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MODELLING WITHOUT QUEUES: ADAPTING DISCRETE-EVENT 

SIMULATION FOR SERVICE OPERATIONS  

 

 

 

ABSTRACT 

 

Discrete-event simulation, which has largely grown out of modelling manufacturing systems, 

has increasingly been applied in the service sector.  The approach, however, is not always 

appropriate for modelling service operations.  In particular, it cannot help with detailed 

decisions about the layout of service operations in which the customers are present such as 

retail outlets and airports.  An adapted discrete-event simulation approach is proposed for 

modelling such systems and the approach is demonstrated through a model of a coffee shop.  

A key innovation is that queues are not explicitly modelled.  The benefit of the approach is 

that it simplifies the modelling of service systems in which the customers are present by 

reducing the number of components that need to be modelled.  It can also aid decisions about 

the layout of a system.  We ask whether the approach is in fact an agent-based simulation and 

identify ways in which the approach could be extended. 
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1. INTRODUCTION 

The early developments in discrete-event simulation (DES) were largely founded on the 

manufacturing sector (Tocher, 2008).  These models follow a basic structure of active and 

dead states where entities move from activities to queues, often alternating between these two 

types of component (Paul, 1993).  Activities typically represent steps in the manufacturing 

process such as machines or manual assembly and queues are used to model buffering 

between those steps, for instance, conveyors or storage racks.  This is a natural representation 

for a process where the flow of entities is strictly controlled. 

 

In more recent years DES has been applied to the service sector to model, for instance, 

supermarkets, airports and call centres.  There are, however, some key differences between 

manufacturing and service operations, not least that customers take part in the service process 

and so the service is ‘co-created’ or ‘co-produced’ with the customer (Johnston et al, 2012).  

As such, from the customers’ perspective, the service is the experience received which leads 

to an outcome (product, benefit, intention).   

 

In transferring the ideas of DES from the manufacturing sector the same basic modelling 

approach has been adopted, that is, representing service systems as a set of alternating 

activities and queues.  This has been done with some level of success; see for instance Beck 

(2011) on modelling passenger flow in an airport terminal, and Robinson (2001) on 

modelling a customer help centre.  There are, however, two key differences between 

modelling service operations where the customers are physically present (e.g. retail outlets or 

airport terminals) and modelling a manufacturing system.  First, the entities (customers) are 

autonomous and so they cannot be strictly controlled.  As such, the sequence of activities a 

customer follows is in part determined by the customer and the way in which a customer 

moves from activity to activity is also subject to his/her own behaviour.  Second, the 

customers’ experience in the service system is important in determining their level of 

satisfaction.  This suggests that we need to adapt the DES approach for modelling service 

operations where the customers are present to model customer behaviour in the system and to 

measure their experience of the system. 

 

Further to this, whereas it may be convenient to have transferred the DES modelling 

approach from manufacturing to the service sector, it may not be fully effective in addressing 
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the issues of the new sector.  Indeed, the author’s experience of applying DES to service 

operations has shown that it may not always be able to meet the objectives of the clients.  

More specifically, as the example in section 2 demonstrates, normal DES is not able to help 

with detailed facility layout decisions for service operations in which the customers are 

present.  As such, we may need to look for an alternative modelling approach to help in these 

decision situations. 

 

In this paper an adapted DES approach is proposed in which customers are modelled at an 

individual level.  This enables issues of facility layout to be addressed.  The aim is to devise 

an easy-to-use modelling environment in which alternative layouts can be compared for their 

effect on the dynamics of a service system in which the customers are present.  This will 

enable a user to determine not only the quantity of service points required, but also their 

position.  A key feature of the proposed approach is that queues do not need to be explicitly 

modelled, which could make the modelling of the system simpler (section 5.1).  Instead, 

queues emerge as a result of the dynamics of the system being modelled.  

 

We first discuss the limitations of DES models of service systems in which the customers are 

present through the use of a previous example of modelling a coffee shop.  We then discuss 

previous work on adapting DES for modelling service systems and for modelling human 

movement, which is a central requirement for modelling service systems in which the 

customers are present.  The proposed approach is demonstrated through an alternative model 

of a coffee shop that is implemented in Excel/VBA.  The discussion that follows identifies 

the differences between the proposed modelling approach and previous models of such 

service systems, and it identifies the benefits of the adapted DES.  It also discusses whether 

the proposed approach is in fact an agent-based simulation (ABS); a model composed of 

autonomous, interacting agents (Macal and North, 2010).  Finally, the ways in which the 

model might be extended are discussed. 

2. DES MODELS OF SERVICE OPERATIONS IN WHICH THE CUSTOMERS ARE 

PRESENT 

 

The story of this paper begins around ten years ago with two separate attempts to develop 

DES models of retail outlets.  Both projects were performed by Masters students as the basis 

of their dissertation.  The first project was a simulation for an optician’s chain which aimed to 
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help determine the facilities required in a specific high street outlet.  The second project had a 

similar aim, but was carried out with a bakery/coffee shop chain.  In both cases we developed 

a typical DES model that included customer arrival rates, queues, service points and, in the 

case of the bakery, the tables which are used by some customers for consuming their food 

(figure 1).  In these models the customers moved alternately from activities to queues in 

much the same manner as entities in a manufacturing simulation. 

 
Figure 1  DES Model of Bakery/Coffee Shop 

  

 
At one level both projects were successful.  We were able to determine the number of service 

points required to meet different levels of customer demand.  At another level the work was 

not so successful and in both instances the work did not progress beyond the period of the 

Masters project.  This was because the question of how many service points are needed was 

not particularly vexed.  These organisations had much experience of managing their high 

street operations and, given the limited space available to them in any store, they were 

generally able to determine the appropriate number of resources.  It was a comment late on in 

the project from a manager at the bakery chain that made us aware of the real issue: ‘what 
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your models can’t tell me is where to put the resources.’  It was then apparent that the bakery 

chain needed help in designing the layout of a store and not so much with determining what 

to put in the store.  They wanted to understand the effect of the layout on the flow of 

customers around the relatively small space available for providing the services required.  For 

instance, what if they moved the cold drinks fridge from one location to another?  How 

would this affect the dynamics of the store? 

 

Our DES models were not able to answer these questions.  We could make the model look 

like a specific layout, but moving a fridge would at most change the travel time to get to and 

from that fridge.  It would not materially affect the dynamics of the model, at least, not 

without extensive coding every time a layout change was made.  This is because wherever the 

fridge was located we were still assuming that the customers would behave in the same 

manner through the network of alternating activities and queues.  In the real system, however, 

moving the cold drinks fridge might make the fridge more or less accessible.  This could 

affect the flow of customers around the outlet and might even affect their purchasing 

decisions.  Indeed, the performance of a service operation depends in part on the layout of 

that operation (Pagell and Melnyk, 2004). 

 

Questions of layout are not just restricted to small retail outlets.  Supermarkets face the same 

issue when designing stores and determining where to place stock.  The author has also been 

part of discussions on modelling the design of a major international airport terminal where 

issues of layout and the effect on passenger flow have been of great importance. 

 

3. SIMULATING SERVICE OPERATIONS LAYOUT: ADAPTING DES AND 

MODELLING HUMAN MOVEMENT  

 

Given that questions of layout are important and that traditional DES models are not 

particularly suited to answering such questions, an alternative modelling approach is 

required.  We now explore previous work on simulation which has specifically addressed this 

issue.  First we focus on ways in which DES has been adapted to model service operations 

layout.  We then focus on modelling human movement since this is central to representing the 

flow of customers around a service system. 
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3.1 Adapting DES and Using ABS for Modelling Service Operations Layout 

 

Literature research has so far found only three examples of either adapting DES or using 

ABS for modelling the layout of service operations.  Dubiel and Tsimhoni (2005) integrate 

ABS into DES to model a theme park; a service operation involving the co-creation of the 

service experience (rides and attractions) leading to an outcome (entertainment and pleasure).  

As in the current work, they recognise the limitations of DES alone for modelling human 

movement in service systems.  For their model they adopt a DES package (AutoMod) and use 

its facilities to introduce an agent-based approach.  The model represents customer 

perceptions, decision-making and movement, and it aims to answer questions about the 

quantity and location of signs, maps and informed employees in a theme park.   

 

The second example is described by Garnett (2008).  Coming from a DES world, he adopts 

an ABS approach for modelling queuing systems and demonstrates it with an aircraft 

boarding model.  The approach represents a system as a grid with a set of service points and 

queues.  Customers and service staff are represented as agents.  The model includes agent 

perceptions and logic for agent movement and queuing.  It is proposed that the model can be 

used, among other things, for investigating the layout of queuing systems. 

 

Finally, Ustan et al (2006) focus on modelling of physical security systems in retail outlets, 

including the modelling of regular customers, shoplifters and security personnel.  The aim is 

to design and analyse a security system, along with its protocols and policies, in order to 

improve the level of protection for the retail outlet under investigation.  As part of this work 

the authors describe a conceptual architecture for defining the environment and incorporating 

spatial features for visual cognition within that environment (Ustan et al, 2005).  This 

architecture adapts a DES approach to model spatial features and spatial behaviour.  

Although this work is not directly aimed at improving customer service the architecture has 

features that are relevant to modelling service operations. 

 

3.2 Modelling Human Movement 

 

Related to service operations layout modelling there is the related area of modelling human 

movement in a built environment.  In particular simulations have been applied to modelling 

evacuation from buildings and pedestrian flow.  Both of these involve elements of human 
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movement, interaction and decision-making as is required for service operations modelling 

where the customers are present. 

 

Emergency evacuation models often represent the evacuation space as a grid.  Lo et al 

(2004), for instance, describe the SGEM package (spatial-grid evacuation model).  This 

converts a computer-aided design of a building into a network with a series of nodes (an 

enclosed space with at least one exit).  The movement of evacuees is simulated via movement 

across a grid that is generated within each node.  Thompson and Marchant (1995a) describe 

the SIMULEX model which aims to model the evacuation of large populations from complex 

buildings.  They use a coordinate-base approach, rather than a grid, arguing that this has 

particular benefits in terms of treating each person as an individual and in improving the 

precision of the model (Thompson and Marchant, 1995b).  Kim et al (2004) describe how the 

rules of physics can be used to determine the movement of evacuees from a marine vessel.  

Brailsford and Stubbins (2006) use DES for modelling evacuation from a building.  The 

model references data on egress time, generated from a social force simulation, depending on 

the position of an evacuee and the number of people in that area of the building.  Chen and 

Zhan (2008) adopt an ABS approach when modelling the evacuation of urban residents in 

response to an emergency.  They model individual vehicles and their interactions with one 

another during an evacuation. 

 

In pedestrian flow modelling Hanisch et al (2003) identify a number of ways of modelling 

pedestrian flow:  

 

• Macroscopic: using ideas from fluid dynamics 

• Mesoscopic: where individuals are formed into groups with specific behaviours 

• Microscopic: where each person is represented by an entity, or through cellular 

automata, or with multi-agent-based modelling 

 

Such models are used for evacuation modelling, but are used more generally for investigating 

the flow of people in public buildings, for instance, a subway station (Bauer et al, 2007), and 

in complex environments based on an abstract map of the environment (Koh and Zhou, 

2011). 
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There is commercial software for modelling pedestrian flow.  Legion (www.legion.com 

accessed February 2014) uses a microscopic approach for modelling pedestrian flow.  

Examples show it being used for modelling the movement of people in transportation 

facilities (e.g. airports and bus terminals) and at sports events.  It is also used for evacuation 

modelling.  The AnyLogic software (www.anylogic.com accessed February 2014) includes a 

‘pedestrian library’ that models the flow of pedestrians in the physical environment.  

Meanwhile, the Urban Analytics Framework (www.crowddynamics.com/products/uaf.php 

accessed February 2014) appears to provide similar facilities and includes the modelling of 

traffic flow as well as pedestrians.  There does not, however, appear to have been much use 

of these tools by those working in operational research; at least not in the published literature.  

The author is aware that Legion has been used by operational research workers at Transport 

for London.  In a recent article in the operational research literature on modelling vehicle 

flow and building design, the authors opted to use a DES approach in favour of an ABS 

pedestrian flow modelling tool, but they do not provide any reasoning for their choice 

(Otamendi et al, 2012). 

 

There are clearly a number of ideas above that could be used for modelling the movement of 

humans and service delivery within a service operation in which the customers are present.  

In this paper the approach used is similar to that of Garnett and Lo et al, that is, entities 

moving on a grid.  Microscopic modelling was seen as most applicable to the situation we are 

trying to simulate since it enables individuals to make decisions, to interact and to be tracked 

through the system.     

4. A COFFEE SHOP MODEL 

An adapted DES approach for modelling a service operation in which the customers are 

present is now demonstrated through a model of a simple coffee shop which has been 

developed using Excel/VBA.  The coffee shop is named the ‘Flat White’ after a type of 

coffee served in New Zealand where the model was written during a period of sabbatical 

leave.  The structure of the model is described below.  A copy of the Excel/VBA 

implementation of the model is available from the author upon request. 

  

http://www.legion.com/
http://www.anylogic.com/
http://www.crowddynamics.com/products/uaf.php
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4.1 Basic Structure of the Model 

The model is developed around a 50 x 50 grid.  Each cell represents the area taken up by a 

human entity.  The grid represents the area available for placing the facilities required in the 

coffee shop, in this example: an order point, collection point, five tables and a WC.  A user 

can place these facilities wherever he/she likes within this space.  The customer entities will 

then move across the grid, using the shortest path, in order to receive the service they require.  

On receiving a service, the customer entities choose where to move to next. 

 

Apart from defining a customer entity, the only other components of the model are the 

facilities listed above.  There are no queues defined in the model, since queues are emergent 

properties from the entity movements and the design of the coffee shop.  An entity can be 

identified as queuing when it attempts to move but its path is blocked by another entity.  As 

such, the total time an entity spends queuing is the total time an entity spends in a blocked 

state.  Resources (e.g. service staff) could be defined as intelligent entities (agents), but for 

now they have been left out of the model. 

 

The simulation uses a standard DES three-phase executive (Paul, 1993; Pidd, 2005; Tocher 

and Owen, 2008).  This manages the simulation through a list of future events.  In the first 

(A) phase, the next event is identified; in the second (B) phase that event is executed; in the 

third (C) phase further events are executed that result from the change in the state of the 

system instigated in the B-phase.  In this model the bound (B-phase) events are: entity 

arrives, move entity one grid space, end an activity and finish the simulation run.  The 

conditional (C-phase) events are: unblock entities (required to move entities forward once 

they have been unable to move because, for instance, they are in a queue), entity exits the 

model and entity reached location.  The latter is a point at which the entity cedes control to 

the system and the service point determines when the entity is free again to move on 

completion of the service.   

 

As stated above, the customer entities move according to a simple shortest path algorithm.  

The shortest path is determined by comparing the ratio of the change required in x-coordinate 

and y-coordinate at the start of the sequence of moves, to the ratio of the change required in 

x-coordinate and y-coordinate given an entity’s current position.  The algorithm maintains the 
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current ratio (CR) close to the rounded value of the starting ratio (SR).  The starting ratio is 

calculated as: 

)()(
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−
−

=  

where D is the destination coordinates (x and y) on the grid and S is the starting coordinates 

(x and y).  The current ratio is: 
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where C is the current coordinates (x and y) of the entity.  The changes in x and y for the next 

move are then calculated as: 
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This will yield values of 1 or -1 for Δx and Δy.  In order to maintain the current ratio (CR) 

close to the starting ratio (SR), the values of Δx and Δy are set to 0 for some moves, creating 

vertical and horizontal moves respectively.   

 

As an example, if the start position of the entity is (20,20) and it is moving to grid position 

(44,10), then its start ratio SR = (44-20)/(10-20) = -2.4, which is rounded to -2.  If the entity’s 

current position is (28, 18), then the current ratio CR = (44-28)/(10-18) = -2.  Because CR = 

SR, we use the formula above for Δx and Δy, making the next move (1,-1) and the entity 

moves to grid position (29, 17).  For the next move CR is now -2.143.  Since CR < SR, the 

entity is deemed to be slightly off course.  In order to maintain the course of the entity, Δx is 

calculated as before and set to 1, but Δy is set to 0.  The entity moves to grid position (30, 17) 

and the value of CR returns to -2. 

 

Further to this shortest path algorithm, the entities avoid head on collisions with other entities 

and they have some limited capacity to avoid obstacles (denoted in black) on the grid.  This is 

achieved by an entity attempting to make a move to an adjacent grid position, other than that 

desired by the shortest path, when faced with either of these conditions.  The potential to use 

more sophisticated algorithms for agent moves and collision avoidance is discussed in section 

5.3. 
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4.2 Input Data 

The data required for the model is split into data concerning the coffee shop system and data 

concerning the customer entities.  For the coffee shop system the user defines the coordinates 

of the entrances and exits; there are two of each in the Flat White model.  The only other 

system data required are for the service points: name, coordinates and mean service time 

(which is assumed to follow a negative exponential distribution).  The user can draw 

‘obstacles’ in suitable locations on the grid by filling cells in black. 

 

For the customer entities, the data defines the mean inter-arrival time (again assumes negative 

exponential) and the speed with which each entity travels (defined as the time to move one 

cell).  The proportion of entities that travel at different speeds is defined in the data and 

sampled when the model runs.  Customer entities are also split according to their residency 

time at the tables.  In the current model this is represented by 70 percent of customers 

spending a ‘short’ time at the tables (mean = 15 minutes) and 30 percent spending a long time 

(mean = 30 minutes).  This represents different intentions, for instance, business people who 

use the coffee shop for access to the internet spend longer at the tables. 

 

Further heterogeneity among the customer entities is generated by sampling their intentions 

when entering the model.  These intentions are defined as a sequence of activities to be 

completed and so they define the entities route through the service system.  The intentions 

used in the Flat White model are shown in table 1.  The entity intentions are sampled 

according to the proportions shown in column 1 of the table.  The model represents some 

scope for changing intentions based on the state of the system.  If all the tables are occupied 

when a customer entity is trying to sit at one, then the entity will change its intention and 

leave the coffee shop. 

 
Table 1  Customer Entity Intentions in the Flat White Model 

Proportion Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

0.1 Order Collect Table WC Exit 

0.6 Order Collect Table Exit 

 0.3 Order Collect Exit 
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Greater levels of heterogeneity could be added to the model by including further attributes 

such as aggressiveness (barging in front of people) and patience (willingness to wait in a 

queue).  This requirement is discussed further in section 5.3. 

4.3 Model Display 

Figure 2 shows the display of the model.  The clock in the top left corner shows the current 

simulation time in units specified by the user; here it is minutes.  The location of customer 

entities is shown by cells coloured in light grey.  Note that there are small queues forming at 

the order and collection points.  The cells coloured in black represent obstacles and they are 

used to show the layout of the coffee shop. 

 
Figure 2  The Flat White Model Simulation Display 

 
  Entrance/Exit  Entrance/Exit 

 

  

Clock 38.69

WC

Order

Collect

Tables

The Flat White
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4.4 Results 

Results are collected for the number of customers served, the number that changed their 

intentions, the time customer entities spend in the system (split into in service, moving and 

queuing) and the utilisation of the service points.  Other results could be collected if desired, 

for example, the distance that entities travel. 

 

Table 2 shows the results generated by the model from ten independent replications of 480 

minutes, which equates to a working day.  The mean, standard deviation and 95% confidence 

intervals are given for each value.  For comparative purposes the results given in table 3 are 

generated from a second layout for the coffee shop which is shown in figure 3. 

 
Table 2  Results from 10 Independent Replications of 480 Minutes with the Flat White Model 

(Figure 2) 

 

   95% confidence interval 

 

Mean Standard 
deviation Lower Upper 

Customers served 113.60 9.81 106.58 120.62 
Change intentions 9.70 5.72 5.61 13.79 

     
Time in system (mins)     
Mean 14.61 0.88 13.98 15.23 
Min 1.08 0.16 0.96 1.19 
Max 110.11 32.69 86.72 133.49 

  
   

In service (mins) 12.86 0.79 12.29 13.43 
Moving (mins) 1.34 0.05 1.30 1.38 
Queuing (mins) 0.41 0.11 0.33 0.49 

     
Activity utilisation (%)     
Order 24.79 3.62 22.20 27.39 
Collect 12.32 1.88 10.97 13.67 
Table 1 74.09 6.34 69.56 78.62 
Table 2 65.55 7.10 60.47 70.63 
Table 3 59.70 8.12 53.89 65.51 
Table 4 45.58 10.33 38.19 52.96 
Table 5 36.27 9.90 29.19 43.35 
WC 5.67 2.48 3.90 7.45 
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Table 3  Results from 10 Independent Replications of 480 Minutes with the Flat White Model 

Alternative Layout (Figure 3) 

 

   95% confidence interval 

 

Mean Standard 
deviation Lower Upper 

Customers served 113.40 9.66 106.49 120.31 
Change intentions 8.90 4.53 5.66 12.14 

     
Time in system (mins)     
Mean 14.85 0.80 14.28 15.42 
Min 1.28 0.19 1.14 1.41 
Max 110.78 31.46 88.27 133.29 

  
   

In service (mins) 12.82 0.80 12.25 13.40 
Moving (mins) 1.63 0.05 1.60 1.67 
Queuing (mins) 0.39 0.11 0.31 0.47 

     
Activity utilisation (%)     
Order 24.72 3.81 21.99 27.45 
Collect 12.69 2.28 11.06 14.32 
Table 1 75.02 3.61 72.43 77.60 
Table 2 69.64 6.94 64.68 74.61 
Table 3 54.78 9.13 48.25 61.31 
Table 4 45.37 5.84 41.19 49.55 
Table 5 35.33 12.94 26.07 44.59 
WC 5.67 2.59 3.82 7.53 
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Figure 3  Alternative Layout for the Flat White Simulation 

 
  Entrance/Exit  Entrance/Exit 

 

The results from the two layouts demonstrate similar levels of performance for most of the 

statistics, as shown by the overlapping confidence intervals.  However, the mean time spent 

moving appears to be greater for the second layout; 1.63 minutes as opposed to 1.34 minutes 

for the first layout.  This is confirmed by a paired-t confidence interval for the differences 

between the two results at five percent significance (-0.33, -0.27).  The paired-t interval is 

used because the model induces correlation between the results of the two layouts through the 

use of common random numbers (Law, 2007).  This difference in time spent moving results 

from the greater distances customers must walk in the second layout due to the configuration 

of the coffee shop area.  If we assume that customers would prefer to spend less time moving 

around the coffee shop, then the original layout in figure 2 is the better option.  As such, the 

model provides the facility to compare the performance of different layouts for the coffee 

shop. 

 

Clock 95.94

WC

Order Collect

Tables

The Flat White

Tables
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The impact of different customer behaviours can also be predicted from the model.  For 

instance, the model is run with 50 percent of customer entities having a ‘long’ residence 

period at the tables, instead of only 30 percent.  The results from ten replications demonstrate 

an increase in table utilisation and time in the system.  Meanwhile, more customers change 

their intentions and decide to leave the coffee shop rather than wait for a table.  In the first 

layout (figure 2), the mean number of customers that change their intentions increases from 

9.70 to 12.90, which is a significant difference at the five percent level.  This suggests there 

will be a lower level of satisfaction, in terms of more customers changing their intentions, if a 

greater number of customers choose to spend longer at the tables. 

 

Finally, the model is able to provide time-based results.  Figure 4 shows an example of such a 

graph showing how the number of customers in the system varies over time in the original 

layout.  Such data can be useful for identifying specific patterns that result from the 

behaviour of the customer entities in the system.  Here we note that there are never more than 

eight customers in the coffee shop, which is partially a result of customers not waiting for 

tables. 

 

Figure 4  Number of Customers in the System over Time: Original Layout (Figure 2), 

Replication 1 

 

5. DISCUSSION 

Having presented the model we now discuss the key differences between the Flat White 

model and previous modelling of service systems in which the customers are present.  We 
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then ask if the Flat White model is, in fact, an ABS, and we explore possible extensions to the 

modelling approach. 

 

5.1 Differences and Benefits in the Modelling Approach 

 

The key difference between the Flat White model and the typical DES model of a service 

system is that the only components defined in the model are entities and activities (facilities).  

There is no explicit modelling of queues.  Instead the queues emerge as a result of the 

interaction of the entities with the system and with each other.  This has the benefit of 

simplifying the modelling of the system by reducing the number of components that need to 

be modelled and the associated logic that is required.   

 

The model differs in two other respects.  First, the model is spatially aware since the placing 

of service points on the grid affects the flow of the entities.  Second, the entities have some 

intelligence; they move according to their own intentions and they are able to avoid obstacles 

and other entities while moving.  This level of intelligence is relatively low, but it could 

easily be extended.  This is something that we discuss section 5.3.  The benefit of the model 

being spatially aware and of modelling entity intelligence is that changes to the layout of the 

system make a difference to its performance.  As a result, alternative layouts can be 

compared. 

 

The Flat White model does have some similarities with Garnett’s (2008) ABS queuing model 

in that it is motivated by a desire to help with layout decisions for service systems and it does 

so by modelling the system on a grid.  However, it does differ in three key respects: it uses a 

three-phase executive, entities move at different speeds (this is enabled through the use of a 

DES executive) and the absence of queues as defined components of the system.  Meanwhile, 

Garnett implemented his model with more intelligent agent behaviour including, for instance, 

field of vision and ability to anticipate future events.  This was aided by using standard ABS 

software (AnyLogic and NetLogo).  Given that there is some level of correspondence with 

Garnett’s ABS model, we now explore whether the Flat White model is in fact an ABS. 
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5.2 Is the Flat White Model an Agent-Based Simulation? 

 

The origins of ABS lie in the desire to study complex (adaptive) systems and their emergent 

behaviours (Heath and Hill, 2010).  The approach, that was popularised by the Sante Fe 

Institute through its Swarm software (www.swarm.org accessed February 2014), has been 

applied across a wide range of fields for studying biological, physical and social systems, for 

instance.  The basic idea is to model systems from the bottom-up as a set of agents, with 

individual behaviours, that interact over time.  The aim of modelling systems in this way is to 

observe the behaviours, patterns and structures that emerge (Macal and North, 2010).  

 

Macal and North (2010) describe the structure of an ABS model as consisting of three 

elements: 

 

• Agents: with attributes and behaviours 

• Agent relationships: defining who agents interact with and how 

• Agent environment: the environment in, and with, which the agents interact 

 

Schelling’s model of segregation is an early example of ABS (in this case not on a computer) 

in which the dynamics of a population that is split into two groups who aim for a desired 

level of segregation is investigated (Schelling, 1971).  The model demonstrates that a much 

higher level of segregation is typically achieved than the desired level.  Axelrod (1997) 

outlines a number of ABS models which he uses to study phenomena in the arena of political-

science.  One such model investigates how cultures spread and how they remain distinct over 

time (chapter 7). 

 

In a similar vein to Axelrod’s cultural model, Deffuant et al (2002) describe a model of 

opinion dynamics which they use to model the influence of extremists in a population.  The 

key difference to Axelrod’s model is that opinions are seen as continuous rather than discrete 

variables.  Meanwhile, Parker and Epstein (2012) use ABS for modelling epidemics.  Using 

distributed computing their model is able to represent the outbreak of an epidemic in a 

population with billions of agents. 

 

http://www.swarm.org/
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These examples of ABS models are used to test the theories of the phenomena that are under 

investigation.  They bear little relation to our context which is more empirically driven (based 

on data that can be observed in a real system) and aimed at aiding specific decisions.  

However, as ABS adoption has spread so we see examples of empirically driven models that 

are used to aid decision-making.  For instance, Macal and North (2005) discuss the validation 

of such a model (EMCAS: Electricity Market Complex Adaptive System) which was 

designed to aid decision-making around restructuring and deregulation of electricity power 

markets.  Meanwhile, Edmunds et al (2006) discuss the collection of data on human mixing 

patterns which could aid the development and parameterisation of models of close-contact 

infectious disease spread.  For a detailed survey of recent examples of ABS modelling see 

Heath et al (2009).  

 
Having briefly introduced the concepts of ABS, we return to our focus here which is to 

classify whether the Flat White model is either a DES or an ABS.  However, the problem we 

encounter in adopting such a polarised classification is that these two terms are referring to 

quite different facets of the respective modelling approaches.  ‘Discrete-event simulation’ is 

referring to the time-handling mechanism used to move from event-to-event.  This results in 

an irregular time-step.  The term ‘agent-based simulation’ is describing the modelling of 

individual intelligent agents that interact and it is from these interactions that the overall 

system behaviour emerges.   

 

If we dig a little deeper, then we find that DES generally takes a top-down view of the world.  

That is, the system is designed and this regulates the activities of the entities that move 

around the system.  The use of attributes for entities gives them some control of their destiny, 

but again it is generally the system that uses this information to determine the next action for 

an entity, i.e. the entities are not intelligent.  DES models also focus on modelling the 

interaction of random events, which can lead to surprising system behaviour.  Given that DES 

emerged from manufacturing (Tocher, 2008), these facets are reasonable representations of 

that world.   

 

ABS takes a bottom-up view of the world.  At an extreme this means the system is not 

designed, but that it emerges from the behaviour and interaction of intelligent agents.  Time is 

often modelled as a fixed time step which describes the period between either possible 

interactions between agents or agent decisions.  Randomness can be included in these 
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models, but it tends to be restricted to modelling probabilities of events (e.g. an interaction 

being successful) and not for modelling activity times (which is the prime use of randomness 

in DES).  Table 4 summarises these facets of DES and ABS. 

 

Table 4  Facets of DES and ABS Modelling  

 

Facet DES ABS 

World view Top-down Bottom-up 

Time handling Irregular time step Fixed time-step 

Randomness Key facet of model 

Represents times and 

probabilities 

Generally used only for 

probabilities 

 

Applying these facets to the situation of modelling the layout of a retail outlet, and other 

types of service system, we should recognise the following.  A retail outlet is designed in the 

sense that an organisation determines where resources will be placed.  This suggests a top-

down view.  On the other hand, intelligent agents (customers) arrive into the designed system 

where they interact with that system and with one another.  This suggests a bottom-up view.  

The emergent behaviour is a result of both the system design and the interaction of the 

intelligent agents.  Agents maintain control of their activities while moving around the 

designed system, but cede control to that system when receiving service.  The time to 

perform activities (e.g. service times) will be subject to random variation.  All this suggests a 

mix of the facets listed in table 4.  Hence, we would argue that the Flat White model is not a 

pure DES, but a mixed DES/ABS. 

 

Of course, some would argue that the model is strictly a DES, since it simply represents a 

system as a set of entities with limited intelligence and time progresses using a standard DES 

executive.  However, with an extension to the intelligence of the entities (as discussed in the 

next section), the argument that the model involves at least some elements of ABS would be 

strengthened much further.  Meanwhile, from a pure ABS perspective it might be argued that 

the design of the physical system is not exclusively a facet of DES modelling.  Indeed, the 

physical system could be interpreted as being the agent environment.  The change from agent 
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control to system control as an agent progresses through the environment does still imply, 

however, that there are elements of a DES worldview in the model.   

 

The debate over whether the Flat White model is an ABS or a DES depends on whether we 

consider the two simulation approaches to be strictly separable, or we consider that there is a 

continuum from pure DES to pure ABS with many shades in between.  For instance, we 

might argue that as soon as an entity in a DES model has an attribute whose value impacts on 

the logic of the model then we have made a first move towards a partial ABS approach.  For a 

useful discussion on these issues, see Brailsford (2014). 

 

5.3 Developing the Flat White Model Further  

 

The adapted DES model has demonstrated two key benefits in modelling service systems in 

which the customers are present: it simplifies the modelling and it can aid decisions about 

layout as well as the number of resources.  The Flat White model is a relatively simple 

representation of a small scale service system.  There is much potential to develop the idea 

further.   

 

A key area that needs to be developed further is the intelligence of the customers.  This could 

entail how the customers make decisions, how they react to the environment and how they 

move through the environment.  The model currently assumes customers are rational, e.g. 

they find the shortest route from their present location to their intended destination.  This may 

be a reasonable assumption for movement, but not necessarily for all decisions in a service 

system.  For instance, how does a person decide which route to take around a supermarket?  

It is unlikely that this is a perfectly rational decision, especially in the light of limited 

information on the layout of the supermarket.  We know humans are subject to bounded 

rationality (Simon, 1957).  It may be useful to model the limits of information available to 

people such as the effect of signs and line-of-sight.  Further, a more sophisticated algorithm 

could be employed for finding a route from one location in the service system to another; for 

instance, the A* algorithm (Hart et al, 1968). 

 

The model includes simple collision avoidance for both other people and obstacles, but this 

could be extended to include a more sophisticated approach.  The customers are also given a 

fixed set of intentions, except that they may choose to leave if all the tables are occupied.  
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More sophisticated changes to their intentions could be modelled as well as ambiguous 

intentions (being unsure about what to do next). 

 

The key to developing the customer intelligence element of the model may be in working 

with standard models of human decision-making and pedestrian behaviour.  In simulation the 

PECS (physical conditions, emotional state, cognitive capabilities and social status) 

architecture has been used for modelling human behaviour (Schmidt, 2000; Brailsford and 

Schmidt, 2003).  The BDI (belief-desire-intention) model has also been adopted in simulated 

environments (Lee and Son, 2009; Padgham et al, 2011).  Brailsford et al (2012) used the 

theory of planned behaviour (Ajzen, 1991) to model the behaviour of women in deciding 

whether to attend for breast cancer screening.  The work of Helbing et al (2001, 2005) may 

prove particularly useful for modelling the movement of individuals in the service 

environment, albeit that their work focuses primarily on pedestrian movement. 

 

Given that such models are applicable, then it may be possible to apply a standard set of data 

for customer behaviour in a family of service operations such as a coffee shop or 

supermarket.  However, the collection and categorisation of these data is a major challenge. 

 

Another extension is to implement intelligent resources in the model.  Service staff have their 

own intentions and behaviours.  The movement of staff and their interaction with the 

customers will affect the performance of the service operation. 

 

The results generated by the model in its present form are largely typical of those generated 

by a DES model of a service system.  Extending the results to reflect the customers’ 

experience in the system would provide additional insight into the relative merits of 

alternative layouts.  For instance, data could be collected on the extent of obstacle and 

collision avoidance as a means for reflecting the sense of space a layout provides.  Reducing 

the need to avoid obstacles and collisions would generally seem to be beneficial to the 

customers’ experience of a service.  

 

The use of a DES executive for modelling customer movement needs to be investigated 

further.  This may significantly slow the model when there are many customers in the system.  

Use of a global time-step, as is typical in many ABS models, may improve the speed of the 
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model, but may also result in loss of accuracy, particularly as this forces all customers to 

move and make decisions at fixed time intervals. 

6. CONCLUSION 

 

This paper presents a set of ideas on how to develop models of service operations (in which 

the customers are present), when the aim is to help determine the layout of the operation.  

The key innovation is to be able to model a service system without explicitly defining queues.  

The approach is arguably a mixed DES/ABS model.  With the implementation of a set of 

extensions, this approach could prove extremely valuable in a live decision-making 

environment. 

 

Overall, the aim is to develop an easy-to-use modelling environment where a user can drag-

and-drop activities and obstacles onto a grid, and enter data about the system being modelled.  

This requires both careful software design and implementation of standard data sets for 

modelling human behaviour.  It is the latter which poses the greatest challenge for this 

approach.   

 

There is clearly scope for further research in developing the approach and the methodology 

for applying it in a real context.  The key areas for further research into this approach are: 

developing the intelligence of the customer entities; data collection and generating standard 

data sets for a modelling context; adding intelligent resources to the modelling approach; 

exploring results that reflect the customer experience of the system; and determining the best 

simulation executive for supporting this approach.  With such research, the approach could 

provide a straightforward means for modelling and improving service operations in which the 

customers are present. 
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