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Models and Algorithms for Distributionally Robust

Least Squares Problems

Sanjay Mehrotra∗and He Zhang†

February 12, 2011

Abstract

We present different robust frameworks using probabilistic ambiguity descriptions of
the input data in the least squares problems. The three probability ambiguity descrip-
tions are given by: (1) confidence interval over the first two moments; (2) bounds on the
probability measure with moments constraints; (3) confidence interval over the proba-
bility measure by using the Kantorovich probability distance. For these three cases we
derive equivalent formulations and show that the resulting optimization problem can
be solved efficiently.

1 Introduction

The ordinary least squares (OLS) problem [7] is a fundamental problem with numerous
applications. The OLS problem is defined as

min
x

||Ax− b||2 . (1.1)

In OLS (1.1) the data A and b are considered known. In many practical situations, however,
the parameters A and b have errors. Such situations arise, for example, when data are col-
lected in physical experiments. Repeated observations under same experimental conditions
do not generate the same output [11], and the error in the estimation of A and b is random.
The goal of this paper is to consider robust formulations of such a problem, and propose
algorithms for solving them. One possible approach is to consider the stochastic least square
problem with the form:

min
x

{EP [||Ax− b||2]}, (1.2)

where P is a given known distribution followed by the observation data A and b. Models
of this type have been considered before (for example, Rao [14]). In practice, however, we
may not have full knowledge of this probability distribution. One possible way to handle
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the data uncertainty is to use robust optimization to let A and b be in a certain range and
optimize to hedge for the worst case. Ghaoui and Lebert [6] develop this idea by considering
the min-max optimization problem

min
x

max
||ξξξA,ξξξb||F≤ρ

||(A+ ξξξA)x− (b+ ξξξb)|| . (1.3)

For each given x ∈ Sρ := {(ξξξA, ξξξb)| ||ξξξA, ξξξb||F ≤ ρ}, the inner problem (1.4)

r(A,b, ρ,x) := max
||ξξξA,ξξξb||F≤ρ

||(A+ ξξξA)x− (b+ ξξξb)|| (1.4)

is solved to hedge the worst case over all the elements in Sρ. A key issue here is that (1.3)
does not consider the possible probability structure over the set ||ξξξA, ξξξb||F ≤ ρ. It only
considers the worst scenario. If the error has a very small probability for the worst case, the
estimates from (1.3) might be too pessimistic. Alternatively, we may require the error vector

ξξξ = [vec(ξξξA);ξξξb] (1.5)

to follow additional statistical properties, with partially known information on the distribu-
tion of ξξξ over the possible perturbation set Sρ. Here vec(·) denotes the vectorization of a
given matrix. This partial information can be used to define a set of probability measures
P, which is called the probability ambiguity set. It will be more realistic to hedge the worst
case over this set of probability measures instead of hedging the worst scenario over the error
sample space Sρ. This leads to a distributionally robust least squares frameworks as

min
x

max
P∈P

EP{||(A+ ξξξA)x− (b+ ξξξb)||2}, (1.6)

where A ∈ R
m×n, b ∈ R

m, ξξξ ∈ R
m×(n+1) and x ∈ R

n is the vector of decision variables.
Let n′ = mn +m which is the total dimension of the error ξξξ. A general formulation of the
ambiguity set P is defined as:

P := {P : EP [1] = 1,EP [ϕi(ξξξ)] = τi, i = 1, . . . , l,EP [ϕi(ξξξ)] ≼ τi, i = l + 1, . . . , r, ξξξ ∈ Ω},
(1.7)

where ξξξ = [vec(ξξξA);ξξξb]. ϕi(·) is a Borel measurable real function with respect to ξξξ for
i = 1, . . . , r. Here, ”≼” implies both inequality ≤ and semidefinite condition ≼, i.e. ≼ means
EP [ϕi(ξξξ)] ≤ τi when ϕi(ξξξ) is a one-dimensional function and ≼ implies that τi − EP [ϕi(ξξξ)]
is positive semidefinite when ϕi(ξξξ) is a symmetric matrix for ∀ξξξ ∈ Ω, and more generally
an ordering. The definition (1.7) is a general form. When ϕi(·)’s are polynomial functions,
(1.6) becomes a moment-robust optimization problem [10]. Define

r(x,Θ) := max
P∈P

EP{||(A+ ξξξA)x− (b+ ξξξb)||2} (1.8)

to be the inner problem, where Θ are the parameters used to define the ambiguity set P.
The outer problem is minx r(x,Θ).
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The idea of distributionally robust optimization is originated in Scarf [18]. A more generic
distributionally robust stochastic program takes the form:

min
x∈X

{max
P∈P

EP [h(x, ξξξ)]}, (1.9)

where EP [·] is the expectation taken with respect to the random vector ξξξ. Distributionally
robust optimization has gained significant interests recently. Dupacova [4], Bertsimas et
al. [2], and Delage and Ye [3] use linear or conic constraints to describe P with moments.
Shapiro and Ahmed [19] defined a probability ambiguity set with measure bounds and gen-
eral moment constraints. Pflug and Wozabal [12] consider the probability ambiguity set
defined by confidence regions over a reference probability measure. Bertsimas et al. [2] use
a piece-wise linear utility with first and second moment equality constraints and show that
the corresponding problem has semidefinite programming reformulations. Delage and Ye [3]
give general conditions for polynomial time solvability of the generic model (1.9). Shapiro
and Ahmed [19] give stochastic programming reformulations of their model.

In this paper, we use the above three ambiguity settings in the framework of the distribu-
tionally robust least square problem. In particular, the distributionally robust least squares
problem is studied with (1) first and second moment constraints, (2) norm bounds with first
and second moment constraints, (3) a confidence region over a reference probability measure.
The first and second moment constraints case is useful because the moment estimates are the
most common statistics in practice. The norm bounds constraints can be understood as the
bounds over the probability density function for a continuous random variable (probability
mass function for a discrete random variable). The confidence region over a reference proba-
bility measure is for the case where an empirical distribution is available. Under these three
different settings of probability ambiguity, we show that the distributionally robust least
squares problem can always be solved efficiently. In particular, we show that the separation
problem in the convex optimization reformulation of case (1) is polynomially solvable. We
give stochastic programming and finite reformulations of problems in cases (2) and (3).

2 Moment Robust Least Square

In this section, we study two moment robust least square (MRLS) models. In the first
model, we assume that we know the exact first and second moment information. In the
second model, confidence intervals for the first and second moments are considered.

2.1 MRLS with Exact Moment Information

Bertsimas et al. [2] consider a linear moment distributionally robust (MDR) problem with the
probability ambiguity set defined by the exact information of the first and second moments.
With this idea, let us consider the DRLS problem (1.6) with the probability ambiguity set
P defined as:

P := {P : EP [1] = 1,EP [ξξξ] = µµµ,EP [ξξξξξξ
T ] = Q, ||ξξξ|| ≤ ρ,Q− µµµµµµT ≻ 0}, (2.1)
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where ρ is the bound used to define the possible region of the perturbation vector ξξξ. Let us
define

ϕ0(x, ξξξ) := ||(A+ ξξξA)x− (b+ ξξξb)||2 . (2.2)

For the MRLS problem with exact moment information, we make the following assumptions:

Assumption 1 The probability ambiguity set (2.1) is nonempty, i.e. ∃ probability measure
ν defined on the sample space Sρ such that EP [ξξξ] = µµµ,EP [ξξξξξξ

T ] = Q.

Assumption 2 The first and second moments µµµ and Q are finite and satisfy Q ≻ µµµµµµT ,
where Q ≻ µµµµµµT means Q− µµµµµµT is positive definite (p.d.).

Then for a given x, the inner problem (1.8) of the corresponding (1.6) with probability
ambiguity set P defined in (2.1) can be written as:

Z(x) := sup
ν∈P

∫

Sρ

ϕ0(x, ξξξ)dν(ξξξ) (2.3)

s.t.

∫

Sρ

ξiξjdν(ξξξ) = Qij ∀i, j = 1, . . . , n′,

∫

Sρ

ξidν(ξξξ) = µi ∀i, j = 1, . . . , n′,

∫

Sρ

dν(ξξξ) = 1,

where n′ = mn + m. Taking the dual of the inner problem (2.3), we get an equivalent
formulation of the inner problem (1.8) as:

ZD(x) := min
Y,y,y0

Q •Y + µµµTy + y0 (2.4)

s.t. ξξξTYξξξ + ξξξTy + y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 for ∀ξξξ ∈ Sρ,

where Sρ := {ξξξ : ||ξξξ|| ≤ ρ}.

The strong duality holds between (2.3) and (2.4) if moment vector lies in the interior of the set
of feasible moment vectors, which is a direct result according to Theorem 7 in the Appendix.
More detailed discussion can be found in Isii [9] and Lasserre [10]. The assumption (A2)
guarantees that the covariance matrix Q−µµTµµTµµT is p.d. and the strong duality between (2.3)
and (2.4) is satisfied. We combine (2.4) with the outer problem and have the following
theorem.

Theorem 1 The original MRLS problem (1.6) is equivalent to:

min
x,Y,y,y0

Q •Y + µµµTy + y0 (2.5a)

s.t. ξξξTYξξξ + ξξξTy + y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 for ∀ξξξ ∈ Sρ. (2.5b)
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2.2 MRLS with Moment Confidence Interval

Delage and Ye [3] describe a general moment distributionally robust framework with the
probability ambiguity set defined by confidence intervals over the first two moments as
follows:

D = {ν : Eν [1] = 1,(Eν [ξξξ]− µµµ)TQ−1(Eν [ξξξ]− µµµ) ≤ α, (2.6)

Eν [(ξξξ − µµµ)(ξξξ − µµµ)T ]} ≼ βQ, ξξξ ∈ S }.
They also show that under certain conditions, the moment distributionally robust opti-
mization problem can be polynomially solved by the ellipsoid method. Their results are
summarized in the next lemma.

Lemma 1 (Delage and Ye 2008) Given an feasible x, consider the moment distributionally
robust problem defined as:

max
ν∈D

Eν [h(x, ξξξ)], (2.7)

where h(x, ·) is measurable with respect to ∀ν ∈ D and Eν [·] is the expectation taken with
respect to the random vector ξξξ, given that it follows the probability distribution ν over the
sample space S . Suppose α ≥ 0, β ≥ 1, Q ≻ 0 and h(x, ξξξ) is ν-integrable for all ν ∈ D .
Then the optimal value of the inner problem (2.7) is equal to the optimal value of the problem:

min
Y,y,y0,t

y0 + t (2.8)

s.t. y0 ≥ h(x, ξξξ)− ξξξTYξξξ − ξξξTy ∀ξξξ ∈ S ,

t ≥ (βQ+ µµµµµµT ) •Y + µµµTy +
√
α
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣
,

Y ≽ 0.

Consider the DRLS problem (1.6) with probability ambiguity set P defined as:

P = {ν : Eν [1] = 1,(Eν [ξξξ]− µµµ)TQ−1(Eν [ξξξ]− µµµ) ≤ α, (2.9)

Eν [(ξξξ − µµµ)(ξξξ − µµµ)T ]} ≼ βQ,

ξξξ ∈ Sρ = {ξξξ : ||ξξξ|| ≤ ρ}}
with the parameters α ≥ 0, β ≥ 1. For the inner problem (1.8) with Θ = {µµµ,ξξξ, α, β, ρ} and
P defined as (2.9), we can apply Lemma 1 with:

h(x, ξξξ) = ||(A+ ξξξA)x− (b+ ξξξb)||2 .
This gives us an equivalent formulation of the inner problem (1.8) described as follows.

Theorem 2 For a given fixed x ∈ R
n, if α ≥ 0, β ≥ 1, Q ≻ 0. Then, the optimal value of

the inner problem (1.8) must be equal to the optimal value of the problem:

min
Y,y,y0,t

(βQ+ µµµµµµT ) •Y + µµµTy + y0 +
√
αt (2.10)

s.t. ξξξTYξξξ + ξξξTy + y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 ∀ξξξ ∈ Sρ,
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣
≤ t,

Y ≽ 0.
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Proof The first constraint ξξξTYξξξ + ξξξTy+ y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 is the same as the
first constraint in (2.8). The second constraint

t ≥ (βQ+ µµµµµµT ) •Y + µµµTy +
√
α
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣

in (2.8) can be rewriten as two constraints

t1 = (βQ+ µµµµµµT ) •Y + µµµTy, t2 ≥
√
α
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣
, t = t1 + t2.

Substitute t = t1+ t2 and t1 = (βQ+µµµµµµT )•Y+µµµTy in (2.8), it is equivalent to (2.10).

According to Theorem 2, we can combine (2.10) with the outer problem to get the equivalent
formulation of minx maxP∈P EP{||(A+ ξξξA)x− (b+ ξξξb)||2} with the probability ambiguity
set P defined in (2.9) as

min
x,Y,y,y0,t

(βQ+ µµµµµµT ) •Y + µµµTy + y0 +
√
αt (2.11a)

s.t. ξξξTYξξξ + ξξξTy + y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 ∀ξξξ ∈ Sρ, (2.11b)
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣
≤ t, (2.11c)

Y ≽ 0, (2.11d)

2.3 Complexity of the MRLS

In this section, we will show that we can have a polynomial time solution method for solving
(2.5) and (2.11). All the analysis in this section will focus on (2.11). (2.5) is similar and
much simpler than (2.11). Therefore, all the following analysis can be easily applied to
the complexity analysis of (2.5). Grotschel et al. [8] show that convex optimization and
separation of a convex set from a point is equivalent. The result is summarized in the
following lemma.

Lemma 2 (Grotschel et al. 1981 and Anstreicher 1997) Consider a convex optimization
problem of the form

min
z∈Z

cTz

with linear objective and convex feasible set Z . Given that the set of optimal solutions is
nonempty, the problem can be solved to any precision ϵ in time polynomial in log(1/ϵ) and
in the size of the problem by using the ellipsoid method or Vaidya’s volumetric cutting plane
method if Z satisfies the following two conditions:

1. for any z̄, it can be verified whether z̄ ∈ Z or not in time polyhnomial in the dimension
of z.

2. for any infeasible z̄, a hyperplane that separates z̄ from the feasible region Z can be
generated in time polynomial in the dimension of z.
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According to Lemma 2, we need to find a polynomial time oracle to verify the feasibility for
a given assignment x, Y, y, y0. The main difficulty is the verification of the constraints

ξξξTYξξξ + ξξξTy + y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2 ∀ξξξ ∈ Sρ,

because there are infinitely many ξξξ’s in the sample space Sρ. For a given Y, y, y0, consider
the following optimization problem

g(x,Y,y, y0) = max
ξξξ∈Sρ

||(A+ ξξξA)x− (b+ ξξξb)||2 − ξξξTYξξξ − ξξξTy − y0, (2.12)

and we have the following proposition

Proposition 1 For a given x,Y,y, y0, problem (2.12) is equivalent to:

g(x,Y,y, y0) := max
||ξξξ||≤ρ

ξξξT Âξξξ + b̂a, (2.13)

where

Â = BTB−Y, b̂ = 2BT (Ax− b)− y,

Bm×m(n+1) =
(

X −Im
)

, X = [vec(e1x
T ), vec(e2x

T ), · · · , vec(emxT )]T ,

Im is a m × m identity matrix and ei is the m dimensional vector with 1 in the ith entry
and 0 otherwise.

Proof Since ξξξAx− ξξξb = Bξξξ, where:

Bm×m(n+1) =
(

X −Im
)

, X = [vec(e1x
T ), vec(e2x

T ), · · · , vec(emxT )]T

(2.12) can be rewritten as:

g(x,Y,y, y0) = max
ξξξ∈Sρ

ξξξT (BTB−Y)ξξξ + [2BT (Ax− b)− y]Tξξξ + ||Ax− b||2 − y0

= max
||ξξξ||≤ρ

ξξξT Âξξξ + b̂a.

Problem (2.12) is a standard trust region subproblem which can be solved polynomially with
respect to the size of ξξξ [15, 5]. In summary, we have the following lemma.

Lemma 3 The optimization problem (2.12) can be solved in polynomial time with respect to
the size of ξξξ.

Based on the above analysis, the following proposition that follows states that the equivalent
formulation (2.9) of the MRLS problem (1.6) with ambiguity set defined in (2.9) can be solved
in polynomial time.

Proposition 2 The MRLS problem (2.11) can be solved to any precision ϵ in time polyno-
mial in log(1/ϵ) and the sizes of x and ξξξ.
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Proof At first, the constraints of problem (2.11) describe a convex set with respect to the
variables x,Y,y, y0, t, because for any ξξξ ∈ Sρ, ξξξ

TYξξξ+ξξξTy+y0 ≥ ||(A+ ξξξA)x− (b+ ξξξb)||2
is a quadratic constraint with respect to x,Y,y, y0 and it can be derived as:

∣

∣

∣

∣(ξξξTξξξ •Y + 1, ξξξTy + 1, y0 + 1)
∣

∣

∣

∣

2

≥ 2 ||(A+ ξξξA)x− (b+ ξξξb)||2 + (ξξξTξξξ •Y)2 + (ξξξTy)2 + y20 + 3,

which is a second order cone constraint, and the constraint
∣

∣

∣

∣

∣

∣
Q

1

2 (ξξξ + 2Yµµµ)
∣

∣

∣

∣

∣

∣
≤ t is also a

second order cone constraint with respect toY,y, t. The feasible set is also nonempty because

the assignment x = x0,Y = I, y = 0, t = 2
∣

∣

∣

∣

∣

∣
Q

1

2µµµ
∣

∣

∣

∣

∣

∣
, y0 = supξξξ∈Sρ

{||(A+ ξξξA)x− (b+ ξξξb)||2−
ξξξTξξξ} is necessarily feasible. Note that such an assignment for y0 exists because

||(A+ ξξξA)x− (b+ ξξξb)||2 − ξξξTξξξ

is a continuous function with respect to ξξξ and Sρ is a compact set. For any given x, the ob-
jective value of the inner problem (1.8) is nonnegative because ||(A+ ξξξA)x− (b+ ξξξb)||2 ≥ 0
for ∀ξξξ ∈ Sρ and x. The weak duality theorem tells us that problem (2.8) is bounded below
by zero for any given x which implies that problem (2.11) is bounded below. Therefore, the
optimal solution set of problem (2.11) is nonempty.

Now we need to verify the two conditions in Lemma 2 in order to show that problem (2.11)
can be solved in polynomial time. In case of constraint (2.11d), feasibility can be verified
in O(n′3) arithmetic operations. Moreover, a separating hyperplane can be generated, if
necessary, based on the eigenvector corresponding to the lowest eigenvalue. The feasibility
of constraint (2.11c) is also easily verified. Based on an infeasible assignment (Ȳ, ȳ, ȳ0, t̄), if

Q
1

2 (y + 2Yµµµ) ̸= 0, a seperating hyperplane can be constructed in polynomial time:

∇Yg(Ȳ, ȳ) •Y +∇yg(Ȳ, ȳ)
Ty − t ≤ ∇Yg(Ȳ, ȳ) • Ȳ +∇yg(Ȳ, ȳ)

T ȳ − g(Ȳ, ȳ),

where g(Y,y) =
∣

∣

∣

∣

∣

∣
Q

1

2 (y + 2Yµµµ)
∣

∣

∣

∣

∣

∣
and where ∇Yg(Y,y) and ∇yg(Y,y) are the gradients

of g(Y,y) in Y and ξξξ. If Q
1

2 (y + 2Yµµµ) = 0, a seperating hyperplane can be polynomially
constructed as:

t ≥
∣

∣

∣

∣

∣

∣
Q

1

2 (ȳ + 2Ȳµµµ)
∣

∣

∣

∣

∣

∣
,

which is just t ≥ 0. Finally, let us consider the constraint (2.11b). Lemma 3 states that the
subproblem

max
ξξξ∈Sρ

||(A+ ξξξA)x− (b+ ξξξb)||2 − ξξξTYξξξ − ξξξTy − y0

is solvable in polynomial time for any given assignment (x̄, Ȳ, ȳ, ȳ0, t̄). Given that the optimal
value is found as r, if r ≥ 0, one can conclude infeasibility of the constraint and generate an
associated separating hyperlane using any optimal solution ξξξ∗ as follows:

(ξξξ∗ξξξ
T
∗ ) •Y + ξξξT∗ y + y0 − 2((A+ ξξξA∗)x− (b+ ξξξb∗))

T (A+ ξξξA∗)x

≥ ||(A+ ξξξA∗)x− (b+ ξξξb∗)||2 − 2((A+ ξξξA∗)x̄− (b+ ξξξb∗))
T (A+ ξξξA∗))x̄.
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This separating hyperplane is valid because ||(A+ ξξξA∗)x− (b+ ξξξb∗)||2 is convex with re-
spect to x. Then Lemma 2 can be applied and we can conclude that problem (2.11) can be
solved in polynomial time.

Remark. Now we compare the above result with the result of Delage and Ye [3]. They
consider a general distributionally robust optimization problem in the form

min
x∈X

{max
P∈P

EP [h(x, ξξξ)]} (2.14)

under the assumption that h(x, ξξξ) is convex with respect to x and concave with respect to
ξξξ. This assumption is crucial to generate separating hyperplanes, which needs a subgradient
of h(x, ξξξ) with respect to x and a supergradient of h(x, ξξξ) with respect to ξξξ. The difference
between the MRLS (1.6) and (2.14) is that the objective of (1.6) is not concave with respect
to ξξξ. Here, we take the advantage of the specific formulation of the subproblem (2.12) which
can be derived as a standard trust-region subproblem, and can be solved efficiently. Then
we use the solution of this subproblem to generate a separating hyperplane.

3 DRLS with Bounds on the Probability Measure

In this section, we consider the DRLS (1.6) with the ambiguity set containing bounds on
the probability measure. This kind of probability ambiguity is considered by Shapiro and
Ahmed [19]. For a given parameter ρ, let us denote Xρ to be the space of all finite measures
on (Sρ,BSρ

), where BSρ
is the Borel σ-algebra on Sρ. For ∀ν ∈ X , we have ν ≽ 0, which

means that ν(C) ≥ 0 for ∀C ∈ BSρ
. Also, for ∀ν1, ν2 ∈ Sρ, we write ν1 ≽ ν2 or ν1 − ν2 ≽ 0

if ν1(C) ≥ ν2(C) for ∀C ∈ BSρ
.

3.1 Ambiguity with both Measure Bounds and Moment Informa-

tion

Given ν1, ν2 ∈ Xρ with ν1 ≼ ν2, let us consider the probability ambiguity set:

P := {ν ∈ Xρ : ν(Sρ) = 1, ν1 ≼ ν ≼ ν2,(Eν [ξξξ]− µµµ)TQ−1(Eν [ξξξ]− µµµ) ≤ α, (3.1)

Eν [(ξξξ − µµµ)(ξξξ − µµµ)T ]} ≼ βQ}.

With the probability ambiguity set (3.1), the inner problem (1.8) can be defined as

max
ν∈M

∫

Sρ

ϕ0(x, ξξξ)dν(ξξξ) (3.2)

s.t.

∫

Sρ

dν(ξξξ) = 1,

∫

Sρ

(ξξξ − µµµ)(ξξξ − µµµ)Tdν(ξξξ) ≼ βQ,

∫

Sρ

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

dν(ξξξ) ≽ 0,
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where ϕ0(x, ξξξ) = ||(A+ ξξξA)x− (b+ ξξξb)||2 and M := {ν : ν1 ≼ ν ≼ ν2}. Now make the
assumption that the feasible set of (3.2) is nonempty. Let us write (3.2) as:

max
ν∈M

∫

Sρ

ϕ0(x, ξξξ)dν(ξξξ) (3.3)

s.t.

∫

Sρ

dν(ξξξ) = 1,

∫

Sρ

((ξξξ − µµµ)(ξξξ − µµµ)T − βQ)dν(ξξξ) ≼ 0,

∫

Sρ

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

dν(ξξξ) ≽ 0.

Let us define:

Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ) :=ϕ0(x, ξξξ)− λ0 − ((ξξξ − µµµ)(ξξξ − µµµ)T − βQ) •ΛΛΛ1 (3.4)

+

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2.

Then the Lagrangian of problem (3.3) is:

L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2) :=

∫

Sρ

Lλ0,Λ1,Λ2
(x, ξξξ)dν(ξξξ) + λ0 (3.5)

and the Lagrangian dual of (3.3) is:

min
λ0,ΛΛΛ1,ΛΛΛ2

{ψ(x, λ0,ΛΛΛ1,ΛΛΛ2) := sup
ν∈M

L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2)} (3.6)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0.

Proposition 3 In the Lagrangian dual problem (3.6),

ψ(x, λ0,ΛΛΛ1,ΛΛΛ2) :=

∫

Sρ

[Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ)]+dν2(ξξξ)−

∫

Sρ

[Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ)]−dν1(ξξξ) + λ0. (3.7)

Proof Since L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2) is a measurable function with respect to ν1 and ν2, for given
feasible x, λ0,Λ1,Λ2, the sets C− := {ξξξ : L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2) < 0, ξξξ ∈ Sρ} and C+ := {ξξξ :
L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2) < 0, ξξξ ∈ Sρ} are measurable. In order to achieve the maximum over the
sets {ν : ν1 ≼ ν ≼ ν2}, we should integrate L(x, ν, λ0,ΛΛΛ1,ΛΛΛ2) with respect to ν1 over the set
C− and with respect to ν2 over the set C+, which leads to the desired result (3.7).

According to the standard Lagrangian weak duality theory, we know that the optimal value
of problem (3.3) is always less than or equal to the optimal value of its dual (3.6). The
conjugate duality theory [16, 1] tells us that the strong duality for (3.3) and (3.6) holds and
the set of optimal solutions of the dual problem is nonempty and bounded if the following
assumption holds:

10



Assumption 3 The optimal value of (3.3) is finite, and there exists a x and a probability
measure ν ∈ M to (3.3) such that

∫

Sρ

((ξξξ − µµµ)(ξξξ − µµµ)T − βQ)dν(ξξξ) ≺ 0,

∫

Sρ

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

dν(ξξξ) ≻ 0, (3.8)

where for two square matrics A and B, A ≻ B means A−B is positive definite.

According to the above analysis, we know that under Assumption 3, there is no duality
gap between (3.3) and (3.6). With Assumption 3, the original DRLS problem (1.6) with
probability ambiguity set (3.1) is equivalent to:

min
x,λ0,ΛΛΛ1,ΛΛΛ2

{ψ(x, λ0,ΛΛΛ1,ΛΛΛ2)} (3.9)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0.

3.2 Some Cases

According the previous section, the DRLS problem (1.6) with probability ambiguity set (3.1)
is equivalent to (3.9) where ψ(x, λ0,ΛΛΛ1,ΛΛΛ2) is defined as (3.7). We assume that ν1 and ν2 are
finite measures and ν1, ν2 ≻ 0, where ν ≻ 0 means ν ≽ 0 and ∃A ∈ BSρ

such that ν(A) > 0.
In this section, we will discuss some special cases.

3.2.1 Finite support case

Let us consider the case that the sample space is finite as S := {ξξξ1, . . . , ξξξK}. In this case,
the measure ν1 and ν2 are actually two vectors which give the bounds for the probability
measure. Let ν1 = (p

1
, . . . , p

K
) and ν2 = (p̄1, . . . , p̄K) with p

i
< p̄i for i = 1, . . . , K. The

ambiguity set P can be defined as follows:

P := {(p1, . . . , pK) :
K
∑

i=1

pi = 1, p
i
≤ pi ≤ p̄i for i = 1, . . . , K,τττ =

K
∑

i=1

piξξξ
i (3.10)

(τττ − µµµ)TQ−1(τττ − µµµ) ≤ α,

K
∑

i=1

pi(ξξξ
i − µµµ)(ξξξi − µµµ)T} ≼ βQ}

Consider the inner problem (1.8) with probability ambiguity set (3.10). Let us make the
following assumption.

Assumption 4 There exists p := (p1, . . . , pK) ∈ P such that p
i
< pi < p̄i, (τττ−µµµ)TQ−1(τττ−

µµµ) < α,
∑K

i=1 pi(ξξξ
i − µµµ)(ξξξi − µµµ)T ≺ βQ} with τττ =

∑K

i=1 piξξξ
i.

Then we have the following theorem.
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Theorem 3 Assume that Assumption 4 is satisfied. For a given x, the inner problem (3.10)
is equivalent to:

min
s,s̄i,si,u,X,κκκ

s+
K
∑

i=1

(p̄is̄i + p
i
si) + [

√
α,−(Q− 1

2µµµ)T ]κκκ+ βQ •X (3.11)

s.t. s+ s̄i + si + ξξξi
T

u+ (ξξξi − µµµ)(ξξξi − µµµ)T •X ≥
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
,

for i = 1, . . . , K,

− u+ [0,−(Q− 1

2 )T ]κκκ = 0,

s̄i ≥ 0, si ≤ 0, for i = 1, . . . , K,

κκκ ∈ K,X ≽ 0,

where K is a second order cone.

Proof The inner problem (1.8) with ambiguity set (3.10) can be explicitly written as:

max
p:=(p1,...,pK)

K
∑

i=1

pi
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
(3.12)

s.t.
K
∑

i=1

pi = 1,

p
i
≤ pi ≤ p̄i,

τττ =
K
∑

i=1

piξξξ
i,

(τττ − µµµ)TQ−1(τττ − µµµ) ≤ α,

K
∑

i=1

pi(ξξξ
i − µµµ)(ξξξi − µµµ)T} ≼ βQ,

p := (p1, . . . , pK) ∈ R
K
+ .

(3.12) is a linear conic programming problem for a given x. According to Assumption 4, the
Slater’s constraint qualification is satisfied. The standard duality theory for second order
cone and semidefinite programming will gurantee the strong duality. Then we can take the
dual of (3.12). The dual problem has the form (3.11). For more details of duality of linear
conic problem, please refer to [22].

If we combine the above result with the outer problem, we can get:

Corollary 1 Assume that Assumption 4 is satisfied. Then the DRLS problem is equivalent
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to:

min
x,s,s̄i,si,u,X,κκκ

s+
K
∑

i=1

(p̄is̄i + p
i
si) + [

√
α,−(Q− 1

2µµµ)T ]κκκ+ βQ •X (3.13)

s.t. s+ s̄i + si + ξξξi
T

u+ (ξξξi − µµµ)(ξξξi − µµµ)T •X ≥
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
,

for i = 1, . . . , K,

− u+ [0,−(Q− 1

2 )T ]κκκ = 0,

s̄i ≥ 0, si ≤ 0, for i = 1, . . . , K,

κκκ ∈ K,X ≽ 0

It is now easy to see that (3.13) is a standard linear conic optimization problem.

3.2.2 Measure bounds by a reference probability measure

Let us assume that the bounds ν1 and ν2 are given as:

ν1 := (1− ϵ1)P
∗, ν2 := (1 + ϵ2)P

∗, (3.14)

where ϵ1 ∈ [0, 1] and ϵ2 ≥ 0 are given constants. Consider the dual problem (3.6) and
ψ(x, λ0,ΛΛΛ1,ΛΛΛ2) can be rewritten as:

ψ(x, λ0,ΛΛΛ1,ΛΛΛ2) =

∫

Sρ

((1 + ϵ2)[Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ)]+ − (1− ϵ1)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξ)]−)dP
∗(ξξξ) + λ0.

(3.15)

Note that the function (1 + ϵ1)[·]+ − (1 − ϵ2)[·]− is convex piecewise linear increasing and
Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξ) is convex in x, λ0,ΛΛΛ1,ΛΛΛ2 for each given ξξξ ∈ Sρ. Consequently the objective
function of (3.9) is convex in x, λ0,ΛΛΛ1,ΛΛΛ2. Therefore, the orignal DRLS problem (1.6) with
the ambiguity set (3.1) is reformulated as a convex stochastic programming problem with
the form (3.15). Now, (3.9) can be written as:

min
x,λ0,ΛΛΛ1,ΛΛΛ2

EP ∗ [H(x, λ0,ΛΛΛ1,ΛΛΛ2, ξξξ)] (3.16)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0,

where

H(x, λ0,ΛΛΛ1,ΛΛΛ2, ξξξ) := (1 + ϵ2)[Lλ0,ΛΛΛ,ΛΛΛ2
(x, ξξξ)]+ − (1− ϵ1)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξ)]− + λ0. (3.17)

According to Theorem 8 in the Appendix, the sample average approximation (SAA) tech-
niques can be used to estimate EP ∗ [·] in (3.16) and will guarantee the almost surely conver-
gence of both the objective value and the optimal solution set. We refer [17, 20] for more
details about SAA. Given a finite sample Ω := {ξξξ1, . . . , ξξξK}, the SAA of the problem (3.16)
can be written as:

min
x,λ0,ΛΛΛ1,ΛΛΛ2

{h(x, λ0,ΛΛΛ1,ΛΛΛ2) :=
1

K

K
∑

k=1

H(x, λ0,ΛΛΛ1,ΛΛΛ2, ξξξ
k)} (3.18)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0.

We have the following theorem:

13



Theorem 4 The SAA formulation (3.18) is equivalent to the linear conic programming prob-
lem:

min
x,sk

1
,sk

2
,λ0,Λ1Λ1Λ1,Λ2Λ2Λ2

1

K

K
∑

k=1

[(1 + ϵ2)s
k
2 − (1− ϵ1)]s

k
1] + λ0 (3.19)

s.t. ∥ (sk2 + 1, sk1 − 1, λ0 + 1, ((ξξξk − µµµ)(ξξξk − µµµ)T − βQ) •ΛΛΛ1 + 1,
(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2 + 1) ∥2

≥
∣

∣

∣

∣(A+ ξξξkA)x− (b+ ξξξib)
∣

∣

∣

∣

2
+ (sk2)

2 + (sk1)
2 + λ20

+ [((ξξξk − µµµ)(ξξξk − µµµ)T − βQ) •ΛΛΛ1]
2 + [

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2]
2 + 5,

for k = 1, . . . , K,

sk1, s
k
2 ≥ 0 for k = 1, . . . , K,

ΛΛΛ1,ΛΛΛ2 ≽ 0.

Proof Consider the optimization problem:

min
x,sk

1
,sk

2
,λ0,Λ1Λ1Λ1,Λ2Λ2Λ2

1

K

K
∑

k=1

[(1 + ϵ2)s
k
2 − (1− ϵ1)]s

k
1] + λ0 (3.20)

s.t. sk2 − sk1 ≥ Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξk) for k = 1, . . . , K,

sk1, s
k
2 ≥ 0 for k = 1, . . . , K,

ΛΛΛ1,ΛΛΛ2 ≽ 0,

where Lλ0,ΛΛΛ1,ΛΛΛ2
is defined in (3.4). We first claim that the optimal solution (ŝ1, ŝ2, x̂, λ̂0, Λ̂ΛΛ1, Λ̂ΛΛ2)

of (3.20) satisfies

ŝk2 = [Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2
(x̂, ξξξk)]+, ŝ

k
1 = [Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2

(x̂, ξξξk)]−, for ∀k ∈ {1, . . . , K},

where ŝi = (ŝ1i , . . . , ŝ
K
i ) for i = 1, 2. Assume ∃k ∈ {1, . . . , K} such that ŝk2 − ŝk1 >

Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2
(x̂, ξξξk), then assume ŝk2 − ŝk1 − Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2

(x̂, ξξξk) = δk > 0. Then, the solution

(ŝ1, ŝ2 − δkek, x̂, λ̂0, Λ̂ΛΛ1, Λ̂ΛΛ2) with ek to be the K-dimensional vector with 1 in the kth en-
try and 0 otherwise is a feasible solution which gives a smaller objective value. Therefore,
ŝk2 − ŝk1 = Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2

(x̂, ξξξk). This implies

ŝk2 ≥ [Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2
(x̂, ξξξk)]+, ŝ

k
1 ≥ [Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2

(x̂, ξξξk)]−.

Now assume ∃k ∈ {1, . . . , K} such that ŝk2 − [Lλ̂0,Λ̂ΛΛ1,Λ̂ΛΛ2
(x̂, ξξξk)]+ = ζk > 0, then it is easy to

check that the solution (ŝ1 − ζkek, ŝ2 − ζkek, x̂, λ̂0, Λ̂ΛΛ1, Λ̂ΛΛ2) will give us a smaller objective
value, which verifies the claim and proves that (3.20) is equivalent to (3.18).
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On the other hand, the first constraint of (3.20) can be rewritten as:

sk2 − sk1 ≥
∣

∣

∣

∣(A+ ξξξkA)x− (b+ ξξξib)
∣

∣

∣

∣

2 − λ0 − ((ξξξk − µµµ)(ξξξk − µµµ)T − βQ) •ΛΛΛ1

+

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2 for ∀k = 1, . . . , K

which is equivalent to the first conic constraint in (3.19). Therefore, the formulation (3.20)
is equivalent to the linear conic programming problem (3.19).

3.2.3 Measure bounds given by two probability measures

In Section 3.2.2, we analyze the DRLS problem with ambiguity set (3.1) and measure bounds
defined with one given probability measure. In this section, we will consider another impor-
tant case by defining ν1 and ν2 as follows:

ν1 := (1− ϵ1)P
∗, ν2 := (1 + ϵ2)P̄

∗, (3.21)

where P ∗ and P̄ ∗ are two given probability measure with known density functions f(·) and
f̄(·). The condition ν1 ≼ ν2 tells us (1 − ϵ1)f(ξξξ) ≤ (1 + ϵ2)f̄(ξξξ) for ∀ξξξ ∈ Sρ. Then the
problem (3.9) can be written as:

min
x,λ0,ΛΛΛ1,ΛΛΛ2

∫

Sρ

[(1 + ϵ2)f̄(ξξξ)[Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ)]+ − (1− ϵ1)f(ξξξ)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξ)]−]dξξξ + λ0 (3.22)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0.

Since for ∀ξξξ ∈ Sρ, the function (1 + ϵ2)f̄(ξξξ)[·]+ − (1 − ϵ1)f(ξξξ)[·]− is a convex increasing
function, we know that

(1 + ϵ2)f̄(ξξξ)[Lλ0,ΛΛΛ1,ΛΛΛ2
(x, ξξξ)]+ − (1− ϵ1)f(ξξξ)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξ)]−

is a convex function with respect to the decision variables x, λ0,ΛΛΛ1,ΛΛΛ2.

The integration in (3.22) can be considered as an expectation with the uniform distribution
over the sample space Sρ. With an argument similar to that in Section 3.2.2, we can use
the SAA formulation (3.23) to solve (3.22) as:

min
x,λ0,ΛΛΛ1,ΛΛΛ2

1

K

K
∑

k=1

[(1 + ϵ2)f̄(ξξξ
k)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξk)]+ − (1− ϵ1)f(ξξξ
k)[Lλ0,ΛΛΛ1,ΛΛΛ2

(x, ξξξk)]−] + λ0

(3.23)

s.t. ΛΛΛ1,ΛΛΛ2 ≽ 0,

where {ξξξ1, . . . , ξξξK} ⊂ Sρ is a given sample. We have the following theorem.
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Theorem 5 The SAA formulation (3.23) is equivalent to the linear conic programming prob-
lem:

min
x,sk

1
,sk

2
,λ0,Λ1Λ1Λ1,Λ2Λ2Λ2

1

K

K
∑

k=1

[(1 + ϵ2)f̄(ξξξ
k)sk2 − (1− ϵ1)f(ξξξ

k)sk1] + λ0 (3.24)

s.t. ∥ (sk2 + 1, sk1 − 1, λ0 + 1, ((ξξξk − µµµ)(ξξξk − µµµ)T − βQ) •ΛΛΛ1 + 1,
(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2 + 1) ∥2

≥
∣

∣

∣

∣(A+ ξξξkA)x− (b+ ξξξib)
∣

∣

∣

∣

2
+ (sk2)

2 + (sk1)
2 + λ20

+ [((ξξξk − µµµ)(ξξξk − µµµ)T − βQ) •ΛΛΛ1]
2 + [

(

Q (ξξξ − µµµ)
(ξξξ − µµµ)T α

)

•ΛΛΛ2]
2 + 5,

for k = 1, . . . , K,

sk1, s
k
2 ≥ 0 for k = 1, . . . , K,

ΛΛΛ1,ΛΛΛ2 ≽ 0.

Proof The proof is the same as the proof of Theorem 4.

Remark. The two cases in Section 3.2.2 and Section 3.2.3 are similiar. There is one
important difference, however. The case in Section 3.2.2 is considering the measure bounds
defined by one reference probability measure. Here we do not require the knowledge of the
density function of the reference probability measure P ∗. The only requirement is the ability
to sample from P ∗. The case in Section 3.2.3 considers the bounds defined by two different
probability measures. But we require the specific formulations of their density functions.
Even though the above three cases do not cover all the possibilities, they do cover a lot of
interesting cases. The first two cases are considered by Shapiro and Ahmed [19] in a more
general framework. However, because of the generality, they show that the problem can
be solved by the subgradient method. According to our specific least squares formulation,
we further show that the two cases are actually have equivalent linear conic programming
formulations, which can be solved efficiently by some existing software packages, such as
SeDuMi [21].

4 DRLS with C.I. by Probability Metric

In this section we consider a more general probability ambiguity set with the form

P := {P : d(P, P ∗) ≤ ϵ}, (4.1)

where P ∗ is a reference probability measure, d is some distance for probability measures and
ϵ > 0 is a given constant. Note that every probability measure P ∈ P is defined on the same
sample space Ω with σ-algebra F . Pflug and Wozabal [12] consider this type of ambiguity in
portfolio optimization. They point out some different ambiguity sets by choosing different
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distance functions d. In this paper, we will choose the Kantorovich distance (or L1 distance)
[23]. The Kantorovich distance between two probability measures P1 and P2 is defined as:

d(P1, P2) := sup
f

{
∫

f(u)dP1(u)−
∫

f(u)dP2(u), |f(u)− f(v)| ≤ ||u− v||1 for all u,v

}

.

According to the Kantorovich-Rubinstein theorem [13], the Kantorivich ambiguity set (4.1)
can be represented as:

P := {P : there is a bivariate probability K(·, ·) such that

∫

v

K(u, dv) = P (u); (4.2)
∫

u

K(du,v) = P ∗(v);

∫

u

∫

v

||u− v||1K(du, dv) ≤ ϵ}.

In our case, we assume that the sample space is finite, i.e Ω := {ξξξ1, . . . , ξξξN}. Then a
probability measure is give by a N -dimensional vector p := (p1, . . . , pN). Given the reference
probability measure P ∗ as p∗ := (p∗1, . . . , p

∗
N), the probability ambiguity set (4.2) is equivalent

to:

P := {p := (p1, . . . , pN) : pi =
N
∑

j=1

ki,j,
N
∑

i=1

ki,j = p∗j , ki,j ≥ 0,
N
∑

i=1

N
∑

j=1

∣

∣

∣

∣ξξξi − ξξξj
∣

∣

∣

∣

1
ki,j ≤ ϵ}.

The DRLS problem with ambiguity set (4.1) is now written as:

min
x

max
pi,ki,j ,i,j=1,...,N

N
∑

i=1

pi
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
(4.3)

s.t. pi =
N
∑

j=1

ki,j for i = 1, . . . , N,

N
∑

i=1

ki,j = p∗j for j = 1, . . . , N,

N
∑

i=1

N
∑

j=1

∣

∣

∣

∣ξξξi − ξξξj
∣

∣

∣

∣

1
ki,j ≤ ϵ,

pi ≥ 0 for i = 1, . . . , N,

ki,j ≥ 0 for i, j = 1, . . . , N.

We have the following theorem

Theorem 6 The DRLS problem with ambiguity set is equivalent to the linear conic opti-
mization problem:

min
x,si,tj ,σ,i,j=1,...,N

N
∑

j=1

p∗j tj + ϵσ (4.4)

s.t. si ≥
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
for i = 1, . . . , N,

− si + tj +
∣

∣

∣

∣ξξξi − ξξξj
∣

∣

∣

∣

1
σ ≥ 0 for i, j = 1, . . . , N,

σ ≥ 0.
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Proof Given an x, the inner problem has the form:

max
pi,ki,j ,i,j=1,...,N

N
∑

i=1

pi
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
(4.5)

s.t. pi =
N
∑

j=1

ki,j for i = 1, . . . , N,

N
∑

i=1

ki,j = p∗j for j = 1, . . . , N,

N
∑

i=1

N
∑

j=1

∣

∣

∣

∣ξξξi − ξξξj
∣

∣

∣

∣

1
ki,j ≤ ϵ,

ki,j ≥ 0 for i, j = 1, . . . , N,

pi ≥ 0 for i = 1, . . . , N,

which is a standard linear optimization problem. Since p∗ is a feasible solution and the
objective is bounded for one given x, the strong duality holds. We can write the dual of
(4.5) as:

min
si,tj ,σ,i,j=1,...,N

N
∑

j=1

p∗j tj + ϵσ (4.6)

s.t. si ≥
∣

∣

∣

∣(A+ ξξξiA)x− (b+ ξξξib)
∣

∣

∣

∣

2
for i = 1, . . . , N,

− si + tj +
∣

∣

∣

∣ξξξi − ξξξj
∣

∣

∣

∣

1
for i, j = 1, . . . , N,

σ ≥ 0,

Combine (4.6) with the outer problem and we can get the desired equivalent formulation
(4.4).

Remark. In [12], Pflug and Wozabal analyze the portfolio selection problem with the
ambiguity set defined by a probability confidence set with Kantorovish distance. Because
of the specific property of portfolio selection problem, their problem has a linear objective.
At the same time, they add additional constraints upon the ambiguity, i.e. the lower bound
of the expected return, which implies a certain level of generality of the constraints. The
solution method for their problem is called successive convex programming (SCP). The
basic idea is to start from a simple ambiguity set, find probability measures which violate
the constraints and add those probability measures to the ambiguity set. This idea is similar
as the cutting plane method in convex optimization. Compared with their methodology, the
DRLS problem with ambiguity set defined by confidence set with Kantorovish distance has
a nice structure, which leads to an exact equivalent linear conic formulation (4.6).

5 Conclusions Remarks

We have presented a distributionally robust least squares framework with three different
probability ambiguity sets. They include ambiguity sets defined by i) confidence intervals
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of the first two moments, ii) moment confidence intervals with measure bounds and iii)
confidence interval defined by using Kantorovich distance. For the first case, we show that
the equivalent semi-infinite programming formulation can be solved efficiently by using el-
lipsoid method or Vaidya’s volumetric cutting plane method with oracle determined by a
trust-region subproblem. The second case is shown to be equivalent as a convex stochas-
tic programming problem. Especially, the SAA formulation can be proved to have a linear
conic equivalent formulation. For the third case, we consider the finite support case and
show that the DRLS problem is equivalent to a linear conic programming problem. The
linear conic equivalent formulations of the latter two cases make the DRLS problem more
attractive because it is easy to apply in practice, i.e. using SeDuMi [21] to solve the problem.
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6 Appendix

In the appendix, some known theorems are summarized. Consider the distributional opti-
mization problem in the form:

Zprimal := max
ν∈B

∫

S

ϕ0(q)dν(q) (6.1)

s.t.

∫

S

ϕi(q)dν(q) = bi, for ∀i = 1, . . . ,M,

where B is the set consisting all nonnegative measures on S with respect to each of which
ϕ0, . . . , ϕM are measurable and integrable.
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Theorem 7 (Isii 1963) Let M := {(m1, . . . ,mM)|mi =
∫

S
ϕi(q)dν(q), ν ∈ B}. If (b1, . . . , bM)

is an interior point of M, then we have:

Zprimal = Zdual := inf
λλλ

M
∑

i=1

biλi (6.2)

s.t.

M
∑

i=1

λiϕi(q) ≥ ϕ0(q), ∀q ∈ S

In Section 3, we use SAA method to approximately solve the stochastic programming prob-
lem. The convergence results for the SAA method from [17] are summarized here. Consider
the stochastic programming problems of the form

min
x∈X

{f(x) := EP [F (x, ξξξ)]}, (6.3)

where F (x, ξξξ) is a function of two vector variables x ∈ R
n and ξξξ ∈ R

d, X ⊂ R
n is a given

set and ξξξ = ξξξ(ω) is a random vector. The expectation in (6.3) is taken with respect to the
probability distribution of ξξξ which is assumed to be known as P . Denote by Ξ ⊂ R

d the
support of the probability distribution of ξξξ, that is, Ξ is the smallest closed set in R

d such
that the probability of the event ξξξ ∈ R

d \ Ξ is zero. Also denote by P(A) the probability of
an event A. With the generated sample ξ1, . . . , ξK , we associate the sample average function

f̂K(x) :=
1

K

K
∑

i=1

F (x, ξi). (6.4)

The original stochastic programming problem (6.3) is approximated by the optimization
problem

min
x∈X

{f̂K(x) :=
1

K

K
∑

i=1

F (x, ξi)}. (6.5)

Before giving the theorem of the statistical properties of the SAA formulation, we need
to define some notations. Let the optimal value of the original problem (6.3) be ν and it’s
optimal solution set be S. Let ν̂K and ŜK be the optimal value and the set of optimal solutions
of the SAA problem (6.5). For sets A,B ⊂ Rn, denote dist(x,A) := infx′∈A ||x− x′|| to be
the distance from x ∈ X

n to A, and

D(A,B) := sup
x∈A

dist(x,B) (6.6)

Also, define the function (x, ξ) 7→ F (x, ξ) to be a random lower semicontinuous function if
the associated epigraphical multifunction ξ 7→ epiF (·, ξ) is closed valued and measurable.
We say that the Law of Large Numbers (LLN) holds, for f̂K(x), pointwise if f̂K(x) converges
w.p.1 to f(x), as K → ∞, for any fixed x ∈ R

n. The convergence theorem is as follows:

Theorem 8 Suppose that: (i) the integrand function F is random lower semicontinuous,
(ii) for almost every ξ ∈ Ξ the function F (·, ξ) is convex, (iii) the set X is closed and convex,
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(iv) the expected value function f is lower semicontinuous and there exists a point x̂ ∈ X
such that f(x) ≤ +∞ for all x in a neighborhood of x̂, (v) the set S of optimal solutions of
the original problem (6.3), (vi) the LLN holds pointwise. Then ν̂K → ν∗ and D(ŜK , S) → 0
w.p.1 as K → ∞.

There are also results about the exponential convergence rate of the SAA method. Please
refer to [17, 20] for details of such results.
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