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The principal goal of this research is developing physics-based, reduced-order, analytical
models of nonlinear fluid–structure interactions associated with offshore structures. Our
primary focus is to generalize the Hamilton’s variational framework so that systems of flow-
oscillator equations can be derived from first principles. This is an extension of earlier work
that led to a single energy equation describing the fluid–structure interaction. It is
demonstrated here that flow-oscillator models are a subclass of the general, physical-based
framework. A flow-oscillator model is a reduced-order mechanical model, generally
comprising two mechanical oscillators, one modelling the structural oscillation and the
other a nonlinear oscillator representing the fluid behaviour coupled to the structuralmotion.
Reduced-order analytical model development continues to be carried out using a

Hamilton’s principle-based variational approach. This provides flexibility in the long run
for generalizing the modelling paradigm to complex, three-dimensional problems with
multiple degrees of freedom, although such extension is very difficult. As both
experimental and analytical capabilities advance, the critical research path to developing
and implementing fluid–structure interaction models entails

— formulating generalized equations of motion, as a superset of the flow-oscillator models;
and

—developing experimentally derived, semi-analytical functions to describe key terms in the
governing equations of motion.

The developed variational approach yields a systemof governing equations.This will allow
modelling of multiple d.f. systems. The extensions derived generalize the Hamilton’s
variational formulation for such problems. The Navier–Stokes equations are derived and
coupled to the structural oscillator. This generalmodel has been shown to be a superset of the
flow-oscillator model. Based on different assumptions, one can derive a variety of flow-
oscillator models.

Keywords: vortex-induced vibration; reduced-order modelling; circular cylinder;
Hamilton’s principle; fluid–structure interaction
On

*A
1. Background

The problem of vortex shedding from bluff bodies has been examined for over a
century, as reflected by the extensive literature on the subject. The focus of these
foregoing research efforts can be split into two broad categories: investigations
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Figure 1. Schematic of a typical articulated tower.
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into the flow characteristics around a bluff body in a flow and studies of the
response of such bodies to the forces from the flow.

The approach sought here, to derive a set of reduced equations of motion for a
structure subjected to vortex-shedding loads from first principles, represents a
novel approach to a long-studied problem. Such reduced equations are generally
called flow-oscillator models. The work at hand also embraces two disciplines:
vortex shedding from bluff bodies, and the dynamics of a compliant offshore
structure. We begin with a sampling of the literature available on both of these
topics. While there is a huge literature of numerical approaches to these
problems, we view them as outside the scope of this paper.
(a ) Compliant offshore structures

Compliant structures provide an attractive alternative to traditional offshore
platforms. Traditional platforms resist forces due to current, waves and wind. These
structures are assumed to undergo displacements small enough to allow linear
dynamic methods to be used to solve for the response. Compliant structures also
undergo small displacements, but these displacements are large enough tonecessitate
the introduction of nonlinear methods to solve for the structural response. An
extensive review of the nonlinear dynamics of compliant structures has been
presented by Adrezin et al. (1996). Compliant structures are better suited than
traditional frame structures for deeper water applications, since such facilities need
notbeas reinforcedagainst the oceanenvironmentas themore traditional structures.

Articulated towers, used for shallow water purposes, are attached to the ocean
bottom via a universal joint, as shown in figure 1. The tower includes a ballast
chamber near the base and a buoyancy chamber nearer the surface. The
universal joint allows tower motion to occur in three dimensions.

The tension leg platform (TLP) design takes a different approach to surviving
the ocean environment. A schematic of a typical TLP is given in figure 2. The
TLP consists of a platform connected to a submerged pontoon (to provide
buoyancy). The platform system is in turn moored to the ocean floor via several
slender, flexible cables attached to the corners of the platform.
Phil. Trans. R. Soc. A (2008)
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Both the articulated tower and a single mooring cable of the TLP may be
modelled as a partially submerged beam. The methods used here can then be
used as a preliminary basis for understanding and modelling the full articulated
tower or TLP.
(b ) Vortex-induced vibration

The phenomenon of vortex-induced vibration has been investigated for many
years. Previous reviews of the subject matter have been performed by Marris
(1964), Berger & Wille (1972), King (1977) and Sarpkaya (1979). More recently,
these earlier reviews have been updated by Griffin (1982), Bearman (1984) and
Billah (1989). Also, Zdrakovich (1996) provides an overview of different modes of
vortex shedding.

Vortex-induced vibration is based on the von Kármán vortex street. An
important aspect of vortex-induced vibration is lock-in or synchronization. As the
flow velocity past a responding bluff body increases, the frequency at which
vortices are shed from the body increases almost linearly with flow velocity.
However, when the vortex-shedding frequency reaches the natural frequency of
the structure, the vortex-shedding frequency does not further increase with flow
velocity. Rather, the shedding frequency remains ‘locked in’ to the natural
frequency of the structure. At a higher flow velocity the linear dependence of
shedding frequency upon flow velocity resumes (figure 3). Within the
synchronization region, large body motions are observed (the structure undergoes
near-resonant vibration). The lock-in phenomenon has been of great interest to
many researchers, both for description of the underlying fluid dynamical
mechanisms causing synchronization and for prediction of structural responses.
Phil. Trans. R. Soc. A (2008)
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According to Gupta et al. (1996), modelling approaches for structures
undergoing vortex-induced vibration can be classified into three main types.
The first class consists of wake–body coupled models, in which the body and
wake oscillations are coupled through common terms in equations for both. The
second class relies upon measurement of force coefficient data from experiments.
The third class uses a single dynamic equation, but includes aeroelastic forcing
terms. We do not discuss this third class in this paper.
(i) Wake–body coupled models

This approach seems to be the oldest and, as such, is very common. This
form of modelling, according to Hartlen & Currie (1970), was introduced by
Birkhoff & Zarantanello (1957). Earlier models include those developed by
Bishop & Hassan (1964), Skop & Griffin (1973) and Iwan & Blevins (1974). For
example, Hartlen & Currie assume a simple spring–mass–damper equation for
the cylinder, dependent upon a time-varying lift coefficient. They then stipulate
a second-order nonlinear differential equation for the lift coefficient, and choose
the parameters in the two equations to match experimental observations. Their
equations for the cylinder displacement and lift coefficient dynamics are
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where u0, a and z are known parameters, and a and b are parameters with
values selected to best fit experimental data. Note that the second of equations
(1.1) resembles a van der Pol oscillator. In actuality, it is a Rayleigh oscillator
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(Jordan & Smith 1994). Both oscillators possess the desired self-excited, self-
limiting behaviour observed in experiments, and thus the choice of one over the
other is entirely discretionary.

Later models add further refinements to the general ideas put forth by Hartlen &
Currie. Many varieties of the wake–body coupled model make use of a van der Pol
oscillator for the lift coefficient (chosen owing to its inherent self-limited character
as mentioned above). Investigators focusing on this method include Goswami et al.
(1993b) and Skop & Balasubramanian (1995a,b). Balasubramanian & Skop (1999)
reported improved results when including a stall parameter with the van der Pol
oscillator. Barhoush et al. (1995) combined a van der Pol oscillator approach with
a two-dimensional finite element mesh, resulting in a good representation of
steady-state vortex-induced vibration behaviour at ‘high computational cost’.
Gupta et al. (1996) identify the important parameters for a van der Pol wake
oscillator model and then solve such a model.

However, in his discussion of different types of vortex-shedding models, Billah
(1989) stated that the van der Pol oscillator does not ‘describe the “interaction”
between “the flow and body motion” but that between “the flow and fixed
body”.’ Billah then provides his own wake oscillator model,
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where un is the system natural frequency; us is the vortex-shedding frequency;
f q2; _q2ð Þ is an arbitrary function (which can itself be a van der Pol or Rayleigh
equation; Billah 1989); and a, b, g, 3 are problem-specific constants. The
coordinates (q1,q2) are the structural and wake coordinates, respectively.

Lu et al. (1996) apply the method of multiple scales to the wake oscillator
approach, including an extra ‘hidden’ flow variable in the equations of motion.
Their results identify several facets of the main response and the harmonics, with
the method’s effectiveness dependent upon the degree of fluid–structure
interaction. Zhou et al. (1999) also use a wake oscillator approach, solving the
fluid wake and the structure response in an iterative fashion.

Krenk & Nielsen (1999) develop a coupled oscillator model using an energy
transfer approach to arrive at the mutual forcing terms. Their equations are
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where l is the cylinder length; D is the diameter; r is the fluid density; U is the flow
velocity; and g is a non-dimensional coupling parameter. The variable w represents
the transverse motion of a representative fluid mass mf. Note the quadratic form of
the fluid damping coefficient. Values for the model parameters are taken from
experiments and themodel results display branching from below and above the lock-
in region. The solution in the lock-in region is unstable, which the authors claim will
lead to transition between the two modes of oscillation. However, changes in model
parameters do not show similar effects to changes in experimental parameters.
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This model is subsequently used to demonstrate the technique developed in
this paper.
(ii) Experimental force coefficient methods

Models of this class generally make use of a single d.f. model for the structure,
with force coefficients chosen to match experimental data. Kim & Lee (1990)
developed a model for a vertical riser subject to a tension at the top end,
obtaining results that are ‘sensitive to the variation of Cd, Cm values’ (drag and
mass or inertia coefficients).

Chen et al. (1995) applied unsteady flow theory to find the fluid stiffness and
damping coefficients for a cylinder in water, and then used these coefficients to
construct a lift coefficient term in a single d.f. oscillator. The addition of fluid
damping allowed ‘negative damping’1 to occur, allowing for high-amplitude
oscillations around the lock-in region.

Cai & Chen (1996) applied a similar approach to chimney stacks in air
supported by guy-lines. Their results for r.m.s. displacement of the tower agree
with experimental observations. They also identified parameters that contribute
to the resonant behaviour of the stack–cable system, and suggested ways to
remove these resonances.

Jadic et al. (1998) used a time-marching technique to evaluate the fatigue life
of a structure subjected to vortex-induced vibration in air. Their structure is
modelled as an aerofoil, using lift, pressure and moment coefficients from the
literature. The results were in good agreement with previous work on aerofoils.

Christensen & Roberts (1998) also examined an elastic cylinder in air,
estimating the flow parameters recursively. Two possible models are presented
in the work, one of which is more complex due to inclusion of the time dependence
of wind fluctuation. The models give similar fits to experimental data, suggesting
that the time dependence of wind fluctuation is not a major factor in the response.
(iii) Experimental data and fluid dynamics

All three classes of models above rely upon experimental results, both for data
to choose proper parameters and to act as a basis for comparison for flow-
oscillator solutions. The following studies concern themselves with measurement
of fluid parameters, measurement of structural response or description of the
fluid dynamics of the wake.

Sibetheros et al. (1994) examined the dynamics of the wake behind an
oscillating cylinder. Their experimental set-up allowed for uniform, harmonic
and biharmonic flows to be studied. Their data include velocity profiles for wakes
under the various flow conditions. The results are corroborated with flow
visualizations performed by Ventre (1993).

Goswami et al. (1993a) performed data collection in hopes of constructing a
new vortex-shedding model. They found that the feedback from wake to body is
‘an averaged phenomenon insensitive’ to variations in cylinder oscillations and
wake velocity in the synchronization region. They also observed, but were unable
to consistently reproduce, coupling of the body oscillation to the wake oscillation.
1 The fluid adds energy to the system, instead of the more usual reverse situation.
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Recall that classical lock-in is the coupling of the wake oscillation, via shedding
of vortices, to the body oscillation. The phenomenon observed by Goswami et al.
(1993a) is termed ‘alternate synchronization’.

Sarpkaya (1995) examined the transverse motion of oscillating cylinders
restrained in the in-line direction. His conclusions support the use of averaged
force coefficients to predict the onset of lock-in. These predictions are not
extended to bodies allowed to oscillate in two directions (biharmonic response),
nor are they extended to critical flows (flows whose Reynolds number is high
enough to introduce turbulence; Fox & McDonald 1992).

Hover et al. (1997) examined vortex-induced effects on a towed cylinder. They
used force feedback and online numerical simulation to mimic the vortex-induced
vibration of marine cables. The data correlate with previous experiments in lift
coefficient, phase and peak amplitude. The dynamic response spectra are found
to vary between the single- and multi-mode cases of vibration. The authors
attribute this effect to the existence of multiple wake interaction mechanisms for
a structure with multiple vibration modes.

Nakagawa et al. (1998) tested circular cylinders in air at several yaw angles.
Flow velocities and forces were computed by applying the cosine law for yawed
cylinders, meaning the cross-flow velocity component for a cylinder at yaw angle q,
U cos q, was used for force calculations instead of the free-stream velocity U. The
cosine law was found to hold up to approximately qZ458 by correlating yawed
cylinder data to findings made for unyawed cylinders by other investigators.

The types of vortices shed by cylinders are not limited to the von Kármán
vortices as discussed above. Kitigawa et al. (1999) examined end-cell vortices,
especially the effects of different cylinder end conditions on end-cell-induced
vibration. Their experiments in air confirmed the existence of end-cell-induced
vibration, with an onset at wind speeds three times higher than that of vortex-
induced vibration. Also, the amplitude of end-cell-induced vibration was
unstable, unlike the stable amplitudes encountered in vortex-induced vibration.
End-cell-induced response was found to vary with varying diameter of a disc
placed on the free end of the experimental cylinder.

Lin & Rockwell (1999) ran experiments on a fully submerged cylinder. Their
cylinder was oriented so that its axis was parallel to the free surface, and they
focused on the effects of distance between the top of the body and the free surface
on vortex formation. Several fundamental aspects of vortex formation are found
to depend on the gap between the cylinder and free surface.

Christensen & Ditlevsen (1999) performed experiments on elastic cylinders
in a wind tunnel. They simulated natural wind turbulence by randomly varying
the propeller rotation speed. The result is a stochastic lock-in profile, with the
lower and upper limits of the lock-in region having normal distributions. The
authors suggest methods for estimating the damage to the structure by employing
Miner’s rule.
2. Hamilton’s principle revisited

This work follows that of McIver (1973) and Benaroya & Wei (2000). It is an
extension of variational mechanics. See Benaroya & Wei (2000) for many of
the details.
Phil. Trans. R. Soc. A (2008)
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(a ) The classical theory

From d’Alembert’s principle for a system of n particles,

Xn
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dt2
C
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vr i

KFi

� �
$dr i Z 0; ð2:1Þ

where PZPðr1; r2;.; rnÞ is the potential energy of the particles; Fi denotes
forces without potentials acting on the ith particle; ri is the position vector of the
particle of mass mi; and dri is a virtual displacement. The notation d implies a
variation in a function. It is an imaginary alternate configuration that complies
with the system constraints. The variation equals zero where the system is
prescribed. For example, at a fixed boundary or support, the variation is zero
since there cannot be any work done in this case. Also, if the configuration is
prescribed, then the variation equals zero because otherwise there would result a
configuration that is not possible. Considering each term in equation (2.1), we
note that
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With a few straightforward steps, d’Alembert’s principle becomes
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where LZTKP is the Lagrangian of the system and T is the kinetic energy of
the particles. Equation (2.4) for a discrete system may be written for a
continuous system as
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where r denotes the density; UZdr/dt, the velocity field of the system at time t;
L is the Lagrangian of the continuous system; and dW is the virtual work
performed on the system by the generalized (non-conservative) forces undergoing
virtual displacements. v denotes a fixed material system enclosed in a volume,
over which the integration is performed.

Hamilton’s principle is obtained by integrating equation (2.5) (or equation
(2.4)) with respect to time over an interval t1 to t2, yielding
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If one imposes the requirement that at times t1 and t2 the configuration is
prescribed, then it must be that drZ0, and then the last term in the above
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equation drops out, leaving only

d
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L dtC
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dW dt Z 0: ð2:7Þ

The equations of motion and their respective boundary conditions are a result of
performing the stated variations.

In this case, where the configuration is prescribed at the end times, Hamilton’s
principle states that there is an optimal (minimum) path in time for the
configuration of the system. This is not generally the case when the end times are
not prescribed. It is important to emphasize the physical meaning of prescribing
the configuration and how this leads to a variational principle to which there is
an optimal configuration in dynamic space. Prescribing the variation dr at the
end times implies that the system configuration is known at those times, thus
leading to drZ0 and it is therefore possible to meaningfully speak of an optimal
path between the end times.
3. McIver’s extension of Hamilton’s principle

In 1973, McIver (1973) published a work with broad implications for modelling
complex fluid–structure interactions. The central feature of his work was the
broadening of Hamilton’s principle to include integral control volume concepts
from fluid mechanics. The strength of McIver’s work was in identifying an
approach for analysing complex interactions where the system boundaries are
not necessarily well defined or where the system configuration at two distinct
times may not be readily prescribed. In the classical Hamilton’s principle
approach, the system contains one or more solid objects whose positions may be
prescribed at specific times. That is, the system is of fixed mass containing the
same material elements at all times.

By introducing Reynolds transport theorem, McIver generalized the analysis to
include control volumes where the material is permitted to cross the boundaries.

McIver’s system is composed of one control volume, of which one part is open
and the rest is closed. Therefore, both are treated simultaneously, as shown in
the two examples developed in his paper. The first is the derivation of the
equation of motion of a rocket where the open part of the control surface
coincides with the exhaust for combusted fuel. The second example discusses an
early controversy regarding the modelling of the dynamics of a moving beam.
4. The extension to external viscous flows

McIver derived his extension for applications where the fluid is encased in the
structure, and where the flow is assumed to be steady and frictionless. The
equations derived above assume a steady frictionless flow. We are interested in
generalizing the McIver extension of Hamilton’s principle so that we can model
the vortex-induced oscillation of a structure. This is a viscous external fluid–
structure interaction problem. McIver’s extension uses the control volume
concept to account for fluid mass that enters and leaves the structure. This same
idea can be applied to a control volume around a fluid that envelopes a structure.
Phil. Trans. R. Soc. A (2008)
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Modelling of the internal flow problem has the advantage that, assuming no
cavitation, the fluid is bound by the structure. With external flows, the fluid is
unbounded and the modelling becomes more challenging. Full details are
provided in Benaroya & Wei (2000).

In this development, it is useful to think of the system, comprising a structure
surrounded by a moving fluid, as one that is defined using two control surfaces.
The first control surface is at the structure surface. It is a closed control volume.
The second control surface is at some distance from the structure, as shown
in the figure 4 and figures 8–10. This control surface may be partially closed and
partially open, or all open, depending on the application. It is important to keep
track of the various portions of the control surface so that the parameters are
appropriately prescribed.

For such a control volume, there is

— a time rate change of momentum within the control volume due to the
unsteady character of the flow;

—a net momentum flux across the boundaries of the outer control surface;
— an instantaneous pressure p acting on the control surfaces; and
—an instantaneous shear stress t acting on the control surfaces.
(a ) Stationary outer control volume: cylinder oscillating about contact at base

This example is taken from Benaroya & Wei (2000). Here we take the cylinder
to be connected only at its base via a leaf spring (figure 5). It behaves like a
column supported only at its base. For purposes of this example we assume that
the cylinder is rigid, as above, and that three-dimensional effects can be ignored.
Phil. Trans. R. Soc. A (2008)
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A top view of the cylinder is shown in figure 4. There are a number of possible
control volumes. Here we use control volume 4, which extends from 0.4X/D from
the left edge of the cylinder to 1.6X/D from the right edge of the cylinder. This
control volume appeared to capture the essential dynamics.

The single generalized coordinate that defines the cylinder location is the angle
of rotation q rad. We have an additional term in the potential of the structure
due to the difference between the buoyancy force and the weight. We assume
that the resultants of these distributed forces act at the geometric centre of the
circular cylinder. Then, for some rotation q, this additional potential results in
the moment (mgKB)(L/2)sin q, where mg is the weight of the cylinder; B is the
total buoyancy force (which equals the weight of the displaced fluid); and L is the
length of the cylinder. Let I0 be the mass moment of inertia for the circular
cylinder about its base and kT be the torsional spring constant at the base. The
governing equation is then

_q I0€qCkTqKðmgKBÞ L
2
sin q
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ð
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This equation can also be evaluated numerically if written in the form
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where F(t) is the sum of all the remaining terms,
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Then, we solve for q by first integrating both sides of equation (4.2), and then
integrating again, each integration being with respect to time. There are
numerical issues to be resolved due to the complexities of the functions on both
sides of the equals sign. A model problem is presented subsequently along with a
brief discussion on the experimental apparatus used and the kinds of data that
are obtained.
5. The initial model problem

A key objective of the present work is to prove the concept of integrating detailed
experiments with reduced-order analytical modelling. In this context, we chose a
geometrically simple model problem in which the fluid–structure interactions
were fully coupled. That is, flow-excited structural motions that, in turn,
modulated the flow. Mathematical or experimental complexities like strong
three-dimensionality were deferred for future development.

The model problem addressed in this study was the vortex-induced motion of
a low mass-ratio circular cylinder. The cylinder was restrained at its bottom end
by a leaf spring with freedom to move in the cross-stream plane only. A
schematic of this model problem is shown in figure 5. One can think of it as an
inverted pendulum excited by its own periodic vortex shedding. The amplitude of
motion of the free, upper end was sufficiently small that the flow could be
considered to be nominally two-dimensional.

The physical model used in this study was a 2.54 cm diameter (D) cylinder
constructed of thin wall aluminium tube. It was 128 cm long (L) and immersed in
a uniform flow of water, approximately 107 cm deep. Therefore, the top end of
the cylinder protruded through the free surface. The mass ratio mcylinder=rD

2L
was 1.53 (mcylinderZmass of cylinder), the damping ratio z was 0.054, and the
cylinder natural frequency in air, thus, without added mass, was fnZ1.25 Hz. For
a detailed description of the cylinder and preliminary observations of the
associated flow dynamics, the reader is referred to Atsavapranee et al. (1999).
(a ) Experimental data as analytical modelling input

This section describes the experimental methodology used to acquire key
modelling data, i.e. the kinetic energy transport and work by viscous forces
across the boundaries of an integral control volume. There is also a presentation
of preliminary data and their application to a prototype model.
Phil. Trans. R. Soc. A (2008)
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Solutions will be time-dependent expressions for the structure’s motion as
functions of both time and position along the structure. Attaining scientifically
rigorous solutions, in turn, requires spatially and temporally resolved
descriptions of the fluid ‘forcing’ functions on the r.h.s. as well as the fluid
kinetic energy derivative on the left. Unfortunately, there is, as yet, no known
generalized analytic solution to the fluid equations which could be integrated to
obtain the necessary forcing functions. This tends to be a universal problem faced
by modellers once the governing equations of motion have been derived.

When considering how to proceed, one immediately recognizes the risk of
making assumptions without a clear understanding of the flow–structure
interactions over the entire range of conditions being modelled. No matter how
physically reasonable, there is a significant risk of introducing empiricism into
the final solution. Without additional guidance, we would also lack the insight
and confidence to realistically assess the versatility of the model.

Recent advances in video-based flow measurement techniques have enabled
accurate measurement of derivative flow quantities in highly complex, turbulent
flows. In particular, Shah et al. (1999, 2000) have used highly resolved digital
particle image velocimetry (DPIV) data to compute terms in the vorticity
transport equation, along with turbulent strain rates in a turbulent tip vortex shed
from a half D-wing. Hsu et al. (2000) presented turbulent kinetic energy transport
quantities obtained from DPIV measurements in a turbulent boundary layer.

We look to capitalize on the power of DPIV and apply it to the modelling
problem outlined above. Specifically, we show how high-resolution DPIV can be
used to measure fluid energy transport terms and use that information as input
to a reduced-order analytical fluid–structure interaction model. We also use
experiments as a validation of the model output because the structure’s position
is inherently part of the acquired experimental data.

The dataset consisted of an ensemble of 50 sets of 225 consecutive DPIV
velocity field measurements taken at 100 ms intervals, or 1/12 of a cylinder
oscillation period, in a horizontal plane perpendicular to the axis of symmetry of
the cylinder at rest. The location of the measurement plane was approximately
70 cm above the floor of the test section, coinciding with the location of the
amplitude measurements. The spacing between vectors was 0.19 cm correspond-
ing to l/DZ0.074. The total duration of the sample was 22.5 s or approximately
17 cylinder oscillation periods.

It is critical to note at the outset that DPIV is ‘only’ a two-dimensional
velocity field measurement technique. While information about pressure
variations and contributions from three dimensionalities in the flow are not yet
accessible, we demonstrate in this paper the power of integrating focused
experiments with the analytics into a new modelling paradigm. Therefore, it is
important that the DPIV method is truly two-dimensional since that is the level
of detail in the analytical model.

Much detail on the experimental methodology and the details of the
experimental set-up are given by Dong et al. (2004).
(b ) Flow facility

Experiments were conducted in the free surface water channel facility at
Rutgers University. Details of the flow facility may be found in Smith (1992) and
Phil. Trans. R. Soc. A (2008)
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Grega et al. (1995). The test section measured 58.4 cm in width!128 cm in depth
!610 cm in length. It was constructed entirely from 1.91 cm thick glass panels
placed in a welded steel I-beam frame. Flow was driven by two pumps operating in
parallel. Variable speed controllers were used to set the flow rate between 760 and
15 000 l mK1. With the test section completely filled, the maximum flow rate
corresponded to a mean free-stream velocity of approximately 30 cm sK1. Free-
stream turbulence levels were less than 0.1% of the mean free-stream velocity and
the flow was uniform across the cross section to within 2%.
(c ) Applying experiments to the reduced-order analytical model

The flow measurements from an inverted oscillating pendulum experiment were
analysed and a set of time traces were developed of three key fluid kinetic energy
transport terms, net kinetic energy flux, time rate of change of fluid kinetic energy,
and rate of work done by viscous forces. The Reynolds number of the flow was ReZ
3800, corresponding to a reduced velocity U �ZUfnDZ4:8. At this value of U �,
there is a high degree of synchronization between the vortex shedding and the
cylindermotion. The plots shown in figure 6 are precisely the fluid ‘forcing’ functions
needed to analytically determine the motion of the cylinder. In this section, we show
how these data were applied to the governing equation and compare the theoretical
prediction of cylinder motion with the actual, experimentally measured oscillations.

The precise form of the equation of motion used in this analysis is equation
(4.1). The equation was simulated using MATLAB in which the fluid forcing terms,
appearing on the r.h.s., were the experimentally determined functions presented
in figure 6. The traces are labelled as follows: dðKEÞfluid=dtZtime rate of change
of fluid kinetic energy in the control volume; (KE )fluid fluxZkinetic energy flux
across control surface; viscous workZrate of work done by viscous forces;
dðKECPEÞcylinder=dtZtime rate of change of cylinder kinetic plus potential
energies; and pressure workZrate of work done by pressure forces, as computed
from the total energy. The system includes the interior structure and
surrounding fluid. Since the experimental data were necessarily provided in the
form of a discrete dataset with sampling points every fifteenth of a second, a
fast Fourier transform was performed on the data within MATLAB. For this
initial calculation, 100 terms in the Fourier transformed signals were retained.
Subsequent detailed analysis will be conducted to determine the minimum
number of terms necessary to accurately model the cylinder dynamics.

The experimental data were phase averaged over many experimental trials to
remove as much of the noise as possible. The resulting dataset was then used as
input to the MATLAB program. Out of 225 vector fields, 50 sets were included in
the ensemble. The cylinder position versus time signal was used to line up
individual datasets. Phase averaging was done by centring on the peak of a beat
cycle. Extensive details are provided in Dong (2002).

A comparison between the actual cylinder motion and the motion predicted by
our reduced-order model is shown in figure 7. The ordinate and abscissa in the
figure are shown in dimensional form. Clearly, the agreement between model and
experiment is quite good. Observe that both oscillation frequency and amplitude
appear to be accurately predicted by the model along with the beating behaviour.
Numerical instabilities resulting from singularities when the cylinder was at
points of maximum deflection are responsible for the clipping of the model result.
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1245Reduced-order fluid–structure interaction
Experiments indicate a slight frequency mismatch between fluid kinetic energy
flux and pressure work terms on one hand, and the time rate of change of the
fluid kinetic energy term on the other. One can see from the individual spectra
that the flux and work terms oscillate at a slightly lower frequency than the time-
derivative term. One can use physical arguments coupled with detailed study of
the signals to conclude that fluid kinetic energy flux and pressure work correlate
with the vortex shedding while changes in fluid kinetic energy around the
Phil. Trans. R. Soc. A (2008)
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cylinder follow the cylinder oscillation. Thus, we conclude that the beating
phenomena observed in the resonant synchronization regime result from the
competition between vortex shedding and structural vibration.
6. Advanced coupled models

We again focus on the flow of a viscous incompressible fluid around a rigid
circular cylinder. A viscous incompressible fluid can be thought of as a real fluid
with an internal constraint manifesting the requirement of incompressibility. In
general, real fluids are holonomic and non-conservative (Leech 1977). The no-slip
condition at a boundary (fluid/solid or fluid/fluid), for example, is a holonomic
constraint. By holonomic it is meant that a constraint on the configuration
(position) of the particles in a system of the form Gðx; tÞZ0 exists. Time
may (rheonomic) or may not (scleronomic) enter into this constraint equation
explicitly.
(a ) The extended Hamilton’s principle

Consider the system of particles inhabiting the open control volume Ro(x, t)
at time t. This system of particles is referred to as the open system. Only
instantaneously does it coincide with the closed system of particles which
constitute the material system M. The control volume has a part Bo(x, t) of its
bounding surface B(x, t) which is open to the flow particles. The closed part of
the bounding surface is Bc(x, t), and includes any solid boundaries and portions
of the surface in which the local streamline is normal to the surface. The kinetic
energy of the open system is denoted (K)o. The sum of the gravitational

potential energy ðEðgÞÞo, the potential energy due to buoyancy ðEðbÞÞo, the strain

energy ðEðsÞÞo, and the internal energy ðEðiÞÞo of the open system is denoted

(E)o. urelðx; tÞZuðx; tÞKuB is the fluid velocity relative to the velocity of
control surface.

The extended form of Hamilton’s principle for a system of changing mass (e.g.
the exhaust jet of a rocket) or a system of constant mass which does not always
consist of the same set of particles (e.g. a pipe of constant diameter conveying
fluid) can be written as (Benaroya & Wei 2000)

d

ðt 2
t 1

ðLÞo dtC
ðt 2
t 1

ðdW Þo dtC
ðt 2
t 1

ð
Bo

ð
ðtÞ
rðurel$drÞðu$nÞds dt Z 0; ð6:1Þ

where ðLÞoZðKKEÞo is the Lagrangian of the open system and (dW)o is the
virtual work performed by non-potential forces on the same system. Note that
dsZdsðx; tÞ is used here to represent a differential surface element. At position x
and time t, the density is r and the velocity is u.

Note that equation (6.1) is related to the Reynolds transport theorem, which
allows one to calculate time rate of change of any extensive property of system M
from Eulerian measurements made inside a spatial volume which instantaneously
coincides with that occupied by the mass system at time t. Designating the volume
occupied by system M by RM(x, t), the open control volume instantaneously
coinciding with RM(x, t) by Ro(x, t), and the bounding surface of Ro(x, t) by
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B(x, t), the Reynolds transport theorem is given by (Malvern 1969)

D

Dt

ð ð ð
RMðx;tÞ

rA dv ZK

ð ð
Bðx;tÞ

rAðurel$dAÞdsC
ð ð ð

Roðx;tÞ

v

vt
ðrAÞdv: ð6:2Þ

In equation (6.2), A is an arbitrary intensive property of the system reckoned
per unit mass, rZr(x, t) is the spatial density field, and dAZn ds with n a
positive outward normal. In the surface integral, urelðx; tÞZuðx; tÞKuB is the
fluid velocity relative to the velocity of control surface, assumed constant in time
and spatially independent if non-zero. urelðx; tÞZ0 on any solid boundaries, so
B(x, t) in equation (6.2) is understood to exclude any such boundaries. Also
excluded are any portions of the surface in which the instantaneous local
streamline is normal to the surface, since in that case urel$dAZ0.

In equation (6.1), the virtual displacements dri must preserve the mass balance
law.This is in addition to therequirements imposedbyanygeometric constraints, the
balance laws of internal energy and entropy, and any constitutive relations.

Suppose the open system is inhabited instantaneously by fluid particles
moving along with the flow and a single solid body in the path of the fluid. The
boundary of this solid body constitutes part of the closed boundary Bc(x, t). The
following assumptions are made.

(i) The open part of the control surface is stationary, i.e. uBo
Z0. As a result,

urelZu.
(ii) The flow is considered to be two-dimensional. That is, all flow quantities

are independent of z and u3ðx; tÞZ0. The vorticity is then perpendicular
to the plane of motion.

(iii) The length and time scales are such that the fluid is in local
thermodynamic equilibrium, even when the fluid is in motion. All
macroscopic length and time scales are considerably larger than the
largest molecular length and time scales.

(iv) An inertial rectangular Cartesian coordinate system is used, with basis
vectors e1, e2 and e3 in the x, y and z -directions, respectively.

(v) The resultant of all body forces, both conservative and non-conservative,
in the open control volume is assumed small. As a consequence of this
assumption, the gravitational and buoyancy effects are neglected and

ðEðgÞÞoZðEðbÞÞoZ0.
(vi) Changes in the internal energy DðEðiÞÞo=Dt, which are entirely due to the

motion of the fluid, are neglected. As a consequence of the commutative
property of the operators d($) and D($)/Dt, this is equivalent to

dðEðiÞÞo Z d EðiÞ
fluid

� �
o
Z d

ð ð ð
Roðx;tÞ

reðr;TÞdv Z 0; ð6:3Þ

where e is the specific internal energy and T(x, t) is the thermodynamic
temperature field. Note that e(r, T ) is the so-called caloric equation of
state (Malvern 1969).
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While the fluid is initially allowed to be compressible, potentially rendering
this last assumption invalid, subsequent application of the incompressibility
approximation vindicates said assumption.

Finally, the dependence of Ro, Bo, and Bc on x is omitted from here on since it
is understood that these variables refer to the spatial description. The
dependencies of r and u on x and t are also dropped.
(b ) Uniform viscous flow past a stationary cylinder

Let the control volume be defined as the rectangular volume of unit depth
surrounding the stationary cylinder. The origin of the coordinate system is at the
centre of the cylinder. The part of the control surface that is pervious represents
a significant portion of the outer surface defined by the perimeter of the rectangle
shown in figure 8 multiplied by a unit projection out of the plane of said figure.
This part is the open control surface Bo(t). The closed control surface Bc(t),

includes the circumference of the cylinder x2Cy2ZR2, and any portions of the
outer surface that are closed to fluid motion (i.e. those portions where uðx; tÞkn).

Note that in this particular problem, the surfaces Bo(t) and Bc(t) are functions
of neither time nor space. This obviously means that the open control volume
Ro(t) is also independent of time and space. The CV and CS definitions are
illustrated in figure 8. The open control volume, Ro(t), is clearly of constant
mass, yet it does not consist of the same set of particles at any two instances. The
uniform, steady free-stream velocity is uoZUoe1.

The kinetic energy of the open system is given by

ðKÞo Z ðKfluidÞo Z
ð ð ð

RoðtÞ

1

2
rðu$uÞdv; ð6:4Þ

where dvZdvðx; tÞ is the differential volume element. For the sake of brevity,
the functional dependencies of dv and ds are dropped. Clearly ðKcylÞoZ0. Also,
ðEðsÞÞoZ0 since the cylinder is rigid. From equation (6.3), and the additional
Phil. Trans. R. Soc. A (2008)
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relations ðEðgÞÞoZðEðbÞÞoZ0, dðEÞoZ0, it follows that

d

ðt 2
t 1

ðLÞo dt Z d

ðt 2
t 1

ðKÞo dt Z d

ðt 2
t 1

ð ð ð
RoðtÞ

1

2
rðu$uÞdv dt: ð6:5Þ

The virtual work done by the normal and tangential stresses in the fluid
during a virtual displacement is given by (Dost & Tabarrok 1979)

ðdW Þo Z ðdWfluidÞo ZK

ð ð ð
RoðtÞ

sijd3ij dv; ð6:6Þ

where sij is the natural or Eulerian stress tensor and

d3ij Z
1

2

vðdrjÞ
vxi

C
vðdriÞ
vxj

� �
: ð6:7Þ

It is tempting to regard d3ij as the Lagrangian variation of Cauchy’s
infinitesimal (linear) strain tensor,

3ij Z
1

2

vri
vxj

C
vrj
vxi

� �
:

However,

d3ij Z
1

2
d

vri
vxj

� �
Cd

vrj
vxi

� �� �
s

1

2

v drið Þ
vxj

C
v drj
� �
vxi

� �
:

The balance of angular momentum applied to a differential fluid volume
element dvZdx dyðdzZ1Þ leads to the conclusion that the stress tensor is
symmetric, sijZsji. Using this symmetry property it can be easily shown that

1

2
sij

vðdrjÞ
vxi

C
vðdriÞ
vxj

� �
Zsij

vðdriÞ
vxj

� �
:

As a consequence, equation (6.6) becomes

ðdW Þo ZK

ð ð ð
RoðtÞ

sij
vðdriÞ
vxj

� �
dv: ð6:8Þ

Using equations (6.5) and (6.8), equation (6.1) can be written as

d

ðt 2
t 1

ð ð ð
RoðtÞ

1

2
rðu$uÞdv dtK

ðt 2
t 1

ð ð ð
RoðtÞ

sij
vðdriÞ
vxj

� �
dv dt

C

ðt 2
t 1

ð ð
BoðtÞ

rðu$drÞðu$nÞds dt Z 0: ð6:9Þ

Before proceeding with the development of equation (6.9), the components sij of
the stress tensor s that appear in equation (6.9) are defined.
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(c ) The stress tensor

It can be shown that the constitutive relation relating the stress tensor s to the
density field rðx; tÞ, the thermodynamic pressure field pðx; tÞ, and the velocity
gradient tensor LZ ½Vuðx; tÞ�T in a Newtonian fluid is given by (Currie 2003)

sZ KpClðV$uÞ½ �ICm ðVuÞCðVuÞT
	 


; ð6:10Þ

where I is the identity tensor. The operator V is understood to be a spatial
operator, i.e. VhVx. The thermodynamic pressure field is defined by the
equation of state

pZ pðr;TÞ:
The Cartesian components of equation (6.10) are

sij ZKpdij Cldij
vuk
vxk

Cm
vui
vxj

C
vuj
vxi

� �
: ð6:11Þ

The parameters m and l are usually referred to as the dynamic viscosity
coefficient and the second viscosity coefficient, respectively. From assumption
(iii) of §6a, it is possible to make an important simplification: mZm r;Tð Þ and
lZl r;Tð Þ depend only on the equilibrium properties of r and T. Here, the
additional simplification is made that m and l are effectively constant.

Equation (6.10) follows from the general form:

sZKpICGðVuÞ; ð6:12Þ

where G is a linear tensor valued function. Vu can be written as the sum of a
symmetric tensor D and a skew-symmetric tensor W, which are defined by

DZ
1

2

h
ðVuÞCðVuÞT

i

WZ
1

2

h
ðVuÞKðVuÞT

i
:

The tensors D and W are the rate of deformation and spin tensor, respectively.
Using these tensors, equation (6.12) can then be written as

sZKpICGðDCWÞ:

In a rigid body rotation of the fluid there can be no shear stresses since there is no
shearing action. The shear stresses are represented entirely by the components of
tensor W. Since these components are non-zero for a rigid body rotation, it is
clear that s must be independent of W. Assuming the fluid is isotropic, then
G(D) can be written as (Malvern 1969)

GðDÞZ lðtr DÞIC2mD;

where tr D is the trace of D.
The stress tensor can now be expressed as

sZKpIClðtr DÞIC2mD: ð6:13Þ
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The variation of the first term of equation (6.9), representing the variation of
the total fluid kinetic energy in the open control volume, is intimately related to
variational form of the integral or global mass balance law.
(d ) The global mass balance law

Regarding the mass balance law, McIver (1973) states that the necessary
condition in integral form becomes

d

ð ð ð
RoðtÞ

rð$Þdv Z
ð ð ð

RoðtÞ
rdð$Þdv; ð6:14Þ

where ($) is an arbitrary function of x and t. The origin of equation (6.14) lies in
the statement of global mass balance for mass system M, which occupies the
volume RM(t) at time t. In variational form, this is given by (Xing & Price 1997)

d

ð ð ð
RMðtÞ

rð$Þdv Z
ð ð ð

RMðtÞ
rdð$Þdv: ð6:15Þ

Recall that system M is closed. That is, it always consists of the same collection
of particles and there is no mass transport through its surface. Its bounding
surface BM(t) moves with translational velocity NZuini which is the same as the
local fluid velocity.

McIver (1973) argues that as far as the operator d is concerned, equations
(6.14) and (6.15) are equivalent at the instant when RM(t) and Ro(t) coincide. He
describes this correspondence as:
Phil. T
The control volume, open or closed, is always a closed system as far as the variation is
concerned regardless of whether or not material is transported across its boundaries in the
real motion: there is no virtual material transport out of the system.
The continuity equation

Dr

Dt
Cr

vuk
vxk

� �
Z

vr

vt
C

vðrukÞ
vxk

Z 0; ð6:16Þ

representing the local mass conservation law, is in fact a necessary condition for
equation (6.15).
(e ) The kinetic energy

The first term in equation (6.10) can be written as

d

ðt2
t1

ð ð ð
RoðtÞ

rðu$uÞdv dt Z

ðt2
t1

ð ð ð
RoðtÞ

rðu$duÞdv dt

Z

ðt2
t1

ð ð ð
RoðtÞ

r u$d
Dr

Dt

� �� �
dv dt: ð6:17Þ

Using the fact that the variation denoted by the operator d($) and the rate of
change denoted by D($)/Dt are both material variations and are consequently
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H. Benaroya and R. D. Gabbai1252
interchangeable, equation (6.17) can be written asðt2
t1

ð ð ð
RoðtÞ

r u$d
Dr

Dt

� �� �
dv dt Z

ðt2
t1

ð ð ð
RoðtÞ

r u$
DðdrÞ
Dt

� �
dv dt: ð6:18Þ

Consider next the following result from Dost & Tabarrok (1979):ðt2
t1

D

Dt

ð ð ð
RoðtÞ

rðu$drÞdv
� �

dt Z

ðt2
t1

ð ð ð
RoðtÞ

r u$
DðdrÞ
Dt

� �
dv dt

C

ðt2
t1

ð ð ð
RoðtÞ

Dr

Dt
CrV$u

� �
dv dt

C

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dt:

On account of the continuity equation, equation (6.16), the second integral
vanishes, andðt2

t1

D

Dt

ð ð ð
RoðtÞ

rðu$drÞdv
� �

dt Z

ðt2
t1

ð ð ð
RoðtÞ

r u$
DðdrÞ
Dt

� �
dv dt

C

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dt:

Replacingðt2
t1

ð ð ð
RoðtÞ

r u$
DðdrÞ
Dt

� �
dv dt Z

ðt2
t1

D

Dt

ð ð ð
RoðtÞ

rðu$drÞdv
� �

dt

K

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dt

in equation (6.17) leads toðt2
t1

ð ð ð
RoðtÞ

r u$d
Dr

Dt

� �� �
dv dt Z

ðt2
t1

D

Dt

ð ð ð
RoðtÞ

rðu$drÞdv
� �

dt

K

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dt: ð6:19Þ

Integrating the first term of equation (6.19) givesð ð ð
RoðtÞ

rðu$drÞdv
� �t2

t1

;

which vanishes on account of the constraint drðt1ÞZdrðt2ÞZ0. Equation (6.19)
is then simply

d

ðt2
t1

ð ð ð
RoðtÞ

rðu$uÞdv dt Z

ðt2
t1

ð ð ð
RoðtÞ

r u$d
Dr

Dt
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dv dt

ZK

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dt: ð6:20Þ
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Replacing equation (6.20) in equation (6.9) yields

K

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dtK

ðt2
t1

ð ð ð
RoðtÞ

sij
vðdriÞ
vxj

� �
dv dt

C

ðt2
t1

ð ð
BoðtÞ

rðu$drÞðu$nÞds dt Z 0: ð6:21Þ

(f ) Virtual work

Having obtained the variation of the kinetic energy of the fluid, which in the
present case represents the Lagrangian of the open system, attention is now
focused on the virtual work. The second term of equation (6.21) can be expressed
in the equivalent formðt2

t1

ð ð ð
RoðtÞ

sij
vðdriÞ
vxj

� �
dv dt Z

ðt2
t1

ð ð ð
RoðtÞ

vðsijdriÞ
vxj

K
vsij

vxj
dri

� �
dv dt: ð6:22Þ

The divergence theorem is used to transform the first term inside the integral.
The divergence theorem for a (sufficiently well-behaved) vector field w is given

in Cartesian form by ð ð
BðtÞ

wini dsZ

ð ð ð
RoðtÞ

vwi

vxi
dv; ð6:23Þ

where B(t) is the bounding surface of region Ro(t).
Applying equation (6.23) with wZsTdr, i.e. wiZsijdri, the following form of

equation (6.22) is obtained:ðt2
t1

ð ð ð
RoðtÞ

vðsijdriÞ
vxj

K
vsij

vxj
dri

� �
dv dt

Z

ðt2
t1

ð ð
BðtÞ

sijnjdri ds dtK

ðt2
t1

ð ð ð
RoðtÞ

vsij

vxj
dri

� �
dv dt: ð6:24Þ

Using equation (6.24), equation (6.21) becomes

K

ðt2
t1

ð ð ð
RoðtÞ

r
Du

Dt
$dr

� �
dv dtC

ðt2
t1

ð ð ð
RoðtÞ

vsij

vxj
dri

� �
dv dt

K

ðt2
t1

ð ð
BðtÞ

sijnjdri ds dtC

ðt2
t1

ð ð
BoðtÞ

rðu$drÞðu$nÞds dt Z 0; ð6:25Þ

where B(t)ZBo(t)gBc(t) and n is the outward normal. Note that n points into
the cylinder on surface Bc(t). It must be emphasized that in using the divergence
theorem to convert equation (6.22) to equation (6.24), a subtlety arises. The
domain Ro(t) is actually doubly connected.
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(i) The doubly connected domain

In fact, the region occupied by the fluid in a two-dimensional flow field due to
any moving body is necessarily doubly connected (Batchelor 1967). A problem
arises in the direct application of the divergence theorem. However, this problem
is easily dealt with by defining the bounding surface of Ro(t) to be
B�ðtÞZBoðtÞgBcðtÞgBuðtÞ, where Bu(t) is the surface of the umbilicus (branch
cut) which joins the exterior surface Bo(t) to the body surface Bc(t). This is
illustrated in figure 9. It can be shown that integration of sn over the umbilicus
does not contribute to the total surface integral (Noca 1997). Thus, B�(t) may be
effectively taken as equal to B(t).
(g ) The Euler–Lagrange equations and the natural boundary conditions

Collecting like terms in equation (6.25) givesðt2
t1

ð ð ð
RoðtÞ

Kr
Dui
Dt

C
vsij

vxj

� �
dri dv dtK

ðt2
t1

ð ð
BcðtÞ

sijnjdri ds dt

K

ðt2
t1

ð ð
BoðtÞ

sijnjKruiujnj
	 


dri dv dt Z 0:

Arguing in the usual way that the variations dri are arbitrary in Ro(t)![t1,t2]
leads to the Euler–Lagrange (EL) equation

r
Dui
Dt

Z
vðsijÞ
vxj

in RoðtÞ: ð6:26Þ

A similar argument regarding the variations dri on Bo(t)![t1,t2] and Bc(t)!
[t1,t2] leads to the natural boundary conditions

sijnjdri Z 0 on BcðtÞ ð6:27Þ

and
½sijnjKruiujnj �dri Z 0 on BoðtÞ: ð6:28Þ

Substituting equation (6.11) into equation (6.26) yields the components of the
balance of linear momentum equation for a Newtonian viscous compressible fluid
with constant viscosity coefficients

r
Dui
Dt

ZK
vp

vxi
Cl

v2uj
vxi vxj

� �
Cm

v

vxj

vui
vxj

C
vuj
vxi

� �� �
in RoðtÞ: ð6:29Þ

The next step is to use Stokes’ condition, lZK2m/3. Stokes’ condition is
equivalent to the assumption that the thermodynamic pressure and the
mechanical pressure are the same for a compressible fluid.

To see this, consider the difference between the thermodynamic pressure p and
the mean mechanical pressure �pm (Malvern 1969),

pK�pm ZK lC
2

3
m

� �
vuk
vxk

ZK lC
2

3
m

� �
1

r

Dr

Dt
; ð6:30Þ
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Figure 9. The open control surface Bo(t), closed control surface Bc(t), the umbilicus Bu(t) and the
open control volume Ro(t). Reference is made to the case of uniform flow Uo past a stationary
circular cylinder of radius R.
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where the last equality follows from the continuity equation, equation (6.16). In
equation (6.29), the mean mechanical pressure is defined as

�pm ZK
1

3
sii:

In a fluid at rest the stress is purely hydrostatic, sijZK�pmdij , and consequently
�pmZp.

Since Dr/Dts0 for a compressible fluid, the thermodynamic and mechanical
pressures can only be the same if the coefficient is equal to zero, (lC(2/3)m)Z0.
The quantity (lC(2/3)m)ZmB is usually referred to as the bulk viscosity.
The vanishing of the bulk viscosity has an interesting interpretation: the
dissipation power per unit volume is due entirely to shape change rate of
deformation. The volume change or dilatational dissipation is zero (Malvern
1969). It can be shown that in order to satisfy the Clausius–Duhem entropy
inequality, mR0 and (lC2m/3)R0.

Using Stokes’ condition, equation (6.29) becomes

r
Dui
Dt

ZK
vpm
vxi

K
2m

3

v2uj
vxi vxj

� �
Cm

v

vxj

vui
vxj

C
vuj
vxi

� �� �
in RoðtÞ: ð6:31Þ

Expanding the last term of equation (6.31) and combining with the second gives

r
Dui
Dt

ZK
vpm
vxi

Cm
v2uk
vx2k

� �
C

1

3
m

v

vxi

vuk
vxk

� �� �
in RoðtÞ: ð6:32Þ

In summary, equation (6.32) gives the components of the Navier–Stokes (N–S)
equation for a compressible fluid with no bulk viscosity. Similarly, equation
(6.31) gives the components of the generalized N–S equation for a compressible
fluid with bulk viscosity.
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(h ) The application to an incompressible fluid

An incompressible fluid is a fluid in which the density of each material element
is unaffected by changes in pressure. This definition holds provided that density
changes in the fluid as a result of molecular conduction of heat are negligible
(Batchelor 1967). In an incompressible fluid, the mean mechanical pressure is
equal to the thermodynamic pressure at all times. This result follows directly
from equation (6.30), since the rate of change of r following a material element is
zero, Dr/DtZ0. The simplified continuity equation,

vuk
vxk

Z 0; ð6:33Þ

when used to simplify equation (6.32) leads to

r
vui
vt

Cuj
vui
vxj

� �
ZK

vp

vxi
Cm

v2ui
vx 2

j

in RoðtÞ: ð6:34Þ

Note that in equation (6.34) the material derivative Dui=Dt has been expanded.
Equation (6.34) represents the components of the Navier–Stokes equation for
viscous incompressible flows.

For convenience, let the stress tensor for incompressible Newtonian fluid be
denoted as r̂r. Using the continuity equation, equation (6.33), to simplify the
constitutive relation, equation (6.11), the components of r̂r are given by

ŝij ZKpdij Cm
vui
vxj

C
vuj
vxi

� �
: ð6:35Þ

The natural boundary condition manifested in equation (6.27) is interpreted as
driZ0 on Bc(t) since the displacement riZ0 is prescribed on the cylinder surface.
However, there is no local equilibrium on the cylinder surface ŝijnjs0. The
natural boundary condition manifested in equation (6.28) is interpreted as
½ŝijnjKruiujnj �Z0 on Bo(t), since the displacement dri is not prescribed
anywhere on this surface. Physically, this last boundary condition states that
convective flux of momentum (per unit area as ds shrinks to a point) ruiujnj at
any point on Bo(t) is equal to the resultant contact force tiZ ŝijnj exerted at that
boundary point by the surrounding matter.
(i ) An examination of the boundary condition manifested by equation (6.28 )

To better understand the meaning of this last boundary condition, consider
the balance of momentum in integral form for an incompressible fluidð ð ð

RoðtÞ

vðruiÞ
vt

dv ZK

ð ð
BðtÞ

ruiujnj dsC

ð ð
BðtÞ

ŝijnj ds: ð6:36Þ

Equation (6.28) implies thatð ð
BoðtÞ

½ŝijnjKruiujnj �dsZ 0:
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Consequently, equation (6.36) becomesð ð ð
RoðtÞ

vðruiÞ
vt

dv ZK

ð ð
BcðtÞ

ruiujnj dsC

ð ð
BcðtÞ

ŝijnj ds: ð6:37Þ

Now for a stationary rigid cylinder u1Zu2Z0 and the first integral on the r.h.s.
vanishes. This integral also vanishes for a rigid cylinder in motion since the
velocity components ui on the surface of the cylinder are independent of position
along the circumference cylinder (along each point on this path they must equal
the velocity components Vi of the body) andð ð

BcðtÞ
n dsZ 0:

Equation (6.37) becomesð ð ð
RoðtÞ

vðruiÞ
vt

dv Z

ð ð
BcðtÞ

ŝijnj ds:

This result can be interpreted as follows: the rate of change of momentum inside
the chosen control volume is due entirely to the resultant force system at the
boundary of the cylinder! The validity of this result is in general only for infinite
domains RNðtÞ enclosing all of the vorticity. The surface integrals of the viscous
and convective terms must also vanish at infinity.

Under these conditions, it can be shown (Noca 1997) that the balance of
momentum equation, equation (6.37), reduces to a form that does not include
contributions from the outer boundary at infinity. This is because a boundary
term arises upon the conversion of the l.h.s. of equation (6.36) to a vorticity
impulse-type term which cancels out the non-zero pressure term on the distant
boundary, K

Ð Ð
BNðtÞpnj ds. Since it is assumed that Bo(t) is sufficiently far away

from the cylinder such that the above conditions are satisfied, the boundary
condition on Bo(t) obtained above is valid.

This completes the derivation of the relevant field equations and boundary
conditions for the flow of a viscous incompressible fluid past a stationary
cylinder. The starting point of the derivation was Hamilton’s principle for a
system of variable mass. In §7, the cylinder is allowed to move freely in the
direction transverse to the flow. The cylinder responds to the vortex shedding,
which generates unsteady forces on the cylinder. When the frequency of the
vortex shedding fvs matches the cylinder oscillation frequency fex, synchroniza-
tion takes place and the cylinder can undergo large oscillations. A more
detailed discussion on vortex-induced vibration of circular cylinders can be
found in various recent review papers, including Sarpkaya (2004), Williamson &
Govardhan (2004) and Gabbai & Benaroya (2005).
7. Uniform two-dimensional viscous flow past a cylinder free
to move transversely

Consider an elastically mounted cylinder, with a mechanical restraint preventing
motion in the flow direction (x). Since the cylinder is rigid, its motion in the
transverse direction (y) can be described by a single generalized coordinate. Let
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this generalized coordinate be represented by c. Assuming perfect correlation of
the shedding vortices, the transverse displacement of all points on the cylinder is
the same, cZc(t). The horizontal plane passing through the cylinder’s centre of
mass is chosen as the reference plane and all dynamic variables (i.e. displacement,
velocity, acceleration) are thus defined at the centre of mass. The total stiffness of
the supporting springs is k

ðcÞ
s . The mass of the cylinder is mc.

The goal here is to obtain the equations of motion for both the cylinder and
the fluid in the CV. It is obvious that the equations of motion must be coupled.
The motion of the cylinder must have an effect on the fluid flowing around it and
vice versa.

Again, let the CV be defined as the rectangular volume surrounding the non-
stationary cylinder. The origin of the coordinate system is at the centre of the
cylinder when the cylinder is at rest. The coordinate system does not move with
the cylinder and is considered to be at rest relative to the free-stream. As in §6b,
the open part of the CS, Bo(t), is the perimeter of the rectangle shown in figure 10
multiplied by a unit projection out of the plane of the paper.

While Bo(t) is again independent of time, the closed part Bc(t), defined as the
circumference of the cylinder x2CðyGcðtÞÞ2ZR2, is clearly a function of time.
The open control volume Ro(t) is also a function of time since its shape, though
not its volume, is changing as the cylinder moves. The CV and CS definitions are
illustrated in figure 10. The uniform free-stream velocity is again denoted as Uo.
The presentation in this section highlights the derivation of the structural
equation of motion and the corresponding boundary conditions on Bc(t).
Derivations involving the fluid field, which are identical to those presented of
§6b, are simply presented in final form.

In this problem, ðKÞoZðKfluidCKcylÞo and ðEÞoZðEðsÞ
cylÞo, with ðKfluidÞo given

by equation (6.4),

ðKcylÞo Z
1

2
mc _c

2 and EðsÞ
cyl

� �
o
Z

1

2
k ðcÞs c2:

It follows that

ðLÞo Z
ð ð ð

RoðtÞ

1

2
rðu$uÞdvC 1

2
mc _c

2K
1

2
k ðcÞs c2: ð7:1Þ

Using equation (7.1), equation (6.1) becomes

d

ðt 2
t1

ð ð ð
RoðtÞ

1

2
rðu$uÞdv dtCd

ðt 2
t1

1

2
mc _c

2 dtKd

ðt 2
t1

1

2
k ðyÞs c2 dt

K

ðt 2
t1

ð ð ð
RoðtÞ

sijd3ij dv dtC

ðt 2
t1

ð ð
BoðtÞ

rðu$drÞðu$nÞds dt Z 0: ð7:2Þ

The variation of the first term of equation (2.4) is obtained directly from
equation (6.19). The variation of the second and third terms is

d Kcyl

� �
o Zmc _cd _c and d EðsÞ

cyl

� �
o
Z k

ðcÞ
s cdc;

respectively. Integration by parts, with drðt1ÞZdrðt2ÞZ0 and dcðt1ÞZdcðt2ÞZ0,
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Figure 10. The open control surface Bo(t), closed control surface Bc(t) (at two different instances)
and the open control volume Ro(t) for the case of a rigid circular cylinder of radius R with 1 d.f.
The cylinder is free to move transversely to the uniform incoming flow of velocity Uo. The
transverse generalized coordinate is c(t). The restraining springs are not shown.

1259Reduced-order fluid–structure interaction
yields

K

ðt 2
t1

ð ð ð
RoðtÞ

r
Dui
Dt

dri

� �
dv dtK

ðt 2
t1

mc€cdc dtK

ðt 2
t1

k ðyÞs cdc dt

C

ðt 2
t1

ð ð ð
RoðtÞ

vsij

vxj
dri

� �
dv dtK

ðt 2
t1

ð ð
BoðtÞ

sijnjdri ds dt

K

ðt 2
t1

ð ð
BcðtÞ

sijnjdri ds dtC

ðt 2
t1

ð ð
BoðtÞ

ruidriujnj ds dt Z 0: ð7:3Þ

In arriving at equation (7.3), equations (6.20) and (6.24) are used.
Collecting like terms yields

K

ðt 2
t1

ð ð ð
RoðtÞ

r
Dui
Dt

K
vsij

vxj

� �
dri dv dtK

ðt 2
t1

ðmc€cCk ðcÞs cÞdc dt

C

ðt 2
t1

ð ð
BoðtÞ

ruiujnjKsijnj
	 


dri ds dtK

ðt 2
t1

ð ð
BcðtÞ

sijnjdri ds dt Z 0; ð7:4Þ

where d2i is the Kronecker delta function. The no-slip condition on the surface of
the cylinder, together with the kinematic boundary condition ensuring that the
normal components of the velocity are conserved across the fluid–structure
interface, which is the no-through flow condition in the case of a solid boundary,
require that uZV.VZð0; _cÞ is the velocity vector of the cylinder. This
condition implies that dr1Z0 and dr2Zc on Bc(t) at all times t. Furthermore,
these virtual displacements hold on all points on the cylinder. The last term in
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equation (2.4) can then be written as

ðt 2
t1

ð ð
BcðtÞ

sijnjdri ds dt Z

ðt 2
t1

dc

ð ð
BcðtÞ

s2jnj ds

� �
dt:

It follows that equation (2.4) can be rewritten as

K

ðt 2
t1

ð ð ð
RoðtÞ

r
Dui
Dt

K
vsij

vxj

� �
dri dv dtK

ðt 2
t1

mc€cCk ðyÞs cC

ð ð
BcðtÞ

s2jnj ds

� �
dc dt

C

ðt 2
t1

ð ð
BoðtÞ

½ruiujnjK sijnj �dri ds dt Z 0:

The arbitrariness of the variations dri in Ro(t)![t1,t2] leads to the Euler–
Lagrange equations for the fluid,

r
Dui
Dt

Z
vsij

vxj
in RoðtÞ: ð7:5Þ

Likewise, the variations dc are arbitrary cx 2 x2CðyGcÞ2%R2 and for all
times [t1,t2], and this argument leads to the equation of motion of the cylinder,

mc€cCk ðcÞs cZK

ð ð
BcðtÞ

s2jnj ds: ð7:6Þ

A similar argument regarding the variations dri on Bo(t)![t1,t2] leads to the
natural boundary condition

½sijnjKruiujnj �dri Z 0 on BoðtÞ: ð7:7Þ

The assumption of incompressibility and the corresponding constitutive relation,
equation (6.35), leads to the following form of equation (7.5):

r
vui
vt

Cuj
vui
vxj

� �
ZK

vp

vxi
Cm

v2ui
vxjxj

in RoðtÞ: ð7:8Þ

Equation (7.8) must be solved in conjunction with equation (7.6), the continuity
equation, and the boundary condition is manifested in equation (7.7) (with
sij/ ŝij). This boundary condition is interpreted as ½ŝijnjKruiujnj �Z0 since the
fluid displacements are not prescribed on Bo(t). The fluid drives the cylinder with
a force

F2ðtÞZK

ð ð
BcðtÞ

ŝ2jnj ds:
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8. Applications to reduced-order modelling

Consider equation (2.4) with an additional term representing the work done by the
structural damping force (i.e. that which changes vibrational energy into heat)

d

ðt 2
t1

ð ð ð
RoðtÞ

1

2
rðu$uÞdv dt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1
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1

2
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2 dt
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1

2
kðyÞs c2 dtK
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t1

cðvacÞ _cdc dtK
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vxj
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dv dt

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2

C

ðt 2
t1

ð ð
BoðtÞ

rðu$drÞðu$nÞds dt
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{3

Z 0: ð8:1Þ

cðvacÞO0 is the linearmaterial damping coefficientmeasured in vacuo. The structural
damping force is always opposed to the velocity, such that the non-conservative
virtual work, ðdWcylÞoZcðvacÞ _cdc, is always negative for positive _c.

In order to reduce the complexity of equation (8.1), the control volume Ro(t) is
first reduced to small rectangular region R�� incorporating the formation region.
The negative damping condition initiating the cylinder motion, as well as the
periodic wake feeding the growing amplitudes of the cylinder are generated in
the formation region. The existence of a temporal global wake instability in the
formation region allows a second, more crucial simplification to be made: the flow
in R�� is assumed to be represented by the representative mass mfl whose
transverse displacement is w(t). All spatial dependencies are lost.

It emphasized that while _wðtÞ and _cðtÞ ( €wðtÞ and €cðtÞ) are both transverse
velocities (accelerations), they need not always have the same sign at any one
instant. It is therefore important to talk about relative velocities (accelerations).

Term ‘1’ of equation (8.1) is reduced to

d

ðt 2
t1

ð ð ð
RoðtÞ

1

2
rðu$uÞdv dt0

ðt 2
t1

â0m fl _wd _w dt; ð8:2Þ

where â0 is a dimensionless constant. Term ‘2’ can likewise be reduced. Term ‘3’
is eliminated because the energy fed through the vertical face fore (upstream) of
the cylinder only indirectly contributes to near-wake dynamics by providing the
energy for the development of the wake flow. The face aft (downstream) of the
cylinder is no longer involved in the near-wake mechanics.

Suppose the following separation is made:

K

ðt 2
t1

ŝij
vðdriÞ
vxj

� �
dv dt0K

ðt 2
t1

dW ðw; _w; €w ;c; _c; €c; tÞdtK
ðt 2
t1

Fðw; tÞdw dt: ð8:3Þ

The functional Fðw; tÞZ â1m fl fstUowðtÞ=D represents the ‘fluid stiffness’ term,
where â1 is a dimensionless constant and fstZSU=D is the vortex shedding or
Strouhal frequency of the cylinder when it is stationary (Sw0.2 is the Strouhal
number). The coefficient â1m fl fstUo=D represents the natural frequency of the
undamped wake oscillator for small w(t) (no motion of the cylinder), and is
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consistent with the observation that the damped (and hence the undamped)
natural frequency of the wake oscillator must change as the flow velocity Uo

changes (Billah 1989).
The fundamental character of a wake oscillator model is that when it is

uncoupled from the cylinder motion, it has a definite natural frequency

ðâ1m fl fstUo=DÞ0:5;

which changes when Uo changes.
Using equations (8.2) and (8.3), equation (8.1) becomesðt 2

t1

â0m fl _wd _w dtCd

ðt 2
t1

1

2
mc _c

2 dtKd

ðt 2
t1

1

2
k ðyÞs c2 dtK

ðt 2
t1

cðvacÞ _cdc dt

K

ðt 2
t1

dW ðw; _w; €w ;c; _c; €c; tÞ dtK
ðt 2
t1

Fðw; tÞdw dt Z 0: ð8:4Þ

Next, consider dividing the functional dW ðw; _w; €w ;c; _c; €c; tÞ as follows:

dW ðw; _w; €w ;c; _c; €c; tÞZKF
ðyÞ
fl=stðw; _w; €w ;c; _c; €c; tÞdc

CF
ðyÞ
m=pðw; _w; €w ;c; _c; €c; tÞdw: ð8:5Þ

F
ðyÞ
fl=stðw; _w; €w ;c; _c; €c; tÞdc is the instantaneous virtualworkdoneby total transverse

hydrodynamic force acting on the cylinder, while F
ðyÞ
m=pðw; _w; €w ;c; _c; €c; tÞdw

represents virtual work done by the vertical components of the viscous and
pressure forces within R��, excluding the boundary of the cylinder. The negative

sign on the F
ðyÞ
fl=stðw; _w; €w ;c; _c; €c; tÞdc term is due to the fact that on the surface of

the cylinder dcZKdw owing to the no-slip condition.

Suppose the following form is assumed for F
ðyÞ
fl=st:

F
ðyÞ
fl=stðw; _w; €w ;c; _c; €c; tÞZK

1

4
rpD 2LCa€cðtÞC

1

2
rDLCd½ _wðtÞK _cðtÞ�j _wðtÞK _cðtÞj

C
1

4
prD 2Lð1CCaÞ €wðtÞ: ð8:6Þ

Ca represents the time-dependent added mass coefficient for a moving cylinder in
a crossflow. It is not the same as the potential flow added mass CAZ1. Cd

represents the component of the instantaneous vortex lift coefficient CL(t) that is
out of phase with the cylinder displacement.

Note that the form of equation (8.6) is equivalent to the Morison–O’Brien–
Johnson–Schaff (MOJS) equation for the fluid force on a cylinder moving parallel
to a time-dependent fluid stream (Sarpkaya 2004). In principle, geometric
considerations require that the MOJS equation be modified when the cylinder is
moving transversely to the free stream. Here, however, equation (8.6) is retained
unaltered with the understanding that said equation can then be only referred to
as ‘MOJS-like’.
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The following form is assumed for Fm=pð _w; €w ;c; _c; €c; tÞ:

Fm=pð _w; €w ;c; _c; €c; tÞZ â2m fl fst½ _wðtÞK _cðtÞ�C â3m fl fst
U 2

o

½ _wðtÞK _cðtÞ�3: ð8:7Þ

The âi’s are again dimensionless constants.
The functional Fm=pðw; _w; €w ;c; _c; €c; tÞ has two distinct roles. In the first

place, it is intended to capture the nonlinear damping effects in the wake
oscillator, much like the 3fstð _q2ðtÞK1Þ _qðtÞ term in the Rayleigh equation, or the
3fstðq2ðtÞK1Þ _qðtÞ term in the van der Pol equation. This damping term must be
such that the wake oscillator is self-excited and self-limiting.

Self-excitation of the wake is due to amplification by the shear layers of initial
instabilities generated at the separation points, and an upstream influence caused
by a region of absolute instability in the near wake. This region of absolute
instability, whose downstream boundary is the point in the wake where
travelling waves can be reflected, is associated with causing the propagation
an upstream travelling wave disturbance which amounts to a ‘feedback’ to the
separation points.

In addition, Fm=pð _w; €w ;c; _c; €c; tÞ must represent the nonlinear interaction (i.e.
r.h.s.) between the wake oscillator and the motion of the cylinder.

First, equations (8.6) and (8.7) are substituted in equation (8.5). The result is
then replaced in equation (8.4), and the indicated variations performed. The
conditions dw t2

t1
Zdc

t2
t1
Z0

���� are imposed and similar terms collected. The

independence of the variations dc and dw leads to the following set of coupled
differential equations:

mc C
1

4
prD 2LCa

� �
€cðtÞCcðvacÞ _cðtÞCk ðcÞs cðtÞ

Z
1

2
rDLCdj _wðtÞK _cðtÞj½ _wðtÞK _cðtÞ�C 1

4
prD 2LðCaC1Þ €wðtÞ ð8:8Þ

and

â0m fl €wðtÞC â1m fl

Uofst
D

wðtÞCm fl fst
U 2

o

â3 _w
2ðtÞC â2U

2
o

	 

_wðtÞ

Z â2m fl fst _cðtÞC
â3m fl fst
U 2

o

_c3ðtÞC 3â3m fl fst
U 2

o

½ _w2ðtÞ _cðtÞK _wðtÞ _c2ðtÞ�: ð8:9Þ

9. Comparison with other wake oscillator models

Equations (8.8) and (8.9) are obtained as a reduced-order model for the self-
excited transverse motion of an elastically mounted rigid circular cylinder in a
smooth flow. The displacement of the cylinder from equilibrium, c(t), is governed
by equation (8.8). The fluctuating lift force resulting from vortex shedding acts
as the primary driving force. Again, the fluctuating lift force is assumed to be
correlated along the entire span.

The forcing function on r.h.s. of equation (8.8) is a function of both the relative
transverse velocity and the acceleration of the representative fluid mass mfl.
Recall that the transverse displacement of this fluid mass from the cylinder’s
horizontal (x) line of symmetry is denoted w(t). For a stationary cylinder, the
Phil. Trans. R. Soc. A (2008)
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displacement is denoted wo(t). The fluid d.f. w(t) represents the mean transverse
displacement of the collection of fluid particles having a total mass mfl at each
time t.

First, define the dimensionless displacement variables

XðtÞZ cðtÞ
D

and W ðtÞZ wðtÞ
D

and the dimensionless time variable

T Z tust;

where ustZ2pfst is the circular Strouhal frequency.
(a ) The structural oscillator

Using the above-transformed variables, equation (8.8) becomes

ðmcCmdCaÞX00ðTÞC cðvacÞ

ust

X0ðTÞC k
ðyÞ
s

u2
st

XðTÞ

Z
1

2
rD 2LCdjW 0ðTÞKX0ðTÞj½W 0ðTÞKX0ðTÞ�Cmdð1CCaÞW 00ðTÞ; ð9:1Þ

where mdZrpD 2L=4.
Next, we define the in vacuo natural frequency,

uðvacÞ
n Z

ffiffiffiffiffiffiffiffi
k
ðyÞ
s

mc

s
xuðairÞ

n ð9:2Þ

and the in situ (Skop & Balasubramanian 1997) or true (Vikestad et al. 2000)
natural frequency of the cylinder in crossflow,

uðtrueÞ
n Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
ðyÞ
s

ðmcCmdCaÞ

s
; ð9:3Þ

where mdCaZrpD 2LCa=4hDm is the added mass.
The identity

DmZmdCa Zmc

u
ðvacÞ
n

u
ðtrueÞ
n

 !2

K1

" #
ð9:4Þ

is readily verified via equations (9.2) and (9.3). Using this identity, the virtual
mass can be expressed as

ðmc CDmÞZ ðmcCmdCaÞZmc

u
ðvacÞ
n

u
ðtrueÞ
n

 !2

: ð9:5Þ
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Substituting equation (9.5) in equation (9.1) yields

X00ðTÞC 1

ust

u
ðtrueÞ
n

u
ðvacÞ
n

 !2
cðvacÞ

mc

X0ðTÞC 1

u2
st

u
ðtrueÞ
n

u
ðvacÞ
n

 !2
k
ðyÞ
s

mc

XðTÞ

Z
1

2mc

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

rD 2LCdjW 0ðTÞKX0ðTÞj W 0ðTÞKX0ðTÞ
	 


C
md

mc

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

ð1CCaÞW 00ðTÞ: ð9:6Þ

Introducing the reduced mass

m̂� Z
rpD 2L

4mc

Z
md

mc

ð9:7Þ

and the in vacuo structural damping ratio

zðvacÞ Z
cðvacÞ

2mcu
ðvacÞ
n

ð9:8Þ

into equation (9.6) and using equation (9.2) yields

X00ðTÞC 2

ust

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

zðvacÞuðvacÞ
n X0ðTÞC 1

u2
st

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

uðvacÞ2
n XðTÞ

Z
2

p

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

m̂�CdjW 0ðTÞKX0ðTÞj½W 0ðTÞKX0ðTÞ�

Cm̂� u
ðtrueÞ
n

u
ðvacÞ
n

 !2

ð1CCaÞW 00ðTÞ: ð9:9Þ

By rearranging equation (9.4) and using equation (9.7), the useful identity

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

Z
1

1Cm̂�Cað Þ ð9:10Þ

is obtained.
Suppose the mass ratio

mZ
rpD 2L

4ðmc CDmÞ Z
rpD 2L

4ðmc CmdCaÞ
Z

md

ðmc CmdCaÞ
ð9:11Þ

is now introduced. Note that there exists the following relationship between m̂�,
defined by equation (9.7), and m:

mZ
md

ðmc CmdCaÞ
Z

md

mc

1

1Cm̂�Cað Þ

� �
Z

m̂�

1Cm̂�Cað Þ : ð9:12Þ
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The corrected structural damping (Skop & Balasubramanian 1997) is defined as

zðtrueÞ Z zðvacÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1Cm̂�Cað Þ

s
: ð9:13Þ

From equations (9.10) and (9.13), the identity

u
ðtrueÞ
n

u
ðvacÞ
n

 !2

zðvacÞ Z
u
ðtrueÞ
n

u
ðvacÞ
n

 !
u
ðtrueÞ
n

u
ðvacÞ
n

 !
zðvacÞ

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1Cm̂�Ca

s
zðvacÞ

 !
u
ðtrueÞ
n

u
ðvacÞ
n

 !
Z

u
ðtrueÞ
n

u
ðvacÞ
n

 !
zðtrueÞ ð9:14Þ

is established.
Using equations (9.13) and (9.14) in equation (9.9) leads to

X00ðTÞC2zðtrueÞ
u
ðtrueÞ
n

ust

 !
X0ðTÞC u

ðtrueÞ
n

ust

 !2

XðTÞ

Z
2

p

m̂�

1Cm̂�Cað ÞCdjW 0ðTÞKX0ðTÞj½W 0ðTÞKX0ðTÞ�

C
m̂�

1Cm̂�Cað Þ ð1CCaÞW 00ðTÞ: ð9:15Þ

Finally, using equation (9.12), equation (9.15) can be rewritten as

X00ðTÞC2zðtrueÞ
u
ðtrueÞ
n

ust

 !
X0ðTÞC u

ðtrueÞ
n

ust

 !2

XðTÞ

Z
2

p
mCdjW 0ðTÞKX0ðTÞj½W 0ðTÞKX0ðTÞ�Cmð1CCaÞW 00ðTÞ: ð9:16Þ

(b ) The wake oscillator

Introducing the dimensionless variables ðX;X0;X00;W ;W 0;W 00;TÞ into
equation (8.9) and rearranging gives

â0u
2
stDW 00ðTÞCust

U 2
o

â3D
2u2

stW
02ðTÞC â2U

2
o

	 

DustW

0ðTÞC â1ustUo

D
DW ðTÞ

ZK
3â4ust

U 2
o

D 3u3
st W 0ðtÞX02ðTÞKX0ðTÞW 02ðTÞ
	 


C
â3u

4
stD

3

U 2
o

X03ðTÞ

C â2Du2
stX

0ðTÞ: ð9:17Þ
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Dividing both sides of equation (9.17) by â0u
2
stD yields2

W 00ðTÞCust

U 2
o

D 2ust

â3
â0

W 02ðTÞCU 2
o

ust

â2
â0

� �
W 0ðTÞC Uo

Dust

â1
â0

W ðTÞ

ZK
3D 2u2

st

U 2
o

â4
â0

W 0ðtÞX02ðTÞKX0ðTÞW 02ðTÞ
	 


C
D 2u2

st

U 2
o

â3
â0

X03ðTÞC â2
â0

X0ðTÞ:

ð9:18Þ

Noting that from the definition of the Strouhal frequency,

Uo

Dust

Z
Uo

D 2pSUo

D

� �Z
1

ð2pSÞ ;

equation (9.18) can be rewritten as

W 00ðTÞ ð2pSÞ2 â3
â0

W 02ðTÞC â2
â0

� �
W 0ðTÞC 1

ð2pSÞ
â1
â0

W ðTÞ

ZK3ð2pSÞ2 â4
â0

h
W 0ðTÞX02ðTÞKX0ðTÞW 02ðTÞ

i
Cð2pSÞ2 â3

â0
X03ðTÞC â2

â0
X0ðTÞ:

ð9:19Þ

Consider for the moment the case of a stationary cylinder. In this case, XðTÞ
and its derivatives are all identically 0, and equation (9.19) reduces to

W 00
o ðTÞC ð2pSÞ2 â3

â0
W 02

o ðTÞC â2
â0

� �
W 0

oðTÞC 1

ð2pSÞ
â1
â0

WoðTÞZ 0; ð9:20Þ

where

WoðTÞZ woðTÞ
D

:

The van der Pol and Rayleigh equations are the nonlinear oscillators most
commonly used to model the fluctuating nature of the vortex shedding. For a
stationary cylinder, they adequately model the self-sustained, quasi-harmonic
oscillations seen experimentally in the lift coefficient, for example. The reader is
referred to Facchinetti et al. (2004) for a more comprehensive discussion. Here,
the focus is on constructing a Rayleigh-type equation from equation (9.20).

The dimensionless Rayleigh equation,

Q 00ðTÞC3ðQ 02ðTÞK1ÞQ 0ðTÞCQðTÞZ 0;

with 0!3/1, is known to provide a stable quasi-harmonic oscillation of finite
amplitude at the frequency

UZ 1:
2The model constant â0 is assumed to be non-zero at all times.
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Equation (9.20) is then of the Rayleigh type provided that the conditions

1

ð2pSÞ
â1
â0

Z 1;
â2
â0

!0;
â2
â0

����
����/1;

â3
â0

!0 and ð2pSÞ2 â3
â0

����
����/1

are satisfied. It is evident from the above conditions that if â0!0, then â2O0
and â1;3!0. On the other hand, if â0O0, then â2!0 and â1;3O0.

Next, define

b̂i Z
âi
â0

����
����;

where iZ2, 3. The sign of the model constant â4 is not known a priori and,
therefore, there are no constraints to determine the sign of the ratio â4=â0. As a
result, said ratio is represented as b4, where b4Y0.

Equation (9.19) can now be written as

W 00ðTÞC
h
ð2pSÞ2b̂3W 02ðTÞKb̂2

i
W 0ðTÞCW ðTÞ

ZK3ð2pSÞ2b4
h
W 0ðTÞX02ðTÞKX0ðTÞW 02ðTÞ

i
Cð2pSÞ2b̂3X03ðTÞKb̂2X

0ðTÞ:

ð9:21Þ
Upon examining equations (9.16) and (9.21), it is apparent that there are five

model parameters ðb̂2; b̂3; b4;Ca;CdÞ. However, since b̂2, b̂3 and b4 are not all
independent, the true number of independent model parameters is actually six
ðâ0; â2; â3; â4;Ca;CdÞ.

(c ) Comparison with the model of Krenk & Nielsen (1999)

In dimensionless form, the model equations derived by Krenk & Nielsen (KN;
Krenk & Nielsen 1999) are given by

€XðtÞCzðtrueÞuðtrueÞ
n

_XðtÞC uðtrueÞ
n

h i2
XðtÞZmfcoust

_PðtÞ ð9:22Þ

and

€PðtÞC2zfust P2ðtÞC
_PðtÞ
ust

� �2

K1

" #
_PðtÞCu2

stPðtÞZK
1

v2o
coust

_XðtÞ; ð9:23Þ

where

mf Z
rD 2L

ðmc CDmÞ ð9:24Þ

and zf h equivalent fluid damping ratio.
It is not clear from Krenk & Nielsen (1999) how the added fluid mass, Dm in

equation (9.24), is defined. Since KN test the validity of their model using data
from experiments conducted in air, the added fluid mass is small. That is, for
m̂�/1, DmpotentialZCAm̂

�mcxDmZCam̂
�mcx0. Thus, the distinction

between Dmpotential and Dm matters little in this case. This is not the case if
the fluid medium is water.
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The physical meaning of fluid variable3 W �ðtÞ in the KN model is also not
clearly defined. It is conjectured here that this fluid variable represents the
relative transverse displacement of the fluid mass mfl. Designating this
conjectured KN wake variable as W �

conj:ðtÞ, it follows that

W �
conj:ðtÞZwðtÞKcðtÞ:

Krenk & Nielsen non-dimensionalize their fluid variable as follows:

PðtÞZW �ðtÞ
wo

:

As before, the scale wo is a parameter that ‘.controls the amplitude of self-
induced vibrations of the wake oscillator in the case of a stationary cylinder.’
(Krenk & Nielsen 1999).

The parameters co and vo of equations (9.22) and (9.23) are defined as

co Z
wog

4pSD
ð9:25Þ

and
vo Z

wo

D
; ð9:26Þ

where g is a dimensionless coupling parameter.
The dimensionless time variable TZustt is now introduced. Effecting the

change of variables t/T in equations (9.22) and (9.23) results in

X00ðTÞCzðtrueÞ
u
ðtrueÞ
n

ust

 !
X0ðTÞC u

ðtrueÞ
n

ust

 !2

XðTÞZmfcoP
0ðTÞ ð9:27Þ

and

P 00ðTÞC2zf ½P2ðTÞCP 02ðTÞK1�CPðTÞZK
1

v2o
coX

0ðTÞ; ð9:28Þ

respectively.
Comparing equations (9.11) and (9.24), it is seen that

mf Z
rD 2L

ðmc CDmÞ Z
4

p
m:

Using this result and equations (9.25) and (9.26), equations (9.27) and (9.28)
can then be rewritten, respectively, as

X00ðTÞCzðtrueÞ
u
ðtrueÞ
n

ust

 !
X0ðTÞC u

ðtrueÞ
n

ust

 !2

XðTÞZ 4wog

p2SD
mP 0ðTÞ ð9:29Þ

and

P 00ðTÞC2zf P
2ðTÞCP 02ðTÞK1

	 

P 0ðTÞCPðTÞZK

Dg

4pSwo

X0ðTÞ: ð9:30Þ
3The actual fluid variable that is used in the formulation of their model.
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Using the definition of W �
conj:ðtÞ, it is possible to define the new dimensionless

variable

Pconj:ðTÞZ
W �

conj:ðTÞ
wo

:

Its derivative is

P 0
conj:ðTÞZ

W �0
conj:ðTÞ
voD

Z
1

vo

DW 0ðTÞKDX0ðTÞ
D

� �
Z

1

no
½W 0ðTÞKX0ðTÞ�:

Making the substitution P 0ðTÞ/P 0
conj:ðTÞ on the r.h.s. of equation (9.29) yields

X00ðTÞCzðtrueÞ
u
ðtrueÞ
n

ust

 !
X0ðTÞC u

ðtrueÞ
n

ust

 !2

XðTÞZ 4wog

p2SD
mP 0

conj:ðTÞ

Z
4wog

p2SD
m½W 0ðTÞKX0ðTÞ�: ð9:31Þ

Comparing equations (9.16) and (9.30), it is clear that the l.h.s. of each equation is
the same. The r.h.s., on the other hand, differs. Equation (9.30) has a r.h.s. that
represents a linearized form of the drag term in equation (9.16). Also absent from the
r.h.s. of equation (9.30) is a termproportional to theaccelerationof the representative
fluid mass, P 00ðTÞ.

Now, suppose that W �
conj:ðtÞZW �ðtÞ. This implies that there is no distinction

between Pconj:ðTÞZPðTÞ. In this case, equation (9.27) reveals that in this case
there is no per se fluid added damping. The structural oscillator is fed energy
directly from the wake oscillator via the mfcoP

0ðTÞ term on the r.h.s., but it is not
possible to explicitly express the dependence of this energy transfer on the
cylinder velocity X0ðTÞ.

Prima facie, equations (9.21) and (9.29) seem nothing alike. In the first place,
equation (9.21) lacks a term of the formW 2ðTÞW 0ðTÞ, which is present in equation
(9.29). Also, the r.h.s. of equation (9.29) is linearly proportional to cylinder velocity
X0ðTÞ, while equation (9.21) possesses an additional nonlinear forcing function.

However, if Pconj:ðTÞ and its derivatives,

Pconj:ðTÞZ 1

vo
½W ðTÞKXðTÞ�;

P 0
conj:ðTÞZ 1

vo
½W 0ðTÞKX0ðTÞ�

and

P 00
conj:ðTÞZ 1

vo
½W 00ðTÞKX00ðTÞ�

are substituted into equation (9.29) in place of P(T ) and its derivatives, a
complex forcing function is obtained. In fact, this expression will include all the
terms on the r.h.s. of equation (9.21) plus additional nonlinear terms originating
from the product

2zf
1

vo
½W ðTÞKXðTÞ�

� �2� �
½W 0ðTÞKX0ðTÞ�:
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Figure 11. The open control surface Bo(t), closed control surface Bc(t) (at two different instances)
and the open control volume Ro(t) for the case of uniform flow Uo past an elastically mounted
circular cylinder (radius R) with 2 d.f. The in-line and transverse generalized coordinates are c(t)
and J(t), respectively. The restraining springs are not shown.
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Note that the forcing function will also involve terms that are linear in the
cylinder displacement XðTÞ, velocity X0ðTÞ and acceleration X00ðTÞ. The XðTÞ
and X00ðTÞ terms are absent from equation (9.21).

It is fair to say that comparison with the KN model is complicated by
uncertainty with respect to the definition of the fluid variable W �ðtÞ; very
different conclusions are reached depending on how W �ðtÞ is interpreted.
10. Concluding thoughts

One of our motivations in the studies presented here has been to better
understand flow-oscillator models. By this we mean that it is important to
understand the links between flow-oscillator models and first principles. In
keeping with this goal, a theoretical framework for the analysis of the fluid–
structure interaction problem consisting of a rigid circular cylinder in a uniform
viscous flow has been presented. The method has been used to derive the relevant
dynamic equations of the fully coupled interaction in two distinct cases: (i) a
stationary cylinder and (ii) a cylinder with a transverse degree of freedom only.
The latter was used as a model problem with which to illustrate the potential role
of the proposed variational framework as a mechanism by which reduced-order
models can be obtained. In particular, a class of wake oscillator models was
derived, with the immediate benefit of giving these types of models a more
physically convincing origin.

We are currently extending the above developments in two ways. The first is
that the motion of an elastically mounted rigid cylinder (mass: mc) is allowed to
have two degrees of freedom: in-line (x) and transverse (y), as illustrated in
figure 11. The second extension is to model the structure as an elastic body, in
particular, as an elastic beam. As such, the beam can be modelled to vibrate with
bending in two planes as well as in extensional modes. Such a model would be
more representative of an actual structure.
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The use of the present method to derive the governing equations of more
complicated fluid–structure interaction problems (e.g. the rigid cylinder can be
replaced by a flexible rod) is something the authors feel would be a straightforward
exercise. The limitations of the method are, in theory, only practical ones. The
theory is well equipped to handle three-dimensional interactions, and body
geometries of arbitrary shape. Of course, the mathematics necessary to obtain the
governing equations becomes increasingly complex as the complexity of the
problem increases. The simplification of the variational equations corresponding to
these more complex problems is perhaps the biggest challenge.

In practice, the relevant field equations for a given fluid–structure interaction
problem are often known a priori, and due to their complexity in even the
simplest of cases, they are solved numerically. What is suggested is that the
present framework is flexible. It is rich enough that it can be used to obtain
equations needing computational solution, yet it is also simple enough in
formulation to lead to reduced-order models.

This work is supported by the Office of Naval Research grant no. N00014-97-1-0017. We would like
to thank our programme manager Dr Thomas Swean for his interest and financial support.
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