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Abstract  

Energy system optimization models (ESOMs) should be used in an interactive way to uncover 

knife-edge solutions, explore alternative system configurations, and suggest different ways to 

achieve policy objectives under conditions of deep uncertainty. In this paper, we do so by 

employing an existing optimization technique called modeling to generate alternatives (MGA), 

which involves a change in the model structure in order to systematically explore the near-

optimal decision space.  The MGA capability is incorporated into Tools for Energy Model 

Optimization and Analysis (Temoa), an open source framework that also includes a technology 

rich, bottom up ESOM. In this analysis, Temoa is used to explore alternative energy futures in a 

simplified single region energy system that represents the U.S. electric sector and a portion of the 

light duty transport sector. Given the dataset limitations, we place greater emphasis on the 

methodological approach rather than specific results. 
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1. Introduction 

Effective mitigation efforts that avoid or limit dangerous anthropogenic influence with the 

climate require fundamental changes in the way energy is supplied and demanded globally over 

the next half century. Because energy infrastructure is expensive and long-lived, a critical 

challenge is to develop robust planning and investment strategies that account for future 

uncertainty. Energy system optimization models (ESOMs) represent a key tool that can be used 

to probe the future decision space under different future scenarios (DeCarolis 2011; DeCarolis et 

al. 2012). Such models calculate an intertemporal partial equilibrium on energy markets by 

optimizing the energy system over time in order to minimize cost or maximize surplus . ESOMs 

generally have a national to global scope and are optimized over several future decades in order 

to see the system response to exogenous conditions such as new policy implementation, fuel 

price shifts, or technology innovation.  

Given the expansive physical and temporal system boundaries involved, ESOM-based analyses 

are faced with conditions of deep uncertainty. Deep uncertainty reflects circumstances in which 
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stakeholders do not know or cannot agree on (1) the choice of models to accurately capture key 

system interactions, (2) the probability distributions associated with key uncertain parameters, 

and (3) how to value the desirability of outcomes (Walker et al., 2013). Disagreement over the 

choice of models reflects structural uncertainty, whereby the relationship among key modeled 

and unmodeled factors is not fully known (Lempert et al., 2003). All ESOMs are radical 

simplifications of complex real world phenomena and no single model structure can completely 

capture it (DeCarolis, 2011). In addition to imperfect models, the future values or even 

distributions of key uncertain parameters used to populate the models are often highly uncertain. 

Furthermore, it is not clear how best to value future outcomes; for example, through the choice 

of intertemporal discount rate. The difficulty in applying subjective, valued-based judgement to 

find socially desirable – or even acceptable – solutions led Rittel and Webber (1973) and 

Liebman (1976) to characterize ill-defined public planning problems as “wicked.” 

Given such deep uncertainty about the future, singular model projections have little or no value 

and can often be misleading. The focus should be on producing model-based insights rather than 

“precise-looking” projections; the latter can distract and unduly influence the planning process 

with false precision (Huntington et al., 1982; Peace and Weyant, 2008). A common approach to 

model-based analysis that avoids the pitfalls associated with forecasting is scenario analysis, 

where each scenario corresponds to a storyline about how the future may unfold along with a set 

of exogenous assumptions consistent with the storyline that are used to drive the model. 

However, as Morgan and Keith (2008) point out, scenarios with detailed storylines can play into 

cognitive biases by appearing more plausible and probable than they are in reality. Another 

limitation of scenario analysis is that mutually exclusive and exhaustive subjective probabilities 

are often not assigned to scenarios, leaving decision makers with a disparate set of energy futures 

to ponder (Morgan and Keith, 2008; Kann and Weyant, 2000). Finally, traditional scenario 

analysis can be effective with small groups of clients whose concerns are well known to the 

scenario developers, but can fail to generate consensus in broad public debates that include 

divergent interests and values (Bryant and Lempert, 2010). 

Kann and Weyant (2000) assert that “ideal results” from uncertainty analysis with ESOMs would 

include probability-weighted model outputs, optimal decisions that account for imperfect 

information, a measure of risk or dispersion in the outcome, and the value of information 
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associated with key variables. Such output metrics help inoculate model-based analysis from 

both false precision and cognitive heuristics. However, an overarching framework is required 

that enables users to iterate models, produce results, and formulate high-level insights that can be 

applied within the decision making process. For example, Computer-Assisted Reasoning (CAR) 

is an approach to decision making under deep uncertainty that enables efficient model iteration 

and enhanced user ability to interrogate model results through computer visualization and search 

(Lempert, 2002).  

By contrast, most ESOM-based analyses are published with insights summarized by the authors, 

and do not demonstrate how the models can be used in an iterative approach to generate insights 

and inform decisions.  This paper is a step towards addressing this deficiency. The purpose of 

this paper is to illustrate how an ESOM can be used to explore alternative energy system designs 

under conditions of deep uncertainty using an optimization technique known as modeling to 

generate alternatives (MGA). By generating a sequence of near optimal solutions that are very 

different in decision space, MGA can produce alternatives for further evaluation by the analyst. 

While DeCarolis (2011) discussed the utility of MGA in an energy systems context, this paper 

represents the first published application of MGA to an ESOM. 

To conduct the analysis, we use Tools for Energy Model Optimization and Analysis (Temoa), an 

open source, bottom-up energy system model (Hunter et al., 2013) along with a simplified input 

dataset constructed for this analysis. The dataset is focused on the U.S. electric and light duty 

transportation sectors, and can capture sector interactions through the deployment of plugin 

electric vehicles (PEVs) that require electricity for charging. Given the limited dataset used for 

this analysis, we place greater emphasis on the methodological approach rather than specific 

results. Our intention is to illustrate how an iterative approach to modeling using MGA can lead 

to insights that might not be realized through conventional scenario analysis.  

 

2. An Electric and Transportation Sector Case Study 

Together, the U.S electric and light duty transportation systems account for approximately 60% 

of national CO2 emissions (U.S. EIA, 2015). Following the OPEC oil embargo, which led to the 

retirement of nearly all U.S. oil-fired power plants, the electric and transportation sectors have 
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evolved more or less independently, with petroleum representing 0.7% of U.S. electricity supply, 

and 91% of light duty transportation (U.S. EIA, 2015). However, PEVs – including both plugin 

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) – have been rapidly 

deployed over the last 5 years and may lead to a significant coupling of the electric and transport 

sectors in the future.   

Given the threat of climate change, both sectors represent key targets for CO2 emissions 

reductions. While there have been several Congressional bills that mandate a federal cap-and-

trade program for greenhouses gases, none have been implemented (U.S. EPA, 2015). This 

analysis is focused on using MGA to explore different technology pathways to achieve a low 

carbon energy future. Prior to applying MGA, we ran three scenarios for comparative purposes: a 

base case scenario with no policy as well as moderate and aggressive climate policy scenarios. 

The moderate climate scenario includes a cap on CO2 emissions that begins in 2025 and 

decreases linearly to 40% below 2015 values by 2050. The aggressive climate scenario also 

begins in 2025, but requires an 80% decrease below 2015 levels by 2050. These scenarios serve 

as a useful benchmark for the MGA runs. We then apply MGA to the moderate climate policy 

scenario in order to search for alternative, cost- and emissions-constrained solutions. Applying 

MGA in this way allows us to efficiently and systemically explore the model decision space. The 

resultant solutions can be used to characterize the tradeoff between system cost and emissions, 

and to identify alternative technology deployments that may be preferable to the original ones. 

While some MGA solutions may have higher cost, they may have appealing attributes to the 

planner if they capture unmodeled issues. 

2.1 Model Description 

We have developed Tools for Energy Model Optimization and Analysis (Temoa), a bottom-up, 

technology rich ESOM embedded within a larger framework for analysis. Temoa includes two 

key features that make it unique within the energy modeling community: (1) all source code and 

data are publicly archived online using a modern revision control system (TemoaProject, 2015), 

and (2) the model was designed to operate in a high performance computing environment in 

order to facilitate rigorous uncertainty analysis (Hunter et al., 2013). Temoa utilizes linear 

programming techniques to minimize the system-wide cost of energy supply by optimizing the 

deployment and utilization of energy technologies over a user-specified time horizon to meet 
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end-use demands. The model is subject to a number of constraints that ensure proper system 

performance, including conservation of energy at the process and system-wide levels.  In 

addition, users can impose additional constraints such as emissions bounds, minimum or 

maximum capacity and activity constraints, and growth rate limits. Model outputs by future time 

period include the optimal installed technology capacity and utilization, marginal energy prices, 

and emissions. Temoa, like many other bottom-up ESOMs, assumes rational decision making, 

with perfect information and perfect foresight, and simultaneously optimizes all decisions over 

the user-specified time horizon. Because the end-use demands remain fixed and are therefore 

unresponsive to price, Temoa represents a simplified partial equilibrium model. 

2.2 Data Description 

We developed a single region U.S. database compatible with Temoa that contains projected fuel 

prices, technology cost and performance estimates, and end-use demands. Here we provide a 

brief summary of key data elements relevant to this study. 

The model time horizon is 2015 to 2050, with 5-year time periods. Each year within a given 5-

year time period is assumed to have identical characteristics. Diurnal variation in renewable 

resource availability is represented by specifying four time segments (i.e., morning, mid-day, 

afternoon/evening, and night). For simplicity, we neglect seasonal variability in renewable 

energy supply and end use demands.  

The high-level organization of the input database is provided in Fig. 1, which contains a 

simplified representation of the fuel supply, electric, and light duty vehicle (LDV) sectors. A 

complete view of the modeled energy system that includes a representation of all technologies 

and associated commodity flows is presented in Fig. A.1 in Appendix A. We are using the 

national U.S. TIMES dataset (NUSTD) as the main data source (Babaee, 2015). NUSTD is a 

single region, national-level input dataset developed for use with The Integrated MARKAL-

EFOM System (TIMES) model generator (Energy Modeling, 2015). We have made a series of 

technology updates based on the Annual Energy Outlook (AEO) (U.S. EIA, 2015).  

Fuel supply is represented by a set of exogenously specified fuel price projections drawn from 

U.S. EIA (2012) with linear projections from 2040 to 2050.  The electric sector contains 32 

generation technologies and two carbon capture and storage (CCS) retrofit technologies to 
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capture CO2 emissions from new coal-fired steam and integrated gasification combined cycle 

(IGCC) power plants. The cost and performance data for the electric generators and the emission 

factors associated with the fuels consumed in the power plants are taken from NUSTD. The 

existing capacities and lifetime of the electric generators, shown in Table A.2 of Appendix A, are 

updated based on U.S. EIA (2015) and NREL (2010), respectively. We specify upper bounds on 

available renewable capacity based on AEO (2015). To further constrain electric technology 

performance within plausible limits, most new generating technologies are limited to an initial 30 

GW of installed capacity in any post-2015 time period and an annual growth rate of 10% in 

subsequent time periods. These limits allow new technologies to reach a maximum of 500 GW 

installed capacity by 2050. Exceptions include new pulverized coal and nuclear, which were 

modeled with different limits. Given existing air quality regulations (EPA, 2013a; EPA, 2012) 

and the impending EPA CO2 rules (EPA, 2014; EPA, 2013b), we limit initial new coal 

installation to 1 GW with a 10% growth rate, thereby constraining new pulverized coal to a 

maximum of 20 GW by 2050. Similarly, new nuclear was limited to 5 GW of installed capacity 

with a 10% growth rate, thereby constraining new nuclear to a maximum of 75 GW by 2050. 

While these assumptions limit coal and nuclear deployment, they allow for significant 

development beyond levels observed in the U.S. EIA (2015) scenarios. Tables A.3 and A.4 in 

Appendix A contain the upper bounds on capacity values, growth rates, and growth rate seeds for 

new power plants in each time period. Aggregate electricity demand for the end-use sectors 

(commercial, industrial, residential, and heavy duty transportation) are exogenously specified in 

the model and drawn from U.S. EIA (2015), as shown in Table A.5 in Appendix A. 

The light duty transportation sector includes 48 light duty vehicle technologies, which consist of 

4 vehicle size classes, 6 fuel types, and 13 vehicle types. The 4 modeled LDV size classes are 

mini-compact, compact, full, and small SUV. Since the focus of the case study is on the potential 

link between the electric and transportation sectors through PEV deployment, for simplicity we 

do not model the larger vehicle sizes where U.S. EIA (2015) assumes PEV deployment will be 

negligible through 2040. 

The 13 modeled vehicle-fuel types are conventional gasoline blended with 10% ethanol (E10), 

conventional gasoline blended with 85% ethanol (E85), diesel, compressed natural gas (CNG), 

hydrogen fuel cell vehicles, E10 hybrids, E85 hybrids, diesel hybrids, E10 plug-in hybrids with 
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an all-electric range of 20 km (PHEV20), plug-in hybrids with an all-electric range of 60 km 

(PHEV60), E85-PHEV20, E85-PHEV60, and battery electric vehicles with an all-electric range 

of 160 km (BEV160). Vehicle lifetimes, capital costs, fuel economy, and CO2 emission 

coefficients are obtained from NUSTD (Energy Modeling, 2015). The model accounts for both 

vehicle combustion emissions as well as upstream emissions associated with resource extraction. 

Table A.6 presents the assumed existing stock of LDVs by size class and fuel type, which is 

drawn from the 2010 existing capacity in NUSTD and linearly retired over the assumed 15 year 

lifetime of the vehicles (Energy Modeling, 2015). The total projected demand for vehicle miles 

associated with the four modeled LDV size classes, shown in Table A.7, is based on the 

projected annual growth rate of 1.3% for light duty transportation demand (U.S. EIA, 2012). The 

fixed percentage share of each vehicle size class in the LDV sector is presented in Table A.8 and 

is based on Shay et al. (2006). 

A 5% social discount rate is used to discount future costs to the base year (2015). All alternative 

vehicle technologies (excluding gasoline and E85) have a 10% technology-specific discount rate 

(i.e., hurdle rate), which replaces the 5% discount rate when amortizing capital cost over the 

vehicle lifetime. Hurdle rates are used to adjust the amortized cost of alternative fuel vehicles 

relative to conventional gasoline vehicles in order to partially capture non-market factors that 

may affect their deployment, such as range anxiety or general aversion to new vehicle 

technology. While survey-based studies have estimated hurdle rates for alternative vehicle 

purchases in the range of 20-50 (Peterson and Michalek, 2013; Mau et al., 2008; Horne et al., 

2005), our previous work indicates that applying even a 15% hurdle rate results in zero PEV 

deployment across a wide range of scenarios (Babaee et al., 2014). As a result, we assume that 

consumers make decisions based largely on vehicle cost-effectiveness. 

We made several assumptions regarding the U.S. energy market and policy, which apply 

universally to the base case, the two CO2 cap scenarios, and all the MGA runs. All scenarios 

include U.S. EIA (2012) reference case projections of oil and natural gas prices. To increase the 

viability of PEVs relative to other alternatives, we assume the attainment of program goals set 

forth by the DOE’s Office of Energy Efficiency and Renewable Energy, which assumes a battery 

cost of 135 $/kWh in 2035 (U.S. EIA, 2011). In the MGA runs, we constrain 2015 technology 

activity to that observed in the base case to avoid the model optimizing a historical year. 
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Because we did not explicitly include the implementation of the Mercury and Air Toxics 

Standards (MATS) and the Cross-State Air Pollution Rule (CSAPR), which limit SO2 and NOX 

emissions from the electric sector (EPA, 2012; EPA, 2013a), we apply an upper bound 

constraint, listed in Table A.9, on electricity generation from existing coal-fired power plant 

based on the reference case AEO projection to 2040 (AEO, 2015). Table A.10 represents the 

upper bound on ethanol availability from 2015-2025, which is obtained from the Renewable Fuel 

Standard (EPA, 2013c) and held constant from 2030 to 2050.  

All data was entered and stored in SQLite, a relational database management system. Both the 

raw SQL file and the SQLite database are publicly available through our GitHub repository 

(TemoaProject, 2015). 

 

3. Methods 

The three modeled scenarios – a base case and two CO2-constrained cases – provide some 

indication of which technologies can be most cost-effectively deployed to meet demand with and 

without an emissions limit. However, drawing insight from three scenarios is likely to be 

misleading because it neglects the deep uncertainties related to future energy system 

development. In order to systemically explore the model decision space while accounting for 

future uncertainty, we have implemented MGA within Temoa. Rather than generate different 

scenarios based on differing exogenous assumptions, the MGA algorithm changes the underlying 

structure of the mathematical model to search the feasible, near-optimal region of the solution 

space for alternative solutions that are very different in decision space. By changing the model 

structure, MGA finds solutions that may perform better when unmodeled objectives or 

constraints are considered exogenously. While parametric sensitivity analysis or Monte Carlo 

simulation could help identify different system configurations, it does not account for structural 

uncertainty in the model. As noted in DeCarolis (2011), the MGA results have an equally valid 

interpretation as perturbations of the objective function coefficients, and in this way also account 

for parametric uncertainty. 
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3.1 Hop-Skip-Jump MGA 

While MGA can be formulated in a variety of ways, we begin by outlining the Hop-Skip-Jump 

(HSJ) MGA method described in Brill et al. (1982).  The steps associated with HSJ MGA are as 

follows: (1) obtain an initial optimal solution by any method; (2) add a user-specified amount of 

slack to the value of the objective function(s); (3) encode the adjusted objective function value(s) 

as an additional upper bound constraint(s); (4) formulate a new objective function that minimizes 

the sum of decision variables that appeared in the previous solutions; (5) iterate the re-formulated 

optimization; and (6) terminate the MGA procedure when no significant changes to decision 

variables are observed in the solutions. Brill et al. (1982) formulate the revised MGA model 

described in Steps 3-4 above as follows: 

Minimize:                        

Subject to:                           
 

where K represents the set of indices of decision variables with nonzero values in the previous 

solutions, fj(  ) is the jth objective function in the original formulation, Tj is the target value, 

including slack, specified for the jth modeled objective, and X is the set of feasible solution 

vectors.      implies that constraints in the original problem formulation also apply in the 

MGA formulation. The formulation above assumes that the objective function coefficients are 

unity, such that decision variables with non-zero values are given an equal weight of +1 in the 

first MGA iteration. In subsequent MGA iterations, each objective function coefficient can be 

incremented by +1 each time the associated decision variable takes on a positive value in a 

previous solution. Note that Steps 2-3 require encoding the original objective function as a 

constraint in the MGA formulation, with the scalar righthand side (Tj) set to the optimal 

objective function value plus some added slack. In this analysis, we test different slack values 

that represent a percentage increase in the base case objective function value. The Temoa 

objective function value represents the present cost of energy supply over the model time 

horizon. In this way, the MGA objective function attempts to minimize the decision variables 
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that appeared in all previous solutions while constraining the system within a cost limit 

determined by the prescribed slack. The result is a sequence of model solutions, where each new 

solution considers prior solutions and is as far away from them as possible in decision space. 

While MGA could be used to return an arbitrarily large set of alternative system configurations, 

the intent is to provide a limited number of solutions that can be carefully evaluated by a human 

analyst. 

3.2 MGA Customization 

While MGA is a simple algorithm that can be applied to any optimization model, it should be 

tested and customized to better suit the specific modeling context in which it is applied. In 

applying MGA to an ESOM, we first had to decide which decision variables to consider within 

the MGA objective function. We considered two basic options: total activity by technology (i.e., 

total energy output over the model time horizon) and cumulative installed capacity per 

technology (i.e., maximum capacity over the model time horizon). While the MGA algorithm 

could be used to maximize the differences in installed capacity, all capacity may not necessarily 

be used to meet the end-use demands. We decided that total activity was a more accurate 

measure of a given technology’s contribution to meeting demands within the energy system. To 

do this, we added a new derived variable to the model, V_ActivityByTech, which sums each 

technology’s total output over the user-specified model time horizon. The updated source code 

for Temoa, including the MGA implementation described here, are publicly accessible through 

our Temoa Github site (TemoaProject, 2015). 

Rather than consider all technology activity in the MGA objective function, we only consider the 

electric generating and vehicle technologies and ignore upstream processes related to fuel 

supply, fuel blending, and emissions accounting. This approach considers all production 

technologies on an equal basis and does not unfairly penalize technologies such as coal, which 

are linked to a larger number of upstream, accounting-related processes.  

We test two MGA objective function formulations based on Brill et al. (1982). First, we account 

for the cumulative effect of deploying the same technology over multiple model iterations by 

incrementing its objective function weight by +1 after each model iteration with positive activity. 

For example, if coal produces 50,000 PJ in the base case, it receives a weight of +1 in the 
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objective function associated with the first MGA iteration. If the resultant coal activity is reduced 

to 20,000 PJ in the first MGA iteration, its objective function weight in the second MGA 

iteration becomes +2. In the subsequent analysis, we refer to this as the ‘integer’ method. 

Second, we tested a weighting scheme that uses normalized technology activity by sector as the 

weight in the MGA objective function. Again using coal as an example, suppose in the base case 

that total electricity generation over the entire model time horizon is 120,000 PJ, of which coal 

produces 50,000 PJ. The objective function weight for coal then becomes 0.42 in the first MGA 

iteration, which represents its fractional contribution to electricity supply in the base case. 

Further supposing that coal’s fractional contribution is 0.10 in the first MGA iteration, its 

objective function weight becomes 0.52 in the second MGA iteration. Because each modeled 

sector may track technology activity in different units, this activity normalization must take place 

by sector. This second modification builds on the first by not only accounting for the cumulative 

effect of each technology’s activity across different MGA iterations, but also accounts for the 

relative role of each technology within each sector. In the following analysis, we refer to this 

second MGA objective function weighting method as the ‘normalized sector’ method. 

We test the relative performance of both the integer and normalized sector MGA weighting 

methods at different slack values. Adding slack to the objective function value gives the model 

space to select costlier alternative technology configurations compared to the original cost 

minimal solution. The higher cost associated with the MGA solutions can have two 

interpretations: (1) they account for parametric uncertainty related to the cost of energy 

technology deployment, and (2) they account for complex, unmodeled issues that suggest more 

expensive optimal solutions.  

 

4. Results 

The results are broken into several subsections. Section 4.1 presents results from the base and 

CO2 cap scenarios, Section 4.2 presents comparative results from the two MGA weighting 

schemes, and Section 4.3 presents in-depth MGA results. 
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4.1 Results from the base and CO2 cap scenarios 

The base case results are presented in Fig. 2. Electricity production from coal remains relatively 

constant, while light water nuclear reactors and wind gain market share to make up for losses in 

gas turbine activity as natural gas prices increase toward mid-century. In the LDV sector, 

conventional gasoline vehicles remain dominant with an increased share of E85 vehicles in 2050 

relative to 2015. No deployment of PEVs is present in the base case. 

 

Fig. 3 presents results from the CO2 constrained scenarios. Both CO2 caps are largely met 

through changes in the electric sector. In the 40% reduction scenario, the decline in coal 

generation is offset by increases in wind, and in 2050, integrated gasification combined cycle 

with carbon capture and sequestration (IGCC-CCS). Minimal changes occur in the LDV sector. 

In the 80% cap scenario, increasing shares of natural gas turbines and IGCC-CCS completely 

displace conventional coal by 2050. The LDV sector is still dominated by conventional gasoline 

vehicles, but battery electric vehicles (BEV160) reach a 21% market share by 2050. 

4.2 MGA weighting scheme test 

While the capped emissions scenarios appear plausible, it is impossible to ascertain the 

robustness of the results without further model introspection. Given the linear nature of the 

model, it is possible that these solutions sit on a knife-edge: perhaps small changes to key input 

parameters would reveal divergent new solutions. MGA is applied to look for alternative 

solutions that are very different in decision space but have a cost similar to the base and CO2 

capped solutions.  

 The 40% and 80% CO2 reduction scenarios increase the present cost of energy supply over the 

model time horizon by approximately 0.4% and 1.9%, respectively, compared to the base case. 

We use these differences in costs to calibrate the slack in the MGA runs. Four sets of MGA runs 

were conducted with slack representing increases of 1%, 2%, 5%, and 10% over the base case 

present cost of energy supply. Given that we are using a highly simplified model to represent a 

complex system, we assume that even the 10% slack value is within the overall cost uncertainty 

of the model. At each of the four slack values, four MGA iterations are conducted to produce a 
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total of 16 model runs for further examination. We apply MGA to the moderate climate policy 

scenario since it is only 0.4% more expensive than the base case and guarantees at least a 40% 

drop in 2050 CO2 emissions relative to 2015. Such an approach can help characterize the 

available technology options in this cost- and emissions-constrained system given uncertainty 

related to both parameter values and model structure. 

We need to choose metrics to compare the relative performance of the integer and normalized 

sector MGA formulations. Because we are searching for alternative technology configurations 

that can achieve low CO2 emissions, we examine two indicators. First, we calculate the total 

number of unique energy technologies that are utilized in both the electric and light duty 

transport sectors across a set of 4 sequential MGA iterations at each slack value (Fig. 2). 

Calculating the number of deployed technologies provides a measure of the uniqueness 

associated with both MGA variants. Second, while CO2 emissions are constrained to achieve a 

40% reduction by 2050, we are interested in solutions that use the cost slack to achieve higher 

emissions reductions through different technology configurations.  

Figure 4 indicates that the integer weighting method produces a larger number of deployed 

technologies compared to the normalized sector method. However, when using the integer 

method, the CO2 cap is always binding such that 2050 emissions are 60% of 2015 levels in 2050. 

By contrast, the normalized sector method produces 2050 emissions levels that range from 16% 

to 60% of the 2015 emissions level. Although the integer method resulted in the deployment of 

more technologies, we chose to examine the normalized sector results in more detail because it 

delivered scenarios that resulted in emissions well below the specified cap. Thus the following 

results utilize the normalized sector method. For reference, the complete set of comparative 

results at all slack values is provided in Appendix B.  

  
4.3 In-depth MGA results  

We wish to explore in more detail the MGA results associated with the normalized sector 

method. Trying to examine 16 sets of stacked bar plots for both the electric and transport sectors, 

as shown in Figs. 2 and 3, can be an overwhelming amount of information for an analyst to 

effectively evaluate. Instead, we have created a summary tableau (Fig. 5) that allows an analyst 

to survey the high level results and select scenarios of interest for further evaluation. While there 
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are a number of ways that one could configure such a tableau, it should be adapted to display the 

model results that most directly address the issues and concerns at hand. Fig. 5 focuses on long-

term results in 2050, including the total 2050 CO2 emissions normalized by the 2015 base case 

CO2 emissions, which enables direct comparison with the 40% and 80% emissions reductions 

required in the cap scenarios. Fig. 5 also includes the 2050 market share of various classes of 

technology by sector, which provides a high level view regarding which technologies make the 

largest contribution to meeting demand. 

Fig. 5 indicates that there are many possible low carbon technology configurations in the electric 

sector if we allow a modest increase in cost. Allowing a 1-2% increase in the present cost of 

energy supply, consistent with the cost of the CO2 cap scenarios, can produce emissions 

reductions ranging from 40-75% in 2050 relative to 2015. For example, the fourth MGA iteration 

at 1% slack (MGA-4-1%) achieves a 63% reduction in 2050 CO2 emissions, but only adds 0.6% 

more to the present cost compared the moderate CO2 cap scenario shown in Figure 3. Those 

reductions are achieved largely with renewables (mainly wind), IGCC-CCS, and nuclear in the 

electric sector. With 1-2% slack, gasoline is still dominant in the LDV sector, with modest 

contributions from BEVs toward mid-century.  

More detailed insights can be obtained by selecting specific model runs from Fig. 5 and 

examining the more detailed results in Appendix B. For example, MGA-3-2% represents a 

balanced approach that utilizes IGCC-CCS, nuclear, natural gas, renewables, and BEVs to 

achieve a 41% reduction in 2050 emissions. MGA-3-5% relies heavily on natural gas and 

renewables (biomass and wind) in the electric sector and BEVs to achieve an 84% reduction in 

CO2 emissions. By contrast, MGA-4-10% utilizes a nearly 60% 2050 market share of natural gas 

in the electric sector  as well as diesel, PHEV20, and BEVs in the LDV sector to achieve the 

required 40% reduction in 2050 emissions. Fig. 6 illustrates the variation in results: the top panel 

represents MGA-3-2% and the bottom panel represents MGA-4-10%. The complete set of results 

is presented in Appendix B. 

As the slack value increases, the variability in deployment by technology type also increases 

since higher slack values give the model more space under the cost constraint to deploy more 

expensive technologies. However, there are still many technologies that play little or no role 

across the 16 scenarios shown above. For example, solar photovoltaics (PV) do not obtain a 
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significant market share and there is little deployment of alternative vehicles (other than BEVs) 

until a 10% slack value is employed.  

As analysts, we may wonder if there is another way to produce a new set of alternative solutions. 

Another critical parameter in the model – and all ESOMs – is the choice of discount rate. The 

discount rate represents a value-related uncertainty because it determines the rate at which future 

costs should be valued relative to the same cost today. In Temoa, the discount rate is used to 

amortize the cost of capital investments over the technology lifetime and discount future costs 

back to the present. As such it affects the present cost of every technology modeled within the 

energy system and has the potential to produce significant shifts in technology adoption. Higher 

discount rates may shift deployment toward more capital intensive technologies, as those future 

investments will be more heavily discounted. 

Thus far, a 5% social discount rate has been used. This value is a common choice in many 

analyses because it approximates the historical growth rate of the U.S economy (prior to the 

2007 recession). While discounting future costs at roughly the growth rate of the economy is 

meant to represent a societal perspective, justification exists for the use of both lower and higher 

rates. To test the effect of discount rate on model solutions, we chose two bounding values: 0.1% 

and 10. We conduct this test at the intermediate 2% MGA slack value used in the preceding 

analysis. 

A summary tableau of the discount rate tests are shown in Fig. 7. The non-MGA CO2 cap 

scenario results at different discount rates are nearly identical, indicating that the change does not 

fundamentally alter the economic tradeoff between competing technologies.  However, the MGA 

results at different discount rates indicate significant differences in technology deployment. The 

combination of a high discount rate and 2% MGA slack enable the model to deploy a wider suite 

of energy technologies, particularly in the LDV sector. Technology deployment with a 10% 

discount rate and 2% slack are qualitatively similar to the deployment pattern with a 5% discount 

rate and 5% slack. Higher discount rates can produce similar effects to higher MGA slack values 

by enabling the deployment of more capital intensive energy technologies, particularly near the 

end of the time horizon when present costs are relatively low. For example, higher deployments 

of capital intensive coal- and biomass-based IGCC as well as BEVs are possible in 2050 with 2% 

slack and a 10% discount rate compared to 2% slack and a 5% discount rate.  Detailed results 
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associated with discount rates of 0.1% and 10% are presented in Appendix C and can be 

compared to the results in Appendix B with a 5% discount rate. 

Finally, suppose that as analysts, we are disappointed that the discount rate test did nothing to 

improve the prospects for solar PV, which only appeared in two model runs at an MGA slack 

value of 10% and discount rate of 5%, reaching a market share of 9% in 2050. We would like to 

quantify the contribution that solar PV can make when the slack is only 2%. Furthermore, we 

wish to determine whether PEVs can be deployed along with solar PV. In a final MGA test, we 

modify the sector normalized weighting method such that solar PV and all PEVs get a weight of 

0 in a single MGA iteration. This approach will enable the model to meet demand using solar PV 

and PEVs without increasing the value of the MGA objective function. Note that the same 

approach could be taken to explore the maximum uptake of any single technology or set of 

technologies. The results are shown below in Fig. 8. 

As shown in Fig. 8, solar PV can reach a market share of 18% with a 2% MGA slack. The 

capacity results indicate that the annual 10% growth rate constraint on solar PV is binding, 

enabling it to reach an installed capacity of approximately 500 GW by 2050. While PEVs had 

zero weight in the MGA objective function, the run resulted in only a modest deployment of 

PHEV20 in 2050 because much of the cost slack was taken up through solar deployment. Further 

tests could be performed to seek balance between solar PV deployment and PEV deployment, if 

desired by the analyst. Another next step might be to revisit the 10% hurdle rate placed on 

alternative vehicles and see if reducing or eliminating it produces a significant effect on 

deployment. Such tests can be performed in an iterative fashion to probe the decision space and 

address specific questions posed by the analyst. 

 

5. Discussion 

MGA represents a simple method for systematically exploring the decision space of an energy 

system model. In this analysis, we produce alternative energy futures that help characterize 

system design options under a cost constraint. We also demonstrate how varying two scalar 

parameters – the MGA slack value and discount rate – can produce a diverse set of energy 

futures. 
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The MGA-based model results indicate that many technologies beyond those deployed in the 

base and CO2 cap scenarios could play a significant role in a future energy system. For example, 

the MGA results include significant deployments of IGCC, biomass, and wind in the electric 

sector as well as BEVs in the LDV sector. Within the LDV sector, the model prefers to deploy 

BEVs as the alternative to gasoline and E85, and only deploys more expensive alternative 

vehicle technologies when the 10% MGA slack is available. More generally, the model tends to 

manipulate the electricity generation mix more readily than the vehicle mix because it can 

produce larger overall changes in technology activity at a smaller cost penalty. We also find that 

increasing the discount rate and the MGA slack value produce similar effects by enabling the 

deployment of more capital intensive technologies (e.g., nuclear and biomass-IGCC) in later 

model time periods. These results represent alternative futures that can either be dismissed 

quickly as implausible or present an intriguing option that warrants further investigation.  An 

advantage of MGA is that the scenarios are generated by a computer algorithm and therefore 

lack the background detail that can lead to misleading, cognitively compelling storylines. 

We note that in many cases increasing the MGA slack value simply pushes the model further 

along the same technology dimensions rather than deploying different technologies. For 

example, the IGCC market share in MGA Iteration 1 increases from 30% to 60% in 2050 when 

the slack is increased from 2% to 5% (Appendix B). Other technologies, such as concentrating 

solar thermal or H2 fuel cell vehicles do not appear in any of the solutions. However, it is 

possible to modify the MGA algorithm to select certain technologies. For example, a targeted 

MGA run indicated that an 18% market share of solar PV was possible with 2% slack, which 

represents an overall cost similar to that in the 80% cap scenario. Thus, MGA can be directed by 

the modeler to search the decision space in a targeted fashion. 

The MGA objective function weighting scheme should be adapted to the specific model context 

in which it is applied. In this paper, we test both an integer weighting and normalized sector 

method. An advantage of the latter approach is that each technology-specific MGA objective 

function weight is proportional to the technology’s contribution in previous solutions, such that 

the model has the greatest incentive to deploy the technologies that play the smallest role in 

previous solutions. Additional weighting schemes specific to energy system models could be 

tested in future analysis, including grouping technologies into sets (e.g., coal, renewables) and 
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then applying a weight to the entire group when one technology in the group is active in previous 

solutions. In addition, it would be worth exploring the application of different weights to each 

sector. For example, in the current study, we observed greater variation in electric sector 

deployment patterns compared to light transport, particularly at MGA slack values ranging from 

1-5%. If a modeler wanted to focus on possible changes in a particular sector, different sector-

specific MGA objective function weights could be applied. Many other adaptions are possible, 

depending on the goals of the analysis. 

Observations from the MGA results can inform the approach to public policy. For example, if a 

CO2 cap is deemed politically untenable, the results suggest that it might be plausible to achieve 

similar emissions reductions through higher deployment of renewables, including solar PV. 

Perhaps the cost to meet the 40% CO2 reduction under the cap could be translated into an 

equivalent feed-in tariff or tax credit for renewables. Furthermore, the model results indicate that 

the 10% hurdle rate applied to alternative vehicle technologies may provide a drag on their 

deployment. Perhaps campaigns aimed at educating the public on alternative vehicle technology, 

including PEVs, could reduce public resistance to adoption and push the empirically-derived 

hurdles rates closer to zero. Accelerated PEV deployment along with clean electricity could lead 

to further emissions reductions. Additional scenarios reflecting reduced investment cost in 

renewables and a lower hurdle rate could be run to further explore the possible effect of 

alternative policy options. Such an iterative approach is required to properly flex the model in a 

way that produces useful, policy relevant insight. 

Finally, we note that MGA is not a panacea for model-based uncertainty analysis. Notably, MGA 

results do not include probability-weighted outcomes or the value of imperfect information, as 

recommended by Kann and Weyant (2000). Other techniques, such as sensitivity analysis and 

stochastic optimization should also be utilized.  

 

6. Conclusions 

Given the deep uncertainty associated with future energy system development, models should 

not be used to produce precise-looking projections that embody a high level of false precision. 

Rather, energy system models should be used by analysts in an iterative manner to systematically 
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search the decision space in a way that generates insight that accounts for structural, parametric, 

and value-based uncertainties. MGA was developed over 30 years ago as a technique that 

changes the structure of mathematical models to search the model’s decision space to account for 

unmodeled issues. Given the complexity and uncertainty associated with energy system 

development, MGA represents a useful way to explore the decision landscape. 

The MGA results presented here highlight the false precision underlying the often limited results 

produced with conventional scenario analysis. Energy system models are most useful when they 

can be used to interactively probe the decision space in a way that challenges our mental models 

and leads to new insight. Such an outcome can be achieved by placing energy system models 

such as Temoa in a framework that allows the user to extend their own cognitive abilities by 

generating model results on demand. A critical element of such a framework is the capability to 

interactively interrogate the model by applying different methods to address uncertainty. In 

future work, we plan to design an interface that would allow Temoa users to apply a number of 

different techniques to explore energy futures, including sensitivity analysis, MGA, and 

stochastic optimization along with appropriate visualization of the results. In this way, energy 

system models could serve a more much useful role by actively engaging a wide range of users 

and helping them reason through different assumptions, options, and strategies. Perhaps the most 

useful deliverable from model-based analyses is not a set of projections, but rather a tool of 

exploration that allows users to interrogate the model. 
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Figure Captions 
 

Fig. 1. Illustration of the modeled system, which includes an electric and light duty vehicle 
sector. Projected fuel prices are drawn from U.S. EIA (2012). Electricity prices are determined 
endogenously and therefore affect the cost-effectiveness of plug-in vehicles relative to other 
vehicle types. The model is driven by separate end use demands for electricity and travel 
distance. 
 
Fig. 2. Base case results from the electric sector (left) and light duty transportation sector (right).  
 
Fig. 3. Electric and LDV sector results from the 40% cap (top) and 80% cap (bottom) scenarios. 
The model largely utilizes a combination IGCC-CCS, wind, natural gas turbines, and battery 
electric vehicles (BEVs) to achieve the required emissions reductions. 

Fig. 4. Number of unique technologies utilized by sector, MGA weighting scheme, and assumed 
MGA slack value. For reference, the number of technologies utilized by sector in the moderate 
CO2 cap scenario (without MGA) is included as a dotted line. Overall, the electric sector 
contains 34 technologies and the sector transport contains 48 light duty vehicle types. 

Fig. 5. Summary tableau for the base, CO2 cap, and MGA runs. The vertical axis ticks indicate 
the model run; MGA runs are identified by their iteration number and slack value. For example, 
‘MGA-2-1%’ represents MGA Iteration 2 with a 1% slack value. The leftmost column represents 
the 2050 CO2 emissions expressed as a share of 2015 base emissions (the red dotted lines 
indicate the 2050 targets under the CO2 cap scenarios); the next four columns represent the 2050 
market share of each technology class within the electric sector. The three rightmost columns 
represent the 2050 market share of different classes of vehicle technology. Boxplots 
summarizing the distribution of points across all model runs and each technology class are 
included at the bottom. 

 
Fig. 6. Select MGA results with an allowed 2% (top) and 10% (bottom) slack, which represents 
the increase in the present cost of energy supply over the model time horizon relative to the base 
case. The results illustrate the system design options under different cost constraints. 
 
Fig. 7. Summary results from MGA tests in which discount rates of 0.1% and 10% were tested at 
a constant slack value of 2%. Results using the default 5% discount rate (also shown in Fig. 5) 
are included for comparison. CO2 emissions represent 2050 emissions expressed as a fraction of 
the 2015 base year value (the red dotted lines indicate the 2050 targets under the CO2 cap 
scenarios); the technology deployment columns represent the 2050 market share by sector and 
follow the same order as in Fig. 5. 

 
Fig. 8. MGA result with 2% slack and a 5% discount rate when the MGA objective function is 
set to maximize the deployment of solar PV and plugin vehicles. 
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MGA Iteration 4 with 1% Slack (MGA-3-2%) 
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