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ABSTRACT

 

Aim

 

There is an urgent need for conservation in threatened tropical forest regions.
We explain and predict the spatial variation of 

 

α

 

 (i.e. within plot) and 

 

β

 

 (i.e. between
plot) tree diversity in a tropical montane landscape subjected to a high deforestation
rate. A major aim is to demonstrate the potential of a method that combines data
from multiple sources (field data, remote sensing imagery and GIS) to evaluate and
monitor forest diversity on a broad scale over large unexplored areas.

 

Location

 

The study covered an area of 

 

c.

 

 3500 km

 

2

 

 in the Highlands of Chiapas,
southern Mexico.

 

Methods

 

We identified all of the tree species within 204 field plots (1000 m

 

2

 

 each)
and measured different environmental, human disturbance-related, and spatial
variables using remote sensing and GIS data. To obtain a predictive model of 

 

α

 

 tree
diversity (Fisher’s alpha) based on selected explanatory variables, we used a generalized
linear model with a gamma error distribution. Mantel tests of matrix correspondence
were used to determine whether similarities in floristic composition were correlated
with similarities in the explanatory variables. Finally, we used a method that combines

 

α

 

 and 

 

β

 

 tree diversity to define priority areas for conservation.

 

Results

 

The model for 

 

α

 

 tree diversity explained 44% of the overall variability,
of which most was mainly related to precipitation, temperature, NDVI, and canopy
(all relationships were positive, and quadratic for temperature and NDVI). There
were no spatially structured regional factors that were ignored. Similarity in tree
composition was correlated positively with climate and NDVI.

 

Main conclusions

 

The results were used to: (1) identify and assign conservation
priority of unexplored areas that have high tree diversity, and (2) demonstrate the
importance of several vegetation formations in the region’s biodiversity. The method
we present can be particularly useful in assessing regional needs and in developing
local conservation strategies in poorly surveyed (and often at risk) tropical areas
worldwide, where accessibility is usually limited.
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INTRODUCTION

 

The current scale of deforestation and the large areas of degraded

land in tropical regions underscore the urgent need for interven-

tions to restore and protect biodiversity, ecological functioning,

and the supply of goods and services used by poor rural communities

(Lamb 

 

et al

 

., 2005). One of the main responses to this process of

degradation has been to create or expand networks of protected

areas to help protect the remaining biodiversity. In large part,

the response has focused on selecting candidate sites that are as

representative and comprehensive as possible (Williams 

 

et al

 

.,

1996; Araújo, 1999; Justus & Sarkar, 2002). The quantification of

species–environment relationships has gained importance as

a tool to assist in decision-making related to nature conservation
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at the landscape level (Stockwell & Peterson, 2003). But this task

is not simple because diversity can be measured in a variety of

ways and at different scales. The factors that influence patterns of

diversity are varied and can include phylogenetic, historical, bio-

geographical and environmental processes (Brown & Lomolino,

1998; Rey Benayas & Scheiner, 2002). In addition, human activities

can influence the shape of geographical patterns of diversity

in intensively managed regions (Lawton 

 

et al

 

., 1998). At large

spatial scales, factors related to the entry of energy in the system (e.g.

productivity and evapotranspiration) have emerged as primary

predictors of species diversity (Wright 

 

et al

 

., 1993; Pausas &

Austin, 2001; González-Espinosa 

 

et al

 

., 2004). At finer grained

scales, however, it is the history and frequency of disturbance,

land use, and heterogeneity of different landscape features (e.g.

topography and habitats) that might be more important in

explaining patterns of species diversity (Kerr & Packer, 1997;

Wohlgemuth, 1998; Rahbek & Graves, 2001).

Geographic information systems (GIS) and remote sensing

data are useful for extrapolating information from ground-based

ecological studies to large and unexplored areas. The mapping of

plant diversity can be accomplished by analysing the variation in

a spectral signal (e.g. Normalized Difference Vegetation Index,

NDVI) and correlating the variation with measures of landscape

or taxa diversity (Rey Benayas & Pope, 1995; Jørgenson & Nøhr,

1996; Gould, 2000; Luoto 

 

et al

 

., 2002; Tuomisto 

 

et al

 

., 2003).

Climatic, biophysical and land cover data, as well as factors related

to human disturbance, can also predict and explain patterns of

species diversity (Lobo & Martín-Piera, 2002).

Local diversity should not be the only valuable asset to be

evaluated in conservation networks. A habitat might contain

a relatively small number of species, but it can be ecologically

important because of the presence of species or species assem-

blages that are not present in highly diverse habitats. Thus, it is

desirable that conservation networks be representative of

habitats (Araújo, 1999).

In this study, we present a procedure to predict the spatial

variation of 

 

α

 

 (within-plot) and 

 

β

 

 (between-plot) tree diversity

in a tropical montane region. Our model includes information

obtained at multiple spatial scales, including field sampling,

satellite imagery and GIS. As an illustrative example of the use

of our model, we present data from the Highlands of Chiapas,

southern Mexico. That region is important because of its high

biodiversity and environmental heterogeneity (Ceballos 

 

et al

 

.,

1998; Wolf & Flamenco, 2003; González-Espinosa 

 

et al

 

., 2004).

The chronic intensification of land use, particularly following

a violent conflict in 1994 (the Zapatista riot), has caused much

deforestation and forest disturbance, which may have had a negative

impact on biodiversity (González-Espinosa, 2005).

The specific objectives of this study are: (1) to identify the

determinants of the spatial variation of 

 

α

 

 tree diversity; (2) to

develop a predictive model that permits the identification of

less-surveyed areas of high 

 

α

 

 tree diversity; (3) to identify the

factors that influence 

 

β

 

 diversity; and (4) to use 

 

α

 

 and 

 

β

 

 diversity

as selection criteria in identifying priority areas for conservation.

Our study makes no hypotheses about the mechanistic processes

that shape the spatial patterns of tree diversity but, rather, it seeks

to provide 

 

post hoc

 

 explanations for such processes. The model

we propose can be the basis for identifying tracts of land worthy of

conservation, establishing protected areas and facilitating

forest restoration programmes. By identifying patterns of 

 

α

 

 and

 

β

 

 tree diversity, this study will help to foster conservation and

the use of land management tools in other tropical regions of the

world (Lamb 

 

et al

 

., 2005).

 

MATERIALS AND METHODS

Study area

 

The Highlands of Chiapas (Fig. 1) is a biologically diverse

region that covers 11,000 km

 

2

 

 and is home to about a third of the

approximately 9000 vascular plant species found in the state of

Chiapas (Breedlove, 1981). In the Highlands, there is a variety of

forest types, including oak, pine–oak, pine, and montane cloud

forests (Miranda, 1952; Rzedowski, 1978; González-Espinosa

Figure 1 Location of the study area in 
the Highlands of Chiapas, southern Mexico.
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et al

 

., 1991). Our study area covers 

 

c.

 

 3550 km

 

2

 

 and ranges between

600 m and 2900 m a.s.l. (mostly above 1500 m). The topography is

abrupt and slopes are moderately steep (mean = 14.8

 

°

 

, SD = 9.6

 

°

 

).

The climate is cool (mean daily temperatures range between 14 and

17 

 

°

 

C) and humid (annual rainfall range between 1200 and 1800 mm)

with a rainy summer and a 5–6 month dry season. The underlying

geology of the area is carboniferous limestone with rocky outcrops.

The soils are a mixture of thin lithic rendzinas, deeper humic

acrisols in forested areas and rather infertile chromic luvisols.

Mayan peasants, who have made clearings for shifting cultiva-

tion and extracted firewood and other forest resources since

pre-Columbian times, densely populate the region. The main

economic activities are traditional agriculture and non-commercial

forestry. Slash-and-burn agriculture and the chronic use of forests

for fuelwood have contributed to the expansion of relatively low

diversity pine and mixed pine–oak stands, and a reduction in the

extent of highly diverse oak and montane cloud forests (Ramírez-

Marcial 

 

et al

 

., 2001; Galindo-Jaimes 

 

et al

 

., 2002).

 

Field sampling and estimation of αααα

 

 tree diversity

 

Floristic inventories were made in 204 1000-m

 

2

 

 circular plots dis-

tributed among forest fragments. In 1998, data were collected

from 36 plots (Galindo 

 

et al

 

., 2002; L. Galindo, unpublished

data). Between January 2003 and May 2004, we sampled 168

additional plots. In each plot, all of the trees with a d.b.h. greater

than 10 cm were identified to species and counted. Local residents

did not always permit access to forests; yet, the forest fragments

were evenly spaced across the broader landscape and they pro-

vided an accurate sample of the regional diversity. On average,

plots contained 13.3 (

 

±

 

 5.2) tree species (range 2–28) and 97.2

(

 

±

 

 36.5) stems per plot (range 22–211). All of the locations were

geo-referenced. The mean distance between plots was 25.2 km

(

 

±

 

 15.3 km). In the study, we documented 230 native tree species

(see Appendix S1 in Supplementary Material). Fisher’s alpha, an

estimator of 

 

α

 

 diversity, was calculated for each sample. Fisher’s

alpha was highly correlated with the number of species observed

(

 

r =

 

 0.91, 

 

P

 

 < 0.0001). Nevertheless, Fisher’s alpha was preferred

because it is independent of sample size and assumes a parametric

distribution of relative abundances for the population from

which the sample is drawn (Rosenzweig, 1995).

 

Explanatory variables

 

For practical reasons, those variables (e.g. slope, elevation,

precipitation and soil type) used as surrogate measures of

processes and factors that might have a direct effect on species

diversity and composition (e.g. incoming radiation, water vapour

deficit in the air, soil drought and available pool of nutrients)

are referred to as ‘explanatory’. The explanatory variables were

chosen based on their potential to account for factors that might

explain patterns of tree diversity at local and regional scales,

and based on their availability and degree of coverage in the

study area. The set used in the analysis contains 15 continuous

variables, including two climatic variables, a soil fertility/quality

index, two spectral variables, two measures of environmental

heterogeneity, two topographical variables, four human disturbance-

related variables, and two spatial variables (Table 1). 

Values of climatic variables were generated for 1 

 

×

 

 1 km cells

using interpolation techniques (Golicher 

 

et al

 

., 2006). Daily

measurements of maximum and minimum temperature, and

precipitation, which date back to 1950, were available for 212 climate

stations in the state of Chiapas. Monthly precipitation values

were obtained using iterated universal kriging. The surfaces of

monthly maximum and minimum temperatures were generated

using linear models and by fitting the residuals by universal

kriging after correcting for altitudinal effects (D. J. Golicher,

unpublished data). After assessing the redundancy among closely

correlated variables, we averaged the monthly measurements of

precipitation and temperature and reduced the initial 36 climatic

Table 1 Variables used in the analysis of determinants of tree diversity in the Highlands of Chiapas, Mexico
 

Variable Source of data

Normalized Difference Vegetation Index (NDVI) 2000 ETM+ images, bands 3 and 4

Normalized Difference Infrared Index (NDII) 2000 ETM+ images, bands 3 and 5

NDVI within-site heterogeneity 2000 ETM+ images, bands 3 and 4

NDII within-site heterogeneity 2000 ETM+ images, bands 3 and 5

Mean annual precipitation Interpolated maps of meteorological data

Mean annual temperature Interpolated maps of meteorological data

Elevation 1 : 50,000 digital elevation model

Slope 1 : 50,000 digital elevation model

Soil quality/fertility 1 : 250,000 digitized map

Road density 1 : 50,000 digitized road map

Canopy Classified 2000 ETM+ images

Human population density Digitized 2000 population censuses

Distance to forest edge Classified 2000 ETM+ images

Latitude UTM x-coordinates

Longitude UTM y-coordinates
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variables to two variables: mean monthly precipitation and tem-

perature (using maximum and minimum values).

We generated an index of soil fertility/quality following González-

Espinosa 

 

et al

 

. (2004), which was based on an interpretation of

the physical and chemical properties of the soil taxa as described

in the legend of the FAO–UNESCO maps (Duchaufour, 1987)

and information of soil texture and physical phases available

from the maps.

The Normalized Difference Vegetation Index (NDVI) was

calculated using the visible and near-infrared bands of Landsat

Enhanced Thematic Mapper (ETM+) images recorded during the

peak of the dry season in 2000 (path 21 row 48, path 21 row 49

and path 22 row 48). The NDVI is sensitive to photosynthetically

active biomass and is correlated with leaf area index and net

primary productivity (Cramer 

 

et al

 

., 1999). The Normalized

Difference Infrared Index (NDII), which is related to the

relative water content of leaves (Gao, 1996), was calculated using

the near-infrared and middle-infrared bands of the ETM+

images. Each of the indices were averaged using a 3 

 

×

 

 3 pixel

window centred over each pixel. Based on NDVI and NDII, we

obtained measures of heterogeneity by applying a standard

deviation filter with a 5 

 

×

 

 5 pixel window centred over each

pixel. All of the calculations were performed using Idrisi 32

(Eastman, 2001).

Values of elevation and slope were extracted from a 1 : 50,000

digital elevation model. Four variables were used as measures

of human disturbance (Table 1). Road density was calculated

within a 500-m radius of the centre of each plot using relative

weightings for paved and unpaved roads. Canopy was based on

classified ETM+ Landsat imagery (Cayuela 

 

et al

 

., 2006a) and

calculated as the proportion of forest cells within a 500-m radius

of the centre of each plot. Estimates of human population density

were obtained by partitioning the study area into a meaningful

tessellation of Thiessen polygons and dividing the total popula-

tion in each settlement by the area of its corresponding polygon.

Distance to forest edge was calculated using the classified ETM+

Landsat imagery.

 

Modelling αααα

 

 tree diversity

 

To obtain a predictive model of 

 

α

 

 tree diversity based on selected

explanatory variables (Pausas, 1994; Austin 

 

et al

 

., 1996) we used

generalized linear models (GLM) (see Crawley, 1993). With

respect to linear models, an advantage of GLM is that they can

deal with a range of distributions in the error component. We

assumed a gamma error distribution for 

 

α

 

 tree diversity related

to the set of predictor variables via a logarithmic link function.

Fisher’s alpha index is a rather artificial measure and it is difficult

to define a model that contains a hypothesis about the way in

which randomness enters into the system. In those cases, the

gamma distribution is very useful because of its flexibility.

Deviance is the measure of discrepancy used by GLM to assess

the model’s goodness of fit. Deviance reduction or explained

deviance (

 

D

 

2

 

) is estimated as:

 

D

 

2

 

 = (null deviance 

 

− 

 

residual deviance)/null deviance.

We followed a step-by-step model-building procedure. To

avoid multicollinearity, some of the explanatory variables that

were highly correlated (

 

| r |

 

 > 0.8) were excluded before building

the model. NDVI and NDII (

 

r =

 

 0.88, 

 

P

 

 < 0.0001), and NDVI

and NDII within-site heterogeneities (

 

r =

 

 0.91, 

 

P

 

 < 0.0001) were

highly correlated. We selected NDVI because it is widely used

and is more closely related to the diversity–productivity relation-

ship, which is a subject of debate in the scientific community.

Elevation was strongly correlated with mean temperature (

 

r =

 

0.87, 

 

P

 

 < 0.0001). We used mean temperature because, unlike

elevation, it has a direct physiological effect on species performance

(Guisan & Zimmermann, 2000; Pausas & Austin, 2001).

In the first step of building the model, tree diversity was examined

in relation to each of the explanatory variables separately.

The relationships between species richness and environmental

variables are often curvilinear (Austin, 1980); therefore, we

explored the effects of the quadratic and cubic terms of the

explanatory variables in tree diversity. Spatial coordinates were

incorporated into the model by adding all of the terms for a cubic

trend surface regression (Legendre, 1993; Legendre & Legendre,

1998), which ensures that complex features, such as patches

and gaps, are correctly described. We selected either the linear,

quadratic or cubic function of each explanatory variable by

statistically testing their reduction in the Akaike Information

Criterion (AIC) as compared to the null model (Akaike, 1973).

AIC is a measure of model optimality that trades off complexity

and the fit of the model to the data. The proportion of explained

deviance was calculated for each model.

In the second step of the analysis, all of the selected terms of

the variable that accounted for the most important change in

deviance were entered into the model. To test the significance of

all of the remaining variables, each was added to the model, one by

one. After each new variable was included, the significance of the

terms previously entered was tested using a backward stepwise

selection procedure based on exact AIC. The procedure was

repeated, iteratively, until no significant explanatory variables

remained (

 

P

 

 

 

≤

 

 0.05). Finally, the spatial variables were included

in the model and tested for statistical significance.

In each step of building the model, we examined the deviance,

the significance of the coefficients, the normal probability plot,

the Cook statistics and the leverages. To avoid the influence of

outliers in the regression procedure, observations that exhibited

simultaneously high leverage and large Cook statistic values were

excluded from the analysis.

After the model was reduced for optimality, a spatial correlogram

based on Moran’s Index of autocorrelation was used to explore

the autocorrelation of the raw diversity data and the residuals of

the model at different geographical distances (Diniz-Filho 

 

et al

 

.,

2003). If spatial autocorrelation was detected in a distance class,

we assumed that there were spatially patterned variables not included

in the model that contributed to explaining 

 

α

 

 tree diversity.

To validate the model, we used a leave-one-out, cross-validation

procedure. Given a data set of size 

 

n

 

, we recalculated the model

 

n

 

 

 

− 

 

1 times, leaving out one datum in each turn. To produce a

predicted Fisher’s alpha score, each of the generalized linear

models based on the 

 

n

 

 

 

− 

 

1 data was applied to the excluded
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datum. We tested the predictive power of the model using the

mean of the percentage absolute errors of prediction (

 

E

 

), given by

where 

 

y

 

i

 

 is the observed species richness and 

 

Á

 

(

 

i

 

)

 

 is the predicted

value for 

 

y

 

i

 

 when the 

 

i

 

th observation is excluded (Davidson &

Hinkley, 1997).

 

Patterns of floristic similarity

 

β

 

 diversity was measured using the floristic similarities between

pairs of plots. We ran Mantel tests of matrix correspondence to

determine whether similarities in floristic composition were

correlated with similarities in climatic variables, edaphic conditions,

NDVI, spectral variability (NDVI within-site heterogeneity),

topography, human disturbance-related variables and geographical

distance. All of the numerical analyses explained below are based

on resemblance matrices. The floristic resemblance matrix was

calculated using the Sørensen Index. All of the other resemblance

matrices were based on Euclidean distances. We used the stand-

ardized form of the Mantel test, which computes the Pearson

correlation coefficient between the cell values of two resemblance

matrices. To avoid problems associated with autocorrelation and

non-normal distributions of the measured variables, the statistical

significance of each correlation was determined using a Monte Carlo

permutation test. To test for statistical significance at the 

 

P

 

 <

0.001 level, 1000 permutations were computed for each correlation.

To determine the subset of variables that had the maximum

correlation with community dissimilarities, we selected the

combinations of explanatory variables that contributed the

most to explaining the variability in the floristic resemblance

matrix (based on the work by Clarke & Ainsworth, 1993).

Initially, all of the variables used in modelling 

 

α

 

 tree diversity

were included. Then, the function found the best correlation

between community dissimilarities and distance matrices

based on different combinations of explanatory variables and,

for each size of subsets, output the best result. In this study, we

reported the correlation coefficients for the final models.

 

Selecting sites for conservation

 

Hierarchical clustering was performed using the matrix of

dissimilarities for the best subset of explanatory variables

selected to maximize correlations with floristic dissimilarities.

We used Ward’s method because it generates more compact and

representative clusters. Using the height distances of the hierar-

chical clustering, we classified the plots in an increasing number

of clusters, from three to 10. To select the number of clusters that

maximize floristic differences between groups, we used analyses

of similarities (

 



 

), which operate directly on a dissimilarity

matrix by using the rank order of dissimilarity values (Clarke,

1993). The 

 



 

 statistic 

 

R

 

 is based on the differences of mean

ranks between groups and within groups. 

 

R

 

 will be in the interval

−1 to 1, and a value of 0 indicates completely random grouping.

The statistical significance of observed R was determined by

permuting the grouping vector and obtaining the empirical

distribution of R under the null-model (Oksanen et al., 2005).

Finally, to predict plot membership in a cluster when the

information in the explanatory variables (i.e. those selected to

maximize correlations with floristic dissimilarities) is con-

sidered, we used classification and regression trees (CART). CART

can perform univariate splits and examine the effects of predictors,

one at a time. To classify all of the pixels in the study area, we used

splitting rules, which allowed us to define unexplored areas of

complementary floristic composition based on inference made

using the best subset of explanatory variables, and to select sites

of high predicted α tree diversity within each floristic region. All

of the statistical analyses were performed with the R environment

(R Development Core Team, 2004). Mantel tests, , and

CART were run using the R ‘vegan’ package (Oksanen et al.,

2005).

RESULTS

Predicting spatial patterns of αααα tree diversity

With the exception of soil fertility/quality, all of the explanatory

variables were statistically significant as linear, quadratic or cubic

E
n

y

y

i i

ii

n

  
  

  
( )=

−
×

=
∑1

100
1

Á

Table 2 Explanatory variables (abbreviation in parentheses) recorded for 204 sample plots in the Highlands of Chiapas, Mexico. AIC = Akaike 
Information Criterion; d.f. = degrees of freedom; D2 = deviance reduction; Sign = sign of the fitted parameter for each variable at P = 0.01
 

Variable Selected terms Deviance AIC d.f. D2 Sign

Null model 70.6 931.3 203
Mean temperature (T) T + T2 + T3 63.3 914.0 200 0.10 + + –
Mean precipitation (Pr) Pr + Pr3 63.2 911.5 201 0.10 + –
Soil fertility/quality (SFQ) 934.3
NDVI NDVI2 + NDVI3 59.9 900.1 201 0.15 + +
NDVI within-site heterogeneity (Het) Het 68.6 927.1 202 0.02 –
Slope (Sl) Sl 66.2 919.6 202 0.06 +
Road density (RD) RD2 + RD3 67.8 926.7 201 0.04 + –
Canopy (CC) CC 69.0 928.4 202 0.02 +
Human population density (PD) PD + PD2 67.0 924.3 201 0.05 + –
Distance to edge (DE) DE + DE2 69.0 930.4 201 0.02 + –
Longitude (Lon) Lat + Lat3 + Lon × Lat2 52.3 873.3 200 0.26 + − −
Latitude (Lat)
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functions when tested separately (Table 2). In addition, when

latitude and longitude were included, variability in α tree diver-

sity (Fisher’s alpha) depended on the geographical position of

the plot. A site’s tree diversity tended to be more similar to those

of sites close by, than to those of sites farther away. Alone, that

model has little predictive value and, where possible, spatial

coordinates should be replaced by explanatory variables that

account for these spatial variations (e.g. climatic variables).

Variables were entered into the model based on the extent to

which they influenced the deviance; therefore, NDVI was entered

first, the linear and cubic terms of mean precipitation were

entered next, followed by all of the terms of mean temperature,

and so on, until the model was iteratively fitted (Table 3). Finally,

the spatial terms were added. The model accounted for 44% of

the observed variability in α tree diversity, which was most

strongly related to mean precipitation, mean temperature, NDVI

and canopy (Table 3).

Spatial autocorrelations for the raw diversity data were signifi-

cant for most lag distances, although the pattern was very erratic

(Fig. 2a). The inclusion of spatially structured variables, such as

mean annual precipitation, in the model reduced the spatial

autocorrelation in most distance classes (Fig. 2b). The mean of

the percentage absolute errors of prediction obtained in the

cross-validation test was 45.6% and the residual analysis did not

reveal aberrant features.

Correlations between distance matrices

Correlations between the floristic similarity matrix and the

similarity matrices based on different sets of environmental, human

disturbance-related, and spatial variables are shown in Table 4.

Floristic composition was most strongly correlated with climatic

variables, and correlations with matrices based on geographical

distance and topographical features were high (Table 4). NDVI

and species similarity were weakly, but significantly, correlated.

Correlations with the similarity matrices of soil condition, spectral

variability and human disturbance-related variables were close to

zero. Statistical significance, however, should be interpreted with

care because distance measurements were not independent.

The selection of subsets of explanatory variables that had the best

correlations with community data indicated that a high propor-

tion of the variation in floristic similarity could be explained by

one to three variables (Table 5). As predicted by Mantel tests,

Table 3 Summary of the step-by-step GLM model selection for the prediction of α tree diversity in the Highlands of Chiapas, Mexico. 
AIC = Akaike Information Criterion; d.f. = degrees of freedom; and D2 = deviance reduction
 

Variable Terms Deviance d.f. AIC D2 t-value Coefficients SE

Null model 67.8 199 911.0
Intercept 23.17*** 1.193 0.051
Mean precipitation Pr 61.7 198 893.2 0.09 5.94*** 0.236 0.040
Mean temperature T2 51.6 197 857.6 0.15 4.50*** 0.180 0.040
NDVI NDVI3 48.2 196 845.3 0.05 2.34* 0.061 0.026

NDVI2 44.4 195 830.6 0.06 3.12** 0.144 0.046
Canopy CC 41.1 194 816.6 0.05 3.59*** 0.141 0.039
Slope Sl 40.1 193 813.3 0.02 2.12* 0.071 0.034
NDVI within-site heterogeneity Het 38.7 192 808.0 0.02 1.97* 0.078 0.039
Spatial variables Lon × Lat2 37.9 191 805.6 0.01 −2.10*** −0.071 0.034

Final model 37.9 191 805.6 0.44

***P < 0.001, **P < 0.01, *P < 0.05.

Table 4 Mantel test correlations between floristic similarities and 
similarities in environmental, human disturbance-related and spatial 
variables in 204 sample plots in the Highlands of Chiapas, Mexico
 

Variable

Floristic similarities 

r 95% CI

Climatic variables 0.50*** ± 0.05
Soil fertility/quality 0.07* ± 0.03
NDVI 0.17*** ± 0.03
NDVI within-site heterogeneity −0.02 ± 0.05
Topographical features 0.40*** ± 0.04
Human disturbance 0.07* ± 0.05
Geographical distance 0.43*** ± 0.04

***P < 0.001, **P < 0.01, *P < 0.05.

Table 5 Mantel tests for best possible subsets of explanatory 
variables (from 1 to 10) that maximize correlations with floristic 
dissimilarities among sample plots in the Highlands of Chiapas, 
Mexico. The number of variables that are selected to maximize 
correlations with floristic dissimilarities has been highlighted in 
bold. See Table 2 for explanations of abbreviations 
 

Size Best subsets of explanatory variables r

1 T 0.50
2 Pr + T 0.51
3 Pr + T + NDVI 0.50
4 Pr + T + NDVI + Sl 0.49
5 Pr + T + NDVI + Sl + CC 0.47
6 Pr + T + NDVI + Sl + RD + CC 0.43
7 Pr + T + SFQ + NDVI + Sl + RD + CC 0.39
8 Pr + T + SFQ + NDVI + Het + Sl + RD + CC 0.35
9 Pr + T + SFQ + NDVI + Het + Sl + PD + RD + CC 0.30
10 Pr + T + SFQ + NDVI + Het + Sl + PD + RD + DE + CC 0.27
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mean precipitation and temperature explained 51% of the

variation in species composition. Models that included more

than three variables progressively decreased their correlation

with floristic similarity.

Prioritizing areas for conservation

We took a variable number of clusters (3–10) and compared

floristic dissimilarities between the groups at each clustering.

Five clusters maximized the floristic differences among groups

( R-statistic = 0.59, P = 0.001), and these floristic

groups also exhibited differences in α tree diversity based

on Euclidean distances ( R-statistic = 0.26, P = 0.001)

(Fig. 3). Those differences, however, were less than the

floristic dissimilarities, which is a desirable property because we

wanted to use a single model for predicting tree diversity across

the landscape, rather than a model for each of the floristic

groups.

Figure 2 Spatial correlograms based on 
Moran’s Index of spatial autocorrelation 
for (a) Fisher’s alpha values, and (b) residuals 
after fitting the significant variables in the 
model shown in Table 3. Dashed lines 
represent 95% standard error intervals 
for Moran’s test.

Figure 3 Dendrogram of sample plots created by a hierarchical clustering using Ward’s method as the linkage rule and the squared Euclidean distance 
as the measure of similarity. The variables included in the analyses are mean precipitation and temperature.  R-statistic (upper right) 
shows the relative floristic differences between groups for an increasing number of clusters (3–10). Five groups maximize the floristic differences 
between groups. These groups are represented in boxes. Box-plots of α diversity (Fisher’s Alpha) are presented for each of the floristic groups, 
and arrows indicate the mean and standard deviation.
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Figure 4 shows the classification and regression tree (CART)

for the five groups obtained from the hierarchical clustering.

Variables in CART models are selected to create splits that

maximize node homogeneity, and the variables used in early

splits are more important. Mean temperature, which was used to

characterize the groups labelled D and E in Fig. 3, was selected in the

first split, and mean precipitation split groups A, B and C. With

the exception of one plot belonging to group A that was misclassified

into group E, all of the plots were correctly classified.

Using these classification rules based on the variables that

explained differences between the main vegetation groups, all of

the pixels within our study area were assigned to one of the five

floristic groups (Fig. 5a). α tree diversity was forecasted using

the final reduced GLM (Fig. 5b). In the last step, pixels within

each floristic region were ranked from highest to lowest α tree

diversity, and reclassified into five groups of decreasing diversity

(each covering an area equivalent to 5000 ha, except the last

group, which was formed by all of the remaining pixels,

Fig. 5c). Groups C and D were much smaller than the others;

therefore, all of their pixels were classified as having the highest

priority for conservation. This example demonstrates the

way in which our procedure can be used to prioritize sites for

conservation.

DISCUSSION

The assessment of biodiversity in managed landscapes faces

several methodological difficulties: (1) measures of diversity

strongly depend on the spatio-temporal scale, and the scaling

functions used to transfer results from one scale to another are

not completely satisfactory (Waldhardt, 2003); (2) it is impractical

to consider all of the ecological, historical and human-related

factors that might contribute to patterns of species diversity

(Lobo & Martín-Piera, 2002); and (3) field data are often

scarce, particularly in tropical regions, because of limited

access to forests (Stockwell & Peterson, 2003). Although our

study was affected by these difficulties, we obtained models of

the determinants of α and β tree diversity that were satisfactory.

The results of the GLM-diagnostic procedures and the lack of

autocorrelation in the residuals suggest that the model’s

assumptions are reasonable. Variation in α tree diversity was

most strongly related to climatic variables and the NDVI. In

addition, climatic variables were responsible for the main

differences in floristic composition among plots, which allowed

us to partition the study area into five major floristic regions

and assign priority to areas of high α tree diversity within each

of them.

Figure 4 Classification and regression tree 
(CART) for the five groups of vegetation 
using mean precipitation and temperature 
as predictor variables. Numbers under each 
of the group names indicate the number of 
sample plots belonging to each of the five 
floristic groups that have been allocated 
within that group.

Figure 5 (a) Major floristic regions defined through hierarchical clustering and extrapolated to the entire study area by means of a classification 
and regression tree (CART) with mean temperature and precipitation as input variables; (b) predicted values of α tree diversity in the Highlands 
of Chiapas, Mexico; Fisher’s alpha scores were forecasted by applying the final reduced GLM; and (c) prioritization of areas for conservation 
based on identification of high predicted α tree diversity within each floristic region.
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Patterns of αααα tree diversity

Climatic variables had the strongest relationship with α tree

diversity (Table 3). Typically, climate has been interpreted as

a strong predictor of broad-scale patterns of diversity (Wright

et al., 1993; Austin et al., 1996; Hawkins et al., 2003). Our results

might be dependent on the spatial scale of our analysis (Willis &

Whittaker, 2002), but they show that, to some extent, climatic

gradients can explain α diversity, which indicates that broad-

scale patterns can be replicated across an altitudinal gradient at

finer spatial scales. Precipitation and temperature contribute to

define actual evapotranspiration, which possibly influences plant

growth. Positive correlations between tree species richness in

tropical lowlands and annual precipitation have been interpreted

as support for the diversity–energy hypothesis (Gentry, 1982,

1988; Givnish, 1999), although the use of this variable independent

of temperature has been criticized (Francis & Currie, 2003).

If the NDVI is interpreted as a surrogate for the amount of

biologically available energy (Rosenzweig, 1995), we can assume

that greater biomass increases biological heterogeneity, which, in

turn, favours specialization and promotes the local coexistence

of species (Wright et al., 1993; Scheiner & Rey Benayas, 1994;

Mittelbach et al., 2001; González-Espinosa et al., 2004; Seto et al.,

2004). Correlations between NDVI and species diversity, how-

ever, have been mostly emphasized in areas that have relatively

structurally homogeneous vegetation (Jakubauskas & Price,

1997). In areas where vegetation structure is heterogeneous,

structural, rather than species differences, might predominate in

imagery (Nagendra, 2001), which makes it difficult to predict

spatial patterns of tree diversity based solely on remote sensing

data (see also Tuomisto et al., 2003). Furthermore, NDVI should

be interpreted with caution because it summarizes the energy

used and stored (plant biological activity) over a particular

period. Multi-temporal data might provide additional informa-

tion on intra- and inter-annual shifts in vegetation and support

more detailed models that incorporate time lags and temporal

changes in productivity (Oindo & Skidmore, 2002).

Studies have demonstrated positive, negative and hump-shaped

relationships between soil characteristics and plant diversity at

meso- and landscape scales (e.g. Huston, 1980; Clinebell et al.,

1995; Clark et al., 1999; Rey Benayas & Scheiner, 2002; González-

Espinosa et al., 2004). In our study, soil fertility/quality did not

explain a significant amount of variability in α tree diversity,

which might be, at least partially, a consequence of the low

resolution of the regional soil maps from which our soil fertility/

quality index was derived. Nevertheless, our results are consistent

with those of Tuomisto et al. (2003), who found no correlation

between plant species richness and soil characteristics, such as

texture or cation content, when data were analysed at fine-grained

scales.

In our study, within-site heterogeneity was positively related

to α tree diversity (Table 3), but it accounted for a very small

proportion of the variation, which might be because the effect of

environmental heterogeneity is highly scale-dependent (Phillips

et al., 2003; Seto et al., 2004). At large spatial scales, the presence

of environmental or resource heterogeneity can create high niche

diversity (e.g. Pollock et al., 1998; Gould, 2000; Pausas et al.,

2003); at the local scale, those factors might be secondary in

importance to resources and conditions (Pausas & Austin, 2001).

Canopy (a surrogate measure of human disturbance) and slope

were positively correlated with α tree diversity. Canopy might

indicate a buffering effect of the surrounding forest on tree

diversity through a reduction in edge effects. Other human

disturbance-related variables were excluded from the final

model; yet, they did not provide a direct measure of the type and

intensity of human impact (e.g. number of stumps, logs). The

relationship between α tree diversity and slope might be due

to the lower accessibility of sloped areas and therefore less inten-

sive human disturbance.

The reduction in spatial autocorrelation in the residuals com-

pared to the raw diversity data (Fig. 2) reflected the collinearity

of some of the environmental variables, particularly climatic

variables, and space (Currie et al., 1999). Diversity measurements

are based on the relative abundance of species; therefore, local,

non-spatially structured biotic factors, such as interspecific com-

petition, might account for some of the unexplained variability in

α tree diversity.

Patterns of floristic similarity

In the Highlands of Chiapas, similarity in tree composition was

most strongly correlated with climatic variables and NDVI.

Given the correlations between mean annual precipitation and

temperature and elevation, and the spatially structured compo-

nent of these variables, it is not surprising that both topographical

features and geographical distance were also highly correlated

with similarity in tree composition. Tuomisto et al. (2003)

showed that reflectance patterns in satellite images could be used

to predict landscape-scale patterns in Amazonian rain forests,

which was not completely true in the Highlands of Chiapas. In

our study area, there were pronounced altitudinal and climatic

gradients and different vegetation types could be recognized

(Cayuela et al., 2006a); thus, compared to climatic variation,

spectral variation in the satellite images was a poor predictor of

floristic differences at the landscape scale.

Identifying priority areas for conservation

Mexico is a megadiverse country, but it has high rates of deforesta-

tion and ecological impoverishment (CONABIO, 1999). In

recent decades, the Highlands of Chiapas have experienced one

of the most rapid rates of deforestation in the world — average

annual rates of 2–5% (Ochoa-Gaona & González-Espinosa, 2000;

Cayuela et al., 2006b) — which poses a severe threat to the con-

servation of forest habitats and a risk to local human welfare

(Costanza et al., 1997). Mapping of α and β diversity can con-

tribute to the conservation of natural resources by helping to

identify species-rich hotspots and areas that include as many of

the species as possible (Myers, 1990; Gentry, 1992; Araújo, 1999;

Rey Benayas & de la Montaña, 2004). Further research should

be directed toward identifying patterns of species endemicity

(Gentry, 1992) and rarity (Williams et al., 1996; Rey Benayas
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et al., 1999; Rey Benayas & de la Montaña, 2004) because they are

largely independent of patterns of α diversity.

Our model approximates the spatial configuration of α and β
tree diversity in south-eastern Mexico. The predictions of floristic

spatial patterns indicated that there are three main floristic

regions (Fig. 5a) that correspond to major climatic trends. In the

north-east, there is abundant precipitation and a mild winter

season (group A); in the central region, there is a cold and dry

winter season (group E); and, in the south-west, there is a dry

and warm winter season (Group B). In the Highlands of Chiapas,

biodiversity hotspots chiefly occur in ridge-top montane forests

in the central and northern ranges, and in the transitional forests

that lead towards the lower depression in the south-western

range of the study area (Fig. 5b). In general, our study provides

a first step toward identifying sites that maximize tree diversity.

The prioritization of areas of high α diversity within each floristic

region identified the location of tree diversity hotspots across the

study area (Fig. 5c). Given the accelerated pace of habitat loss, at

least a small portion of the priority areas we have identified

should be reserved for the preservation of the original vegetation.

Unfortunately, no environmental or conservation policy is currently

being implemented in the region.

In conclusion, we found that: (1) climatic variation is a good

predictor of α and β tree diversity at the landscape scale;

(2) NDVI is a good descriptor of α tree diversity, but not of β
diversity in the study area; and (3) both α and β tree diversity

show different spatial patterns and therefore both are needed

for effective conservation. Studies like the one that we have

presented here will help to promote regional and local conserva-

tion strategies.
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