences is very close to a simple average. 

Fig. 4 shows the net efficiency for a channel of numerous turbine fences, each 

extracting an equal proportion of the total downstream depth change and positioned in 

series so that complete mixing occurs between successive turbines. It is interesting to 

observe from Fig. 4 that extraction of a fixed amount of power from a flow at higher 
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Froude number can be more efficient, for a given number of turbine rows, because a 

larger 2α  is permissible. 
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4 Use of Actuator Disc Theory in a Depth-Averaged Dynamic Model 

We now discuss how a row of turbines might be defined in a 2D depth-averaged 

numerical model using LMADT. Fig. 5 illustrates two typical scenarios for a row of 

turbines. Fig. 5(a) depicts a fence that extends completely across a channel. Here flow 

passes through the fence and mixes to form a smooth mean vertical velocity profile 

over a length vl , which from available experimental evidence may be roughly of the 

order of 20 tidal device diameters [18] (or perhaps 200-300 m for a 10-15 m diameter 

axial flow turbine). Within this mixing region (denoted by the shaded region in Fig. 

5(a)) the flow structure will be highly three dimensional as the faster bypass flow 

mixes vigorously with the slower turbine flow. In experiments on porous disks this 

mixing process has been shown to be dependent on the ambient turbulence in the tidal 

stream and the proximity of the tidal device to the seabed and free surface [18]. 

Additional dependence on turbulence introduced by the tidal device, the tidal device 

size, blockage and shape, and seabed friction is expected.  

Due to the periodicity of the turbine placement in the fence shown in Fig. 5(a), and 

because vl  is much smaller than a tidal wavelength so that the flow is essentially 

quasi-steady, it is reasonable to assume that the perturbation to the free surface and 

depth-averaged velocity at each discrete location along the fence can be approximated 

well by Equation (7) when the blockage ratio is calculated taking b  to be the centre to 

centre spacing between turbines. Furthermore, since vl  is also smaller than the typical 

mesh discretisation in a 2D depth-averaged model (of the order of kilometres), 

introducing this momentum sink as a line discontinuity, indicated in Fig. 5 and 

discussed further in Section 5, offers a useful approach to account for the tidal devices 

in a 2D depth-averaged model. 
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 Fig. 5(b) illustrates a fence of turbines in an unbounded 2D flow. The flow field 

about this fence can be split into two fields: (1) the near field extending over the 

distance vl  and (2) a far field extending over a distance hl  that will be dependent on 

the extent of the tidal fence and so will generally be much larger than vl . 

Within the near field the flow structure is expected to be similar to that in Fig. 5(a). In 

the far field region behind the fence ( vlx >>  in Fig. 5) the extraction of momentum at 

the fence will lead to a depth-averaged wake with velocity lower than that in the 

surrounding tidal stream. Generally, actuator disc theory cannot be used to describe 

the energy extraction of the entire fence over this length scale because the upstream 

flow may not be uniform, there might be substantial bed roughness and changes in 

bathymetry, or the length scale may be too large to validate the assumption of steady 

flow.  

However, we propose that LMADT can be used in the near field to determine the 

momentum sink imparted by the turbines within the fence. This amounts again to the 

assumption that a turbine within the fence has a blockage ratio that is calculated based 

on the centre to centre spacing between turbines.   

By analogy to experiments on a line of diffusers [20, 21] and similar flow structures 

in shallow flows [19], the mixing of the far field will result from shear generated 

turbulence, and will be dependent on the bed roughness, bathymetry and, as 

mentioned above, the length of the fence. These parameters will typically vary 

between different locations and can be accounted for reasonably well in the depth-

averaged numerical model. 
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5 Numerical Modelling 

To provide insight into the physical relationships that govern shallow flow 

hydrodynamics in a coastal basin the SWEs are commonly adopted:  
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and 
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where x  and y  are spatial coordinates, h  is the total water depth, ζ  is the free 

surface elevation above the mean water depth, u  and v  are the horizontal depth-

averaged velocity components, g  is the acceleration due to gravity, ρ  is fluid 

density, t  is time, f  is the Coriolis parameter and, xτ  and yτ   are frictional shear 

stress terms due to bed friction 

,  and    uu vCuC dydx ρ=τρ=τ  (15) 

  

where 22 vu +=u  and dC  is a drag coefficient. 

In the present work, the SWEs given by (14) are solved using the discontinuous 

Galerkin finite element method (see [20, 21] for a general description of this method). 

The model commences from quiescent initial conditions. With reference to Fig 1(b), 

three boundary conditions are implemented. Tidal forcing is imposed at the open 

boundary oΓ , such that 

( ) ( ) ( )∑ ϕ+ω+= iiio tayxhtyxh cos,,, ,  on oΓ , (16) 
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where ( )yxho ,  is the mean water depth along the open ocean boundary, and ia  is the 

amplitude, iω  is the frequency and iϕ  is the phase of the i th tidal constituent. At the 

coastline cΓ  a reflective boundary condition is implied, such that 

,0. =nu   on cΓ . (17) 

  

The third boundary condition represents the fence of tidal devices as a line 

discontinuity, whereby 

( )4,, α=∆
BFrG

h

h
, on tΓ  (18) 

  

where hh∆  is, as in Section 3, the relative depth change across the tidal devices. 

Condition (18) is acceptable provided the length scale of the wake behind the turbine 

array is much smaller than the mesh size [9]. (This approach is also consistent with 

observations for a line of diffusers, each with diameter smaller than the water depth, 

discharging into shallow water. Considerable success has been achieved numerically 

and analytically in treating diffusers as a line source of momentum in a depth- 

averaged framework [22, 23].) To understand how the discontinuity is implemented in 

a finite volume or discontinuous Galerkin finite element scheme, consider two 

adjacent finite volumes, 1V  and 2V , separated by a fence of tidal turbines. Values for 

211   ,  , huh n  and 2nu  (where the subscript n  refers to the component in the direction 

of the unit normal vector directed out of the finite volume 1V ) are determined either 

side of the interface between 1V  and 2V  by interpolation from the discrete solution of 

the SWEs. Modified interface fluxes ( )*** ,, tn vuhF ��  and ( )*** ,, tn vuhF �� −  are then 

calculated for each finite volume, using the tidal device properties and the 

characteristic invariants. The four equations defining the unknowns *
2

*
1

*
1   ,  , huh n  and  

*
2nu  are 
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,22 *
1

*
111 ghughu nn +=+  (19a) 

,22 *
2

*
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and 

( )( ) ( ) ( ) , ,, ,maxsign 421
*
2

*
11

*
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BFrGhhhhu

h

h
n  (19d) 

  

where G  characterises the tidal devices. Using LMADT, G  is given by (7) thereby 

defining the dimensionless depth change implicitly for a given Froude number, 

blockage ratio, and wake induction factor. The Froude number is a function of the 

upstream depth and velocity chosen appropriately from ��� huh n   ,  ,  and 2nu .  

There is no direct adjustment required for the tangential velocity components �tv  and 

�tv  (where the subscript t  refers to the tangential component directed anti-clockwise 

around 1V ) because it is assumed that the devices will not exert a force in the 

tangential direction. This is consistent with the classical actuator disc analysis. The 

tangential velocity used to compute the numerical flux *
tv  is determined relative to 

the contact wave speed as defined in the HLLC method [24].   
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6 A Simple Channel 

Fig. 6 depicts the computational mesh used to represent a simple channel between two 

large basins. A series of simulations was undertaken to examine the idealisation of the 

turbines in the present numerical model (as discussed in Section 5), and to compare 

the predictions with solutions obtained from the first theoretical model due to Garrett 

and Cummins [2], discussed in Section 2.  

Fig. 6 shows the reference geometry considered, which has an aspect (breadth to 

length) ratio of 4.0=LW . Simulations were also carried out for 1.0=LW  and 0.2. 

In all cases, the bathymetry was uniform and the bed friction coefficient dC  was kept 

spatially constant for each test, taking the values indicated in Table 1. To simulate a 

tidal stream through the channel, the left open boundary of the domain, located a 

distance of L10  from the channel, was driven by a single sinusoidal constituent, with 

amplitude varying around the perimeter to simulate a plane incident and reflected 

linear wave propagating parallel to the channel direction. The depth at the right open 

boundary was kept constant. The maximum average available power was explored 

over the parameter range given in Table 1. In all tests the mean depth was 70 m and 

m 000 10=L . Coriolis terms were ignored and the amplitude of the driving tide was 

adjusted to ensure that the Froude number ( 20.005.0~ −Fr ) was realistic in the 

undisturbed channel for a tidal energy site. Tests 5 and 6 represent steady state 

simulations representative of a quasi-steady flow. 

For each test, the sinusoidal boundary condition was not changed as more turbines 

were introduced. The boundary therefore had zero impedance, which could be 

physically interpreted as a very deep and abrupt continental shelf [25]. 
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 LW  ω dC  oha  Fr  

Test 1 0.4 0.00014 0.035 0.040 0.102 

Test 2 0.4 0.00014 0.0035 0.015 0.169 

Test 3 0.4 0.00014 0.0105 0.015 0.104 

Test 4 0.4 0.00014 0.00105 0.008 0.089 

Test 5 0.4 0 0.035 0.113 0.163 

Test 6 0.4 0 0.0105 0.034 0.163 

Table 1: Parameter range considered for the simple channel. The Froude number 

represents the simulated value at the centre of the channel when no tidal devices are 

present.  

 

Fig. 7 shows the power extracted from the channel as a function of the channel flow 

rate for various tidal device fence blockage ratios. In each case, the devices are placed 

across the centre of the channel (see Fig. 6) and the wake induction factor is taken to 

be 314 =α , which is close to optimum local power extraction. The power displayed 

in Fig.7 is normalised against the predicted maximum average power calculated from 

(1) using 22.0=γ  ( 21.0=γ  for the quasi-steady tests 5 and 6), the driving tidal 

amplitude, and the simulated flow rate when the blockage ratio is zero. The flow rate 

is normalised against the simulated flow rate when the blockage ratio is zero. It is 

clear from Fig. 7 that there is an optimal blockage ratio for power extraction. 

Furthermore the normalised optimum power appears to be close to unity for all tests 

indicating satisfactory agreement with the analytical model of Garrett and Cummins 

[1]. In general, the numerical and analytical results are unlikely to be identical for 

atleast three reasons:  (1) The value of 22.0=γ  is only an approximation to the 

dynamics in the channel and in general will be too large for shallow channels with 

high natural friction (high dC ) and too small for deep channels with low natural 

friction (small dC ) [1]; (2) the analytical model assumes that the turbines experience 

a drag that is quadratic with flow rate, whereas the LMADT defined in Section 3, and 

used numerically to define the turbines, does not experience drag that is quadratic 
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with flow rate if the Froude number is large; and (3) the 2D numerical model includes 

separation losses and other non-linear losses that may not vary with the flow rate 

squared. 

To investigate the last of these reasons Fig. 8 displays velocity contours along the 

channel for low and high blockage ratio for one particular test case. It is clear that the 

velocity fields are almost self-similar despite the addition of turbines. Consequently, 

separation losses from the channel, which are generally quadratic with the flow 

velocity, are simulated as quadratic in the flow rate as more turbines are added (since 

the exit cross sectional area is unchanged). This, in part, ensures that the agreement 

between the analytical theory and the numerical results is satisfactory.  

Lastly, in Fig. 7 it is clear that a lower blockage ratio is required to reach maximum 

power when friction drag is small. This result is predicted by the theory [1] and 

discussion in [14] where, for a small Froude number, the optimal blockage ratio is 

noted to be an increasing function of friction losses. In the case of separation losses, 

but no friction losses, the smallest optimal blockage ratio is given as approximately 

0.46, provided the channel area at the location of the turbines is equal to the channel 

area at the exit [14]. For the channel geometry in Fig. 6 it is clear that the exit area 

should be greater than the channel area at the turbines, and so this lower bound 

reduces slightly. For all the tests in Fig. 7 the optimal blockage ratio is above 0.46, but 

not by a significant amount. The important conclusion therefore, as noted in [14], is 

that the optimal blockage can be achieved with only one row, or fence, of devices.  
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6 Conclusions  

Existing 1D theoretical models provide a reasonably complete explanation of the 

physics of tidal energy extraction from channels. Numerical 2D simulations are useful 

for channels that do not vary smoothly in geometry and for channels with 

asymmetrically placed turbine fences that partially block the flow. There is also 

considerable scope to better understand unbounded flows and the power potential of 

the scenarios sketched in Fig. 1(c) and (d). Extending LMADT to account for both a 

deforming free surface and downstream mixing provides an efficiency measure for a 

tidal device(s) in a uniform tidal stream. Given a constraint on the amount of power 

that can be extracted from the flow, then large turbines and many rows of turbines are 

most efficient. In practice upper limits have to be imposed on both of these 

parameters, both for serviceability requirements and economic reasons. LMADT 

provides a theoretical means of introducing a line, or fence, of tidal turbines into a 

depth-averaged numerical model. A numerical model based on the SWEs has been 

shown to produce results that are consistent with existing analytical models. This 

numerical approach is being extended to unbounded tidal flows, typical of those in 

Fig. 1(c) and (d), and further testing and validation is planned.  
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Nomenclature 

A    =    Area of a turbine(s) 

a    =    Amplitude of a tidal constituent 

B    =  Blockage ratio 

b    =    Uniform channel width 

C    =  Dimensionless coefficient 

( )F  = Numerical flux 

Fr    = Froude number 

f    = Coriolis parameter 

g    = Acceleration due to gravity 

h      =    Depth of water 

h∆    = Change in depth 

k    = Dimensionless drag coefficient 

L    =    Channel length 

P    = Power 

Q    =    Flow rate 

T    =    Thrust exerted from a turbine(s) to the fluid 

vu,    =    Depth averaged velocity components 

X    =    Net force between turbine and bypass flows 

yx,   = Cartesian co-ordinate system 

βα,    =    Velocity coefficients 

ϕ    = Tidal phase 

γ    =    Multiplier 

Γ       =   Numerical boundary 

η    = Efficiency 

ρ    = Fluid density 

τ    =    Shear stress 

ζ    = Wave height 

ω   =    Angular frequency of the tide 

W    =    Channel breadth 

Subscripts and Superscripts 

b    = Bypass streamtube 

d    = Dimensionless drag 

vh  ,    = Horizontal and vertical directions 

i        =    Index  

n    =   Normal direction 

o    =   Open ocean boundary 

P    = Dimensionless power 

p    =  Boundary value external to a finite volume 

T    =  Dimensionless thrust 

t    = Turbine streamtube 

W    = Wake 

*   = Solution at flux interface 
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Figures 

 
Figure 1: Idealised coastal basins for tidal energy extraction. Fig. 1(b) includes a 

partitioned boundary Γ , discussed in Section 5. 

 

 

 
Figure 2: Linear momentum actuator disc theory in an open channel flow. The flow 

field has a uniform width b , out of the page. Figure taken from [17]. 
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Figure 3: Contours of dimensionless depth change, as a function of turbine velocity 

coefficient 2α , and blockage ratio B . The dashed lines are for 05.0=Fr , the solid 

lines for 15.0=Fr , and the dotted lines represent the cut-off condition at which the 

bypass flow becomes critical. 

 

 
Figure 4: Efficiency as a function of the number of turbine rows, used in series, to 

extract energy. The initial blockage ratio is 0.4. The total non-dimensional 

downstream depth change is labelled. The dashed lines are for 05.0=Fr  and the 

solid lines for 15.0=Fr . Note in some instances several rows are needed before 

extraction occurs because, if fewer rows are used, the required depth change across 

the first row is physically inadmissible. 
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Figure 5: Plan view of a fence of tidal turbines in (a) a confined channel and (b) an 

unbounded 2D flow. 
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Figure 6: Example numerical mesh and geometry for the simple channel (half mesh 

only, exploiting axis of symmetry). 
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Figure 7: Plot of normalised power against normalised flow rate. The individual 

points represent the blockage ratio of the tidal fence. The solid line plotted with test 5 

and 6 indicates the quasi-steady analytical solution due to [1].  
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Figure 8: Contour lines of velocity, normalised by maximum velocity, after 9 tidal 

periods for Test1. The solid lines are calculated for a turbine fence with no blockage 

( 0=B ), the circle marker line is calculated for a turbine fence of blockage 7.0=B . 

Note that both lines have considerable overlap.  

 

 

 


