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Abstract—Adaptive bitrate selection adjusts the quality of
HTTP streaming video to a changing context. A number of
different schemes have been proposed that use buffer state in
the selection of the appropriate video rate. However, models
describing the relationship between video quality levels and
buffer occupancy are mostly based on heuristics, which often
results in unstable and/or suboptimal quality. In this paper,
we present a QoE-aware video rate evolution model based on
buffer state changes. The scheme is evaluated within a real-
world Internet environment, where it is shown to improve the
stability of the video rate. Up to 27% gain in average video rate
can be achieved compared to the baseline ABR. The average
throughput utilisation at a steady-state reaches 100% in some
of the investigated scenarios.

Keywords-HTTP Adaptive Streaming, Adaptive Bitirate Se-
lection, Buffer modelling

I. INTRODUCTION

Nowadays a typical video streaming service is expected

to serve a variety of platforms e.g., smart phones, web

browsers, TVs, etc. Each of these platforms has specific

requirements with respect to transmission and video quality.

Nonetheless, regardless of the access device, users want the

best viewing experience possible. HTTP Adaptive Streaming

(HAS) is the most successful technology so far that allows

content providers to cater for the requirements of these

multitude of devices and different contexts. The process

through which a HAS client chooses a video rate is called

Adaptive Bitrate Selection (ABR). The first generation of

ABRs relied on throughput estimation and selected the

highest video rate lower than the measured throughput. It

later became clear that throughput estimation alone is not

a sufficient parameter for designing efficient ABR. This is

because an accurate bandwidth estimation above the HTTP

layer is difficult to achieve [1]. Consequently, any video rate

selection algorithm that solely depends on such a relatively

inaccurate estimate results in unnecessary rebufferings [2],

undesirable variability of video rates [1] and sub-optimal

video quality [1].

Various attempts have been made to improve some of

the identified issues of throughput-based ABRs by supple-

menting throughput measurements with information about

the playback buffer [3]. However, in the absence of a sys-

tematic model of the relationship between buffer occupancy

and available video rates, researchers resorted to heuristic

according to which the playback buffer is simply divided into

a number of segments separated by thresholds. The problem

with this design, is that, many of these algorithms attempt to

maintain the buffer at the so-called optimal level, but since

the buffer size, the segmentation and the thresholds are at

best conjectured, the ABRs are forced to make a number of

unnecessary trade-offs.

It has been shown in [2] that by basing ABR solely

on playback buffer occupancy, a client can choose the

highest quality level without the fear of an increase in

rebuffering. However, a continuous increase in the video rate

may not always enhance the quality of experience (QoE).

For example, when the video quality is relatively high, an

increase in the current rate does not necessarily translate into

an improvement in the user-perceived quality [4], [5].

To ensure that the video rate evolves in a way that

optimises QoE, there is a need for a rate evolution map

that captures the desirable pattern of video quality transi-

tion. This paper will concentrate on the following research

question: If we have a QoE aware model of the relationship

between the playback buffer state changes and the available

video rates, how much improvement in user-perceived video

quality can be achieved?

In order to answer this question, this paper first identifies

the patterns of video quality changes that are known to affect

QoE, and then develops a QoE-aware model of the rate map

that combines all stages of video rate evolution, while at

the same time incorporating an optimal number of patterns

that improve user-perceived video quality. We demonstrate

how the proposed model can be used in practical systems

by modifying selected ABRs. Experimentation over the

Internet using both wired and wireless connections, based

on objective QoE metrics, shows the performance of the

scheme.

The rest of the paper is structured as follows: Section

II presents background and the related work; Section III

discusses the QoE aware evolution trajectory and the system

model; Section IV details the methodology and experimental

set-up used; Section V covered result presentation and finally

the paper is wrapped with conclusion in section VI.

II. BACKGROUND AND RELATED WORK

HTTP adaptive streaming services usually divide a video

file into a number of chunks of equal temporal size with each

chunk encoded in multiple bitrates. A client progressively

requests a relevant chunk. The quality of a request is based



on the client’s measurement of the available resources. The

ABRs that use throughput estimation as their main factor

are called throughput-based ABRs, while those that solely

rely on buffer occupancy are called buffer-based ABRs.

Due to short-term throughput fluctuations, as a result of

the TCP congestion control mechanism and the difficulty

in accurately estimating throughput above the HTTP layer,

throughput-based algorithms use a weighted average to

smooth-out the estimated network capacity [3]. However,

using historical data impedes the responsiveness of an algo-

rithm [3]. A number of measurement studies have shown that

throughput-based algorithms are unstable [6], unnecessarily

rebuffer [1], request sub-optimal video rates [3], and are

unfair [1].

A significant amount of research is focused on how to

improve the throughput measurement for ABR. The authors

of [6] propose a probe and adapt technique. The algorithm

mimics the congestion control of TCP but at the application

layer. It uses TCP throughput as an input only when it is an

accurate indicator of the fair-share of bandwidth. In the same

vein, the authors of [7] use machine learning techniques

to predict the achievable throughput by using network state

information.

In order to improve some of the downsides of the

throughput-based services, various researchers have used

the buffer level as a feedback signal to complement the

throughput estimation [8]. Tian and Lui [7] went further by

using the playback buffer state change as the key feedback

signal. Usually, most of the existing ABRs divide the whole

buffer into segments: S0, S1, ... < Sn, which are separated

by thresholds: B1 < B2 < ... < Bmax. This forced

ABR designers to use heuristic in deriving almost everything

regarding buffer, for instance, the maximum buffer size, the

respective sizes of the buffer segments, how much buffer is

required for the ramping-up period, etc. Consequently, the

ABRs are forced to make a number of, perhaps, false trade-

offs. An oft-cited trade-off is between video quality and the

amount of rebuffering.

Huang et al. [2] propose an algorithm that completely

relies on buffer occupancy for video rate selection. The

model employed separates the buffering from the steady-

state phase, which obviously creates a disconnected flow.

Furthermore, at the start-up period — called reservoir, the

lowest available video rate is downloaded, hence, there is

a substantial loss in video quality. During the ramping-up

period, quality was linearly incremented. However, in [9]

it has been shown that the probability of buffer starvation

decreases exponentially with respect to the initial buffer

level. Therefore, a linear evolution of the video quality when

ramping-up will unnecessarily prolong the convergence time.

It is also worth noting that an uncontrolled increase in

video rate may not always enhance QoE. In [4] it was

demonstrated that when video quality is high, an increase

in the current rate does not necessarily translate into an

improvement in the user-perceived quality. Nevertheless the

paper made an important observation: when buffer is used

as the main factor of an ABR, the trade-off between video

quality and the amount of rebuffering is unnecessary.

Earlier, Mok et al. [5] have studied the effect of video

quality transition on QoE. They found that a sudden drop

in video rate has a negative impact on user experience. To

improve QoE, they opted to switch down the video rate to

an intermediate level even when the target video level is

lower. The problem with this design is that the user will be

downloading higher bitrate than the download rate, hence

increasing the risk of buffer starvation, especially since

both the intermediate level and the maximum buffer size

are heuristically determined. While this work narrowed its

investigation to a pattern, in this paper we pay attention to

the whole sequence of the trajectory through the space of

all possible system states.

III. SYSTEM MODELLING AND IMPLEMENTATION

A. Quality Evolution Trajectory

At any given time t after the video streaming started the

buffer may contain an array of chunks of different quality

levels. However, chunks of different video rates generally

have different sizes in bytes. We shall assume that all chunks

contain an equal amount of video time V in seconds. Since

there is no direct mapping between buffer size in bytes and

video time, we calibrate buffer in time i.e. by the second.

This has also been assumed in [2], [7].

At the beginning of a streaming session (t = 0), a

server presents to a client a set of different video rates

Q = {q0, q1, q2...qn}, with |Q| = n + 1. Let us suppose

q0 < q1 < ... < qn, therefore q0 is the minimum quality

level (referred here also as qmin) and qn is the maximum

available quality level (called qmax). Suppose Bt is the

buffer occupancy at time t and Bmax is the maximum buffer.

Let ĉt denote the estimated throughput at time t with C(t)
being the system capacity (i.e., ĉt ≤ Ct).

Usually, after the receipt of the media description file at

t0, playout buffer is often empty (Bt0 = 0), a client starts

requesting a chunk with quality level qmin so as to minimise

the start-up period. However, a prolonged download of qmin

will negatively affect the user experience. Hence, the client,

immediately, starts a gradual improvement of the quality of

the requested chunks as soon as it receives the initial chunk.

Therefore, the download of chunk i > 1 with video rate

qk , where {k ∈ n : 0 ≤ k ≤ n}, starts at time tsk and

finishes at tek using a video rate selection function R(t),
this continues until the last chunk is requested. Let us also

assume that the rate at which the client’s requested video rate

evolves with respect to time dR(t)/dt is g′(R). Assuming

that C(t) > R(t) = qmax, therefore g′(R) is positive at

any time after the start of streaming except when R(t) =
qmax and Bt = 0 in which case g′(R) = 0. To ensure that

the client gets its fair share of the available bandwidth, we



rely on the recommendation of [2], which states that highest

rate is selected only when buffer is full or nearly full (i.e.,

R(t) = qmax when Bt → Bmax).

To avoid high amplitude variations (e.g. an abrupt drop

of the video quality), which are known to be detrimental

to QoE [5] and to minimise the negative impact of Recency

Effect [10], transition decision to qk+1 should depend on qk.

Furthermore, since users are not known to be appreciative of

increase in video quality when video rate is relatively high

[4] we recommend a non-linear g′(R). However, since it is

not yet clear at what point users begin to be less receptive to

the quality increase, we suggest that after reaching qmax/2 a

client should start reducing the rate at which it increases its

video quality. The trajectory of g′(R) that we deduced from

the foregoing discussion is a concave path pinned at two

points q = 0 and q = qmax with the amplitude at qmax/2,

this can easily be described by a quadratic function with

q = 0 and q = qmax and a positive constant a.

g′(R) = aq(qmax − q) (1)

B. Modelling

Knowing that at time t0 R(t) = q0 and Bt0 = 0, how can

we predict video quality (qk) to be streamed at ti, where

i > 1, in conformance with the desired trajectory, given that

Bti = Bi for {Bi : Bmin ≤ Bi ≤ Bmax}.

1) Continuous Rate: We first look at a case where R(t)
results in any value between qmin to qmax. With this

assumptions we can model R(t) as a continuous function
1.

Clients usually infer C(t) from ĉ(t) for the purpose of rate

selection. Now, suppose c(ti) is the estimated throughput

when t = ti derived from the average of h number of

chunks, we have

c(ti) =
1

ti − ti−h

∫ h

i−h

ĉ(t)dx.

Let us assume that a HAS client requests chunk i imme-

diately after chunk i − 1 is completely downloaded except

when the buffer is full. In this case it waits for V seconds

(chunk size) before sending a request. Except during the off

period, the playback buffer drains at the one buffer second

every real time second and fills at C(t)/R(t), therefore the

rate at which buffer changes is
dB(t)

dt
=

C(t)

R(t)
− 1 (2)

In most contexts, C(t) is time-varying, therefore, if the

client is to avoid buffer starvation, the output of R(t) has to

adapt to this changing environment with time.

dR(t)

dt
=

dR(t)

dB
.
dB

dt
(3)

We want R(t) to closely match C(t), therefore
dB(t)
dt

≈ 0.

From equation 1 and 3

1This is without loss of generality, in fact, in the next section we drop
this assumption.

dR(t)

dt
=

dR(t)

dB
= aq(qmax − q) (4)

dR(t)

q(qmax − q)
= adB

after simplification using partial fraction method and using

R(t) = q we have∫
1

q
dq +

∫
1

qmax − q
dq =

∫
aqmaxdB (5)

By integrating Equation 5 we have

ln q − ln |qmax − q| = aqmaxB + e (6)

Recall we start streaming with a minimum quality level,

therefore q = qmin and B = Bt0 . Using this information

to evaluate e.

e = ln
qmin

qmax − qmin

− aqmaxBt0 (7)

Substituting equation 7 into 6 and simplifying we have

ln
q

qmax − q
−

qmin

qmax − qmin

= aqmax(Bt −Bt0) (8)

finally solving for q and (Bt − Bt0 ≈ Bt), since {Bt0 :
0 < Bt0 ≤ V }

R(t) =
qmax

1 + [ qmax

q0
− 1]e−aqmaxBt

(9)

lim
B→∞

R(t) = qmax (10)

From Equation 10 it can be deduced that the limiting

factor of R(t) is qmax, in other words the maximum value

q can reach assuming an infinite buffer size is qmax. This

means after reaching qmax any increase in the buffer size

does not result in a commensurate rise in q. Therefore, at

this point we have the Bmax.

2) Discrete Rate : By dropping our assumption about the

continuous nature of video rates, the video quality has to be

chosen from a finite discrete set. Furthermore, q can only

move from one valid value to another. We assume the quality

level change is done only between adjacent video rates, that

is, qk can only move either to qk−1 or qk+1.

The model is now modified to reflect this. To change a

video rate a buffer must have grown or contracted by a

certain buffer distance. Precisely, to change quality level we

need ∆Bk = R−1(qk+1)−R−1(qk). When ∆Bk is positive

the quality level is going to be increased and when it is

negative the quality level going to be reduced.

C. Implementation

As a proof of concept, we apply the proposed model

within the following two selected rate adaptation algorithms:

the buffer-based algorithm proposed by Huang et al. [2], and

the throughput-based ABR by Miller et al. [8].

When modifying the implementation of the algorithm

proposed in [2], we do not change anything except that we

drop the reservoir. Hence from the start, the algorithm now



Figure 1. Experimental Set-up

relies on our model (for a detail discussion of the algorithms

see [2]).

To retrofit the model into [8], we had to slightly mod-

ify the algorithm. Though none of the changes affect the

throughput related logic. In order to closely map the original

buffer dynamics, we divide the playback buffer into three

phases. The first phase is when video rate change is slow,

with a threshold at Bqt1 . The next phase is when the video

rate grows exponentially, which ends at Bqt2 . The third is

when video quality level increase reaches saturation, which

starts at Bmax. The threshold can be calculated thus:

Bqtx = R−1(qmin + β(qmax − qmin))

For x = 1 the β = 0.1 and for x = 2 the β = 0.73.

IV. PERFORMANCE EVALUATION

This section presents the experimental set-up and the

performance evaluation metrics

A. Experimental Set-up

The test-bed set-up is shown in Fig. 1. The client is

connected to the Internet either via an Ethernet switch or

EE’s 3G networks. The web server is located at the Alpen-

Adria-Universität Klagenfurt, which hosts the Big Buck

Bunny dataset [11].

All the players used are implemented in Python, and run

on top of Ubuntu 12.04.2 LTS. The host that runs the players

also hosts: Dummynet, tcpdump, lsof, and Wget.

Throughout the wireline experimentation, we limit the

maximum downstream available bandwidth to 6mbps. While

for the wireless, we conduct a “blue-sky” test. For all

players, we set Bmax = 240s, and for the player running

the Huang et al. [2] original algorithm, we set its reservoir

to 40s. The player using the original throughput-based

algorithm retain the same configurations as in [8]. We found

through experiments the values between 0.05 to 0.1 are

appropriate for the growth constant a of the proposed model,

therefore, we use a = 0.05 throughout. Each experiment was

conducted 10 times and the average result is used.

B. Evaluation Metrics

Research in the field of QoE is still ongoing, and no

definite model has so far been established. However, the

following objective QoE metrics are used to evaluate the

model.

• Rebuffers: this is the total number of video freeze per

streaming session.

• Average video rate: is calculated as t1q1+t2q2...tnqn
tn−t1

and

measured in kb/s

Table I
ADAPTATION FOR VARIABLE BANDWIDTH

Players Maximum
Video rate
(kb/s)

Average
Video
rate(kb/s)

Throughput
Utilisation
(%)

Original[2] 4000 2982 67

Modified[2] 6000 3827 100
Original[8] 4000 2212 67
Modified[8] 5000 2645 85

• Instability: is the fraction of successive chunk requests

by a player in which the requested video rate changes

[12], measured at the steady-state.

• Utilisation of available network resource: is calculated

by dividing of average video rate by the average net-

work capacity [7].

• Convergence time: is the time taken to settle at the

sustainable video rate.

V. RESULTS

This section discusses the result of the various test-bed

experiments conducted in both wired and wireless environ-

ments.
A. Client with Wireline Access

1) Variable Bandwidth: these experiments are aimed at

demonstrating the elasticity of the proposed model, i.e. how

it adapts to a rapidly changing bandwidth. As can be seen

from Fig. 2, the streaming started with a maximum available

bandwidth of 6mb/s, after 80s the bandwidth dropped to

2mb/s at 150s it dropped again to 900kb/s, finally at 270s
it rose back to 6mb/s and stayed until the end.

The first thing to note is that the video rate of segments

downloaded by the player employing the proposed model

(Fig. 2(b) and 2(d)), are able to converged at a relatively

higher video rate, in fact, for the modified buffer-based

player, it converged at exactly the system capacity (see Fig.

2(b)). Table I shows that the modified players achieved

a maximum video rate of 6mb/s and 5mb/s against the

4mb/s for the unmodified players. This translated to 100%
and 85% throughput utilisation, which is an improvement

of 33% and 18% utilisation for the original buffer-based

and throughput-based players respectively. Furthermore, we

recorded an improvement in the video rate of 854kb/s in

the case of the buffer-based player and 433kb/s in the case

of the throughput-base player.

2) Video Rate Convergence: we investigated two scenar-

ios: when bandwidth suddenly rises and when it instantly

drops and both cases stay there for the remaining duration

of the streaming session. Fig. 3 shows the former, while Fig.

4 presents the later scenarios.

Fig. 3(a) shows when the bandwidth suddenly increases

at 120s both players running the buffer-based algorithm are

able to converge at the right quality level, albeit at different

times. While it only took the player using the proposed

model 65s to reach the convergence state, it took the original

player three times longer (i.e. 165s). Furthermore, from Fig.

3(b) it can be seen that by using the proposed model we can
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Figure 2. Video quality change, for both the original and the modified algorithms, operated in an environment with changing bandwidth.

reduce the convergence time by up to 80s in comparison to

the original throughput-based player.

However, a player needs not to always converge to a high

video quality level. It can as well converge to a lower quality

level. Fig. 4 presents such a scenario. When the bandwidth

suddenly drops, it takes the player using the original buffer-

based logic longer to converge even though it is coming

from a lot lower quality level (see Fig. 4(a)). That is 102s
against 146s for the unmodified buffer-based algorithm.

Furthermore, Fig. 4(b) shows when the bandwidth sud-

denly drops, the player running the unmodified throughput-

based algorithm was so aggressive in its reduction of the

video rate that the player had to reach the lowest available

video quality before it later stabilises at a sub-optimal rate.

Such a large amplitude in video switch in detrimental to

QoE. However, the player running the proposed model was

much more conservative in its reduction and was able to

converge at the appropriate quality level.
B. Client with Wireless Access

As can be seen from Fig. 5 the throughput of the wireless

network is highly fluctuating, which makes it difficult to

ascertain the actual capacity of the link. Therefore, we leave

out any test on utilisation. From Fig. 5(a) and 5(c) the

maximum quality level attained by the original players are

600kb/s and 700kb/s respectively. However, the modified

versions of the players are able to achieve 1500kb/s each

(see Fig. 5(b) and 5(d)). Importantly, this helps the modified

players achieve 45% increase in the average video quality.

The summary results are presented in Table II.

Finally, a stability test for the players is conducted (see

Table II). Both the original throughput-based and buffer-

based players suffer a high degree of instability, at the

steady-state the players are respectively 12.6% and 11.8%
unstable. However, the instability is significantly reduce,
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Figure 3. Video quality convergence, for both the original and the modified
algorithms, when bandwidth increases.

Table II
ADAPTATION IN WIRELESS ENVIROMENT

Players Maximum
Video rate
(kb/s)

Average
Video
rate(kb/s)

stability (%)

Original[2] 600 567 12.6
Modified[2] 1500 1247 2.6
Original[8] 700 536 11.8
Modified[8] 1500 1239 4.0

when the proposed model is used, to 2.6% for the buffer-

based player and 4.0% for the throughput player.

VI. CONCLUSION

The task of an adaptive bitrate selection module of HTTP

adaptive streaming is to ensure that the quality of video
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Figure 4. Video quality convergence, for both the original and the modified
algorithms, when bandwidth.

is appropriate to its context. Selecting which resource is

used as a situational indicator, in video rate adaptation, is

context dependant, however, it is difficult to build an ABR

that maximises QoE without the knowledge of buffer state.

Relying on heuristic for such an important aspect of ABR, as

is currently the practise, is not the best option. In this paper,

we propose a QoE-aware model of the relationship between

video quality and buffer state changes. The model is able

to find the optimal buffer requirement for any given set of

video quality levels. The scheme is evaluated within a real-

world Internet environment and the result is encouraging. In

future we plan to conduct more tests and incorporate more

factors into the model, for example power level.
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Figure 5. Video quality change, for both the original and the modified
algorithms, operated in a wireless environment.
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