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Modelling vibro–acoustic response 
of lightweight square aluminium 
panel influenced by sound source 
locations for active control
Chukwuemeke William Isaac1*, Stanislaw Wrona2, Marek Pawelczyk2 & Hamid Reza Karimi3

This paper uses numerical approach to give insight into the structural–acoustic response of a 
lightweight square aluminium panel. It takes into consideration different locations of a primary sound 
source in an acoustic medium and how these locations influence the response of the structural panel. 
Finite element method as well as the first-order deformation theory are employed for constructing the 
numerical model. Experimental measurements of the mode shapes and velocity frequency response 
of the vibrating panel are used to validate the results of the finite element model. Furthermore, 
vibro-acoustic emission indexes such as sound transmission loss, sound pressure level and far-field 
directivity of sound pressure are obtained numerically. The results show that different locations of 
the primary sound source significantly influence the response of the structural panel to reduce noise. 
Sound source typically positioned close to the structural panel lowers the efficiency of the vibrating 
panel to reduce noise. Moreover, the sound distribution profiles at the radiated end of the vibrating 
panel for the different locations of the sound source are investigated. The study shows that the 
variation of the zones of quiet, vibro-acoustic emission parameters and sound distribution profiles 
obtained can provide vital information about the best positioning of structural source for both active 
vibration and noise control.

Lightweight structural panels such as shells and thin plates are increasingly becoming attractive for noise reduc-
tion/control particularly in the automotive, aerospace, marine and building industries. Recently, researchers have 
found these structural panels particularly convenient for use in active noise and vibration control. Apart from 
their relatively good vibro–acoustic response in low frequency noise reduction, their reduced weights make them 
handy and can easily be incorporated into the design of windows and household appliances such as the washing 
machines, refrigerators as well as many food processing devices. In practice, these structural panels encounter 
some unexpected working conditions due to the location where the primary source of noise emanates. Conse-
quently, the structural and acoustic responses of these panels to effectively reduce noise are compromised. It is, 
therefore, of utmost importance to investigate different locations of generated noise and how these noise source 
locations influence the response of the lightweight panel to control or/and reduce noise. A good understand-
ing of this investigation will provide researchers vital information of the correct placement of secondary sound 
sources utilized for noise cancellation during active vibration and noise control.

Secondary sources for active structural and acoustic control such as structural actuators or electrodynamic 
shakers and also sensors, microphones or other noise-cancellation devices have been placed on or around vibrat-
ing panels to cancel noise generated from primary sound sources. In recent years, different optimization methods 
have been carried out to find more effective ways to locate actuators and sensors on the vibrating structural1,2. 
Also, control sources3 and microphones4 in the acoustic field in line with the primary source, have been used 
to provide information about noise control results. However, a number of factors have contributed to the chal-
lenge of properly placing these secondary sources on or around the structural panel. The separation distance 
between secondary sources, number of secondary sources, distance of secondary sources to vibrating panel, to 
mention a few, are some factors contributing to the effectiveness of noise cancellation. These factors become more 
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pronounced when dealing with low frequency noise which are experienced during outdoor vehicular movements 
and from noise generated industrial machines.

For vibro-acoustic problems at low frequency regions, structural panels with reduced weight (i.e., thin-
walled structures) have the tendencies to produce low transmission loss due to mass law effect5. To address this 
challenge, various structural lightweight panels made from composites6, smart material7, functionally graded 
material8 as well as active metallic material9, have been improved and successfully used for active noise and vibra-
tion control. Authors have also demonstrated that the vibro-acoustic emission indices which include the sound 
transmission loss, radiated sound efficiency, sound power, far-field sound pressure, etc., are active indicators 
that reliably show how efficient structural panels respond to sound waves10. These panels admit incident sound 
waves, transmit these waves through their thicknesses and then radiate them at their radiating surface. Several 
parameters have also been identified to affect these emission indexes. For example, geometric parameters such 
as shell thickness11, finite or infinite dimensions of panels12 as well as boundary conditions (BC) of the vibrat-
ing structure13, have been widely investigated to understand their influences on their vibro-acoustic emission. 
Other parameters which are associated with the material properties (i.e., stiffness, Mach number, etc.)14,15 and 
structural properties16 have also been investigated.

Several analytical solutions have been developed to handle vibro-acoustic problems in noise reducing casing17 
and for problems involving structural–acoustic bounded and unbounded domains. However, numerical approxi-
mations, for example, the finite element method (FEM)18 has continued to be a more effective tool for modelling 
structural–acoustic problems. This method could be combined with other methods, for example, boundary ele-
ment method19, to give more robust solution especially for the coupled structural–acoustic interface. However, 
this unified method is still computationally burdensome. To this end, efforts are currently being put together to 
address the limitations of computational efficiency. Cui et al.20, combined both the edged-based smoothed FEM 
as well as the gradient-weighted FEM to obtain more reliable solution of structural–acoustic problems. Also, 
Song and Wolf21, developed a scale boundary FEM which was implemented by Lehman et al.22 and recently by 
Li et al.23 to solve both coupled bounded and unbounded vibro-acoustic problems.

On the investigation and analysis of vibro-acoustic problems performed by most of the authors mentioned 
above, a noise source located at a fixed point in the structural–acoustic region was used to produce the sound 
waves. Attention, however, was seldom given to the locations where the generated primary sound waves emanate. 
In the present study, the authors seek to find answers to how different locations of a noise generating loudspeaker, 
positioned inside a finite rigid casing, influences the vibro-acoustic response of a vibrating lightweight square 
aluminium panel. One of the challenges of active vibration and noise control is to obtain the best locations 
of the secondary sound source with respect to the primary sound wave distribution and spectrum. A good 
understanding of the different locations of the emanating sound waves, as described in this study, will help in 
effective positioning of actuators, sensors, microphones or other active noise cancellation device, on or around 
the vibrating panel. The study first uses finite element method with the shear deformation theory to solve the 
structural and acoustic responses of the bounded domain problems. Numerical results of various vibro-acoustic 
emission indexes such as the sound transmission loss (STL) , sound pressure distribution as well as the far-field 
directivity of the sound pressure are obtained, and the effect of the varying sound source locations on these 
indexes are analysed in the mid-low frequency range (i.e., 0–1000 Hz). Lastly, the study examines the influence 
of source locations on the far-field directivity pattern of the vibrating panel with fully clamped and simply sup-
ported boundary conditions.

Model and problem description
The model of this study includes an isotropic aluminium thin-walled panel such that its thickness ( h ) is far less 
than both its length ( ax ) and its width ( ay)24, with dimensions ax = 420 mm , ay = 420 mm and h = 1 mm , 
as shown in Fig. 1. The rationale for choosing these dimensions is to advance the research performed by the 
authors4 especially for further investigation of active noise and vibration control. A fully clamped structural 
panel is placed inside a space enclosure of infinite dimension bounded by an acoustic domain. The bounded 
domain in the near field region consists of the structural domain defined by the cartesian coordinate (x, y, z) and 
an air domain while the enclosed room of infinite dimension is defined by a spherical coordinate in the far-field 
region. Sound source emanating from a loudspeaker is used to excite the aluminium panel which in turn radiates 
sound waves. In this study, the loudspeaker is placed at nine different locations inside a rigid casing which also 
houses the lightweight square aluminium panel. For the sake of convenience, these nine different locations of the 
sound source are designated thus: near centre (NCC), mid centre (MCC), far centre (FCC), near bottom centre 
(NBC), mid bottom centre (MBC), far bottom centre (FBC), near bottom edge (NBE), mid bottom edge (MBE) 
and far bottom edge (FBE). Figure 2 shows a schematic representation of the different designated locations of 
the loudspeaker producing the sound wave. The distances along the x , y and z axes from one designated loca-
tion point to another location point are denoted as lx , ly and lz , respectively. It is assumed that the rigid casing is 
perfectly absorbing, hence, the vibro-acoustic results will be the same for any volume dimension of rigid casings.

Structural modelling
Theoretical formulation.  For the aluminium square panel with dimensions ax , ay and h as represented in 
Fig. 1, at the reference surface, the first-order shear deformation theory is used to obtain the displacements as 
follows

(1a)U
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Figure 1.   Schematic representation of the vibro-acoustic problem for the present study.

Figure 2.   Representation of various designated locations of loudspeaker inside a rigid casing.
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where the symbols U , V and W are the displacements along x , y and z directions at time (t) variable, respectively. 
Also, u  , v  and w  are the panel mid-plane displacements in the x , y and z directions, respectively. Furthermore, 
notations αx = ∂w/∂x(x, y, t) and αy = ∂w/∂y(x, y, t) , are the rotations of the transverse normal about y and x 
axes, respectively. It is assumed that there are no twist changes for the vibrating square panel, hence, the normal 
strains (i.e., εx and εy ) and shear strain (i.e., γxy ) along the mid-plane can be expressed as

where ε0x = ∂u/∂x and ε0y = ∂v/∂y represent the normal strains while γ 0
xy = ∂u/∂y + ∂v/∂x is the shear strain 

in the reference surface. Also, the terms ψx , ψy and ψxy are the middle surface curvature changes. The transverse 
shearing strain components γxz and  γyz are assumed to be zero due to the thin-walled nature of the aluminium 
panel. The resultant stress σ(x, y) comprises of both the force ( Q ) and moment ( M ) resultants which can be 
expressed in components form as

where Ak , Dk and  Fk are the stiffness coefficients of the thin-walled panel, respectively expressed as

The values of the material parameters E and µ are given in Table 1. Moreover, the total energy functional ( ET ), 
can be expressed in terms of the energy due to strain ( Sε ) and due to motion ( TE ), expressed as25

where Sε over the area of the square panel can be expressed as

Also, the kinetic energy TE , of the square panel is written as
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Table 1.   Properties and dimensions of the aluminium material utilized for the present study.

Property/dimension Symbol (unit) Value

Young’s modulus E (GPa) 70

Poisson ratio µ 0.3

Density ρ (kg/m2) 2770

Length ax (mm) 420

Width ay (mm) 420

Thickness h (mm) 1
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where u̇  , ̇v  and ẇ  represent the velocities at the mid-surface while the symbols I0 , I1 and I2 represent the moment 
of inertial defined respectively as

By applying the principle of virtual displacement, the governing equation of motion for the square panel can 
be obtained which is expressed as

where the matrices 
[

Mp

]

 and 
[

Kp

]

 represent the mass and stiffness of the vibrating panel, respectively. Also, the 
vector {u} is the displacement field and the symbol ω denotes the natural frequency. With the time function 
substituted into Eq. (10a), the equation of motion becomes

Applying the Rayleigh damping equation Cp = aM
[

Mp

]

+ bK
[

Kp

]

 to Eq. (10b), where aM and bk are the 
damping coefficients for the mass and stiffness matrices, respectively. The numerical values of aM and bK used in 
this work are 3.8500347 and 0.0013203, respectively calculated from the first natural frequency. The governing 
equation of motion of the vibrating panel in the time domain becomes

Finite element formulations of the structural–acoustic bounded domain.  Discretized equations 
of lightweight structural panel.  At the midplane of the square thin-walled panel, a set of nodes xk{k = 1, . . . , ζ } 
can be used to obtain the finite element parts. The expression of the displacement takes the following form

where Nk represent the standard displacement shape functions. Since the shearing component of the transverse 
displacement of the square panel is neglected, the bending component ( w  ) over its domain is given as

where �w  is the bending degree of freedom vector. The stiffness matrix K  has two components K e and Kb which 
are the stiffnesses due to extension and bending, respectively. It is given as

Over the domain, these stiffness matrices are respectively discretized as

where the notation Be represents the extensional strain matrix and the notation Bb represents the strain matrix 
due to bending. These terms are defined as
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Moreover, the expression of the mass matrix over the domain ( � ) of the structural panel is

where

and

With the help of numerical procedures, the matrix terms A , B , D and m  can be conveniently solved and the 
terms K e , Kb and M can be approximated using Gauss integration method.

Discretized equations of the enclosed air domain.  The acoustic fluid in the rigid cubic casing is air. Discretiza-
tion of the enclosed air region is achieved by using a regular hexahedral element. The nodal pressure pe which 
acts on each node of the element can be written as

where Pe is the nodal pressure vector. The pressure gradient is written as

with nodal shape functions, Nf = [N1N2 . . .N8] . Given the boundary of the elemental air domain ( �f ) , the 
elementary mass matrix in the enclosed air region is defined as

where the notation ρ0 represent the density of air, c0 is the speed of sound in air and Jf  is the determinant of the 
Jacobian for air. Also, in the enclosed air region, the elementary stiffness matrix can be defined as

with

Discretized equations of fluid–structure coupled domain.  The coupled region of the enclosed structural-air 
domain is the interface between the enclosure region of the rigid casing and the internal wall of the rigid casing. 
The interface element with domain, �sf  , is bounded by four nodes having two degrees of freedom on each of 
the nodes. The discretized elemental displacement in relation to the cubic shape function can be expressed as
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where Nui is the cubic shape function of the elemental normal displacement. The interfacial acoustic pressure 
acting on the four nodes of the element is written as

where the notation Nfi signifies the linear shape functions obtained at each node of the element. The elementary 
coupling matrix ( Ke

cf  ) bounded by �sf  is associated with the cubic and linear shape functions which can now 
take the form

Acoustic modelling
Theoretical formulation of the acoustic fields.  As stated already, the rigid casing houses both the 
sound source and the lightweight aluminium panel which are all mounted inside an enclosed room. The sound 
wave from the loudspeaker incidents on the panel surface, reflects the wave, transmits sound wave through the 
thickness and then radiates the sound wave from the radiating surface of the panel. Within this linear acoustic 
domain, the equation governing the propagation of wave in terms of the velocity potential ( φ ), is expressed as

where φ is the main variable used for the acoustic formulation. Also, the gradient operator ∇ in Eq. (28) is given 
in Eq. (21). The dynamic pressure is given as

The relationship between the velocity potential and the velocity of the acoustic fluid particle is ν = ∇φ while 
the velocity Neumann BC is also related in the form nT0 ∇φ = νn , where n0 and νn are the outward unit normal 
vector of the acoustic domain and the outward normal velocity, respectively. By combining the time harmonic 
excitation of Eq. (28) with time dependence ( ejωt ), the Helmholtz wave equation becomes

In the linear acoustic domain, three acoustic pressure waves exist which are expressed as

where Pi is the incident pressure wave, Pr is the reflected pressure wave and Pt indicates the transmitted pressure 
wave. Note that the corresponding symbols Ai

0 , A
r
0 and At

0 of these pressure waves as described in Eq. (31) are 
the amplitudes of the respective pressure waves. Also, ηix , ηiy and ηiz indicate the respective wavenumbers in the 
direction of x , y and z axes.

Discretized equations of the acoustic far‑field surface domain.  In this section, finite element is 
used to discretize the boundary of the acoustic far-field. Consider a far-field point p0 on the discretized surface 
ABCD with n number of nodes as shown in Fig. 3. A non- dimensional axis (ξ) , i.e., line segment Op0 , is assumed 
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Figure 3.   Discretized model of the acoustic far-field spherical bounded domain with a far-field point p0.
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to connect the cartesian coordinate ( x, y, z) at the origin O to point p0 on the surface having a far-field coordinate 
( ξ ,ϑ ,ϕ) , an arbitrary coordinate ( ̂x, ŷ, ẑ) and a nodal coordinate ( x, y, z) . For the n nodes discretized surface 
ABCD, the nodal coordinates at point p0 can be interpolated by means of the shape functions Na(ϑ ,ϕ) in the 
far-field coordinates described according to the relations

where Na = [N1,N2, . . . ,Nn] , are the shape functions in the far-field coordinate ϑ and ϕ of the discretized surface 
ABCD. In the far-field subdomain of Fig. 3, the acoustic pressure amplitude can be discretized as

where Pa is the pressure amplitude in the direction of the non- dimensional axis. In the same vein, the nodal 
velocity potential in the far-field subdomain of the surface finite element is obtained by means of the shape func-
tions Na in the far-field co-ordinate ϑ and ϕ , given as

where φa is the velocity potential at all points in the direction ξ . At the far-field point p0 , the gradient operator 
∇ of the Helmholtz equation i.e., Eq. (28), can be rewritten as26)

where the vectors b1a , b
2
a and b3a are derived from the coordinate ( ̂x, ŷ, ẑ) of the arbitrary point p0 on surface ABCD 

and are given in components form as

where the term Ja is obtained by evaluating the determinant of the Jacobian at p0 . The coefficient matrices for 
the surface domain ( �s) , in the far-field co-ordinate ϑ and ϕ with constant ξ are given as

with their shape function relationships expressed as B1
a = b1aNa and B2

a = b2aNa,ϑ + b3aNa,ϕ.

Vibro‑acoustic emission parameters.  In this section, one of the objectives is to obtain some emission 
parameters such as the sound pressure of the acoustic medium, radiated sound power and sound transmission 
loss. The effects of loudspeaker positions on some of these emission indices are discussed in the numerical 
results section.

Far‑field sound pressure.  Figure 4 shows a spherical enclosed acoustic domain with origin o of the Cartesian 
coordinate system (x,y, z) transformed to the spherical coordinate system (R0,θ ,β) along a far-field distance R0 . 
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The far-field sound pressure amplitude at this receiving point (R0,θ ,β) in spherical coordinate can be expressed 
as27

where νn is the normal velocity due to the position vector of the elemental surface of the panel position at point 
o and the acoustic wavenumber symbol η = ω/c0 . Let �a = ηcosθsinβ  and �b = ηsinθsinβ  be the respective 
trace wavenumbers along the x and y axes; then the velocity response of the vibrating structural panel is given as

Radiated sound power.  Given a defined point ( r0) located on the face sheet of the structural panel to a receiving 
point ( rf ) , the sound power transmitted as a result of the excitation of the panel is expressed as28

The symbols Re and superscript * of ν , denote the real part of sound intensity and the complex conjugate, 
respectively. It is worthwhile to note that the velocity in Eq. (40) obtained from Eq. (39) can also be derived from 
the nodal displacement of the finite element solution as described in the preceding section. Let the reference 
power be �ref  , then the sound pressure level can be easily expressed as

The relationship between the radiated sound power along a far-field distance R0 and the far-field sound pres-
sure are approximated as29

Sound transmission loss.  A very important acoustic emission parameter that is often utilised to determine the 
capacity of a vibrating panel to reduce noise is the sound transmission loss. It is calculated in terms of the ratio of 
the incident to transmitted sound powers. In order to evaluate this parameter, the transmission coefficient (τ ) of 
the structural panel is first obtained by dividing the transmitted power (�t) by the incident power (�i) given as

where the incident power of the lightweight square aluminium panel can be expressed as

(38)Pf (R0, θ ,β) = jρ0ω
e−jηR0

νn

2πR0
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Figure 4.   Representation of the coordinate system for the spherical enclosed acoustic domain.
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with the transmission loss coefficient given in Eq. (43), the sound transmission loss of the vibrating structural 
panel is conveniently expressed as

Validation of model
Experimental measurements were taken and utilized for the validation of the finite element solutions. Both the 
measured and approximation solutions adopted the same parameters and fully clamped boundary conditions. 
The experiment has already been performed by the same authors with full description of the set-up8. Also, the 
implementation of the finite element approximation was performed using the ANSYS simulation tool. Figure 5 

(44)�i =
Pi

2
axaycosθ

2ρ0c0

(45)STL = 10log10

(

1

τ

)

Mode number 
(m, n) 

Finite element 
approximation

Experimental  
result

(1,1)

(1,2)

(2,1)

(2,2)

(1,3)

(3,1)

(2,3)

Figure 5.   First twelve mode shapes comparison between finite element approximation and measured results for 
the aluminium panel excited by a loudspeaker placed at FBC source location.
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depicts the first twelve mode shapes of the square aluminium panel acoustically excited by the acoustic sounds 
emanating from a loudspeaker placed inside a rigid casing. In the experimental results, it is observed that mode 
numbers six (3,1), seven (2,3), ten (4,1) and twelve (2,4) are not distinguishable because they are weakly excited 
by the loudspeaker at source location FBC. In the vibro-acoustic problem, the radiated sound wave by the square 
aluminium panel is directly proportional to the velocity at which the square panel vibrates. Figure 6 compares 
the velocity frequency responses between the numerical approximation and experimental measurement. These 
curves are plotted on the log scale which shows similar trends with each other. However, the initial slightly higher 
amplitudes from the experimental results could be attributed to the uneven excitation of the loudspeaker. The 
numerical results show more response behaviour of the square panel than the experimental results. For example, 

(3,2)

(1,4)

(4,1)

(3,3)

(2,3)

Figure 5.   (continued)

Figure 6.   Velocity-frequency response comparison between finite element approximation and experimental 
measurement with CCCC boundary conditions.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10727  | https://doi.org/10.1038/s41598-022-14951-y

www.nature.com/scientificreports/

the frequency response curve of the numerical approximation shows the possibility of the aluminium panel to 
be excited at the same natural frequency, but different magnitudes as depicted in Table 2.

To further verify the numerical result of the fully clamped (CCCC) square aluminium panel, a simply sup-
ported (SSSS) square aluminium panel is modelled with the same parametric conditions. The fully clamped 
model has the conditions on its boundary as follows

For the modelled square aluminium panel with SSSS, the conditions on its boundary are

Figure 7 compares the velocity-frequency responses of the two numerical results at two source locations. 
It is observed that at the same source location (i.e., NBC or FBC), with the different boundary conditions, the 
velocity amplitudes of the vibrating square panel are slightly different while the frequencies of the square panel 
with CCCC condition shift more to the right than the square panel with SSSS boundary condition.

For the acoustic radiation measurements, the microphones (Beyerdynamic MM1) were mounted on an 
automatic positioning system developed by the authors, capable of moving the microphones in horizontal and 
vertical axes as illustrated in Fig. 8. The sound pressure was measured with the microphones over a measure-
ment grid that was 1.00 m wide and 0.64 m high and located at a distance of 0.1 m from the plate surface, with 
an interval between the measurement points of 0.04 m (this gives 26 × 17 measurement points, which is a total 
of 442 points). The mean values were obtained by averaging over the described measurement grid. Figure 9 com-
pares the averaged sound pressure between the experimental measurements and finite element approximations. 
The acoustic radiation of the numerical solution shows good correlation with the measured results. Hence, it 
provides a basis to perform further comparative analyses of the influence of sound source location on STL, SPL 
and far-field directivity as discussed elaborately in the following sections.

Model vibro‑acoustic response and discussion
In this section, various finite element solutions of the vibro-acoustic problems are discussed. The modelled 
lightweight square panel with CCCC boundary condition is used for the numerical examples and analyses. 
Six location categories of the sound source (i.e., loudspeaker) are used for the analyses of the study. In location 
category one (LC1), the sound source is positioned at the centre and placed on the base of the rigid casing with 
near (NBC), middle (MBC) and far (FBC) distance locations. In location category two (LC2), the sound source 
is suspended at the mid-centre of the rigid casing with near (NCC), middle (MCC) and far (FCC) distance 
locations. In location category three (LC3), the sound source is placed on the base and at the edge of the rigid 
casing with near (NBE), middle (MBE) and far (FBE) distance locations from the square panel. Furthermore, in 
location category four (LC4), the sound source is fixed from a near location to the square panel but positioned 
at the base (NBC), mid-centre (NCC) and edge (NBE) of the rigid casing. In location category five (LC5), the 
sound source is fixed at a middle location from the square panel but positioned at the base (MBC), mid-centre 
(MCC) and edge (MBE) of the rigid casing. Lastly, in location category six (LC6), the sound source is fixed at 
a far location from the square panel but positioned at the base (FBC), mid-centre (FCC) and edge (FBE) of the 

(46a)u = v = w = αx = αy = 0 at x = 0, ax

(46b)u = v = w = αx = αy = 0 at y = 0, ay

(47a)u = v = w = αy = 0;Mx = 0 at x = 0, ax

(47b)u = v = w = αx = 0;My = 0 at y = 0, ay

Table 2.   Comparison between the natural frequency obtained numerically and experimentally with CCCC 
boundary condition.

Mode number

Natural frequency (Hz)

Numerical Experimental

(1,1) 44.7 54.0

(1,2) 97.6 88.0

(2,1) 97.6 95.5

(2,2) 146.1 134.0

(1,3) 175.9 166.0

(3,1) 178.3 –

(2,3) 224.4 –

(3,2) 224.4 207.5

(1,4) 286.2 259.0

(4,1) 286.3 –

(3,3) 300.7 278.0

(2,3) 331.6 –
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Figure 7.   Velocity-frequency response comparison of two finite element models with the same modelling 
parameters but different boundary conditions for sound source generated at (a) NBC, (b) FBC.

Figure 8.   Illustrative diagram of the experimental set-up for acoustic radiation measurements.
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rigid casing. The influence of these different locations of a loudspeaker on the vibro-acoustic emission indexes 
are herein analyzed.

Effect of sound source locations on STL.  Figure 8 represents the results of the transmission loss of the 
aluminium panel for different locations of the loudspeaker. The sound transmission loss ( STL ) results show that 
STL is greatly influenced by the locations where the sound waves emanate. For the LC1, as seen in Fig. 10a, when 
the sound wave is generated at FBC, the STL of the panel is seen to increase. This result is expected. The farther 
the distance of the primary sound waves to the vibrating panel, the increase in the STL of the panel. Moreover, it 
is observed that at a very low frequency (i.e., 0–35 Hz), the STL values increased as the sound source gets nearer 
to the vibrating panel. Also, for this LC1 situation, it is seen that each of the first natural frequencies occur at 
approximately the same value. However, along the remaining frequency range, STL increased with farther dis-
tance from the vibrating panel. Furthermore, the result shows that while the STL due to sound waves generated at 
NBC decreases with increasing frequencies, the STL due to sound waves generated at MBC is relatively constant 
along increasing frequency. The STL results obtained due to sound waves generated at FBC increased at mid-
frequencies and then begin to decrease slightly from mid to higher frequencies. For the LC2 case as depicted 
by Fig. 10b, it is seen that when the sound wave is generated at NCC, the STL of the vibrating panel becomes 
very low compared to when the sound waves are generated at MCC and FCC. When the source of noise is at 
this point (i.e., NCE), for active noise control, more microphones will be needed to improve the noise reduction 
efficiency of the vibrating plate. Also, it is observed that with the LC2, the natural frequencies which can be seen 
from the peak and dip of the STL curves occur at approximately the same points along the frequency range. In 
Fig. 10c, when the generated sound waves is located at the edge and near the vibrating panel (i.e., at NBE), the 
STL of the panel is significantly reduced compared to when the sound waves are generated at MBE and FBE. It 
is also observed that at this LC3 positions, more peaks and dips are formed along the entire frequency range. 
This is the effect caused for the generated sound waves located near edge of the wall casing. In Fig. 10d, when the 
source is fixed at a near point location to the vibrating panel, it is seen that the STL due to sound waves gener-
ated at NCC is mostly improved and consequently, the least number of actuators or sensors will be required to 
produce better transmission loss than those sound waves generated at NBC and NBE. However, for sound waves 
generated at NBE, more actuators will be required by the vibrating panel to increase the STL . In Fig. 10e, when 
the loudspeaker is located at the mid-centre of the casing, it is evident that the sound waves at MBC produce a 
very low STL of the vibrating panel than the sound waves emanating at MBC and MCC locations. Lastly, Fig. 10f 
shows that at a far location of the sound waves, the sound wave emanating at FBE produced higher STL along 
the mid to high frequency range compared to those of the sound waves generated at FCC and FBC. In this situ-
ation, more microphones will be expected to be used for active noise control. Similarly, more actuators/sensors 
will be expected to be used for active vibration control when the sound source originates at FBC than at FCE or 
FBE. In general, it is observed that by positioning the loudspeaker at the edge of the wall casing, the STL of the 
vibrating panel do not necessarily reduce in value. In fact, sound waves generated at FBE and MBE show higher 
STL at low and mid-frequency regions. Moreover, as the generated sound waves move away from the casing wall 
boundaries (i.e., at NBC, MBC, FBC), the frequency dips are observed to increase in amplitudes.

Effect of sound source locations on sound pressure level.  Figure 11 represents the sound pressure 
level (SPL) wave distribution at a low frequency of 180 Hz for the different locations of the loudspeaker with 
observation in the xy-plane along z-direction of the radiating panel. The figure shows that the radiated sounds 
for all locations of the sound source are completely different. Zones of quiet can be observed at the radiated 
end of the panel. The zones of quiet is the quiet zones formed at the radiated near field region of the vibrating 
aluminium panel for the different locations of the primary sound source (i.e., the loudspeaker). While the most 
zones of quiet are observed for sound waves generated at FCC, the least zones of quiet is experienced for sounds 
generated at NBC. For the LC1 case (i.e., at NBC, MBC, and FBC), it is observed that the most zones of quiet at 
the radiated surface of the square panel is sound generated at FBC, followed by that at MBC and lastly by that 

Figure 9.   Comparison of the acoustic radiation in terms of averaged sound pressure between experimental 
measurement and numerical approximation.
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at NBC. For LC2, the most zones of quiet at the radiated surface is the sound source effect for sound location at 
FCE. For LC3, the zones of quiet at their radiated end is relatively compared. However, sound waves location at 
FBE gives the most zones of quiet compared to those at sound waves generated at MBE and NBE. For the LC4 
case (i.e., NBC, NCC and NBE), the most zones of quiet at the radiating surface is observed by sound waves 
generated at NCC. At this radiated end of the panel, it is observed that a more quiet zone concentrates at the 
centre of the radiating panel. For LC5, it is observed that more zones of quiet is experienced when the sound 
wave is generated at MCC than those sound waves emanating from MBC and MBE. Lastly, for LC6, (i.e., at FBC, 
FCC and FBE), it is clearly seen that sound waves location at FCC produces the most quiet radiated noise zone 
followed by sound location at FBC and lastly by sound location at FBE. For each location of the generated sound 
waves, the SPL wave distribution at the radiated surface can help to inform researchers on how to effectively posi-
tion both actuators and microphones on and around the vibrating panel, respectively. For instance, in the LC2 
case, actuators may be positioned on the radiating end of the vibrating panel where the recorded SPL produced 
by sound waves generated at NCC, MCC, and FCC are 52.3 dB, 51.7 dB, and 52.7 dB, respectively. This will help 
to further reduce the noise for active vibration control30. Moreover, by using this information for active noise 

Figure 10.   Transmission loss comparison of six location categories of the sound source (a) LC1, (b) LC2, (c) 
LC3, (d) LC4, (e) LC5, (f) LC6.
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control, microphones can also be carefully positioned around the vibrating panel with respect to the primary 
sound source distribution and spectrum.

Figure 12 shows the maximum SPL along the entire frequency range for all sound source locations used in 
this study. At a higher frequency of 1000 Hz, the maximum amplitude of SPL for sound waves generated at NBC, 
MBC and FBC are 99.26 dB, 98.70 dB and 98.61 dB, respectively. It is seen that at this frequency, the latter SPL 
result indicates that sound waves generated at FBC produces the most noise reduction level of the vibrating panel 
than those generated at MBC and NBC.

Figure 11.   Sound pressure level distribution profile at frequency of 180 Hz for all sound source locations. The 
rationale for choosing this frequency is to fully capture the sound distribution at the radiated end of the panel 
where a microphone can be positioned for noise attenuation or active noise control which are typically carried 
out at low frequency.



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10727  | https://doi.org/10.1038/s41598-022-14951-y

www.nature.com/scientificreports/

Effect of sound source locations on far‑field directivity.  The far-field directivity plots of the radiated 
sound pressure at different location categories of the loudspeaker, evaluated at two frequencies f  and at a far-field 
distance R0 = 10000 mm, are presented in Figs. 13 and 14. For all results, the observation point is 0 ≤ β ≤ 3600  
at polar angle θ = π/6 . For Fig. 13, the plots are evaluated at the fourth vibration mode of frequency f = 146 
Hz. At this frequency, it is seen that the amplitude of the far-field directivity of the radiated sound pressure of the 
square aluminium panel varies with different locations of the sound source. Also, it is generally observed that 
at low frequency regions, simple lobes (i.e., like monopoles, see Fig. 13f) are formed and the far-field directiv-
ity patterns of the radiated sound pressure vary smoothly along the circumferential angle with almost similar 
shapes for all the location categories of sound source as presented in Fig. 13a–d. However, due to the possibility 
of multimodal contribution during vibration of the square panel, the far-field directivity patterns become more 
complex at higher frequencies (i.e., at f = 1000 Hz.) with different locations of the sound source as depicted in 
Fig. 14. At these frequencies, more irregular lobes are seen to be formed. Furthermore, as observed from these 
diagrams, none of the directivity patterns due to the different sound source locations, has the same shape.

Effect of boundary conditions on far‑field directivity.  Figure  15 shows the influence of different 
boundary conditions BCs (i.e., CCCC and SSSS) of the vibrating panel on the far-field directivity of sound pres-
sure for all locations of the sound source. The first, second and third rows show the far-field directivity when the 
sound source is placed at the bottom centre, mid-centre and bottom edge, respectively. The different directivity 
patterns of the sound pressure (i.e., those observed along the first and third rows of Fig. 15) show how the BCs 
of the vibrating panel influence its response at the acoustic far-filed condition. However, at mid-centre (i.e., 
those observed along the second row of Fig. 15) for each location of sound source, the different BCs given to 
the vibrating panel show no significant difference of the far-field directivity patterns. Moreover, along the mid-
centre with source location at MCC (Fig. 15e), it is observed that the directivity patterns for the different BCs 
are approximately the same.

Conclusion
Numerical modelling of the structural–acoustic response of lightweight square aluminium panel has been pre-
sented in this paper. Finite element method was used to model both the finite structural–acoustic domain and 
the far-field acoustic domain. The study considered the influence of changing locations of a primary sound source 
on the vibro-acoustic response of a square panel. Experimental results of the modal analyses of the aluminium 
square panel were used to validate the numerical approximation results. Major vibro-acoustic characteristic 
parameters such as the sound transmission loss, sound pressure level and far-field directivity of the sound 
pressure were obtained with respect to the different locations of the sound source. It was shown that the varied 
positions and locations of the primary sound wave emanating from a loudspeaker significantly influenced the 
efficacy of the vibrating panel to reduce noise. Sound waves which are generated at locations near the vibrating 
panel, lowers the efficacy of the panel to reduce noise. Also, as the generated sound waves move away from the 
vibrating panel, the potential of the structural panel to reduce noise increased. However, it was observed that 
when the generated sound waves was positioned close to the edge of the wall casing, the STL of the vibrating 
panel is not necessarily reduced except when the generated sound waves was very close to the vibrating panel. 
Moreover, the variation of the zones of quiet at the radiated region as well as the radiated sound pressure, sound 
transmission loss and far-field directivity, have provided useful information on the best position of sensors or 
actuators for active vibration control. Also, the radiated sound obtained due to the different locations of the 
sound source can inform researchers of active noise control on the adequate number of secondary sources and 
their best positions with respect to their primary sound wave spectrum.

Figure 12.   Maximum sound pressure level curve along the entire frequency range for all sound source 
locations.
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Figure 13.   Far-field directivity of sound pressure comparison for different location categories of the sound 
source at f = 146 Hz (a) LC1, (b) LC2, (c) LC5, (d) LC6, (e) all locations, (f) MBC.
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Figure 14.   Far-field directivity of sound pressure comparison for different location categories of the sound 
source at f = 1000 Hz (a) LC1, (b) LC2, (c) LC3, (d) LC4, (e) LC5, (f) LC6.
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