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Abstract

Background: Developing countries in South Asia, such as Bangladesh, bear a disproportionate burden of diarrhoeal

diseases such as Cholera, Typhoid and Paratyphoid. These seem to be aggravated by a number of social and

environmental factors such as lack of access to safe drinking water, overcrowdedness and poor hygiene brought

about by poverty. Some socioeconomic data can be obtained from census data whilst others are more difficult to

elucidate. This study considers a range of both census data and spatial data from other sources, including remote

sensing, as potential predictors of typhoid risk. Typhoid data are aggregated from hospital admission records for

the period from 2005 to 2009. The spatial and statistical structures of the data are analysed and Principal Axis

Factoring is used to reduce the degree of co-linearity in the data. The resulting factors are combined into a Quality

of Life index, which in turn is used in a regression model of typhoid occurrence and risk.

Results: The three Principal Factors used together explain 87% of the variance in the initial candidate predictors,

which eminently qualifies them for use as a set of uncorrelated explanatory variables in a linear regression model.

Initial regression result using Ordinary Least Squares (OLS) were disappointing, this was explainable by analysis of

the spatial autocorrelation inherent in the Principal factors. The use of Geographically Weighted Regression caused

a considerable increase in the predictive power of regressions based on these factors. The best prediction,

determined by analysis of the Akaike Information Criterion (AIC) was found when the three factors were combined

into a quality of life index, using a method previously published by others, and had a coefficient of determination

of 73%.

Conclusions: The typhoid occurrence/risk prediction equation was used to develop the first risk map showing

areas of Dhaka Metropolitan Area whose inhabitants are at greater or lesser risk of typhoid infection. This, coupled

with seasonal information on typhoid incidence also reported in this paper, has the potential to advise public

health professionals on developing prevention strategies such as targeted vaccination.

Introduction
Typhoid fever, an illness caused by a bacterium of the genus

Salmonella, causes nearly 22 million infections and 200,000

deaths worldwide annually [1]. Salmonella infection in

humans can be categorised into two broad types, that

caused by low virulence serotypes of Salmonella enterica

which cause food poisoning, and that caused by the high

virulence serotypes Salmonella enterica typhi (S. typhi), that

causes typhoid, and a group of serovars, known as

S Paratyphi A, B and C, which cause Paratyphoid [2]. Al-

though typhoid infection is infrequent in developed world,

it remains a significant threat to the people of developing

countries. Regionally, South-central and Southeast Asia has

the highest number of cases (>100 per 100,000 people) and

fatality rates in the world [3]. A number of cultural, social

and environmental factors are associated with the occur-

rence of typhoid in different endemic settings of which

poor quality of life, inadequate provision of safe water and

sanitation are found to be the major causes [4-12].

Dhaka, one of the fastest growing megacities in the

world, is facing a number of health problems primarily
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due to rapid population explosion and increased an-

thropogenic activities. Because of a limited resource-

base, it is extremely difficult for local government to

ensure adequate public health infrastructure for its ever-

increasing population. As a result, water borne diseases

have become pervasive in recent times [13]. Diarrhoeal

disease, especially cholera and typhoid severely affects

the inhabitants of Dhaka [14], particularly those in mid-

dle and lower income groups [15]. Due to lack of regular

surveillance, an exact estimate of the number of typhoid

cases is not possible. However, a few population-based

studies have demonstrated that typhoid is a serious pub-

lic health concern for Dhaka [15-17]. For example,

Brook et al. [17] estimated that the overall incidence of

typhoid was 3.9 per 1000 persons, disproportionately af-

fecting children [15,16,18]. These studies demonstrate

that the perceived burden of typhoid disease could be

higher than expected. Contaminated water and food are

the common means of transmission [15,16,19] while

individual hygiene and poor quality of life are also ac-

countable for typhoid prevalence [18].

The concept of quality of the life (QOL) has recently

gained importance for various reasons, including under-

standing the quality of urban environment [20], as-

sessing quality of urban life [21-23], ascertaining people’s

satisfaction about their living environment [24,25],

evaluating the effectiveness of medical treatments [26]

and rehabilitation efforts [27]. QOL is a multidisciplinary

construct but is used in the field of public health [28-30]

and other areas such as behavioural medicine, political

science, psychology, policy making and the planning and

management of cities [31,32]. A detailed review of this

concept and of its application in different disciplines can

be found elsewhere [33,34]. Incorporation of QOL into

health research for instance, can provide a number of

benefits such as identifying individuals at risk [28] and

understanding the constraints of existing health services,

thereby allowing improvements in the quality of health

services [35]. Historically, micro level data (e.g., house-

hold) were used to derive QOL for a given area. At

present, macro level studies have become possible be-

cause of the capabilities of a spatial information system

that allows integration of data from many sources. Using

an integrated database together with spatial and statis-

tical techniques, it is now feasible to map the spatial

distribution of different aspects of QOL (e.g. environ-

mental, economical, demographic etc.). The outcome

from these indicators can subsequently be combined to

develop a synthetic QOL [21], urban QOL [22], or envir-

onmental quality [20,36]. In addition, neighbourhood

quality, a similar type of concept, can also be developed

from spatial databases to determine the factors influen-

cing disease incidence [37], and perhaps as an important

indicator to identify humans at risk.

Although a generally accepted definition of QOL is

not available [33], and it is beyond the scope of this

study, a reasonable assumption is that the occurrence of

a disease (e.g. typhoid) is the outcome of the quality of

socio-environmental factors, the well being or ill being

of people and the environment in which they live.

Urbanization for instance, is a complex phenomenon and

closely linked with the scientific and technological aspects

of society, which in turn affects all facets of life and envir-

onment [24]. Urban growth, fuelled by population growth

and economic development, has two opposing facets. On

the one hand, megacities act as engines of economic and

social improvement for countries [38], but on the other,

improper urbanization directly or indirectly affects the

transmission and distribution of disease [39,40]. In addition,

rapid urbanization is known to alter the socio-cultural prac-

tices of people which in turn have a substantial effect on

the prevalence of diseases such as typhoid [2].

As Dhaka is projected to be third largest megacity in the

world by 2020 [41], an increase in poverty coupled with

an increase in environmental pollution could lead to epi-

demics of water borne and vector borne diseases in the

coming years. For example, unplanned urbanization with

little provision of adequate public health infrastructures in

Dhaka is already putting hundreds and thousands at risk

of gastrointestinal and febrile illness, such as typhoid [14].

Current literature on typhoid infection in Dhaka is based

on small populations and conducted in local slums and

thus cannot be generalized to the entire metropolitan

population [42]. Therefore, updated data are essential to

develop effective prevention systems such as vaccination

program [43] and to identify members of the population

at risk, for public health interventions. Furthermore, a

deeper understanding of socio-environmental factors as-

sociated with typhoid illness could greatly assist in

targeting disease control efforts.

Geographic Information Science (GIS) has become an

important tool in understanding the distribution of dis-

eases over space, and such systems have contributed

markedly to spatial epidemiological research [44]. In

addition, information from earth observing satellites is a

powerful data source to complement disease investiga-

tion. Many studies have examined vegetation indices,

land surface temperature, land use/cover and neigh-

bourhood quality within a GIS to correlate with disease

occurrence across the world [37,39,45-49]. Since GIS al-

lows integration of diverse data through geo-coding,

causation of disease can be spatially investigated and

the output could be used to develop predictive models

[44,50]. GIS and spatial statistics have been applied pre-

viously to identify typhoid spatial clustering, risk areas

and causative factors in the USA and in India [8,51].

These studies demonstrated that spatial techniques are

not only powerful for identifying areas and populations
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at risk but also useful as a guide to health officials for

informed decision making.

Significance

There has been very little work on studying typhoid in-

fection from a spatial standpoint in Bangladesh. This

study intends to fulfil the gap by examining the spatial

relationships between typhoid and socio-environmental

factors derived from satellite remote sensing and census

geography in Dhaka Metropolitan Area of Bangladesh.

Degrees of health risk will also be estimated by creating

a predictable risk model based on the determined factors

in spatial analysis.

The techniques used in this study bringing together

socio-economic and environmental variables into a

Quality of Life Index, capable of application in a wide

range of other locations. This study was carried out in

the context of an emerging megacity, a class of urban

settlement defined by the UN [52] as having more than

10 million inhabitants. Currently, 9.9% of the world

urban population lives in 23 megacities which is pro-

jected to increase to 37 in 2025 when they are expected

to accommodate 13.6% of the world urban population

[53]. Further estimates suggest that the number of

people living in megacities has increase almost 10 fold in

the past 40 years, from 39.5 million in 1970 to 359.4 mil-

lion in 2011, and could double again by 2025 [53]. The

largest increase in urban population is expected to be

concentrated in Asia and Africa [54]. These emerging

megacities in the developing world share many of the

problems that Dhaka faces, and methods developed in

this environment will be readily transported.

Methods
Study area

The study area was Dhaka Metropolitan Area (herein-

after, DMA) which is in the area of the Dhaka Metropol-

itan Development Plan (DMDP). The DMA comprises

three municipalities, Dhaka City Corporation (DCC), the

municipalities of Savar and Tongi, and many unions.

DMA is located between 23.61° N and 90.22° E and

23.97° N and 90.59° E, and has an area of 878 km2

(Figure 1). Based on the 2001 census, the total popula-

tion of this area was more than 8 million with an aver-

age literacy rate of 65% [55]. Topographically, the area is

flat with a surface elevation ranging from 1 to 16 meters.

The study area is surrounded by five major river sys-

tems, namely the Buriganga, Turag, Tongi, Lakhya and

the Balu rivers, which flow to the south, west, north,

east and northeast, respectively. These rivers are primar-

ily fed by local rainfall but they also receive water

from distributaries of the considerably larger Ganges,

Brahmaputra and Meghna rivers. DMA has a humid

sub-tropical monsoon climate and receives approxi-

mately 2000 mm of rainfall annually, more than 80%

of which falls during the monsoon, between July and

October. Most of the inhabitants in the three municipal

areas have access to piped water but outside of these

municipalities, drinking water sources may vary (e.g.

pond, well, river etc.).

Typhoid and socioeconomic data

Since no surveillance data on typhoid is available in

Dhaka, hospital recorded cases were considered in this

study. Multi-year (from 2005 to 2009) typhoid infection

data were collected from 11 major health facilities lo-

cated in the study area (Figure 1). Initially, a standard-

ized form was created to document each case's residence

address, demographic and clinical data, date of admis-

sion/discharge etc. Using the record room of each hos-

pital, a 30-member data collection team documented the

reported cases of typhoid from April to December of

2009. Therefore, this database represents only hospital-

ized cases and no outpatients were included. All the

cases collected refer to diagnosed cases of typhoid at the

respective hospital. To avoid data duplication, we first

matched data using all the demographic variables and

then cross-checked the data against the corresponding

date/year in the log books of each hospital. If a case sat-

isfies both of these records, it was then included in the

database. We excluded cases residing outside of DMA

along with the duplicates (n= 1231). This resulted in a

total of 4355 cases pertaining to study area. To minimise

error in case mapping, we also cross-referenced each in-

dividual case's place of residence with the 2001 census

district names by Bangladesh Bureau of Statistics (BBS).

When place of residence inconsistencies were found, we

used the smallest mapping unit (mahalla and mauza)

since people in the study area are more familiar with

local names than administrative units.

The population and socio-economic data were

obtained from Bangladesh Bureau of Statistics commu-

nity series [55] that represents 2001 census information.

Since the data was not available digitally, all the variables

of interest were first encoded in a spreadsheet and then

linked with the appropriate geographic unit by using a

series of unique numerical identifiers.

Ethics statement

All case data collection was carried out with the permis-

sion of the Director General of Health, Bangladesh,

granted on 10th March 2009. Data collection was carried

out in accordance with the standards of the University

of Dhaka ethics committee under a permission letter

dated 29th March 2009. Data collection took place after
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this date. Data were anonymised and aggregated at the

level of the relevant mapping unit (mahalla and mauza).

Geographic and remote sensing data

This study utilises the census tract boundaries of DMA

as the mapping units since the use of smaller spatial

units has been shown to provide valuable information

on the distribution of disease over space [56]. In the ab-

sence of up-to-date digital boundary data, we have gen-

erated a current census tract boundary shape file using

various sources, including the small area atlas from BBS,

database from Bangladesh Space Research and Remote

Sensing Organization (SPARRSO), the Centre for

Environmental and Geographic Information Services

(CEGIS) database followed by a number of field visits.

Whilst this database was being created, it was found that

25 new census tracts used in the 2001 census, were not

identified in the existing spatial data. To identify these,

the 1991 census tracts names were first matched with

the 2001 census tracts names using the community series

of BBS. A hard copy map from BBS, which highlighted the

road networks that were used to split the original (1991)

census tracts to create new census tracts for 2001 census,

was used to digitise the tracts created between decennial

censuses. Field visits using a high resolution mobile map-

ping GPS (Trimble Nomad 800GXE) were used to confirm

and correct the road network locations. The final census

boundary layer included a total of 1212 polygons of which

441 entities are rural (known asmauza/village) and 771 en-

tities were urban (known as mahalla/community). Using

Figure 1 The study area.
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ArcGIS software (v. 10) [57] we have aggregated all the ty-

phoid cases within each census tract feature. Housing data

were obtained from the detailed area plan (DAP) of RAJUK

(the capital development authority) and land value data

were collected from the respective sub-registry offices.

Apart from the census tract boundaries, the study also

utilized a number of remote sensing images to derive

spatial information pertinent to the study. A total of ten

Landsat-5 Thematic Mapper (TM) scenes, (five adjacent

pairs) covering the study area, between 2005 and 2009

were acquired and used. Pre-processing of TM data in-

cluded georeferencing, mosaicing, subsetting and atmos-

pheric correction [58]. A high spatial resolution GeoEye

image from 2010 was also used for various purposes. It

was primarily used to develop a slum database and also

served to validate land use/cover data. Slum data poly-

gons for the study area were generated through heads-

up digitizing supported by field verification in 2010.

Initially, 10,159 slum clusters were identified however

after field validation, the slum data were consolidated to

9570 clusters distributed across the study area.

The series of Landsat TM data were used to derive

land surface temperature (LST), normalized difference

vegetation index (NDVI), and a land use/cover map of

the study area for the year 2000 was created from a sep-

arate image. Only the reflective bands of Landsat TM

were used to extract land use/cover of the study area.

Using a modified Anderson Level I Scheme [59], land

use has been divided into seven categories which are

urban, rural settlements, water bodies, wetlands, culti-

vated land, forest cover and bare land. A hybrid ap-

proach (unsupervised-supervised) was used to classify

Landsat TM into discrete land use categories [60]. After

validation using the high resolution image, the urban

category was extracted as a separate dataset. NDVI

was derived by using the standard formula (NDVI =

(TM3-TM4)/(TM3+TM4)) [61].

LST, a biophysical parameter, for the DMA was derived

using the thermal infrared band (TIR) of Landsat TM.

Firstly, the digital number (DN) of TIR was converted to

spectral radiance [62]. Next, the spectral radiance was

converted to blackbody temperature [63]. Using the

method suggested by Nichol [64], the temperature data

were corrected for surface emissivity. Finally, the images

were converted to Celsius units.

Since the remotely sensed, socioeconomic and geo-

graphic boundary data had different spatial resolutions

and format, they needed to be integrated. Mean NDVI,

mean LST, percent urban area, median housing value,

housing density and percent slum were calculated using

the zonal function of a GIS and aggregated with the cen-

sus boundary polygons. Total population, per capita

land, total literacy rate, percent unemployed, age-specific

population, male literacy, female literacy, sources of

drinking water and sanitary information were extracted

from the census of 2001, and population density was

then estimated using the total population and total area

for each census district. Due to the skewed distribution

of the population density and proportion of slum area

datasets, they were log-transformed. Per- capita land and

the proportion of each tract occupied by slums were

used as surrogates for per capita income since that data

was not available in the census. A total of 15 variables

related to social, economic, demographic and environ-

mental conditions were defined for analysis as potential

predictor variables. Based on the assumption that the ty-

phoid case data were independent between the years and

that the geographic variation in the covariates had not

changed significantly between years, multiple years of ty-

phoid data were aggregated into one dataset. Table 1

shows the 15 potential predictor variables and the way

in which they were derived or computed.

Statistical and geographic analyses

We used geographic information science tools to reveal

the spatial pattern of typhoid occurrences in DMA. The

number of cases and the population statistics were used to

calculate typhoid incidence (expressed as cases per

100,000 persons per year) for each census tract. Temporal

patterns of typhoid cases were also investigated and an

Table 1 Demographic, environmental and socioeconomic

variables for each census tract

Variable Derivation

Total population From 2001 census records

Population density Total population / census tract area

Household size
(>5)

Number of households in tract with >5
occupants

NVDI Mean of NDVI from five mosaiced image
pairs

Temperature Mean of LST from five mosaiced image pairs

Percent urban From Land use/cover classification of 2000
image

Housing density From RAJUK Detailed Area Plan and tract
areas

Per capita land From 2001 census records and tract area

Total literacy rate As a percentage from 2001 census records

Percent unemployed As a percentage from 2001 census records

Percent slum area From digitised GeoEye image and tract area

Median housing value Weighted analysis of residential data
and census tracts

Households
without safe water

As a percentage from 2001 census records

Households that
own agricultural land

As a percentage from 2001 census records

Households without
sanitation

As a percentage from 2001 census records
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epidemic curve was prepared based on the annual inci-

dence of typhoid divided by total population for each year

multiplied by 100,000 persons, and monthly cases of

typhoid infection during the period of 2005–2009. The

SQL query tools in ArcGIS were used to determine which

census tracts (mahalla and mauza) had typhoid cases

reported in them and to determine the most affected

census tracts in each year.

To determine the socio-environmental factors associ-

ated with typhoid occurrence in DMA, a range of statis-

tical techniques were employed in this study. First of all,

a matrix of pair-wise Pearson's correlation coefficients

was computed to determine the interrelationship be-

tween the potential predictor variables. Since high cor-

relations existed between the variables, this suggested

that regression techniques using all potential variables

were not ideal for the development of predictive models

using this dataset. To overcome this problem, we

employed the Exploratory Factor Analysis tools in the

SPSS software suite to reduce data dimensions and re-

dundancy. In this process, all 15 variables are initially

considered and the suitability of individual variables

and variable combinations to be included in the final set

of factors is tested using the Kaiser-Meyer-Olkin

(KMO) measure and Bartlett's test of sphericity. The

KMO measure of Sampling Adequacy is on a scale of

0–1 and should be greater than 0.50 while the level of

statistical significance (p-value) for Bartlett's Test

of Sphericity should be less than 0.1 [65]. On the basis

of these tests, a suite of ten variables was selected to

proceed to the next stage of the factor analysis. This

next stage uses Principal Axis Factoring to find a set of

new axes in rotated multivariate space which are

uncorrelated. From these axes a new set of factors are

extracted that together explain the majority of the vari-

ance of the input datasets. As a general rule only those

factors in the rotated multivariate space that have eigen-

values greater than 1 (the variance of individual input

variables) should be used. The procedure is somewhat

iterative in that at this stage the communality of the in-

put variables needs to be examined. The communality

of a variable is the proportion of its variance that is

explained by the new factors. Only variables exhibiting

communalities >.50 should be included.

In our analysis, the final model using 10 variables

resulted in a KMO of 0.785 and a Bartlett’s sphericity

significance of 0.000. Table 2 shows the correlation

matrix for the 10 variables used. Using the rotated factor

loadings, the three principal factors (those whose eigen-

values were greater than 1) were labelled as environmen-

tal, economic and crowdedness. A QOL index was then

calculated for each census tract using the method of Li

and Weng [21], shown in Equation 1, where n is the

number of factors used, Fi is the factor score for the

census tract, and Wi is the proportion of variance

explained by factor.

QOL ¼
Xn

1
F iW i ð1Þ

The spatial relationships between typhoid and socio-

environmental variables in terms of three factors and

QOL were then tested separately. As the intention was to

develop a spatial predictive risk model of typhoid in

DMA, the spatial statistics tools embedded in ArcGIS

were used to model the spatial relationships. The Ordinary

Least Square (OLS) approach is a global regression model

and can be used to determine whether the explanatory

variables of interest are free from multicollinearity, coeffi-

cients are statistically significant and residuals are not

spatially autocorrelated [66,67]. OLS examines variables

globally and can be misleading when describing phenom-

ena that vary over space [68]. In contrast, geographically

weighted regression (GWR) extends the conventional re-

gression model by incorporating spatial information such

as coordinates in the data [69]. It is a measure of local ra-

ther than global parameter estimates [70], and effective in

determining the underlying local factors for particular

spatial patterns. Incorporation of locational information in

the GWR model can be expressed as Equation 2 which

shows how the OLS model converts to GWR:

y ¼ β0 þ β1x1 þ ε

becomes

y m;nð Þ ¼ β0 m;nð Þ þ β1 m;nð Þx1 þ ε m;nð Þ

ð2Þ

where, y is the dependent variable, x is the independent

variable, β0 is the intercept, β1 is the regression coefficient,

ε is the error term and m, n are the coordinates.

We have used typhoid incidence data as the dependent

variable. Three factors extracted from PCA and the synthetic

QOL were used as explanatory variables to assess the spatial

influences among neighbourhoods [71] using both OLS and

GWR models. Since the spatial configuration of features be-

ing analysed was non-homogeneous [72], we used an adap-

tive kernel to solve each regression analysis. In order to

understand the model fit and compare the results of the glo-

bal model with local models [69], the GWR tool was set to

determine bandwidth (the number of local observations in

each local regression) by minimising the locally corrected

Akaike Information Criterion (AICc). Local collinearity, in-

dependency and normality of residuals of GWR were further

evaluated by inspection of the condition number of the de-

sign matrices of the regressions. The largest condition num-

ber achieved was 21, smaller than the test value of 30,

showed that our model was free from statistical concerns.

Predicted values estimated by GWR model show the

spatial distribution of the prevalence of typhoid in

DMA. Finally, the population data of each census tract
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was overlaid with the prevalence map to determine hu-

man impact of this prevalence.

Results
Figure 2 shows the epidemic patterns of typhoid in

DMA during the study period, 2005–2009. The annual

incidence rate varied from 8 (in 2006) to 11 (in 2007/8)

per 100,000 people and the average number of typhoid

occurrences in each year was 871. Examination of the

monthly distribution of typhoid reveals that the highest

cases have fluctuated over the years, July-October being

the highest, followed by April-June (Figure 2). Distribu-

tion of typhoid cases according to census tract also var-

ied over the years with a maximum in 2008 (Table 3).

The highest number of census tracts were infected in

the year of 2008 (453) and the maximum number of

reported typhoid cases in a neighbourhood was found to

be 32 in 2006 (Table 3). Figure 3 shows the spatial pat-

tern of typhoid incidences in DMA. This shows that the

spatial distribution of typhoid in the study area is not

uniform but on closer inspection it suggests that most of

the typhoid cases occurred in the proximity of large

water bodies such as rivers and lakes.

Analysis of the correlation matrix (Table 2) revealed that

the average NDVI in each polygon was negatively corre-

lated with temperature (r = −0.797), with population and

housing density (r = −0.549 and −0.590) but positively cor-

related with percent urban area (r = 0.830) and with eco-

nomic variables such as median housing value (r = 0.498)

and total literacy rate (r = 0.480). Likewise, the percentage

of urban area in each tract was positively correlated with

housing value (r = 0.690), literacy rate (r = 0.618) and hous-

ing density (r = 0.561) but had strong negative correlation

with NDVI (r= −0.830), as buildings replace green space.

Among the socioeconomic variables, total literacy rate was

positively correlated with housing value (r = 0.480) and per

capita land (r = 0.307) but negatively correlated with per-

cent slum (r = −0.329), indicating that education attain-

ment is higher in well-off people. On the other hand,

population density was significantly correlated with housing

density (r = 0.857), implying a degree of overcrowdedness

in DMA, which should have substantial impact on the dis-

tribution of typhoid. Since these variables depicted high

correlation, Principal Axis Factoring was carried out in

order to better represent the relationships established

among socioeconomic, demographic and environmental

factors. Based on the outcome of the rotated factor solu-

tions, Table 4 shows that three factors accounted for

83.24% of the total variance. The first factor explained

46.07%, the second factor 25.55% while the third factor

11.60% of the variance of the input variables. In factor 1,

vegetation presents the highest positive loading (loading

(L): 0.891) while strong negative loadings on percentage of

urban (L: -0.887), temperature (L: -0.782) and population

density (L: -0.222), indicate that Factor 1 has clearly charac-

terized positive environmental conditions (factor scores

ranged between −2.10 and 3.23). Factor 2 presents strong

positive loadings on five socioeconomic variables, including

median housing value (L: 0.770), per capita land (L: 0.936),

percent of unemployment (L: 0.925), total literacy rate

(L: 0.743) and percent of slums (L: 0.753). Hence, Factor 2

can be considered as representing positive welfare or eco-

nomic condition (scores ranged from −0.80 to 2.22). Factor

3 showed strongest loadings on two variables e.g. popula-

tion density (L: 0.921) and housing density (L: 0.903) with

negative loadings (L:-0.462) for vegetation, since crowded

areas are associated with the lowest amounts of green

space. Factor 3 scored between −1.37 and 7.89, with higher

scores characterizing tracts where very many people live in

a small space. As a result, factor 3 was regarded as "crowd-

edness", a negative factor. Following the method of Li and

Weng [21], Equation 1 was rewritten so that the QOL for

Table 2 Correlation matrix between variables

TEMP NDVI PURB MHV TLR PCL UNEMP PSLUM PDEN HDEN

TEMP 1.000

NDVI −0.797** 1.000

PURB 0.830** −0.830* 1.000

MHV −0.536** 0.498** 0.690** 1.000

TLR −0.461** 0.480* 0.618** 0.461** 1.000

PCL 0.096** 0.047 −0.153** 0.307** 0.089** 1.000

UNEMP 0.167** −0.123* 0.220** −0.358** −0.151** −0.905** 1.000

PSLUM 0.106** −0.050 0.120** −0.038 −0.329** −0.536** −0.532** 1.000

PDEN 0.476** −0.549* 0.492** −0.238** −0.284** −0.073* 0.121** 0.062* 1.000

HDEN 0.562** −0.590** 0.561** −0.278** −0.311** −0.076** 0.117** −0.049 0.857** 1.000

** Statistically significant at 99% confidence level (2-tailed); * statistically significant at 95% confidence level (2-tailed); TEMP: temperature; NDVI: vegetation; PURB:

percent urban land; MHV: median house value; TLR: total literacy rate; PCL: per capita land; UNEMP: percent unemployed; PSLUM: percent slum area; PDEN:

population density; HDEN: housing density.
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each tract was derived using Equation 3, below, where F1,

F2 etc. are the factor scores for the individual tracts:

QOL ¼ 0:4607xF1 þ 0:2555xF2 � 0:1160xF3 ð3Þ

The spatial distribution of QOL scores is presented in

Figure 4 and ranges from −0.99 to 3.15. The higher the

score the better the quality of life (QOL) is for a particular

census tracts. As expected, tract with higher green vegeta-

tion and lower population density showed better QOL.

The comparison of the outcomes of global (e.g. OLS)

and local (e.g. GWR) models indicated that GWR out-

performs the OLS model in terms of AICc and coeffi-

cient of determination (r2). The relationship between

explanatory and dependent variable were tested inde-

pendently and it was found that QOL alone performed

much better than each of the individual factors as an in-

dependent variable. AICc values from the OLS model

for the independent variables were 8087.46 for factor 1,

7999.20 for factor 2, 8132.79 for factor 3 and 8132.20 for

QOL. In contrast, AICc values by GWR were 7590.70,

7597.18, 7671.90 and 7190.24 respectively; showing that

for this regression method QOL outperformed the indi-

vidual factors as a predictor. The coefficient of deter-

mination (r2), also showed tremendous improvement

when GWR was used. For example, the OLS derived r2

Table 3 Distribution of typhoid cases by census tract,

2005-2009

Year Total reported
cases

Number of census
tract infected

Highest number of
cases in a census tract

2005 863 410 25

2006 678 358 32

2007 977 408 31

2008 986 453 28

2009 851 410 14

Total 4355 755 130

Figure 2 Temporal distribution of typhoid disease, 2005–2009. a) Annual incidence rates. b) Monthly cases.
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for factor 1 was 0.037 which increased to 0.633 when

using GWR, demonstrating a substantial improvement in

the fit of the model to the data. The low r2 using OLS was

due to the existence of spatial autocorrelation which was

understood through the assessment of Moran's I statistics.

For instance, Moran's I of standard residuals of the OLS

results for factor 1, 2, 3 and QOL were 0.341, 0.351, 0.388

and 0.382 respectively, indicating that a local model was

needed to solve the regression equation. Full details of the

relative regression quality measures are shown in Table 5.

Since QOL showed the highest correlation with the inci-

dence of typhoid (r2 =0.73), predicted values from a GWR

model using QOL as the independent variable were used

to develop a typhoid prevalence map (Figure 5). We have

expressed this as risk although the quantitative units are

arbitrary and negative risk does not imply protection. Risk

was categorised for further analysis into High, Moderate

and Low risk (Table 6). Overlaying the predictive model

with population data demonstrated that 9.16% population

of DMA are at high risk, 44.01% people are at moderate

risk and 46.83% are at low risk of typhoid.

Discussion
Using five years of reported typhoid data with spatial ana-

lytical techniques, this study is the first to explore the rela-

tionships between socio-environmental variables and

typhoid occurrences in DMA. In the absence of regular

surveillance, findings from this study in DMA not only

provide insight about spatial-temporal patterns of typhoid

but also suggested the socio-environmental factors associ-

ated with the disease.

Figure 3 Spatial distributions of typhoid incidence in DMA.
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Typhoid disease is very common in South Asia owing to

the fact that this is one of the most impoverished regions

of the world where poverty is consistently rising and a lar-

ger portion of population is lacking potable water and safe

sanitation. A temporal epidemic curve reveals that yearly

typhoid incidence rate was 8–11 persons per 100,000

people with the peak incidence rate in the period under

consideration occurring in 2007/8. Monthly records dem-

onstrated that almost half of the reported cases had oc-

curred during the monsoon (July-October), indicating a

distinct seasonal pattern. This finding supports an earlier

clinical-based study conducted in the same area [15]. En-

vironmental factors are known to have impact on the dis-

tribution and transmission of typhoid in other endemic

settings. Rainfall for instance, substantially affected the oc-

currence of typhoid by increasing the faecal contamination

in the water supply in Pakistan [73], and the transmission

of typhoid bacterium is to some extent influenced by rain-

fall, particularly in low lying areas where people rely on

surface water for their daily needs, including drinking and

domestic purposes [9]. When natural runoff drains and

transports rubbish, including human wastes to the sur-

rounding water bodies during the monsoon, surface water

becomes heavily contaminated, resulting in a higher num-

ber of cases of typhoid [8]. Since water logging and

flooding become pervasive during the monsoon in DMA,

contamination of surface water [74] and tube wells [75] by

flooding are likely to result in a peak incidence at that

time. Furthermore, flooding, either natural or caused by

human modification of the land surface could lead to the

occurrence of typhoid [11], particularly in many wet loca-

tions like DMA. Not all the census tracts in the study area

are equally susceptible to typhoid infection; generally areas

with higher population density and inadequate provision

of health infrastructure suffer from higher cases of typhoid

infection, corroborating the results of an earlier study by

Naheed et al. [16].

The spatial pattern of typhoid incidence indicated signifi-

cant variation of the disease distribution in DMA (Figure 3).

A close visual inspection of the incidence map suggested

that census districts closer to large water bodies (e.g. river

networks and lakes) are highly vulnerable to elevated inci-

dence rate. This finding can be explained by the fact that

both surface and groundwater water quality get severely

degraded due to increased anthropogenic activities in

DMA, which may have significant impact on the transmis-

sion and distribution of typhoid. In addition, low income

people in the study area use surface water for cooking,

bathing and other purposes. Consequently, a reasonable

assumption is that contamination of these water bodies

could directly influence the disease dynamics in the com-

munities which is in agreement with a study conducted in

Indonesia [12]. As Salmonella bacteria can survive in water

for days [76], contaminated surface water such as sewage,

freshwater and groundwater could act as etiological agents

of typhoid [77]. It was generally observed that communities

living in the proximity of the rivers Buriganga, Turag, and

Balu had an elevated risk of typhoid compared with com-

munities in other locations. These three rivers have found

to have extreme pollution loads throughout the year in

terms of coliform counts and other physio-chemical pa-

rameters [78-80], hence the probability of increasing of the

disease burden is warranted. Also, risk factors investiga-

tions for typhoid have substantiated that all sources of

drinking water, including piped water is highly contami-

nated in Dhaka [15,19]. This accords with a study in

Tajikistan [81] where contamination of piped water was

found to have significant association with the occurrence

of typhoid. These studies indicated that contaminated sur-

face and piped water in DMA could amplify the likelihood

of water borne infection among people living in that area.

The transmission dynamics of typhoid in relation to water

quality therefore remains a very promising area to explore.

A number of environmental, socioeconomic and demo-

graphic variables were combined through Principal Axis

Factoring to classify each census tract according to three

principal factors (e.g. environmental, economic and crowd-

edness), and to use the resulting score for risk area identifi-

cation. The results demonstrated that QOL could serve as

an important indicator as it was able to explain 73% vari-

ance in the model as an independent factor. This finding is

in agreement with Khormi and Kumar [37] who found that

neighbourhood quality provided the highest coefficient of

determination in explaining the incidence of dengue dis-

ease in Saudi Arabia. Out of three factors extracted, factor

3 (e.g., so-called crowdedness index) had the highest coeffi-

cient of determination (r2=.63) followed by factor 2

Table 4 Factors loading and percentage of variance

explained by social and environmental factors

Components Variance explained Loading

Factor 1: Environmental 46.07%

Percent urban −0.887

Temperature −0.782

Vegetation 0.891

Factor 2: Economic 25.55%

Mean housing value 0.770

Total literacy rate 0.743

Per capita land 0.936

Percent unemployed 0.925

Percent slums 0.753

Factor 3: Crowdedness 11.60%

Population density 0.921

Housing density 0.903

Sum of the variance explained 83.24%
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(r2=.53) and factor 1 (r2=.60) based on individual GWR

analyses, implying that population density, large house-

holds size and housing density have substantial impact on

typhoid incidence. The study statistically substantiates the

concept that areas with low risk of typhoid have a low

mean population density (49069/km2), those with medium

risk had a medium mean population density (633387/km2)

while high risk areas had the highest mean population

density (67464/km2). Similarly, literacy rate, water sources,

unemployed population, percentage of slum area, sanitary

facilities were higher in low risk areas than that of medium

and high risk areas, illustrating the effect that socioeco-

nomic status, water sources and sanitary facilities have

on typhoid distribution in DMA [16]. Crowdedness is

regarded a sign of depressed socioeconomic conditions

that facilitate person to person transmission [8] by sharing

the same plate for food [11], cups and mugs for drinking,

by being in contact with the infected person [82] or by res-

iding in the same place [10]. In addition, lack of education

could put individuals at high risk as it is often related to

poverty, poor housing condition, inadequate provision of

safe sanitation and unemployment [8,12,18,83]. We have

also found that of the areas at high risk areas, 72.73%

Figure 4 Synthetic quality of life index (QOL) for DMA.

Table 5 Comparison of OLS and GWR results

Explanatory variable OLS GWR
r2 AICc r2 AICc

Factor 1 0.037 8087.46 0.606 7590.70

Factor 2 0.105 7999.20 0.532 7597.18

Factor 3 0.001 8132.79 0.633 7671.90

QOL 0.001 8132.20 0.731 7190.24
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had low QOL, 18.19% medium QOL and 9.08% presented

high QOL. Thus, it may be assumed that unplanned

urbanization, higher population density, lack of critical

urban infrastructures, particularly in DMA, have a consid-

erable impact on the transmission and distribution of

typhoid fever. While an advantage of the Principal Axis

Factoring is that it reduces the complexity of correlated

data and allows combining diverse data into fewer factors,

a potential problem however is that it could lead to the

loss of information through generalization [84] and a loss

of direct causal relationships to raw predictor variables.

Spatial relationships were determined through global

and local models, and the study recognized the efficacy

of the GWR model to provide useful information about

geographical heterogeneity. The GWR performed much

better because the global model assumes the relationship

between explanatory and dependent variables are con-

sistent, and provides an average state of the phenomena

being studied. The local model on the other hand, as-

sumes the relationships are non-stationary. Since AICc

is an effective way of comparing two models [85], the

Figure 5 Prediction map of risk of typhoid fever infection based on quality of life index (QOL).

Table 6 Cut off values for risk categories

Risk score Risk category

<4.62 Low risk

4.62 to 16.81 Moderate risk

16.81> High
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considerable difference in that measure implied an im-

portant improvement in the model fit [66]. The results

of r2 and AICc indicated GWR was a better model to

predict typhoid risk in DMA.

Spatial statistics is gaining renewed interest as a means

to attribute disease association and risk. Even though

GWR has long been used in various studies including pub-

lic health, crime and demography [86-89], there are some

limitations of the model. One of such problems is the

choice of appropriate kernel type and bandwidth to which

the model is sensitive [90]. Another notable problem is

that the non-linear terms cannot be added to GWR

models [69].

This study has a few limitations. First of all, the disease

data that were acquired from hospitals may have

underestimated or overestimated typhoid records. Because

the data were historical records and documented from the

record room of each hospital, we had no valid method to

ascertain repeated hospitalizations of an individual patient.

In addition, hospital-based surveillance may underesti-

mate actual population at risk because only severely sick

people tend to get admitted for treatment. Secondly, we

only consider 11 major health service providers, the ma-

jority of which were public hospitals. The study could be

improved by including data from private clinics where

most of the affluent people seek health services. On bal-

ance, we believe that we have an underestimate of the oc-

currence. We do not believe that this affects the validity of

our results since we have been able to develop a predictive

model using what is effectively a sample of unknown size

drawn from the true population of occurrences. Thirdly,

we also could not separate cases into typhoid and para-

typhoid groups. Isolation of these two types would allow

us to estimate the disease dynamics and identify the most

prevalent typhoid types in DMA. The etiology of the two

diseases is similar but the morbidity rates are not. Again

we believe this does not affect the validity of our results

since we are dealing with disease occurrence, not disease

outcome. Fourthly, a new method is needed to overcome

the problems associated with GWR such as mixed geo-

graphically weighted regression proposed by Mei et al.

[91]. Finally, water source and sanitation data of each cen-

sus tract could greatly improve future study since these

variables are known to have considerable impact on the

occurrence of typhoid.

Despite the limitations listed above, the major strength of

this study is the derivation of the first regional risk map of

typhoid infection which rigorously investigated a fine-scale

spatial distribution of typhoid and its socio-environmental

determinants. Moreover, the study determined that QOL

could be an important indicator in identifying populations

at risk of typhoid in a rapidly urbanizing megacity where

high quality data is lacking. Although vaccination is avail-

able to prevent typhoid infection, it cannot be an alternative

to sound environmental health infrastructures [92].

Furthermore, DMA is likely to encounter rapid urban

growth and more intense rainfall, driven by climatic change,

in the coming years. These changes may put more people

at risk of typhoid. Therefore, this study underscores the ne-

cessity of appropriate policies as well as critical public

health infrastructures to curb the future spread of water

borne diseases.

Conclusions
Spatial methods were utilized to explore the spatio-

temporal distribution of typhoid and associated socio-

environmental factors obtained from diverse sources.

Using census tracts as the spatial unit, the study examined

various socioeconomic, demographic and environmental

parameters to develop a quality of life index (QOL). De-

rived indices were analysed through ordinary least square

(OLS) and geographically weighted regression (GWR)

techniques, to account for local variations of the predic-

tors. It was found that QOL served better to complement

the understanding of phenomenon that had important

spatially varying relationships. The typhoid risk map de-

veloped in this study can guide public health officials to

develop an early warning system for the prevention and

control of water borne disease in DMA or elsewhere.
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