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Abstract

In the pickup and delivery problem with time windows (PDPTW), capacitated vehicles
must be routed to satisfy a set of transportation requests between given origins and
destinations. In addition to capacity and time window constraints, vehicle routes must
also satisfy pairing and precedence constraints on pickups and deliveries. This paper
introduces two new formulations for the PDPTW and the closely related dial-a-ride
problem (DARP) in which a limit is imposed on the elapsed time between the pickup
and the delivery of a request. Several families of valid inequalities are introduced to
strengthen these two formulations. These inequalities are used within a branch-and-cut
algorithm which has been tested on several sets of instances for both the PDPTW and
the DARP. Instances with up to eight vehicles and 96 requests (192 nodes) have been
solved to optimality.
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1 Introduction

In the Pickup and Delivery Problem (PDP), capacitated vehicles must be routed to satisfy
a set of transportation requests between given origins and destinations. Each route must
start and finish at a common depot and satisfy pairing and precedence constraints: for
each request, the origin must precede the destination, and both locations must be visited
by the same vehicle. The PDP arises naturally in several contexts such as urban courier
services and door-to-door transportation systems for the elderly and the disabled. In most
applications, time windows restrict the time at which each pickup and delivery location may
be visited by a vehicle. This gives rise to the PDP with Time Windows (PDPTW). In
the case of passenger transportation, additional constraints may also be present to reduce
customer dissatisfaction. In particular, ride time constraints are often imposed to limit the
time spent by a passenger in the vehicle. The resulting problem is called the Dial-a-Ride

Problem (DARP).

Both the PDP and PDPTW are generalizations of the classical Vehicle Routing Problem

(VRP) and are thus NP-hard. As a result, the development of solution methods for these
problems has focused on heuristics (see, e.g., Desaulniers et al., 2002; Cordeau et al.,
2005). Nevertheless, when the problem is sufficiently constrained, it is possible to obtain
optimal solutions within reasonable computation time. For instance, dynamic programming
has been used successfully to solve the single-vehicle PDP with or without time windows
(Psaraftis, 1980, 1983; Desrosiers et al., 1986). For the multiple-vehicle case, column
generation approaches have been proposed. The first such method was introduced by Dumas

et al. (1991) who addressed the PDPTW. Their set-partitioning formulation is solved by
a branch-and-price method in which columns of negative reduced-cost are generated by
a dynamic programming algorithm similar to that of Desrosiers et al. (1986) for the
single-vehicle case. The method has been successful in solving instances with tight capacity
constraints and a small number of requests per route. Several arc elimination rules have also
been proposed to reduce the size of the problem. A similar approach was later developed by
Savelsbergh and Sol (1998) who used a column management mechanism to reduce the
size of the master problem, and construction and improvement heuristics to accelerate the
solution of the pricing subproblem.

Another solution methodology that has proven successful for solving the PDP is branch-and-
cut. The single-vehicle case without time windows was first studied by Ruland and Rodin

(1997) who introduced several families of valid inequalities that are also valid for the PDPTW
and will thus be described in more detail in Section 3. Branch-and-cut has also been used
to solve the more general Precedence-Constrained Asymmetric Traveling Salesman Problem

(PCATSP) in which each node may have multiple predecessors. Valid inequalities and a
branch-and-cut algorithm for this problem have been developed, respectively, by Balas

et al. (1995) and Ascheuer et al. (2000b). A branch-and-cut algorithm for the capacitated
multiple-vehicle PDP and PDPTW was later described by Lu and Dessouky (2004). Their
formulation contains a polynomial number of constraints and uses two-index flow variables,
but relies on extra variables to impose pairing and precedence constraints. Instances with
up to five vehicles and 25 requests were solved optimally with this approach. More recently,
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Cordeau (2005) has developed a branch-and-cut algorithm for the DARP. It is based on
a three-index formulation with a polynomial number of constraints. It uses several families
of valid inequalities that are either adaptations of existing inequalities for the TSP and the
VRP, or new inequalities which take advantage of the structure of the problem. Most of
these inequalities are valid for the PDPTW and will also be described in Section 3. This
approach was capable of solving instances with up to four vehicles and 32 requests.

In this paper, we introduce a new branch-and-cut algorithm for the PDPTW and the closely
related DARP. We make three contributions. First, we propose two new formulations for the
PDPTW which, unlike the formulation of Cordeau (2005), have an exponential number
of constraints, but lead to more efficient solution algorithms because they contain fewer
variables and provide tighter bounds. Second, we introduce new valid inequalities combining
the pickup and delivery structure of the problem with either the vehicle capacity constraints
or the time window constraints. Third, we report computational experiments on several sets
of test instances and show that our approach is capable of solving some instances with up
to eight vehicles and 96 requests.

The remainder of the paper is organized as follows. Section 2 formally defines the PDPTW
and introduces two formulations of the problem. Section 3 describes the valid inequalities
used in the branch-and-cut algorithm which is then introduced in Section 4. Computational
results are reported in Section 5, followed by conclusions in the last section.

2 Formulations of the PDPTW

Let n denote the number of requests to satisfy. The PDPTW can be defined on a directed
graph G = (N, A) with node set N = {0, . . . , 2n + 1} and arc set A. Nodes 0 and 2n + 1
represent the origin and destination depots (which may have the same location) while subsets
P = {1, . . . , n} and D = {n + 1, . . . , 2n} represent pickup and delivery nodes, respectively.
With each request i are thus associated a pickup node i and a delivery node n + i. With
each node i ∈ N are associated a load qi and a non-negative service duration di satisfying
q0 = q2n+1 = 0, qi = −qn+i (i = 1, . . . , n) and d0 = d2n+1 = 0. A fleet of identical vehicles
with capacity Q is available to serve the requests. With each arc (i, j) ∈ A are associated a
routing cost cij and a travel time tij . A time window [ei, li] is also associated with every node
i ∈ P ∪D, where ei and li represent the earliest and latest time, respectively, at which service
may start at node i. The depot nodes may also have time windows [e0, l0] and [e2n+1, l2n+1]
representing the earliest and latest times, respectively, at which the vehicles may leave from
and return to the depot. We assume that the triangle inequality holds both for routing costs
and travel times. Finally, to impose pairing and precedence constraints, it is convenient to
define the set S of all node subsets S ⊆ N such that 0 ∈ S, 2n + 1 6∈ S and there is at least
one request i for which i 6∈ S and n + i ∈ S.

For each arc (i, j) ∈ A let xij be a binary variable equal to 1 if and only if a vehicle travels
directly from node i to node j. For each node i ∈ P ∪D let Bi be the time at which service
begins at node i, and Qi be the load of the vehicle visiting node i, immediately after its
departure from this node.
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The PDPTW can be formulated as the following mixed-integer program:

(PDPTW1) Minimize
∑

i∈N

∑

j∈N

cijxij (1)

subject to
∑

i∈N

xij = 1 ∀j ∈ P ∪ D (2)

∑

j∈N

xij = 1 ∀i ∈ P ∪ D (3)

∑

i,j∈S

xij ≤ |S| − 2 ∀S ∈ S (4)

Bj ≥ (Bi + di + tij)xij ∀i ∈ N, j ∈ N (5)

Qj ≥ (Qi + qj)xij ∀i ∈ N, j ∈ N (6)

ei ≤ Bi ≤ li ∀i ∈ N (7)

max {0, qi} ≤ Qi ≤ min {Q, Q + qi} ∀i ∈ N (8)

xij ∈ {0, 1} ∀i ∈ N, j ∈ N. (9)

The objective function (1) minimizes the total routing cost. Constraints (2) and (3) require
each node to be visited exactly once. Consistency of the time and load variables is ensured
through constraints (5) and (6). The respect of time windows and vehicle capacity is then
ensured through constraints (7) and (8). Under the assumption that di + ti,n+i > 0 for every
request i, constraints (5) and (7) also ensure that no subtours exist in the solution. Finally,
inequalities (4) are precedence constraints (see Ruland and Rodin, 1997) which guarantee
that for each user i, node n+ i is visited after node i and both nodes are visited by the same
vehicle.

By introducing variables Li representing the ride time of each user i, and denoting by L the
maximum ride time, the DARP can be modeled by introducing the following constraints:

Li = Bn+i − (Bi + di) ∀i ∈ P (10)

ti,n+i ≤ Li ≤ L ∀i ∈ P. (11)

Formulation (1)-(9) is non-linear because of constraints (5) and (6). Introducing constants
Mij and Wij , these constraints can, however, be linearized as follows:

Bj ≥ Bi + di + tij − Mij(1 − xij) ∀i ∈ N, j ∈ N (12)

Qj ≥ Qi + qj − Wij(1 − xij) ∀i ∈ N, j ∈ N. (13)

The validity of these constraints is ensured by setting Mij ≥ max{0, li + di + tij − ej} and
Wij ≥ min{Q, Q + qi}. As shown by Desrochers and Laporte (1991), constraints (12)
and (13), for a given pair i, j ∈ N , can be lifted as follows by taking the reverse arc (j, i)
into account:

Bj ≥ Bi + di + tij − Mij(1 − xij) + (Mij − di − tij − max{dj + tji, ei − lj})xji (14)

Qj ≥ Qi + qj − Wij(1 − xij) + (Wij − qi − qj)xji. (15)
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In the case of the DARP, lifting (14) is, however, invalid because of constraints (10) and (11)
which put additional restrictions on the time variables Bi.

As suggested by Desrochers and Laporte, bounds on the time variables can also be
strengthened as follows:

Bi ≥ ei +
∑

j∈N\{i}

max{0, ej − ei + dj + tij}xji (16)

Bi ≤ li −
∑

j∈N\{i}

max{0, li − lj + di + tij}xij . (17)

Similarly, bounds on load variables Qi can be strengthened as follows:

Qi ≥ max{0, qi} +
∑

j∈N\{i}

max{0, qj}xji (18)

Qi ≤ min{Q, Q + qi} − (Q − max
j∈N\{i}

{qj} − qi)x0i −
∑

j∈N\{i}

max{0, qj}xij . (19)

A formulation with fewer variables can be obtained by replacing constraints (5)-(8) with
rounded capacity inequalities (see, e.g., Naddef and Rinaldi, 2002) and infeasible path

elimination constraints (see, e.g., Ascheuer et al., 2000a). For any subset S ⊆ P ∪ D, let
r(S) = ⌈

∑

i∈S qi⌉ denote the minimum number of times vehicles must enter and leave S in
order to visit all nodes in the set. Denote by R the set of infeasible paths with respect to
time windows, and for each path R ∈ R, let A(R) ⊂ A be the set of arcs in this path. With
these definitions, the PDPTW can be reformulated as follows:

(PDPTW2) Minimize
∑

i∈N

∑

j∈N

cijxij (20)

subject to
∑

i∈N

xij = 1 ∀j ∈ P ∪ D (21)

∑

j∈N

xij = 1 ∀i ∈ P ∪ D (22)

∑

i,j∈S

xij ≤ |S| − 2 ∀S ∈ S (23)

∑

i,j∈S

xij ≤ |S| − r(S) ∀S ⊆ N \ {0, 2n + 1}, |S| ≥ 2 (24)

∑

(i,j)∈A(R)

xij ≤ |A(R)| − 1 ∀R ∈ R (25)

xij ∈ {0, 1} ∀i ∈ N, j ∈ N. (26)

With formulation (PDPTW2), the DARP can be modeled by simply introducing in set R
the paths violating the ride time constraints.
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Constraints (25) can in fact be strengthened into so-called tournament constraints (see, e.g.,
Ascheuer et al., 2000a) as follows. If R = (k1, . . . , kr) is an infeasible path, then the
following inequality is valid:

r−1
∑

i=1

r
∑

j=i+1

xki,kj
≤ |A(R)| − 1. (27)

Infeasible path constraints can also be strengthened when they link a node pair i, n + i.
Consider a path R = (i, k1, . . . , kr, n + i). If R is infeasible because of time windows or ride
time constraints (and the triangle inequality holds), then the following inequality is valid
(see Cordeau, 2005):

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+ xkr ,n+i ≤ |A(R)| − 2. (28)

Finally, if both the path R = (k1, . . . kr) and the reverse path R′ = (kr, . . . , k1) are infeasible,
then the following symmetric inequality is clearly valid:

r−1
∑

i=1

xki,ki+1
+ xki+1,ki

≤ r − 1. (29)

Although formulations (PDPTW1) and (PDPTW2) assume identical vehicles, vehicles of
different capacities can be handled through the introduction of dummy requests. Suppose
that m vehicles of capacity Q1, Q2, . . . , Qm are available and let Q = max1≤i≤m{Qi}. One
can then define m dummy requests i = 1, . . . , m with di = dn+i = 0 and qi = −qn+i = Q−Qi.
Each dummy pickup node should be reachable only from the origin depot while each dummy
delivery node should connect only to the destination depot (both with cost and travel time
equal to 0). Finally, the arc from a dummy pickup node to a normal pickup node j should
have a cost c0j and a travel time t0j while the arc from a normal delivery node n + j to a
dummy delivery node should have a cost cn+j,2n+1 and a travel time tn+j,2n+1.

3 Valid Inequalities

We now describe several families of valid inequalities for the PDPTW. These inequalities
can be used to strengthen both (PDPTW1) and (PDPTW2). Throughout the remainder of
the paper, let x(S) =

∑

i,j∈S xij and x(S : T ) =
∑

i∈S

∑

j∈T xij , where S, T ⊆ N .

3.1 Subtour elimination constraints

Consider the simple subtour elimination constraint x(S) ≤ |S| − 1 for S ⊆ P ∪ D. In the
case of the PDPTW, this inequality can be lifted in many different ways by taking into
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account the fact that for each user i, node i must be visited before node n + i. For any
set S ⊆ P ∪ D, let π(S) = {i ∈ P |n + i ∈ S} and σ(S) = {n + i ∈ D|i ∈ S} denote the
sets of predecessors and successors of S, respectively. Balas et al. (1995) have proposed
two families of inequalities for the PCATSP which also apply to the PDPTW because each
node i ∈ P ∪ D is either the predecessor or the successor of exactly one other node. For
S ⊆ P ∪ D, the following predecessor and successor inequalities are valid for the PDPTW:

x(S) +
∑

i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1 (30)

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1. (31)

As shown by Cordeau (2005), the D−
k and D+

k inequalities introduced by Grötschel and
Padberg (1985) for the asymmetric TSP can also be lifted by taking precedence relation-
ships into account. Let S = {i1, i2, . . . , ik} ⊆ P ∪ D be an ordered set of nodes with k ≥ 3.
The following inequalities are then valid for the PDPTW:

k−1
∑

j=1

xij ,ij+1
+ xik ,i1 + 2

k
∑

j=3

xi1,ij +

k
∑

j=4

j−1
∑

l=3

xij ,il +
∑

h∈S̄∩π(S)

xi1,h ≤ k − 1 (32)

k−1
∑

j=1

xij ,ij+1
+ xik ,i1 + 2

k−1
∑

j=2

xij ,i1 +
k−1
∑

j=3

j−1
∑

l=2

xij ,il +
∑

h∈S̄∩σ(S)

xh,i1 ≤ k − 1. (33)

3.2 Strengthened capacity constraints

Capacity constraints can be strengthened by considering node pairs (k, n + k) such that the
pickup node k is visited before entering set S while the delivery node n + k is visited after
leaving this set. In this case, the capacity of the vehicles visiting set S is reduced by the
amount corresponding to the demand of all such node pairs. This yields the following result.

Proposition 1. Let S, T ⊂ P ∪ D be two disjoint sets such that q(S) > 0. Also define
U = π(T ) \ (S ∪ T ). The following inequality is then valid for the PDPTW:

x(S) + x(T ) + x(S : T ) ≤ |S| + |T | −

⌈

q(S) + q(U)

Q

⌉

. (34)

Proof. Because q(S) > 0 and q(U) ≥ 0, at least ⌈q(S)/Q⌉ paths must visit set S and at
least ⌈q(U)/Q⌉ paths must visit sets T and U . If a path uses an arc from the set (S : T )
and reaches a node n + k ∈ T with k ∈ U , without leaving set T , then node k must have
been visited by that path before entering set S. Hence, the total number of paths that either
leave set S or enter set T is greater than or equal to ⌈(q(S) + q(U))/Q⌉. Taking care not to
count twice the paths going directly from S to T , one obtains

x(δ+(S)) + x(δ−(T )) − x(S : T ) ≥

⌈

q(S) + q(U)

Q

⌉

.
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Because x(S) + x(δ−(S)) = x(S) + x(δ+(S)) = |S|, this is equivalent to

|S| − x(S) + |T | − x(T ) − x(S : T ) ≥

⌈

q(S) + q(U)

Q

⌉

,

which yields the desired result after properly rearranging the terms.�

Figure 1 depicts an example for which at most two arcs can be used if qi = qj = qk = ql = 1
and the vehicle capacity is Q = 2. Arcs in the figure are those on the left-hand-side of (34).

TS

i

j

n+k

n+l

l

k

U

Figure 1: Strengthened capacity constraint where S = {i, j}, T = {n + k, n + l} and
U = π(T ) \ (S ∪ T ) = {k, l}.

3.3 Generalized order constraints

Let U1, . . . , Um ⊂ N be mutually disjoint subsets and let i1, . . . , im ∈ P be requests such
that 0, 2n + 1 6∈ Ul and il, n + il+1 ∈ Ul for l = 1, . . . , m (where im+1 = i1). The following
inequality, introduced by Ruland and Rodin (1997), is also valid for the PDPTW:

m
∑

l=1

x(Ul) ≤
m

∑

l=1

|Ul| − m − 1. (35)

Similar inequalities, called precedence cycle breaking inequalities, have also been proposed by
Balas et al. (1995) for the PCATSP. In the case of a directed formulation, Cordeau (2005)
showed that generalized order constraints can be lifted in two different ways as follows:

m
∑

l=1

x(Ul) +

m−1
∑

l=2

xi1,il +

m
∑

l=3

xi1,n+il ≤
m

∑

l=1

|Ul| − m − 1 (36)

m
∑

l=1

x(Ul) +

m−2
∑

l=2

xn+i1,il +

m−1
∑

l=2

xn+i1,n+il ≤
m

∑

l=1

|Ul| − m − 1. (37)

3.4 Strengthened infeasible path constraints

Paths that satisfy time windows can sometimes be eliminated by taking precedence relation-
ships into account. Consider for instance the path R = (i, n + j, k). Obviously, node j must
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be visited before R, while nodes n + i and n + k must be visited after R. Hence, if both
(j, i, n + j, k, n + i, n + k) and (j, i, n + j, k, n + k, n + i) are infeasible, then R cannot belong
to a feasible solution. More generally, let φ(S) denote the set of all permutations of nodes
in S. If R is a feasible path in G but (φp, R, φd) is infeasible for all φp ∈ φ(π(R) \ R) and
φd ∈ φ(σ(R) \ R) then R cannot belong to a feasible solution and it can thus be eliminated
by (27).

3.5 Fork constraints

Infeasible paths can also be eliminated in a different way by considering groups of infeasible
paths sharing some common arcs. For instance, if the path R = (k1, . . . , kr) is feasible, but
the path (i, R, j) is infeasible for every i ∈ S and j ∈ T with S, T ⊂ N , then the following
inequality is clearly valid:

∑

i∈S

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+

∑

j∈T

xkr ,j ≤ r. (38)

This inequality can be strengthened by associating to each intermediate node k2, . . . , kr−1 a
set of nodes leading to infeasible paths. This results in the following outfork inequality :

Proposition 2. Let R = (k1, . . . , kr) be a feasible path in G and S, T1, . . . , Tr ⊂ (P ∪D)\R
be subsets such that for any integer h ≤ r and any node pair i ∈ S, j ∈ Th, the path
(i, k1, . . . , kh, j) is infeasible. The following inequality is then valid for the PDPTW:

∑

i∈S

xi,k1
+

r−1
∑

h=1

xkh,kh+1
+

r
∑

h=1

∑

j∈Th

xkh,j ≤ r. (39)

Proof. Assume that the inequality is violated in a feasible integer solution. Then, among
the arcs belonging to the inequality, r + 1 must have been selected. Because of the degree
constraints, there must be one arc from S to k1, one outgoing arc from each node k1, . . . , kr−1,
and one arc from kr to T . As a result, the path originating in S reaches one of the nodes in
the sets Th, 1 ≤ h ≤ r, and must thus be infeasible.�

The outfork inequality is illustrated in Figure 2 for the case r = 3. Similar inequalities, called
infork inequalities and illustrated in Figure 3 for the case r = 3, are obtained by reversing
the orientation of the arcs reaching path R. These lead to the following proposition.

Proposition 3. Let R = (k1, . . . , kr) be a feasible path in G and S1, . . . , Sr, T ⊂ (P ∪D)\R
be subsets such that for any integer h ≤ r and any node pair i ∈ Sh, j ∈ T , the path
(i, kh, . . . , kr, j) is infeasible. The following inequality is then valid for the PDPTW:

r
∑

h=1

∑

i∈Sh

xi,kh
+

r−1
∑

h=1

xkh,kh+1
+

∑

j∈T

xkr,j ≤ r. (40)
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It is worth pointing out that fork constraints can be used in any routing problem where the
concept of infeasible paths is well-defined, for instance the vehicle routing problem with time
windows.

k k k

T1 T2

T3S

1 2 3

Figure 2: Outfork constraint with r = 3

k k k

S

1 2 3

1 T
3SS2

Figure 3: Infork constraint with r = 3

3.6 Reachability constraints

For any node i ∈ N , let A−
i ⊂ A be the minimum arc set such that any feasible path from the

origin depot 0 to node i uses only arcs from A−
i . Let also A+

i be the minimum arc set such
that any feasible path from i to the destination depot 2n + 1 uses only arcs in A+

i . Consider
a node set T such that each node in T must be visited by a different vehicle. This set is said
to be conflicting. For any conflicting node set T , define the reaching arc set A−

T = ∪i∈T A−
i

and the reachable arc set A+
T = ∪i∈T A+

i . For any node set S ⊆ P ∪ D and any conflicting
node set T ⊆ S, the following two valid inequalities were introduced by Lysgaard (2004)
for the VRP with time windows:

x(δ−(S) ∩ A−
T ) ≥ |T | (41)

x(δ+(S) ∩ A+
T ) ≥ |T |. (42)

These inequalities are obviously also valid for the PDPTW. In this problem, however, nodes
can be conflicting not only because of time windows but also because of the precedence
relationships and the capacity constraints. In the case of the DARP, the ride time constraints
should also be taken into account when checking whether a pair of requests is conflicting.
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4 Branch-and-Cut Algorithm

We have implemented two branch-and-cut algorithms for the PDPTW: one with formulation
(PDPTW1) and one with formulation (PDPTW2). In both algorithms, an attempt is made
to generate violated valid inequalities at each node of the branch-and-bound tree. With
formulation (PDPTW1), precedence inequalities (4) must be generated to ensure feasibility.
With formulation (PDPTW2), feasibility is ensured by generating not only the precedence
inequalities (23) but also the capacity inequalities (24) and infeasible path inequalities (25).
In both formulations, the additional inequalities described in the previous section can be
used to improve the LP relaxation obtained at each node of the branch-and-bound tree.
In addition, inequalities (24) and (25) can be used to strenghten formulation (PDPTW1)
although they are not required to ensure feasiblity.

Taking into account the precedence relationships, time windows and ride time constraints,
several arc elimination rules can be used in a pre-processing step to reduce the size of the
problem. In addition, time windows can often be tightened. Details on these preprocessing
steps can be found in the papers of Dumas et al. (1991) and Cordeau (2005).

In both branch-and-cut algorithms, the LP relaxations are solved by the simplex algorithm.
Branching is performed on the xij variables by choosing, at each node of the enumeration tree,
the variable whose value is the farthest from the nearest integer. The search is performed by
applying the best-bound strategy. Prior to solving the problem, an upper bound is computed
by using either the adaptive large neighbourhood search algorithm of Ropke and Pisinger

(2004) for the PDPTW or the tabu search heuristic of Cordeau and Laporte (2003) for
the DARP.

We now describe the separation procedures used to generate the precedence, capacity and
infeasible path inequalities. We then describe procedures for the additional inequalities
introduced in Section 3.

4.1 Precedence constraints

Violated precedence constraints (4) and (23) can be identified in polynomial time by solving
a series of maximum flow problems: for each request i ∈ P , one can compute the maximum
flow from nodes i and 2n+1 to nodes 0 and n+i in G, with arc capacities given by the values
of the xij variables. If the value of this flow is less than 1, then a precedence constraint is
violated for a set S such that 0, n + i ∈ S and i, 2n + 1 6∈ S. The set S corresponds to one
of the shores of the corresponding minimum cut. We have implemented this procedure by
using the Ford-Fulkerson algorithm described by Cormen et al. (1990).

4.2 Capacity constraints

Two heuristics are used for the identification of violated capacity constraints. The first
one is a randomized construction heuristic which starts from a given node i ∈ P ∪ D and
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gradually adds nodes to S by considering, at each iteration, the nodes connected to S with
some flow. The choice of the node being added to S from the set of potential nodes is done
randomly (with each node having a probabibility of being selected proportional to the flow
on the corresponding arc). The procedure is repeated several times for each start node. If a
capacity constraint is violated in an integer solution, the violation will clearly be detected by
this procedure since it will add, at each iteration, the only node connected to the previously
added node. At some point during the process, the set S will thus satisfy q(S) > Q.

The second heuristic is a simple tabu search heuristic introduced by Cordeau (2005). This
heuristic starts with either a random subset S ⊆ P or a random subset S ⊆ D. At each
iteration, a node is either removed or added to S so as to minimize the value of x(δ(S))
while satisfying q(S) > Q.

4.3 Infeasible path constraints

To identify infeasible paths violating constraints (25), we use an enumerative procedure. In
this procedure, every node i ∈ P ∪ D is in turn considered as a start node from which a
tree of paths with positive flow is constructed. Each path is extended as long as a violation
along this path is still possible (i.e., as long as the total flow on the arcs in path R is strictly
greater than |A(R)| − 1 and the path has not reached node 2n + 1). Each time an infeasible
path is identified, the corresponding tournament constraint (27) is generated.

A very similar procedure is used to identify violated strengthened infeasible path constraints
for the DARP. In this case, however, each node i ∈ P is considered as a start node and
the extension of a path also stops if it reaches node n + i, at which point it is checked for
feasibility with respect to the time windows and the ride time constraint for user i.

4.4 Subtour elimination constraints

It is well known that the separation problem for subtour elimination constraints is solvable
in polynomial time by computing the maximum flow between each node i and all other
nodes j ∈ N \ {i}. This procedure, however, does not take into account the various liftings
proposed in inequalities (30)-(33). Hence, we resort here to a simple tabu search heuristic
very similar to the one used for capacity constraints and also described in more detail by
Cordeau (2005).

4.5 Strengthened capacity constraints

To identify sets S and T for which the strengthened capacity constraint is violated, we use a
construction heuristic similar to that used for the capacity constraints. This procedure starts
from a set S containing a single pickup node and gradually augments this set by adding one
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node at a time. Before augmenting the set, the procedure calculates

bp = arg max
i∈P\S

{x(S : i) + x(i : S)}

and
bd = arg max

i∈D\S
{x(S : i) + x(i : S)}

which we consider to be the best pickup (resp. delivery) node to add to the set. We prefer
to add a pickup node to S in order to increase q(S) on the right hand side of inequality (34).
Node bd is only added if x(S : bp) + x(bp : S) < x(S : bd) + x(bd : S), q(S ∪ {bd}) > 0 and
either x(S : bd) + x(bd : S) ≥ 1 or x(S : i) + x(i : S) = 0 for all i ∈ P \ S. Each time a node
is added to S, the set T is reconstructed by using a similar construction heuristic where the
roles of pickups and deliveries are interchanged. Only nodes from N \ S are added to T .

In the root node of the branch and bound search we use a randomized version of this heuristic
where noise is added to the evaluation of x(S : i) + x(i : S) and the heuristic is restarted
several times from each pickup node.

4.6 Generalized order constraints

We use two simple heuristics for the lifted generalized order constraints (36) and (37). These
heuristics consider the case where m = 3 and |U1| = |U2| = |U3| = 2. The first heuristic
identifies, for each user i, a user j that maximizes xi,n+j + xn+j,i + xij . It then finds a user
k such that the left-hand side of (36) is maximized. The second heuristic identifies, for
each user i, a user j maximizing xi,n+j + xn+j,i + xn+i,n+j and then a user k maximizing the
left-hand side of (37).

4.7 Fork constraints

A partial enumeration procedure is used for fork constraints with r = 1. This procedure
first enumerates the set H of all infeasible paths containing three nodes. To identify violated
outfork constraints, it starts from an arc (i, j) and constructs the set S by identifying all
paths of the form (h, i, j) belonging to H . Finally, the set T1 is constructed by identifying all
nodes k such that (h, i, k) ∈ H for every node h ∈ S. This procedure is repeated for every
arc (i, j) for which xij > 0 in the current solution. To identify violated infork constraints,
a similar procedure starts from an arc (i, j) and constructs a set T containing all nodes k
such that (i, j, k) ∈ H . The set S1 is then constructed by identifying all nodes h such that
(h, j, k) ∈ H for every node k ∈ T .

For r ≥ 2 a different heuristic is used. The heuristic iteratively uses every node k0 ∈ P ∪D as
a seed node. From k0, feasible paths (k0, k1, . . . , kl) are gradually constructed by extending
existing paths along arcs with positive flow. For every path, one then checks if a violated
fork constraint can be found with the path as a backbone. First, the set T is constructed
such that (k0, k1, . . . , kl, j) is infeasible for all j ∈ T . Then, the set S ∋ k0 is constructed
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such that all paths (i, k1, . . . , kl, j), i ∈ S, j ∈ T are infeasible. The two sets S and T and the
path (k1, . . . , kl) define a simple fork inequality (38). If this inequality is not violated, the
procedure attempts to lift it into an outfork or an infork inequality. To lift the inequality
into an outfork inequality, one adds as many nodes as possible to the sets T1 . . . Tl. A similar
approach is used to lift the inequality into an infork. In order to keep running times low,
only paths containing at most six nodes are considered. Checking if a path is infeasible can
be time consuming as many permutations have to be examined as described in section 3.4.
To alleviate this problem the feasibility of a path is only checked once, and the result of the
query is stored in a hash table from which it can be quickly retrieved.

4.8 Reachability constraints

Our procedure first computes, for each node i ∈ P∪D, the sets A+
i and A−

i . When doing this,
precedence relationships must be taken into account. For example, when checking whether
an arc (i, n + j) belongs to the set A−

n+k, one must check the existence of a path containing
this arc and such that k is visited before n + k, j is visited before n + j, and n + i is visited
after i in this path. The procedure then identifies, by complete enumeration, all sets of
conflicting requests with a cardinality smaller than or equal to a given threshold. Each set
of conflicting requests gives rise to several sets of conflicting nodes. For a set of k conflicting
requests, 2k sets of conflicting nodes exist. When k is greater than a parameter τ we do
not generate all conflicting node sets, but only those two consisting of either the pickups or
the deliveries of the conflicting requests. For a fractional solution, one then considers each
conflicting node set T and solves a maximum flow problem between the node 0 and the set
T by considering only the arcs in A−

T . If the capacity of the corresponding minimum cut is
smaller than |T |, then a violation of a reachability cut has been found. The same is done
by considering A+

T and solving a maximum flow problem between set T and the destination
depot 2n + 1.

5 Computational Experiments

The branch-and-cut algorithms were implemented in C++ by using ILOG Concert 1.3 and
CPLEX 9.0. All experiments were performed on a 2.5 GHz Pentium 4 computer with 512MB
of memory.

Several sets of instances for the PDPTW and the DARP were used for testing. We first
generated some PDPTW instances as suggested by Savelsbergh and Sol (1998). In these
instances, the coordinates of each pickup and delivery location are chosen randomly according
to a uniform distribution over the [0, 200]× [0, 200] square. The load qi of request i is selected
randomly from the interval [5, Q], where Q is the vehicle capacity. A planning horizon of
length T = 600 is considered and each time window has width W . The time windows for
request i are constructed by first randomly selecting ei in the interval [0, T − ti,n+i] and
then setting li = ei + W , en+i = ei + ti,n+i and ln+i = en+i + W . In all instances, the
primary objective consists of minimizing the number of vehicles, and a fixed cost of 104 is
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thus imposed on each outgoing arc from the depot. Four classes of instances are obtained
by varying the values of Q and W , as indicated in the following table.

Table 1: Characteristics of the Savelsbergh and Sol PDPTW instances

Class Q W
A 15 60
B 20 60
C 15 120
D 20 120

In the test instances generated by Savelsbergh and Sol (1998), each vehicle has a different
depot whose location is also chosen randomly over the [0, 200]× [0, 200] square. Because our
formulations cannot handle multiple depots directly, we have instead used a single depot
located at the middle of the square.

As is apparent from the results reported by Savelsbergh and Sol (1998), using the
[0, 200] × [0, 200] square with T = 600 yields instances in which it is difficult to serve more
than two or three requests in the same route. In addition, the long travel times make it
difficult to stop at an intermediate location between the pickup of a request and its delivery.
As a result, all instances generated in this way could be solved at the root node by our
algorithms. To obtain harder instances, we have decreased the size of the square from which
the locations are chosen. By choosing coordinates from the set [0, 50] × [0, 50], travel times
become smaller and it is then possible to serve more requests in each route. Furthermore,
it becomes easier to produce a sequence of several successive pickups followed by the corre-
sponding deliveries. In each of the four problem classes, we have generated ten instances by
considering values of n between 30 and 75. The name of each instance (e.g., A50) indicates
the class to which it belongs and the number of requests it contains.

To evaluate the strength of formulations (PDPTW1) and (PDPTW2), we have first solved
the LP relaxation of both formulations by considering the minimal sets of inequalities re-
quired for feasibility. Hence, violated precedence constraints were generated for (PDPTW1),
while for (PDPTW2) we have also generated violated capacity constraints and infeasible path
constraints. These results are reported in Table 2. For each instance, we indicate in columns
LP1 and LP2 the value of the lower bound computed at the root node as a percentage of
the upper bound indicated in the rightmost column of the table. This upper bound is either
the optimal value of the problem, if the instance could be solved to optimality, or an upper
bound computed by a heuristic, otherwise. One can see that for most instances (PDPTW2)
provides a tighter lower bound, with an average of 72.40 for (PDPTW2) compared to 70.52
for (PDPTW1).

To measure the strength of each type of inequality introduced in Section 3, we then solved
the LP relaxation of (PDPTW2) by separately considering each type of inequality: subtour
elimination constraints (SEC), strengthened capacity constraints (SCC), generalized order
constraints (GOC), fork constraints (FC) and reachability constraints (RC). Finally, column
“Full” reports the lower bound obtained with (PDPTW2) when considering all families of
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Table 2: Lower bounds obtained in the root node as a percentage of the upper bound

LP1 LP2 SEC SCC GOC FC RC Full U. Bound

A30 99.95 99.98 99.98 99.98 99.98 100.00 99.99 100.00 51,317.40
A35 99.68 99.84 99.85 99.86 99.84 100.00 99.99 100.00 51,343.53
A40 97.42 99.85 99.85 99.86 99.85 100.00 100.00 100.00 61,609.44
A45 83.21 83.35 83.35 83.38 83.35 83.93 83.83 84.00 61,693.01
A50 78.09 72.20 72.20 74.53 72.20 93.13 99.99 100.00 71,932.03
A55 71.49 88.50 88.50 88.52 88.50 93.85 99.91 99.96 82,185.31
A60 83.70 92.19 92.19 92.20 92.19 100.00 100.00 100.00 92,366.70
A65 89.27 89.23 89.23 89.24 89.23 99.99 99.97 100.00 82,331.12
A70 82.03 91.00 91.00 91.01 91.00 93.94 93.97 95.60 112,458.28
A75 57.29 70.27 70.27 70.30 70.27 78.46 99.89 99.97 92,528.54

B30 85.21 84.36 84.36 84.36 84.36 100.00 99.99 100.00 51,193.62
B35 67.35 70.74 70.74 83.67 70.74 89.24 91.92 100.00 61,400.07
B40 64.97 65.44 65.45 65.48 65.45 83.58 80.84 85.77 51,421.35
B45 67.29 67.51 67.51 69.74 67.51 99.96 99.92 99.97 61,787.28
B50 51.32 66.52 66.53 66.53 66.51 88.12 99.95 99.98 71,889.75
B55 63.37 58.89 58.88 59.84 58.59 99.99 99.97 100.00 82,080.73
B60 80.37 80.43 80.43 80.43 80.43 91.48 99.99 100.00 102,323.77
B65 85.87 75.38 75.38 75.40 75.38 95.89 99.88 99.92 82,623.98
B70 61.03 67.32 67.32 67.34 67.32 94.58 99.92 99.96 92,641.67
B75 56.32 58.67 60.10 60.12 60.10 85.72 89.23 89.36 92,476.30

C30 90.17 90.28 90.28 90.28 90.28 100.00 99.99 100.00 51,145.18
C35 80.24 80.33 80.33 80.35 80.33 81.14 99.94 99.98 51,235.64
C40 67.20 67.32 67.33 67.34 67.32 83.80 83.78 83.83 61,473.91
C45 75.62 75.57 75.59 75.60 75.49 87.77 99.96 100.00 81,405.96
C50 99.40 99.52 99.52 99.54 99.52 99.93 99.87 99.94 61,933.09
C55 67.04 67.20 67.21 67.23 67.21 91.91 99.81 99.92 61,930.55
C60 57.85 68.07 68.07 68.10 68.07 99.86 99.79 99.89 72,104.00
C65 53.96 54.84 54.84 54.85 54.83 77.14 99.70 99.80 82,326.62
C70 56.35 56.47 56.48 56.49 56.48 85.42 89.11 89.23 92,613.68
C75 56.17 67.04 67.04 67.06 67.03 78.34 99.71 99.83 92,711.74

D30 64.68 67.15 67.16 67.18 67.15 89.23 99.95 99.99 61,040.10
D35 46.34 47.19 47.19 47.21 47.20 58.04 99.86 99.93 71,308.04
D40 67.00 67.12 67.12 67.15 67.11 99.87 99.79 99.87 61,531.68
D45 87.76 87.56 87.56 87.56 87.56 99.98 99.98 99.99 81,601.52
D50 54.60 57.99 57.99 58.03 57.99 86.14 99.92 99.99 71,761.23
D55 52.59 57.96 57.96 58.00 57.96 86.08 99.81 99.91 72,051.95
D60 75.36 75.40 75.40 75.41 75.40 99.98 99.91 99.98 82,306.47
D65 49.05 38.73 38.72 38.77 38.73 93.80 99.72 99.86 82,200.77
D70 55.52 51.12 51.13 51.15 51.13 78.82 99.73 99.84 82,631.56
D75 38.78 37.52 37.52 37.54 37.52 64.18 99.62 99.77 92,970.84

Avg. 70.52 72.40 72.44 72.92 72.43 90.33 97.73 98.15

valid inequalities. Again, all lower bounds are expressed as a percentage of the upper bound
reported in the last column of the table. These results show that fork constraints and
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reachability constraints have the largest impact, with all other types of inequalities playing
only a minor role in the improvement of the lower bound. It is worth pointing out that for
some instances (e.g., B55), the lower bound obtained with one type of inequality is sometimes
worse than that obtained with just the basic formulation (column LP2). This is explained
by the fact that we use a heuristic separation procedure for capacity constraints, which may
lead to the generation of a different set of inequalities.

In Table 3, we report the results obtained by considering both formulations with all types
of valid inequalities. For each instance that was solved to optimality, we indicate the CPU
time (in minutes) needed to prove optimality, the number of nodes explored in the branch-
and-bound tree and the total number of cuts generated during the search. When an instance
could not be solved to optimality within the maximum CPU time (two hours), we report
the value of the current lower bound at the end of the computation (i.e., the lower bound
associated with the best pending node). These results show that formulation (PDPTW2)
provides a sligtly better performance: it solved three more instances to optimality and for
those instances that were solved by both formulations, (PDPTW2) required on average less
CPU time, fewer nodes and fewer cuts. Finally, when neither model could reach an optimal
solution, the latter usually provided a higher lower bound.

We have then tested our approach on two sets of randomly generated Euclidean DARP
instances comprising up to 96 requests. These instances have narrow time windows of 15
minutes. In the first set (’a’ instances), qi = 1 for every request i and the vehicle capacity is
Q = 3. In the second set (’b’ instances), qi belongs to the interval [1, 6] and Q = 6. These
data are described in detail in Cordeau (2005) and are available on the following web
site: http://www.hec.ca/chairedistributique/data/darp. Their main characteristics
are summarized in Table 4. In this table, columns |K| and T indicate, respectively, the
number of available vehicles and the length of the planning horizon in which time windows
are generated. The constraint on the number of vehicles is easily imposed in our formulations
as a bound on the total outgoing flow from the origin depot.

Tables 5 and 6 show the strength of the lower bounds obtained with the different types of
valid inequalities. These tables can be interpreted in the same way as Table 2. This time,
however, we also indicate in column LP0 the lower bound obtained with the three-index
formulation of Cordeau (2005). Again, formulation (PDPTW2) provides better bounds
than (PDPTW1) while fork constraints and reachability constraints are the most useful.
One can also see that both (PDPTW1) and (PDPTW2) do much better than the three-
index formulation in terms of the initial lower bound.

Finally, Tables 7 and 8 report the computational statistics collected when solving each in-
stance to optimality with both (PDPTW1) and (PDPTW2). In column (DARP), we also
indicate comparable statistics for the three-index DARP fomulation of Cordeau (2005).
For the latter formulation, only a small subset of all instances could be solved to optimality.
As in Table 3, one can see that formulation (PDPTW2) usually requires less computation
time and a smaller number of branch-and-bound nodes than (PDPTW1). The largest CPU
time for (PDPTW1) is 935.18 minutes compared to 139.48 minutes for (PDPTW2). Com-
parisons with the three-index DARP formulation show that the latter is totally dominated
by the two new formulations. For example, instance b4-32 required almost three hours of
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Table 3: Computational results for first set of PDPTW instances

(PDPTW1) (PDPTW2)
Instance U. Bound Time Nodes Cuts L. Bound Time Nodes Cuts L. Bound

A30 51,317.40 0.11 0 119 0.11 0 128
A35 51,343.53 0.21 0 483 0.19 0 593
A40 61,609.44 0.32 0 446 0.29 0 468
A45 61,693.01 51,837.31 51,859.47
A50 71,932.03 0.89 0 989 0.94 0 1088
A55 82,185.31 27.40 242 3457 21.98 165 4072
A60 92,366.70 1.57 0 911 1.48 0 1018
A65 82,331.12 5.47 5 1367 6.11 4 1441
A70 112,458.28 35.16 16 2687 22.36 8 2522
A75 92,528.54 92,501.89 92,512.92

B30 51,193.62 0.22 0 524 0.21 2 584
B35 61,400.07 0.38 2 535 0.33 0 713
B40 51,421.35 1.70 20 1357 1.95 64 1719
B45 61,787.28 1.93 60 1407 1.68 26 1617
B50 71,889.75 3.89 12 2295 3.12 6 2378
B55 82,080.73 2.41 6 1462 1.51 0 1535
B60 102,323.77 4.38 0 1571 4.61 0 1983
B65 82,623.98 82,562.35 82,572.12
B70 92,641.67 92,615.75 71.27 149 5230
B75 92,476.30 82,643.20 82,633.80

C30 51,145.18 0.12 0 120 0.11 0 120
C35 51,235.64 0.78 8 1242 0.63 5 1172
C40 61,473.91 51,585.73 51,580.23
C45 81,405.96 1.87 4 1757 1.64 4 2140
C50 61,933.09 38.05 688 5046 22.93 425 4741
C55 61,930.55 61,900.79 38.21 163 5689
C60 72,104.00 72,037.43 72,070.57
C65 82,326.62 82,165.14 82,161.87
C70 92,613.68 82,644.23 82,642.27
C75 92,711.74 92,554.03 92,553.66

D30 61,040.10 0.52 5 969 0.47 11 1088
D35 71,308.04 71,297.22 47.24 2490 8016
D40 61,531.68 61,473.86 61,496.58
D45 81,601.52 2.98 22 1177 2.97 29 1359
D50 71,761.23 7.58 90 2184 4.52 23 2330
D55 72,051.95 71,988.19 72,025.41
D60 82,306.47 12.74 176 2165 8.68 45 2341
D65 82,200.77 82,091.47 82,120.80
D70 82,631.56 82,496.68 82,496.12
D75 92,970.84 92,764.15 92,756.57
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Table 4: Characteristics of DARP instances

Instance |K| n T Q L Instance |K| n T Q L
a2-16 2 16 480 3 30 b2-16 2 16 480 6 45
a2-20 2 20 600 3 30 b2-20 2 20 600 6 45
a2-24 2 24 720 3 30 b2-24 2 24 720 6 45
a3-24 3 24 480 3 30 b3-24 3 24 480 6 45
a3-30 3 30 600 3 30 b3-30 3 30 600 6 45
a3-36 3 36 720 3 30 b3-36 3 36 720 6 45
a4-32 4 32 480 3 30 b4-32 4 32 480 6 45
a4-40 4 40 600 3 30 b4-40 4 40 600 6 45
a4-48 4 48 720 3 30 b4-48 4 48 720 6 45
a5-40 5 40 480 3 30 b5-40 5 40 480 6 45
a5-50 5 50 600 3 30 b5-50 5 50 600 6 45
a5-60 5 60 720 3 30 b5-60 5 60 720 6 45
a6-48 6 48 480 3 30 b6-48 6 48 480 6 45
a6-60 6 60 600 3 30 b6-60 6 60 600 6 45
a6-72 6 72 720 3 30 b6-72 6 72 720 6 45
a7-56 7 56 480 3 30 b7-56 7 56 480 6 45
a7-70 7 70 600 3 30 b7-70 7 70 600 6 45
a7-84 7 84 720 3 30 b7-84 7 84 720 6 45
a8-64 8 64 480 3 30 b8-64 8 64 480 6 45
a8-80 8 80 600 3 30 b8-80 8 80 600 6 45
a8-96 8 96 720 3 30 b8-96 8 96 720 6 45

CPU time with the DARP formulation (and 126,332 branch-and-bound nodes) while it was
solved in the root node with both (PDPTW1) and (PDPTW2). This dramatic improvement
results from the improved lower bound provided by the tighter (PDPTW1) and (PDPTW2)
formulations, and from the new inequalities introduced in this paper.

6 Conclusion

By using appropriate inequalities, we have introduced two new formulations for the PDPTW
which do not require the use of a vehicle index to impose pairing and precedence constraints,
as is the case in three-index formulations. In addition to adapting infeasible path constraints
and reachability constraints to take advantage of the structure of the problem, we have
also introduced two new families of inequalities: strenghtened capacity constraints and fork
constraints. Computational experiments performed on PDPTW and DARP instances show
that both formulations are competitive although the more compact one (in terms of variables)
has a slight advantage. In the case of the DARP, comparisons with a previously introduced
three-index formulation show that the two new formulations are able to solve much larger
instances. The largest instance solved to optimality contains 192 nodes. Given the current
state of the art for the exact solution of vehicle routing problems with time windows, it
seems fair to say that these are large instances.
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Table 5: Impact of valid inequalities for first set of DARP instances

LP0 LP1 LP2 SEC SCC GOC FC RC Full U. Bound

a2-16 98.42 99.14 99.93 99.93 99.93 99.93 100.00 100.00 100.00 294.25
a2-20 93.38 95.49 99.31 99.47 99.31 99.31 100.00 100.00 100.00 344.83
a2-24 87.51 95.49 98.81 99.03 98.81 98.81 99.83 99.51 99.83 431.12
a3-24 81.07 88.59 95.62 95.63 95.63 95.62 100.00 99.92 100.00 344.83
a3-30 79.16 88.83 94.55 94.55 94.55 94.55 100.00 100.00 100.00 494.85
a3-36 87.67 92.21 96.84 96.84 96.84 96.84 99.28 98.92 99.28 583.19
a4-32 78.12 85.68 92.23 92.22 92.32 92.23 100.00 100.00 100.00 485.50
a4-40 76.36 92.00 95.64 95.67 95.64 95.64 99.60 99.14 99.71 557.69
a4-48 64.63 85.83 91.96 91.96 91.97 91.96 99.74 98.70 99.83 668.82
a5-40 65.25 84.88 93.10 93.16 93.10 93.10 100.00 99.15 100.00 498.41
a5-50 59.92 78.87 88.40 88.44 88.41 88.40 98.92 97.71 99.10 686.62
a5-60 59.68 75.39 87.18 87.23 87.28 87.18 99.81 98.03 99.85 808.42
a6-48 63.36 79.69 87.98 88.03 87.99 87.96 100.00 98.45 100.00 606.06
a6-60 60.11 75.74 86.22 86.25 86.27 86.22 99.67 98.97 99.90 819.25
a6-72 65.42 79.88 89.08 89.27 89.22 89.09 99.31 98.18 99.43 916.05
a7-56 64.08 81.07 88.12 88.27 88.15 88.11 99.33 98.15 99.52 724.04
a7-70 62.49 77.60 85.51 85.53 85.64 85.51 99.84 98.62 99.93 891.55
a7-84 55.81 71.45 82.28 82.35 82.54 82.28 99.39 97.65 99.42 1033.37
a8-64 66.86 74.63 85.40 85.65 85.40 85.41 99.46 98.13 99.72 747.46
a8-80 58.29 69.87 81.10 81.10 81.19 81.10 99.20 96.29 99.33 945.73
a8-96 53.75 66.71 78.45 78.49 78.56 78.45 98.22 94.89 98.69 1234.46

Avg. 70.54 82.81 90.37 90.43 90.42 90.37 99.60 98.59 99.69

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of
Canada under grants 227837-04 and OGP0039682. This support is gratefully acknowledged.

References

N. Ascheuer, M. Fischetti and M. Grötschel. “A Polyhedral Study of the
Asymmetric Traveling Salesman Problem with Time Windows.” Networks, 36:69–79
(2000a).
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